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h i g h l i g h t s

• We introduce the Variable Output Elasticities Cobb–Douglas production function.
• This flexible function provides a generalization of the CES function.
• It has advantages compared to existing flexible functions (e.g. Translog function).
• It leads to linear input demands and facilitates the analyze of input substitution.
• The case of substitutions between energy, capital and labor is provided.
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a b s t r a c t

By defining the Variable Output Elasticities Cobb–Douglas function, this article shows that a large class
of production functions can be written as a Cobb–Douglas function with non-constant output elasticity.
Compared to standard flexible functions such as the Translog function, this framework has several
advantages. [1] It does not require the use of a second order approximation. [2] This greatly facilitates
the deduction of linear input demands function without the need of involving the duality theorem. [3] It
allows for a tractable generalization of the CES function to the case where the elasticity of substitution
between each pair of inputs is not necessarily the same. [4] This provides a more general and more
flexible framework compared to the traditional nested CES approach while facilitating the analyze of the
substitution properties of nested CES functions. The case of substitutions between energy, capital and
labor is provided.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In their influential contribution to economic theory, Cobb and
Douglas (1928) introduced the production function that was
named after them. Since, the Cobb–Douglas (CD) function has been
(and is still) abundantly used by economists because it has the
advantage of algebraic tractability and of providing a fairly good
approximation of the production process. Its main limitation is
to impose an arbitrary level for substitution possibilities between
inputs. To overcome this weakness, important efforts have been
made to develop more general classes of production function with
as a corollary a strong increase in complexity (for a survey see
e.g. Mishra, 2010).

∗ Correspondence to: OFCE — French Economic Observatory, 10 Place de
Catalogne, 75014 Paris, France.

E-mail address: frederic.reynes@sciencespo.fr.

Arrow et al. (1961) introduced the Constant Elasticity of Sub-
stitution (CES) production function which has the advantage to be
a generalization of the three main functions that were used pre-
viously: the linear function (for perfect substitutes), the Leontief
function (for perfect complements) and the CD function, which
assume respectively an infinite, a zero and a unit elasticity of
substitution (ES) between production factors.

A limitation of the CES function is known as the impossibility
theorem of Uzawa (1962) - McFadden (1963) according to which
the generalization of the class of function proposed by Arrow et al.
(1961) to more than two factors imposes a common ES between
factors. To allow for different degrees of substitutability between
inputs, Sato (1967) proposed the approach of nested CES functions
which has proved very successful in general equilibriummodeling
and econometric studies because of its algebraic tractability. The
substitution between energy and other inputs is one of the main

https://doi.org/10.1016/j.mathsocsci.2018.10.002
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applications (e.g. Prywes, 1986; Van der Werf, 2008; Dissou et al.,
2015). Although this method is flexible, substitution mechanisms
remain constrained and the choice of the nest structure is often
arbitrary.

To overcome this limit, several ‘‘flexible’’ production functions
have been proposed such as the Generalized Leontief (GL) (Diew-
ert, 1971) and the Transcendental Logarithmic (Translog) function
(Christensen et al., 1973).1 These are second order approximations
of any arbitrary twice differentiable production functions.2 They
have the advantage not to impose any constraint on the value of
the ES between different pairs of inputs but their use is muchmore
complex. This at least partly explains their little success in general
equilibriummodeling compared to the nested CES approach.3 Two
difficulties are particularly limiting:

- Due to the complexity of flexible production functions, the
demands for inputs is algebraically and computationally te-
dious. Using the Sheppard lemma and the duality theorem,
the demands for inputs are derived from a second order
approximation of the cost function at the optimum. This
approach raises at least three issues. First, estimating the ES
through the econometric estimation of a cost function rises
important endogeneity issues since the dependent variable
(the production cost) is by construction a function of the
explanatory variables (the input prices). Second, all variables
are generally non stationary. The risk of fallacious regression
is therefore important. Third, the presence of rigidity in in-
puts (in particular in equipment) does not guaranty that the
approximation is at the optimum. Thismay invalidate the key
assumption underlying the Sheppard lemma and the duality
theorem.

- Because of the use of a linear approximation, it is often dif-
ficult to impose the theoretical curvature conditions of the
isoquants (see Diewert and Wales, 1987). This may generate
poor results in the case of important variations of prices. As
a consequence, the approach may be unsuitable for use in
applied general equilibrium modeling because it may lead to
the failure of the solver algorithm.4

Whereas the existing literature has attempted to overcome
the weakness of the CD function by proposing more general but
also more complex alternatives, we remain here in the tractable
framework of the CD function and investigate the conditions under
which it can be used as a flexible function.We use the fact that any
homogeneous production function can be written under a speci-
fication that is very close to a CD function. We define this spec-
ification as the Variable Output Elasticities CD function because
compared to the original CD function, the output elasticities are
not necessarily constant. TheOutput Elasticity (OE) of a given input
(e.g. labor, capital or energy) measures the percentage change of
output induced by the percentage change of this input. The spec-
ification of the OE is importantly influenced by the assumptions
regarding the level of ES between inputs (e.g. Ferguson, 1969;
Charnes et al., 1976; or Kümmel et al., 1985, 2002). The OE is con-
stant only if the ES between every input is equal to onewhich is the

1 The estimation approach of a CES function using a second order approximation
proposed by Kmenta (1967) is often seen as a pre-cursor to the Translog function.
2 For a formal proof in the case of the Translog function see e.g. Grant (1993).

A theoretical discussion on this function can also be found in Thompson (2006)
whereas Koetse et al. (2008) provide ameta-analysis of empirical studies estimating
the substitution between capital and energy with a Translog function.
3 See Jorgenson (1998) for the use of Translog function in general equilibrium

modeling.
4 For a discussion see Perroni and Rutherford (1995) who argue that traditional

flexible functional forms suffer from an excess of flexibility. They advocate for the
use of the nested CES cost function which is globally well-behaved and can provide
a local approximation to any globally well-behaved cost function.

assumption of the original CD function. For any other configuration
of ES, the OE varies and depends on the relative quantities of each
input and on the ES between inputs. We use here this property
to characterize a relatively general class of production functions
that has the advantage to combine the linear tractability of the
CD function with a high level of flexibility in terms of substitution
possibilities between inputs. More specifically, we shall see that
this approach has the following advantages:

- It avoids the tedious algebraic of the second order approxi-
mation traditionally used in flexible functions.

- This approach allows for the derivation of algebraically
tractable input demand functions without involving the du-
ality theorem and the approximation of the cost function at
the optimum.

- This greatly facilitates the deduction of linear input demands
that can be estimated using standard linear regression mod-
els.

- This new class of function allows for a generalization of the
CES to the case where the ES between each pair of inputs are
not necessarily the same and hence for avoiding the limita-
tion of the impossibility theorem and the use of the nested
CES approach. This may prove very useful to analyze the
substitution phenomena between energy and other inputs.

- This allows for easily introducing different levels of ES be-
tween production factors. In particular, changing the level
of elasticity between factors is easier than in the nested CES
approach since it does not require changing the structure of
the nest. Moreover, relevant constrains on the ES parameters
allow for reproducing the particular case of a nested CES
function.

Section 2 defines formally the Variable Output Elasticities CD
(VOE-CD) function in the general case of n inputs and shows that
the CD function can be seen as a flexible function generalizing any
homogeneous function. Section 3 shows that the VOE-CD provides
a generalization of the CES function where the ES between each
pair of inputs are not necessarily the same. Section 4 derives the
demand for inputs that minimizes the production costs in the
case of a VOE-CD production function. Section 5 investigates the
particular case of a nested CES function with 3 inputs (e.g. capital–
labor–energy) and shows that its VOE-CD formulation allows for a
straightforward analysis of the substitution properties of a system
of nested CES functions. Section 6 concludes.

2. The variable output elasticities Cobb–Douglas function

In order to characterize the VOE-CD function, let us first define
the general characteristic of the technology of production (Defini-
tion 1):

Definition 1. The production function is:

1. a continuous and twice differentiable function Q 5:

Q = Q (X1, X2, . . . , Xi, . . . , Xn) (1)

Where Xi is the quantity of input (or production factor) i ∈

[1; 2; . . . ; n] used to produce the quantity of production (or
output) Q.

5 In this paper, the first and second partial derivatives of the function Q with
respect to Xi are respectively Q ′(Xi) =

∂Q
∂Xi

and Q ′′(Xi) =
∂2Q
(∂Xi)2

. Variables in growth

rate are referred to as Ẋ =
dX
X =

d(ln X)
dX . All parameters written in Greek letter are

positive.
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2. homogeneous of degree 1 (constant returns-to-scale)6
3. increasing in inputs: Q ′(Xi) =

∂Q
∂Xi

> 0
4. strictly concave (reflecting the law of diminishing marginal

returns): Q ′′(Xi) =
∂2Q
(∂Xi)2

< 0 and ∂(Q ′(Xi))
∂Xj

=
∂2Q

∂Xi∂Xj
> 0 for

i ̸= j where i, j ∈ [1; 2; . . . ; n].

Proposition 1. Any homogeneous production function as defined in
Definition 1 can be written as follows:

Q̇ =

n∑
i=1

ϕiẊi ⇔ d(lnQ ) =

n∑
i=1

ϕid(ln Xi) (2)

with

ϕi =
Q ′(Xi)Xi∑n
j=1 Q ′(Xj)Xj

=

⎡⎣ n∑
j=1

(
Q ′(Xj)Xj

Q ′(Xi)Xi

)⎤⎦−1

(3)

Where ϕi ∈ [0; 1] is the output elasticity (OE) of input i. It measures
the relative change in output induced by a relative change in input i.
Moreover,

∑n
i=1 ϕi = 1 [because of Eq. (3)].7

Proof. The total differential of the production function (1),

dQ =

n∑
i=1

∂Q
∂Xi

dXi (4)

can be rewritten in growth rate:

dQ
Q

=

n∑
i=1

Q ′(Xi)Xi

Q
dXi

Xi
⇔ Q̇ =

n∑
i=1

Q ′(Xi)Xi

Q
Ẋi (5)

The Euler’s Theorem states that a function which is homogeneous
of degree 1 can be expressed as the sum of its arguments weighted
by their first partial derivatives:

Q =

n∑
j=1

Q ′(Xj)Xj (6)

Incorporating (6) into (5), we see that (4) can equivalently be
written as Eqs. (2) and (3). □

The specification of Eq. (2) is very close to the one of a CD
function. In both cases, the specification is log-linear and the OEs,
ϕi, appear explicitly. There are however two major differences: (a)
the CD function is formulated in level whereas Eq. (2) is written
in logarithmic first difference (which is equivalent to a growth
rate); (b) in the standard CD function written in level, the OEs are
constant whereas they are not necessarily constant in Eq. (2). For
this reason and in order to avoid any ambiguity, we shall from now
on adopt the following definition.

Definition 2. The VOE-CD function and the COE-CD function

1. Aproduction function is aVariableOutput Elasticities Cobb–
Douglas (VOE-CD) function if it is specified as Eqs. (2) and
(3).

6 If one assumes that Xi is the quantity of ‘‘efficient’’ input andQ = Y 1/θ where Y
is the level of production and θ the level of returns-to-scale, all the results presented
below can be generalized to account for increasing/decreasing returns-to-scale and
technical progress.
7 This comes fromDefinition 1.2, that is from the hypothesis of constant returns-

to-scale.

2. A production function is a Constant Output Elasticities
Cobb–Douglas (COE-CD) function if it is specified as:

Q =

n∏
i=1

Xϕi
i ⇔ lnQ =

n∑
i=1

ϕi ln Xi (7)

Where the OEs, ϕi, are constant.
3. A production function is a VOE-CD function in level if it is

specified as Eqs. (7) and (3).

Proposition 2.

1. A VOE-CD function as defined in Definition 2.1 is equivalent to
a COE-CD function as defined in Definition 2.2 if the OEs, ϕi, are
all constant.

2. A VOE-CD function in level as defined in Definition 2.3 is not
equivalent to a VOE-CD function as defined in Definition 2.1.
The higher the changes in the OEs, ϕi, are, the higher the gap
between the VOE-CD function (Definition 2.1) and the VOE-CD
function in level (Definition 2.3).

Proof.

1. Taking the integral of Eq. (2) assuming that ϕj are constant
for all i = [1; n] leads to the specification in level (7):∫
d(lnQ ) = lnQ ≡

∑n
i=1 ϕi

∫
d(ln Xi) =

∑n
i=1 ϕi ln Xi

(the constants of integration are set to zero for algebraic
simplicity).

2. Taking the total derivative of Eq. (7) leads to, d(lnQ ) =∑n
i=1

(
∂ lnQ
∂ ln Xi

d(ln Xi) +
∂ lnQ
∂ϕi

d(ϕi)
)

=
∑n

i=1 (ϕid(ln Xi)
+(ln Xi).d(ϕi)) which is not equivalent to Eq. (2). The VOE-
CD function in level (Definition 2.3) tends toward a VOE-CD
function (Definition 2.1) if d(ϕi) → 0). □

Proposition 2.1 shows that the VOE-CD function encompasses
the case of the COE-CD function. This simply comes from the
fact that the COE-CD function is one particular type of degree 1
homogeneous function whereas the VOE-CD function can serve
as a generalization of all type of degree 1 homogeneous function.
Proposition 2.2 shows that the VOE-CD function in level, Eq. (7),
leads to a different outcome than the VOE-CD function (2) even
if one allows for the OEs to vary. It can therefore not be used as
a generalization of all type of degree 1 homogeneous function.
The VOE-CD function in level (7) provides a poor approximation
of the specification in logarithmic first difference (2) in the case of
an important change in the ratio between marginal productivities
(i.e. between input prices).

Proposition 1 can more or less explicitly be found in the litera-
ture. In particular, several authors have proposed to reformulate a
degree 1 homogeneous production function [as Eq. (1)] in growth
rate [as Eq. (2)]. Ferguson (1969, pp. 76–83) uses this reformulation
to analyze the properties of homogeneous production functions.
He uses the concept of OE to construct what he calls the ‘‘function
coefficient’’ which is defined as the elasticity of outputwith respect
to a proportional changes in all inputs. He shows that the function
coefficient is greater (resp. equal, smaller) than/to one in the case
of increasing (resp. constant, decreasing) returns to scale. He also
derives explicitly the specification of the OE in the case of a CES
function. Kümmel et al. (1985, 2002) derive the explicit specifica-
tion of the OE in the case of a Translog and a LINEX function with
three inputs. For both cases, they show that the OE of each input
is a function of the input ratios between labor, capital and energy
which is a major difference compared to the CD function where
every OE is constant.

Charnes et al. (1976) do not derive Eq. (2) but show that
any degree 1 homogeneous production function can be reformu-
lated as a form close to a CD function: Q = H.

∏n
i=1 X

ϕi
i where
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H =
∏n

i=1

(
Q ′(Xi)

ϕi

)ϕi
and the OEs, ϕi, are defined as in Eq. (3).

To do so, they simply rewrite the level of production as follows:
Q =

∏n
i=1 Q

ϕi
(

Xi
Xi

)ϕi
=

∏n
i=1

(
Q
Xi

)ϕi
Xϕi
i (using the fact that∑n

i=1 ϕi = 1). They use also Eq. (3) and therefore the Euler’s The-
orem to reformulate the ratio Q

Xi
=

Q ′(Xi)
ϕi

. Although in appearance
simple, this proposed CD formulation in level is in fact complicated
because of the complexity of H. This limits its use for concrete
applications andmay explain why the authors do not draw further
results except using directly Eq. (3) to derive the specification of
the OEs in the case of CD and CES functions with 2 inputs (in the
extended version of their paper).

On the contrary, the present study derives additional practical
implications from Proposition 1 compared to the existing litera-
ture. To do so, it uses the fact that the OE can be formulated as a
function of (the sum of) the ratio between the marginal productiv-
ities of each pair of inputs times the ratio between the same pair of
inputs: Q ′(Xj)Xj

Q ′(Xi)Xi
(see the right hand side of Eq. (3)). The papers quoted

above do not proceed to this reformulation. For Ferguson (1969)
and Kümmel et al. (1985, 2002), the reason is that they do not use
the Euler’s Theorem to reformulateQ in the denominator of the OE
specification in Eq. (5) which is only the intermediary step of the
proof that leads to Eq. (3) of Proposition 1. Charnes et al. (1976) do
use the Euler’s Theorem but do not proceed to the reformulation
which as we shall see is very useful for two reasons: (1) the notion
of ES imposes a link between the input ratio and their marginal
productivity; (2) profit maximization implies that at the optimum,
the ratio between the marginal productivities of two inputs equals
the ratio between their prices.

One can therefore expect to draw additional results compared
to the existing literature from Proposition 1. We shall indeed see
that this allows for deriving a generalization of the CES function
where the ES between each pair of inputs are not necessarily
equal (Proposition 3). This provides a new perspective regarding
homogeneous functions and the concept of OE, allowing for the
derivation of a flexible function that is algebraically more tractable
than existing flexible production function. In particular, the result-
ing demand for inputs is linear and more straightforward for the
analysis of substitution mechanisms between inputs compared to
existing flexible function (see Sections 4 and 5).

3. The VOE-CD function as a generalization of the CES function

To the best of our knowledge, the current paper is the first to
derive these additional implications of the Euler’s Theorem which
may prove very promising both for the theoretical and empirical
analysis of production functions. To understand the underlying
intuition, recall that the specification presented in Proposition 1
(i.e. Eqs. (2) and (3)) is perfectly equivalent to the total differen-
tial of the production function (1) (i.e. Eq. (4)) as shown in the
proof. Assuming that production and the other inputs are constant
(dQ = dXk = 0 for k ̸= i, j), Eq. (4) can be reformulated into the
textbook specification of the Marginal Rate of Substitution (MRS)
between inputs j and i (e.g. Varian, 1992), whereMRSji =

dXj
dXi

. This
reformulation of Eq. (4) shows that the MRS between inputs j and
i is equal to the ratio between their marginal productivity:

MRSji =
dXj

dXi
= −

Q ′(Xi)
Q ′(Xj)

(8)

The MRS being the first derivative of the isoquant (the slope of
the iso-production curve), its integral is the isoquant itself. We can
use this property to derive various classes of production functions
by formulating hypothesis about the specification of the marginal

productivity of each input. For instance, in the case of perfect
substitutes, the MRS is constant and the isoquant is a straight
line. For less substitutable input, the MRS is increasing and the
isoquant is more convex. Assuming a single reference point where
the combination for the levels of production and inputs is known,
the integral of the MRS from this point allows for drawing any
isoquant and thus for deriving any production function. Because
of the strict equivalence between Proposition 1 and Eq. (4), we
shall see that this amounts to formulating hypothesis regarding
the specification of the OEs. To show this more formally, let us
introduce the definition of the ES proposed by Hicks (1932) and
Robinson (1933).

Definition 3. The ES of Hicks (1932) and Robinson (1933) between
inputs i and j (ηij) measures the change in the ratio between two
factors of production due to a change in their relative marginal
productivity, i.e. in the MRS. Its specification is:

−ηij =
d ln(Xi/Xj)

d ln(Q ′(Xi)/Q ′(Xj))
⇔

Q ′(Xi)
Q ′(Xj)

=
ϕ̃i
ϕ̃j

(
Xi
Xj

)−1/ηij

⇔ Ẋi − Ẋj = −ηij
(
Q̇ ′(Xi) − Q̇ ′(Xj)

) (9)

Where ϕ̃i is a constant representing the relativeweight of input i in
the production function:

∑n
i=1 ϕ̃i = 1.8 For algebraic convenience,

the constant resulting from the integration in the second equality
in Eq. (9) is defined as the ratio ϕ̃i

ϕ̃j
.9

To be economically meaningful, one often expects the sign of
the ES defined in Definition 3 to be negative (−ηij < 0)10: a 1%
increase in the ratio between the marginal productivities (or the
prices) of two inputs leads to a ηij% decrease in the ratio between
these inputs because the producer has the incentive to substitute
toward the input that became relatively cheaper. The parameter ηij
is therefore expected to be positive. Unless stated otherwise, for
convenience the term ES will refer from now on to the parameter
ηij that is to the negative of the ES (or its absolute value). Notice
also that this definition of the ES is symmetric: ηji = ηij.11

Proposition 3. The combination of the definition of the ES (Def-
inition 3) to the definition of the VOE-CD function (Definition 2.1)
provides a generalization of the CES function where the ES between
each pair of inputs are not necessarily the same and where the OE of
input j is:

ϕi =

⎡⎣ n∑
j=1

(
ϕ̃j

ϕ̃i

(
Xj

Xi

)1−1/ηij
)⎤⎦−1

(10)

Proof. Integrating (9) into (3) by solving for the ratios between the
marginal productivities leads to Eq. (10) □

Corollary 1. Under the assumption of a CES function, the ES is
common between each pair of input: ηij = η for all i, j.

8 In applied general equilibriummodels, these weights are calibrated at a refer-
ence point in time using base year data.
9 The second equality in Eq. (9) is derived from:

∫
d ln

(
Q ′(Xi)
Q ′(Xj)

)
≡

−
1
ηij

∫
d ln

(
Xi
Xj

)
. This leads to ln

(
Q ′(Xi)
Q ′(Xj)

)
+ C0 = ln

(
Xi
Xj

)−
1
ηij

+ C1 ⇔
Q ′(Xi)
Q ′(Xj)

=

exp(C1 − C0)
(

Xi
Xj

)−
1
ηij , where C0 and C1 are two constants of integration.

10 We shall see in Section 5 that in the case of more than two inputs, there is a
meaningful economic reason for the ES to have a positive sign.
11 Extrapolating the results presented below to the asymmetric case using the
definition of the ES proposed by Morishima and advocated by Blackorby and
Russell (1989) is straightforward but complicates their algebraic exposition. This
generalization requires to change Eq. (9) into Ẋi − Ẋj = −ηijQ̇ ′(Xi) + ηjiQ̇ ′(Xj) with
ηji ̸= ηij .
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1. The specification of the OE is:

ϕi =

⎡⎣ n∑
j=1

(
ϕ̃j

ϕ̃i

(
Xj

Xi

)1−1/η
)⎤⎦−1

(11)

2. If the ES is equal to one (η = 1), the OEs are constant: ϕi =(∑n
j=1

ϕ̃j
ϕ̃i

)−1
=

ϕ̃i∑n
j=1 ϕ̃j

. The VOE-CD collapses into a COE-CD
function (Definition 2.2).

3. If the ES tends to zero (η → 0), the OE can take the following
values:
ϕi =

ϕ̃i∑n
j=1 ϕ̃j

if Xi
Xj

= 1 whereas ϕi → 0 (resp. 1) if Xi
Xj

>

1 (resp. < 1) . The VOE-CD function tends toward a Leontief
function that characterizes perfect complements.

4. If the ES tends toward infinity (η → +∞), the OE tends toward
ϕi =

ϕ̃iXi∑n
j=1 ϕ̃jXj

. The VOE-CD function tends toward the lin-
ear production function that characterizes perfect substitutes:
dQ =

∑n
i=1 ϕ̃idXi ⇔ Q =

∑n
i=1 ϕ̃iXi.

Proof.

1. Straightforward from Eq. (10). 2. to 4. Straightforward from
Eq. (11) . □

Corollary 1.2 can be explained by the fact that with an ES equal
to one, any change in the ratio between two inputs is exactly com-
pensated by the change in their relativemarginal productivity (see
Eq. (9)), so that the OE is always constant. Corollary 1.3 reflects the
perfect complementary between inputs: increasing the quantity
of input i while leaving the quantity of the other inputs constant
does not increase the level of production because the marginal
productivity of input i falls to zero (thus ϕi → 0); increasing the
quantity of the other inputs j while leaving the quantity of the
input i constant does not increase the level of production either
but increases the marginal productivity of input i (thus ϕi →

1); the OEs stay constant only if the quantities of every input
increase in the same proportion. Corollary 1.4 reflects the perfect
substitutability between inputs where the marginal productivity
of each input is always constant and equal to ϕ̃i whatever the level
of the ratio between inputs is.

4. The demand for inputs

We now deduce the demand for inputs in the case of the
VOE-CD production function (2) and (3). Driven by a maximizing
profit behavior, the producer chooses her demand for each input
by minimizing her production cost (12) subject to the technical
constraint (1):

C =

n∑
i=1

PX
i Xi (12)

Where PX
i is the price of input j. The Lagrangian to this problem is:

L = C − λ (Q − Q (Xi)) (13)

The well-known first order necessary conditions (L′(Xi) = 0)
say that at the optimum, the ratio between the marginal produc-
tivities of two inputs equals the ratio between their prices12:

Q ′(Xi)/Q ′(Xj) = P
X

i /P
X

j (14)

12 The first order conditions are sufficient for optimality because of the assump-
tion of a strictly concave production function (Definition 1.4).

The combination of Eqs. (3) and (14) shows that, at the opti-
mum, the OE of Input i in the VOE-CD function corresponds to the
cost share of input i:

ϕi =
PX
i Xi∑n

j=1 P
X
j Xj

(15)

Under the assumption that the sales’ revenues of production are
totally exhausted by the remuneration of the factors of production,
Eq. (15) is also the share (in value) of input i in the production and
allows for calibrating the VOE-CD function (2) at a base year in the
exact same way it is customary to calibrate a COE-CD function.13

Combining the first order conditions (14) to the definition of the
ES (9) and the production function (2) gives the demand for each
factor as a positive function of output and a negative function of the
relative prices between production factors (see Appendix A)14:

Ẋi = Q̇ −

n∑
j=1
j̸=i

ηijϕj(ṖX
i − ṖX

j ) (16)

Assuming a constant ES between inputs, ηij = η for all i and j,
the demand for production factors (16) expectedly simplifies to the
specification that is derived from a CES function. The input demand
depends only on the relative price between the input price and
the average input price index, PQ (which corresponds also to the
production price under the assumption of profit exhaustion):

Ẋi = Q̇ − η(ṖX
i − ṖQ ) (17)

with

ṖQ
=

n∑
i=1

ϕiṖX
i (18)

One may notice that the above specification is similar to the con-
sumer’s demand for goods derived from a CES utility function. Here
the price index (PQ ) is nothing else but the linear formulation of
the Dixit and Stiglitz (1977) CES price index (e.g. Blanchard and
Kiyotaki, 1987).

As we did in Lemoine et al. (2010) in the case of two inputs
(labor and capital), the factor demand Eqs. (16) and (17) can also
be obtained by linearizing the input demands derived from a CES
production function. Using quarterly data over the 1970–2007
period for the euro area, this study also estimates that the ES
between capital and labor is between 0.3 and 0.4 depending on
the specification of the relative cost between labor and capital. This
result hardly changeswhereaswe assume that theOEs are constant
or that they vary according to the shares of value added going to
labor and capital. The reason is that these shares are empirically
relatively stable over time compared to the fluctuations of the
relative cost between labor and capital.

5. Substitution properties of a nested CES system: the case of 3
inputs (capital–labor–energy)

The input demand derived from a VOE-CD function (Eq. (16))
can be used to represent a nested production function structure
and has two advantages compared to a system based on nested

13 This standard calibration procedure is partly at the origin of the controversy
about the robustness of the empirical success of the COE-CD function. According
to Samuelson (1979), the CD econometric estimation would do nothing more than
reproducing the income distribution identity (for a literature review see e.g. Felipe
andAdams, 2005). This controversial issue is largely beyond the scope of the current
paper. We keep it for future research.
14 Because of the impossibility theorem, a common ES between all factors is the
only possible case where the ES are constant between every pair of inputs. When
the ES differs between pairs, at least one ES is not constant. The reason is that the
system of Eq. (9) is over-identified for a number of inputs higher than 2 (n > 2).
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Fig. 1. Example of a nested CES function with 3 inputs.

CES functions. First, it is more general since the CES function is a
particular case of the VOE-CD function. Second, it is more tractable
because the input demand derived from a VOE-CD function is lin-
ear. This has the advantage to allow for a straightforward analysis
of the substitution properties of a system of nested functions.

As an illustration, we shall now reproduce a nested CES struc-
ture with a VOE-CD nested structure. Fig. 1 shows a textbook case
of a two-level nested CES functions with 3 inputs abundantly used
in general equilibrium modeling and econometric studies. These
inputs generally refer to labor (X1), capital (X2) and energy (X3):
also known as KLE (e.g. Prywes, 1986; Van der Werf, 2008).15
With these three inputs, several combinations of nested structure
are possible. The choice is rather arbitrary but it has often im-
portant implication on the substitution properties of the model
(for a discussion see Van der Werf, 2008). For the purpose of our
illustration, this choice has no consequences on the conclusions
presented below. Let us assume that at the first level, labor (X1)
can be substituted with the aggregate capital/energy (X23) with an
ES of ρ1,23. At the second level, capital (X2) can be substituted to
energy (X3) with an ES of ρ2,3.

The demand for input (16) can be used to represent this nested
structure, replacing eventuallyQ and PX

j by the relevant aggregate.
This leads to the following linear system of equations:

Ẋ1 = Q̇ − ρ1,23ϕ23/123(ṖX
1 − ṖX

23) (19)

Ẋ2 = Ẋ23 − ρ2,3ϕ3/23(ṖX
2 − ṖX

3 ) (20)

Ẋ3 = Ẋ23 − ρ2,3ϕ2/23(ṖX
3 − ṖX

2 ) (21)

Ẋ23 = Q̇ − ρ1,23ϕ1/123(ṖX
23 − ṖX

1 ) (22)

where ϕ23/123 = (1 − ϕ1) is the share of the aggregate X23 into the
production and ϕ3/23 = ϕ3/(1−ϕ1) is the share of the input X3 into
the aggregated X23. Following the same logic, ϕ2/23 = ϕ2/(1 − ϕ1),
ϕ1/123 = ϕ1. ṖX

23 = (ϕ2ṖX
2 + ϕ3ṖX

3 )/(1 − ϕ1) is the price of the
aggregate X23.

By integrating Eq. (22) into (21) and (20), it is straightforward
to derive the explicit production factors demand as defined in (16)
with n = 3:

Ẋ1 = Q̇ − η1,2ϕ2(ṖX
1 − ṖX

2 ) − η1,3ϕ3(ṖX
1 − ṖX

3 )
Ẋ2 = Q̇ − η1,2ϕ1(ṖX

2 − ṖX
1 ) − η2,3ϕ3(ṖX

2 − ṖX
3 )

Ẋ3 = Q̇ − η1,3ϕ1(ṖX
3 − ṖX

1 ) − η2,3ϕ2(ṖX
3 − ṖX

2 )
(23)

We find that the ES between each pair of inputs implicitly
defined by the nested system (19)–(22) is:

η1,2 = η1,3 = ρ1,23

η2,3 =
ρ2,3−ρ1,23.ϕ1

1−ϕ1

(24)

This result allows for analyzing straightforwardly the substi-
tution properties of the nested system when the relative price

15 The more tedious case of an example of nested structure with 4 inputs is
derived in Appendix B .

between input changes. Because of the strong non linearity of the
CES function, such an analysis using directly the nested CES system
may prove very cumbersome. Because Input 2 and 3 are part of the
same aggregate at the first level of the nest, the ES between Input
1 and the other inputs are all equal (see Eq. (24)). A decrease of the
price of Input 1 leads to an unambiguous increase of its demand to
the detriment of the other inputs. Because they are defined at the
second level in the nest, the sign of the ES between Input 2 and 3
is ambiguous. The sign of η2,3 may be negative: an increase of the
price of Input 2 relatively to the price of Input 3may therefore lead
to a decrease of the demand for Inputs 3 whereas Input 2 and 3 are
substitutes in level 2. This seemingly unintuitive result comes from
the first level of the nest, where the aggregate 23 is a substitute to
Input 1. Increasing the price of input 2 leads to a higher price of
the aggregate 23 and therefore to substitutions of Inputs 2 and 3
to Input 1. Depending on the share of input 1 into the production
(ϕ1) and on the level of ES in the first and second nest (ρ1,23, ρ2,3),
the quantity of Input 3 may decrease. Eq. (24) shows that this
unintuitive effect is avoided if ρ2,3 > ρ1,23.ϕ1. Therefore choosing
a higher level of ES at the second level of the nest (ρ2,3 > ρ1,23) will
ensure that the increase of the price of one input always leads to
a decrease in its demand. But if Input 2 and 3 are complementary
inputs, that is if ρ2,3 is close to zero, this unintuitive result is likely
to arise. Therefore complementarity between production factors
are often mentioned in the literature to justify negative ES. The
most famous example is the complementarity between capital and
energy (see e.g. Berndt and Wood, 1979; Frondel and Schmidt,
2002; Roy et al., 2006).

6. Conclusions

This article has defined the VOE-CD function and shown that
this function can be used to formulate any homogeneous pro-
duction function. This framework appears to have several advan-
tages. First, it is relatively simple compared to most alternative
approaches while allowing a wide range of substitution possibil-
ities. It provides a linear formulation and thus avoids the tedious
algebraic of the second order approximation used in flexible func-
tions such as the Translog function. It allows for the derivation
of linear input demand functions without involving the duality
theorem which holds only at the optimum. Second, it provides
a generalization of the CES function to the case where the ES
between each pair of inputs are not equal. Third, its tractability
allows for a straightforward analysis of the substitution properties
of a system of nested functions.

Moreover, this approach has potentially several very useful
applications. As it leads to linear input demands that are general
in terms of substitution possibilities, it may prove promising in the
econometric analysis of the producer. In this respect, the attempt
made by Lemoine et al. (2010) to estimate a VOE-CD function in the
euro area in the case of two inputs (labor and capital) gave promis-
ing results. It could be extended to account for energy substitutions
and by applying the approach developed by León-Ledesma et al.
(2010) that allows for a robust and joint identification of the ES
and the biased technical change parameters.

Applied general equilibriummodels provide another important
application. As in themulti-sectormacroeconomicmodel ThreeME
(Callonnec et al., 2013; Landa Rivera et al., 2016; Bulavskaya and
Reynès, 2018), the input demands derived from a VOE-CD function
can easily be introduced to model the substitutions between en-
ergy, capital, labor and material but also between energy sources
(electricity, petrol, etc.). Compared to the nested CES approach,
it allows for testing alternative substitution hypotheses without
changing the nest structure of the model. Compared to the use of
the traditional flexible functions (such as the Translog function),
it has the advantage to provide tractable and well-behaved input
demands.
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