
HAL Id: hal-03443460
https://sciencespo.hal.science/hal-03443460

Preprint submitted on 23 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Debunking the Granular Origins of Aggregate
Fluctuations: From Real Business Cycles back to Keynes

Giovanni Dosi, Mauro Napoletano, Andrea Roventini, Tania Treibich

To cite this version:
Giovanni Dosi, Mauro Napoletano, Andrea Roventini, Tania Treibich. The Debunking the Granular
Origins of Aggregate Fluctuations: From Real Business Cycles back to Keynes. 2018. �hal-03443460�

https://sciencespo.hal.science/hal-03443460
https://hal.archives-ouvertes.fr


   

The Debunking the Granular Origins of 
Aggregate Fluctuations: From Real 
Business Cycles back to Keynes 

Giovanni Dosi  

Mauro Napoletano 

Andrea Roventini 

Tania Treibich 

 

SCIENCES PO OFCE WORKING PAPER n° 29 

 

 

 

 

 

 

 

  



  

  

 

EDITORIAL BOARD 

Chair: Xavier Ragot (Sciences Po, OFCE) 
 
Members: Jérôme Creel (Sciences Po, OFCE), Eric Heyer (Sciences Po, OFCE), Lionel Nesta 

(Université Nice Sophia Antipolis), Xavier Timbeau (Sciences Po, OFCE) 
 
 

 

CONTACT US 

OFCE 
10 place de Catalogne | 75014 Paris | France 
Tél. +33 1 44 18 54 87 
 
www.ofce.fr 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WORKING PAPER CITATION 

 
 
This Working Paper: 

Giovanni Dosi, Mauro Napoletano, Andrea Roventini, and Tania Treibich 
Debunking the Granular Origins of Aggregate Fluctuations: From Real Business Cycles back to 
Keynes 
Sciences Po OFCE Working Paper, n° 29  

Downloaded from URL : www.ofce.sciences-po.fr/pdf/dtravail/OFCEWPWP2018-29.pdf 
DOI - ISSN 
 
 
 
 
© 2018 OFCE  

http://www.ofce.fr/
http://www.ofce.sciences-po.fr/pdf/dtravail/OFCEWPWP2018-29.pdf


ABOUT THE AUTHOR 

Giovanni Dosi Scuola Superiore Sant’Anna, Pisa, Italy 
Corresponding author, Email Address: g.dosi@santannapisa.it 

Mauro Napoletano OFCE, Sciences Po, Paris, France 
Email Address: mauro.napoletano@sciencespo.fr 

Andrea Roventini Scuola Superiore Sant’Anna, Pisa, Italy 
Also OFCE, Sciences Po, Paris, France. 
Email Address: a.roventini@santannapisa.it 

Tania Treibich Maastricht University and Scuola Superiore Sant’Anna, Pisa, Italy 
Also OFCE, Sciences Po, Paris, France. 
Email Address: t.treibich@maastrichtuniversity.nl 

ABSTRACT 

In this work we study the granular origins of business cycles and their possible underlying drivers. 

As shown by Gabaix (2011), the skewed nature of firm size distributions implies that idiosyncratic 

(and independent) firm-level shocks may account for a significant portion of aggregate volatility. 

Yet, we question the original view grounded on “supply granularity”, as proxied by productivity 

growth shocks – in line with the Real Business Cycle framework–, and we provide empirical 

evidence of a “demand granularity”, based on investment growth shocks instead. The role of 

demand in explaining aggregate fluctuations is further corroborated by means of a 

macroeconomic Agent-Based Model of the “Schumpeter meeting Keynes” family (Dosi et al., 

2015). Indeed, the investigation of the possible microfoundation of RBC has led us to the 

identification of a sort of microfounded Keynesian multiplier. 
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1 Introduction

Every economy is composed by a multitude of heterogeneous, interacting firms. And such firms

are not of similar size but their size distributions are skewed and fat-tailed (see e.g. Axtell,

2001). These are two quite obvious and very robust stylized facts. And more in general, since

the pioneering works of Gibrat (1931) and Ijiri and Simon (1977), a vast amount of empirical

research has been devoted to identify robust statistical regularities concerning the cross-sectional

dynamics of firms (see Dosi, 2007, for a recent account of this literature). Yet, until the seminal

work of Gabaix (2011) their implications in terms of properties of the aggregate time series went

largely unexplored.

In particular, as Gabaix (2011) shows, idiosyncratic (and independent) firm-level shocks may

account for a significant portion of aggregate volatility: when firms are power-law distributed,

the latter decays according to 1
lnN , with N the number of firms, rather than 1√

N
as in the case

of normally distributed firms, so that shocks on big firms “carry on” to the aggregate. Hence,

the “granular” interpretation of fluctuations.1 This view also reconciles the analysis of business

cycles with the historical evidence about major recessions, that points to the high relevance of

microeconomic triggers.

This is a theorem and an important one. However, its proposed application concerns a sort

of decentralized, granular, version of a Real Business Cycle (RBC) explanation of fluctuations,

and prima facie seems to hold well on US data. This alerted our curiosity. How come that

such an ill-grounded and far-fetched theory, postulating a direct relationship between produc-

tivity shocks and growth which fares quite poorly on the aggregate could perform well in its

“granular” version? So, we went back to the COMPUSTAT data on US firms and tried to

re-do the calculations. Basically, what we found is that the results rest on three methodological

assumptions, namely that i) the “residual” is based on a normalization on the average of the

top firms and not on the whole sample; ii) no demand shocks are considered; and iii) the micro

data are subject to important “winsorizing”, that is outliers are eliminated. If all three assump-

tions are dropped, the model loses significance and its explanatory power dramatically drops.

There is an interesting paradox here: granular productivity shocks appear to be important only

if one basically assumes that shocks themselves are not fat-tailed. If they are allowed to be - as

the empirical literature robustly suggests (cf. Bottazzi and Secchi, 2003a; Castaldi and Dosi,

2009; Dosi, 2007), granularity in supply looses importance.2 Conversely, we experimented with

demand shocks, proxied by investment growth. Demand granularity is there and is important

in accounting for fluctuations in aggregate GDP growth.

Next, we repeated the experiments in an Agent-Based Model3 of the “Schumpeter meeting

Keynes” family (cf. Dosi et al., 2010, 2013, 2015, 2017b). We first study the emergence of

the main statistical features of firm dynamics. We find that the model can jointly account

1The work of Gabaix has also triggered a growing literature on the role played by large firms not only for
business fluctuations but also in international trade. The list of works belonging to these streams of research
include Di Giovanni et al. (2014), Di Giovanni and Levchenko (2012), Di Giovanni et al. (2011), Carvalho and
Grassi (2015), Clementi and Palazzo (2016), Bottazzi et al. (2017), Arroyo and Alfarano (2017).

2Note that output growth-rate distributions are well proxied by double-exponential densities suggesting that
mild fluctuations coexist with deep dowturns (Fagiolo et al., 2008). Both RBC and New Keynesian models are
not able to account for these statistical properties as showed in Ascari et al. (2015).

3See Fagiolo and Roventini (2012, 2017) for surveys of macroeconomic Agent-Based Models.
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for many firm and industry-levels stylized facts, including power-law distributed firm sizes, in

line with the assumptions associated with the granularity hypothesis. Then we compare the

empirical results with those obtained by running the same regressions on the artificial data

generated by our model. The results using the simulated data are strikingly similar: no sign of

“supply granularity” and corroborating evidence of a “demand granularity”. Putting it another

way: the search for the possible RBC interpretation of the granularity hypothesis led us to the

identification of a Keynesian explanation, hinting to the existence of a sort of microfounded

Keynesian multiplier.

The rest of the paper is structured as follows. Section 2 analyzes the granular properties

of business fluctuations on empirical data. Section 3 describes the model. Finally, Section 4

analyzes the ability of our model to reproduce the main stylized facts of firm dynamics, and tests

the granular properties of business fluctuations on simulated data. Finally, Section 5 concludes.

2 The granular hypothesis: an empirical assessment

The granular hypothesis states that idiosyncratic firm-level shocks to the largest firms in the

economy could have a significant impact on aggregate fluctuations (Gabaix, 2011). It is impor-

tant to note that the theory is agnostic about the type of shocks which should matter (Gabaix

writes that “This paper conceptualizes these shocks as productivity growth, but the analysis

holds for other shocks”, p. 735). Yet, the granularity variable used in the empirical validation

was chosen so as to provide a microfoundation of the RBC models, rather than as a repeal of

a modelling approach focused on aggregate exogenous shocks (in Gabaix’ words “the granular

hypothesis offers a microfoundation for the aggregate shocks of real business cycle models”, p.

735). We label this approach “supply granularity”, and we question whether other types of

shocks, in particular those, such as investment ones, more related to demand variations, would

have a larger impact on GDP dynamics.

In what follows we focus on the empirical evaluation of the hypothesis, using data on US

listed firms from the COMPUSTAT database. Gabaix (2011) found that the labor productivity

growth shocks to the largest 100 firms in the United States would explain one third of the

variations in GDP per capita growth (R2 = 0.38, cf. Table 1 of the original paper, second

column). We test the robustness of the results to a range of specifications of the empirical

model and to changes in the computation of the main variables. Further, we propose the use

of an alternative variable — i.e. investment growth — defining the firm-level shocks, and we

compare the results to productivity growth shocks.

2.1 Methodology, data and variables

The granular residual represents the sum of idiosyncratic shocks to the largest firms in an

economy, weighted by size. In line with the theoretical proof by Gabaix (2011), if the firm size

distribution is fat-tailed (Pareto-distributed), idiosyncratic shocks to the largest firms should

not “evaporate” or “average out” at the aggregate level, but should affect GDP dynamics.

In line with Gabaix (2011), in each year between 1951 and 2008, we consider the K firms
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with the largest total sales, and we compute the residual according to:4

ΓLP,K(t) =
∑
i∈K

Si(t− 1)

Y (t− 1)
(gLP,i(t)− ḡLP (t)) , (1)

where ΓLP,K is the granular residual based on productivity growth, LP stands for labor produc-

tivity, K indicates the number of top firms over which the granular measure is computed. The

ratio Si
Y measures the share of firm i ’s sales in GDP. Finally, the idiosyncratic shock to firm i is

measured as gLP,i(t) − ḡ(t), that is, the growth rate of labor productivity of firm i, depurated

by the mean growth rate of the largest Q firms.

The impact of the granular residual on aggregate fluctuations is measured by regressing the

GDP per capita growth rate on the current and past residuals, and assessing the total explained

variance via the R2 statistics:

gGDP/cap.(t) = β0 + β1ΓLP (t) + β1ΓLP (t− 1) + β1ΓLP (t− 2) + ε1(t) (2)

Such model specification (defined as Model 1 from now on) entails a series of issues:

1. Dependent variable: The use of GDP per capita growth is common in the long run growth

literature, as it measures changes in the development level. However, the granular hy-

pothesis discusses the role of firm shocks on the business cycle, measured in terms of GDP

growth rates. The results should then be tested also using GDP growth as the dependent

variable.

2. Serial correlation: We include GDP growth lags to control for possible serial correlation

in the residuals.

The foregoing issues lead to two alternative model specifications (Models 2 and 3 respectively):

gGDP/cap.(t) = β0 + β1ΓLP (t) + β1ΓLP (t− 1) + β1ΓLP (t− 2)

+ γ1gGDP (t− 1) + γ2gGDP (t− 2) + ε2(t) (3)

gGDP (t) = β0 + β1ΓLP (t) + β1ΓLP (t− 1) + β1ΓLP (t− 2)

+ γ1gGDP (t− 1) + γ2gGDP (t− 2) + ε2(t) (4)

In line with Gabaix (2011), we use the data from COMPUSTAT which includes the largest

firms listed on the US stock exchange for the years 1951-2008. All sectors of activity are con-

sidered, except oil, energy and finance sectors. Data on GDP (nominal GDP, GDP deflator and

real GDP per capita) are obtained from the U.S. Bureau of Economic Analysis. To validate the

data, we compare the aggregate statistics in our sample to those of Gabaix. As shown in Figure

1, the largest 100 firms in our sample account for around 30% of total GDP, mirroring Figure 1

in Gabaix (2011). However, the way the general definition of the granular residual (cf. eq. 1)

is applied includes a series of choices. We describe below the different elements related to the

computation of the granularity variable which we challenge in the following analysis.

4Equation 1 mirrors equation 33 displayed in p. 750 of Gabaix (2011).
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Figure 1: Sum of the sales of the top 100 firms as a fraction of GDP, final sample.

3 Shocks: Although firm-level shocks at the source of aggregate fluctuations are a generic

term according to the theory, at the empirical level they are identified using labour pro-

ductivity growth, computed as the log difference of the ratio of real sales5 per number of

employees. Note that the choice of productivity as the “granular variable” can be directly

related to Real Business Cycle (RBC) explanation of business cycles, as also stated by

Gabaix. Indeed, this choice entails a specific supply-sided view on the sources of aggregate

fluctuations. Instead, we also explore the relevance of the demand-side by considering

investment growth shocks.

4 Normalization range: The original analysis is set by defining the group of top firms as

the largest 100 in terms of size in the previous period (K=100). In addition, the average

growth rate of labor productivity (which is the benchmark against which the intensity of

the idiosyncratic shock is measured) is also computed within the same group of top firms

(Q=100).6 We think that this is at odds with the granular hypothesis, which links the

impact of firm-level shocks, i.e. how well or badly a firm performs, to the performance of

the general economy. We therefore propose to evaluate idiosyncratic shocks with respect

to the whole firm sample average instead.

5 Data cleaning : Extreme values and outliers are removed from the firm sample by win-

sorizing the data at a 20%.7 We show in the Appendix the distributions of productivity

growth and investment growth and the location of the 20th and 80th percentiles (see Fig.

2). They reveal that such procedure is quite extreme: instead in firm-level studies, it

5Real sales are obtained dividing nominal ones by the GDP deflator. Note that in Gabaix (2011)it is not clear
whether or how sales are deflated.

6In the main specification of Gabaix, Q=K=100; but he also experiments with Q=1000.
7More precisely, all observations below the second decile of productivity growth distribution are set equal to

the value of the second decile. Similarly, all observations above the 8th decile are set equal to the value of the
8th decile.
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Figure 2: Percentiles of the distribution of productivity growth (top) and investment growth
(bottom) in 2008 in the COMPUSTAT database. Vertical lines show the 20th and 80th per-
centiles, which are the levels at which winsorizing of the data is done.
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is common to clean the data by removing observations below the 1st or above the 99th

percentiles. In addition, extreme values in terms of growth rates are linked to (small) firm

size: information about large firms (especially here, listed firms) is more accurate and does

not suffer from large “jumps”. Finally, there is an interesting paradox here: how can we

assess the importance of granular shocks when the shocks themselves are not fat-tailed?

In what follows, we compare the results with or without such cleaning procedure.

2.2 Empirical results

We run a battery of “granularity” regressions according the discussion in the previous section.

The results are presented in Tables 1 and 2.

Let us begin with the granular regressions considering productivity growth shocks. The first

three columns of Table 1 consider Models 1 to 3 respectively, using the granularity residual

data as provided on Gabaix’s website.8 The fourth and fifth columns considers Model 3, with

alternative specifications for the computation of the granular residual. Results in the first three

columns are very similar to the the original ones, showing that the findings of Gabaix are robust

to changes in the model specification, i.e. using GDP growth as the dependent variable instead

of GDP per capita growth, and adding the lagged GDP growth controls. Instead, when the

data are not winsorized, i.e. when we do not impose the drastic cleaning procedure of Gabaix,

the significance and explanatory power of the granular residual is considerably reduced (the

R2 falls from 0.43 to 0.17, cf. columns 3 vs. 4 of Table 1). Further, in the most general

specification (column 5 of Table 1), when firm data are not winsorized and are normalized on

the whole sample, the granular residual is no longer significant, and the R2 further collapses to

0.07. These results contrast with the granularity hypothesis, as the largest positive and negative

shocks should be amplified and increase the link between the residual and GDP growth.

We now perform the same regressions employing the investment growth residual (cf. Table 2).

We find that the “demand-granularity” hypothesis is confirmed in our preferred specifications

(columns 2 and 3): the investment growth granular residual has a positive impact on GDP

growth. However, the overall explanatory power of the granular residual remains much lower

than in Gabaix’s analysis (0.18 against 0.38).

Our results suggest that the empirical evidence in favor of the granular hypothesis is much

less strong than what was found in Gabaix (2011). Moreover, in our preferred and most general

specifications (column 5 in Table 1 and column 3 in Table 2), the investment growth granular

residuals have a higher explanatory power than productivity-driven ones. Such results militate

in favor of the idea that Keynesian, demand-driven granular shocks play a more important role

in explaining the granular origins of aggregate fluctuations than supply-side productivity ones.

8https://scholar.harvard.edu/files/xgabaix/files/granular_origins_data.pdf.
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Productivity growth residuals

Dep. var: GDP per capita growth GDP growth

(1) (2) (3) (4) (5)

constant 0.017*** 0.028*** 0.026*** 0.029*** 0.031***
(0.002) (0.002) (0.006) (0.007) (0.007)

ΓLP (t) 2.611*** 2.701*** 2.622*** 0.608*** 0.147
(0.669) (0.659) (0.706) (0.207) (0.138)

ΓLP (t− 1) 2.882*** 2.905*** 3.316*** 0.073 0.057
(0.654) (0.644) (0.783) (0.222) (0.136)

ΓLP (t− 2) 2.139*** 2.172*** 2.108*** 0.157 0.109
(0.654) (0.0.680) (0.748) (0.207) (0.125)

gGDP (t− 1) -0.050 0.166 0.107
(0.137) (0.150) (0.161)

gGDP (t− 2) 0.123 -0.113 -0.095
(0.131) (0.149) (0.161)

N 55 55 55 55 55
R2 0.400 0.416 0.428 0.171 0.066

Table 1: Regressions on U.S. COMPUSTAT data, 1951-2008. Notes: Cols. 1-3: Gabaix’
residual, alternative model specifications; Col. 4: our computed residual, no winsorizing of
the data. Col 5: our computed residual, no winsorizing of the data, normalization on all
sample. Standard errors in parentheses. *: significant at 10% level; **:significant at 5% level;
***:significant at 1% level.

Investment growth residuals

Dep. var: GDP growth

Winsorizing data Not winsorizing data

(1) (2) (3)

constant 0.034*** 0.035** 0.043***
(0.008) (0.009) (0.011)

ΓI(t) 0.017 0.014* 0.017***
(0.015) (0.007) (0.006)

ΓI(t− 1) 0.008 0.004 0.006
(0.016) (0.008) (0.007)

ΓI(t− 2) -0.008 -0.006 -0.005
(0.015) (0.008) (0.006)

gGDP (t− 1) 0.027 0.012 -0.110
(0.148) (0.148) (0.156)

gGDP (t− 2) -0.064 -0.083 -0.082
(0.147) (0.151) (0.155)

N 55 55 55
R2 0.051 0.112 0.183

Table 2: Regressions on U.S. COMPUSTAT data, 1951-2008. Notes: Models 1 and 2: normal-
ization on top firms. Model 3: normalization on all sample. Standard errors in parentheses. *:
significant at 10% level; **:significant at 5% level; ***:significant at 1% level.
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3 The Keynes+Schumpeter model

How can one account, from a theoretical perspective, for the puzzle concerning the origin of the

granular residual? In the rest of the paper, we will try to explain this fresh piece of empirical

evidence employing the “Schumpeter meeting Keynes” agent-based model (K+S, cf. Dosi et al.,

2010, 2013, 2015). The model is particularly suited for such theoretical venture as it sports both a

Schumpeterian and a Keynesian engine, which allows it to jointly account for endogenous growth

cum business fluctuations punctuated by major crises. Moreover, productivity and investment

dynamics stem from the microeconomic decisions of heterogeneous, interacting firms. Finally,

the model has shown to be able to reproduce a long list of microeconomic stylized facts (e.g. firm

size and firm growth rate distributions, etc.) that are a pre-requisite for studying the granular

origin of business cycles (more on that in Dosi et al., 2016a). Those microeconomic empirical

regularities will be further detailed in Section 4.1. Below we describe the general features

of the model, putting forward the microeconomic mechanisms, centered on productivity and

investment, at the origin of the Schumpeterian and Keynesian macroeconomic dynamics.

The economy is composed of two industrial sectors, one in which F1 firms (denoted by

the subscript i) perform R&D and produce heterogeneous machines, and one in which F2 firms

(denoted by the subscript j) buy those machines which are used to produce and sell a homogenous

good. LS workers supply labor to the two sectors and use their income (either the wage or the

unemployment subsidy) to consume the final good. Firms exit when they go bankrupt or their

market share is null, and are replaced by new entrants. Firms’ labor productivity evolves due

to their innovation and imitation success in the first sector, and is linked to the quality of

the machines they acquire through investment in the second sector. (Desired) investment by

consumption-good firms depends on the confrontation of their production capacity and their

expected demand, as well as the need for machine replacement. Those investment plans are

then funded either by internal cash flow or external credit. In that sector, firm size (i.e. market

share) is linked to firm competitiveness.

On the financial side of the economy, B commercial banks (denoted by the subscript k)

provide commercial credit to consumption-good firms and buy the sovereign bonds issued by

the Government to finance its public debt. They are regulated by a Central Bank which sets the

monetary and macroprudential policies in the economic system. In turn, government revenues

come from taxes on firms’ and banks’ profits, and public expenses are related to debt cost, the

payment of unemployment subsidies and the possible bailout of commercial banks in case of

bank failure.

In the beginning of each simulation, firm characteristics are initialized at a common level.

Within each subsequent period, a series of decisions are taken by the agents, which are then

aggregated into macroeconomic variables (see below). Therefore, all types of heterogeneity in

firm size, productivity, and investment patterns are emergent properties of the model. They

are the result of idiosyncratic shocks (e.g. innovation success, incompatibility between sales and

expected demand resulting in inventories) or come out of the interaction between individual

agents (e.g. bankruptcy of a supplier, credit default negatively impacting a bank’s balance sheet

and resulting in higher credit constraints).

9



3.1 The timeline of events

In any given time period (t), the following microeconomic decisions take place in sequential

order:

1. Policy variables (e.g. capital requirement, tax rate, Central Bank interest rate, etc.) are

fixed.

2. Total credit notionally providable by the banks to their clients is determined.

3. Machine-tool firms perform R&D, trying to discover new products and more efficient pro-

duction techniques and to imitate the technologies and the products of their competitors.

They then signal their machines to consumption-good firms under conditions of imperfect

information.

4. Consumption-good firms decide how much to produce and invest. If internal funds are not

enough, firms borrow from their bank. If gross investment is positive, consumption-good

firms choose their supplier and send their orders.

5. In both industries firms hire workers according to their production plans and start produc-

ing. Consumption-good firms may get external finance from banks to pay for production

(i.e., to advance wages).

6. The Government determines the amount of unemployment subsidies to allocate.

7. Imperfectly competitive consumption-good market opens. The market shares of firms

evolve according to their price competitiveness.

8. Firms in both sectors compute their profits. If profits are positive, firms pay back their

loans to their bank and deposit their net savings, if any.

9. Banks compute their profits and net worth. If the latter is negative they fail and they are

bailed out by the Government.

10. Entry and exit take places. In both sectors firms with near zero market shares or negative

net liquid assets are eschewed from the two industries and replaced by new ones.

11. Machines ordered at the beginning of the period are delivered and become part of the

capital stock at time t+ 1.

At the end of each time step, aggregate variables (e.g. GDP, investment, employment...) are

computed, summing over the corresponding microeconomic variables.

3.2 The capital-good, consumption-good and banking industries

In what follows we focus on the mechanisms underlying the evolution of firms’ productivity and

investment in the two sectors, as well as the credit allocation process. More details are included

in the Appendix as well as in Dosi et al. (2015).
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Productivity growth and the capital-good sector

The source of productivity growth can be found in the capital-good industry, in which firms use

labour (under constant returns to scale) to perform R&D activities which lead to risky innovation

and/or imitation, with the aim of improving both their process (i.e. their own productivity of

labour, Bτ
i ) and their products (i.e. the productivity embedded in the machines they produce,

and which will define that of the consumption-good firms who buy them, Aτi ). The innovation

(and similarly, the imitation) process has two stages. The first stage defines whether a given

firm of the capital-good industry innovates (imitates) or not. This probability endogenously

evolves according to the amount of R&D invested by the firm into innovation (INi), as it is a

random draw from a Bernoulli distribution of parameter θini (t) = 1 − e−ζ1INi(t), with ζ1 6 1.

Such amount is set according to a heuristic in each period, where total R&D (for innovation

and imitation) is a fraction ν ∈ [0, 1] of past sales, and is further split between both activities

according to the parameter ξ ∈ [0, 1]. In the second stage, those firms selected to innovate

(imitate) draw the value of their process and product technologies as follows:

Aini (t) = Ai(t)(1 + xAi (t))

Bin
i (t) = Bi(t)(1 + xBi (t)),

where xAi and xBi are two independent draws from a Beta(α1, β1) distribution over the support

[x1, x1]
9 with x1 ∈ [−1, 0] and x1 ∈ [0, 1]. An innovation (imitation) is “successful” if it surpasses

the current vintage in terms of costs and performances, but it can also “fail”. The choice of

machine to be produced is made as follows:

min
[
phi (t) + bch(Ahi (t))

]
, h = τ, in, im, (5)

where b is a positive payback period parameter used by consumption-good firms to decide

whether to scrap old machines or not (see Eq. 7 below).

They advertise their machines to a subset of half the consumption-good firms, who then

compare the price and quality (i.e. here, productivity) of the suppliers they receive offers from.

Prices of machines are defined as a fixed markup over unit cost.

Desired investment and the consumption-good sector

Consumption-good firms produce a homogenous good using labour and capital under constant

returns to scale. They evaluate their expected demand using a simple heuristic, whereby ex-

pected demand is equal to the demand realized in the previous period.10 Based on their ex-

pectation, they define desire production and the desired level of inventories (set at 10%). They

then confront such plans (or desired capital stock Kd
j ) with the actual capital stock in order to

evaluate the need for expansionary investment :

9The shape and support of the Beta distribution define the extent of technological opportunities available to
firms (see also Dosi et al., 2010).

10Other forms of expectation rules and their impact on individual and aggregate performances are studied in
Dosi et al., 2017a.
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EIdj (t) = Kd
j (t)−Kj(t). (6)

Note that this process is constrained by a maximum threshold as suggested by the empirical

literature.

Total desired investment also includes replacement investment, i.e. the scrapping of old (with

age> 20 periods) or obsolete machines. Obsolescence is evaluated by comparing the productivity

– price trade-off of machines of different vintages τ :

RSj(t) =

{
Aτi ∈ Ξj(t) :

p∗(t)

c(Aτi (t))− c∗(t)
≤ b
}
, (7)

where p∗ and c∗ are the price and unit cost of production of new machines.

The final step of the investment process is the funding of such investment plans. Firms first use

their internal funds (their net worth) and, if necessary, can ask for costly external funding from

their bank. The credit allocation process is explained at the end of this section.

In each period, consumption good firms update their price according to a variable markup

on unit costs of production (see details in the Appendix). Given the heterogeneous price but

homogeneous good, do all final-good consumers switch to the cheapest supplier? This is not the

case because they have imperfect information regarding the available prices. Still, market shares

are positively associated with consumption-good firms’ competitiveness (Ej), which reflects both

their price and their amount of unfilled demand (lj) as inherited from the previous period:

Ej(t) = −pj(t)− lj(t), (8)

where the unfilled demand lj(t) is the difference between actual demand and production of the

period. A firm’s market share is then driven by its relative competitiveness compared to the

weighted average (E),11 following a “quasi” replicator dynamics:

fj(t) = fj(t− 1)

(
1− χEj(t)− E(t)

E(t)

)
, (9)

with χ = 1.

Credit allocation and the banking sector

Each bank has a fixed portfolio of consumption-good firms as clients, to whom they can lend in

each period. The number of clients per bank is heterogeneous, following a Pareto distribution

of parameter paretoa. Note however that the size of each client evolves endogenously from the

simulations. Similarly, banks’ balance sheets evolve over time from the interaction with their

clients, as loan losses affect bank profits and equity.

Banks’ maximum supply of credit is computed in each period according to the (fixed) macro-

prudential framework (the minimum capital requirement τ b ∈ [0, 1]), their equity (NW b
k) and

11It is computed using the market shares of the previous period: E(t) =
F2∑
j=1

Ej(t)fj(t− 1).
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financial fragility (Levk, the accumulated bad debt):

TCk(t) =
NW b

k(t− 1)

τ b(1 + Levk(t− 1))
, (10)

Banks then rank their clients in need for credit from “best” to “worst” according to their

net worth to sales ratio in the previous period and allocate the available credit in a pecking

order basis until it is all exhausted. Credit cost is firm and time-specific: it has a time-specific

component which is based on the Central Bank interest rate rt (as driven by a Taylor rule

targeting inflation), a bank markup component, and a firm-specific risk premium which is given

by the firm’s credit class (see details in the Appendix). Credit constraints endogenously emerge

either due to supply constraints (the bank doesn’t have enough credit to meet all its clients’

needs) or to a maximum loan-to-value ratio. In such case, firms needs to reduce first their

investment then their production plans according to available funds.

End-of period dynamics: profits, exit and entry

At the end of the period, all firms and banks pay taxes on their positive profits at the tax rate tr.

Banks earn profits out of the loans they allocate as well as the government bonds they own (see

Dosi et al., 2015, for more details about the evolution of banks’ balance sheets). Consumption-

good firms reimburse part of their debt (one third of total debt is reimbursed in each period).

If firms’ final net worth is negative or if they have (quasi) zero market share, they exit and are

replaced by a new one.

In the capital and consumption good sectors, firms enter with a relatively low stock of liquid

assets (and of capital in the latter sector) which is a (random) multiple12 of average incumbent

size, following the empirical literature on firm entry (Caves, 1998; Bartelsman et al., 2005).

Capital-good firms’ initial technology is drawn from a Beta distribution of parameters α2, β2

and limited by the best available technology on the market.

Also banks can accumulate losses (in case of default by their clients, when they exit the

market) and fail. Bankrupt banks are bailed out by the Government which provides new capital

so that the bank remains solvent. More precisely, the net worth after bailout is a random

multiple of the equity of the smallest bank, or the minimum level of capital needed to respect

the macroprudential framework. Bailout expenses are added as a cost to the public budget (see

eq. 12 in the next section).

3.3 Aggregate variables: private consumption and the public budget

Aggregate demand

In this version of the K+S model, the labour market is homogenous (see Dosi et al., 2017b, for

a microfoundation of the labour market in the K+S model). All workers earn the same wage

w which evolves over time according to the inflation gap, average productivity (AB) and the

12They draw a value from a uniform distribution between 0.1 and 0.9.
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unemployment rate:

∆wt
wt−1

= πT + ψ1(πt−1 − πT ) + ψ2
∆ABt

ABt−1
− ψ3

∆Ut
Ut−1

(11)

where ψ1,2,3 > 0. There is a fixed labour supply, while labour demand depends on the firms’

needs in every period. As a consequence, excess supply (i.e. involuntary unemployment) or

excess demand (i.e. labour rationing) endogenously emerge. Aggregate demand is the sum of

earnings of all workers (both active and unemployed) in each period, as we assume workers

cannot save.

The public budget

The Government gathers taxes on firms’ and banks’ profits to fund unemployment subsidies (set

as a multiple ϕ ∈ [0, 1] of the current wage rate, and aggregated to government expenses G),

bank bailouts (Gbailout) and public debt costs (Debtcost). Public deficit is then computed as:

Def(t) = Debtcost(t) +Gbailout(t) +G(t)− Tax(t). (12)

The Government funds this deficit by issuing new bonds, bought by banks according to their

size, using their net profits, or, if necessary, by the Central Bank. Public surpluses are used to

reduce public debt.

Macroeconomic variables

In this bottom-up approach, both microeconomic (i.e. investment and productivity levels of

firms) and macroeconomic outcomes can be observed and studied. Decisions by a multiplicity

of heterogeneous, adaptive firms are summed to form macroeconomic aggregates (e.g. total

GDP) and satisfy standard national account identities. In what follows we study the simulated

microeconomic and macroeconomic data, first for validation purposes, and second we test the

ability of the model to replicate the results presented in section 2.

4 The granular hypothesis: a theoretical interpretation

The K+S model can endogenously generate long-run growth characterized by business fluc-

tuations and rare, deep crises. Moreover, the model is able to reproduce a wide range of

macroeconomic stylized facts (e.g. relative volatilities and co-movements between the main

macroeconomic variables, GDP growth rates distributions, etc.), as well as microeconomic reg-

ularities concerning the heterogeneity of firm and productivity dynamics (Dosi et al., 2016a).

The latter are specifically important as they are strictly linked to the emergence of the granular

hypothesis. For this reason, in this section we will first study more in details the firm and

industrial-dynamics emergent properties generated by the K+S model (cf. Section 4.1). Then,

we will employ the model to investigate the granular hypothesis (i.e. the impact of idiosyn-

cratic firm shocks on aggregate growth) and the types of shocks that best explain GDP growth

dynamics (Section 4.2).
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Figure 3: Firm size distribution and power-law fit. Firm size data were generated by the K+S
model in the baseline scenario and pooled across 50 Monte-Carlo simulations.
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Figure 4: Firm growth rate density and exponential-power (EP) fit. Firm growth rate data
were generated by the K+S model in the baseline scenario and pooled across 50 Monte-Carlo
simulations.
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4.1 Firm dynamics in the K+S model

Let us study whether the properties of firm demographics and dynamics (i.e. firm size and firm

growth) are in line with the empirical evidence, as well as with the assumptions imposed by the

granular hypothesis. Note that none of the regularities presented below was imposed ex ante,

but they are properties emerging out of the disequilibrium interactions among heterogeneous

firms. The empirical evidence (Sutton, 1997; Lee et al., 1998; Bottazzi and Secchi, 2003a,b;

Bottazzi et al., 2007; Dosi, 2007) suggests that: i) firm size distributions are right-skewed and

well-approximated by power-law densities; (ii) firm growth-rate distributions are fat-tailed and

well approximated by a Laplace distribution at any scale of aggregation; iii) firm growth is

independent from its size (aka Gibrat’s law);13 and iv) the variance of firm growth rates decays

inversely with firm size.14

In a first step we consider the properties of the cross-sectional distributions of firm demo-

graphics. In tune with the empirical evidence, firm size distributions generated by the K+S

model are well approximated by power-law densities (see Figure 3). At the same time, model-

generated firm growth rates are Laplace distributed (cf. Figure 4).15

As a second step, we also test firm size dynamics. A benchmark model in that respect is repre-

sented by the so-called Gibrat’s law (Gibrat, 1931; Sutton, 1997; Dosi, 2007), which postulates

the independence of firm growth rates from its size:

si(t) = α+ θsi(t− 1) + εi(t), (13)

where si is the log of size of firm i and α is a sector-wide or economy-wide component of growth.

Gibrat’s law in its strong form suggests that θ = 1, ∀i, and εi(t) is an independent identically

and normally distributed random variable with zero mean. The first proposition is also known

as “law of proportionate effects” (see Dosi, 2007) and it basically states the independence of a

firm growth from its size. The second statement implies that the distribution of firm size and

firm growth rates should respectively be log-normal and Gaussian.

We study whether the “law of proportionate effects” is accounted by the K+S model esti-

mating equation (13) using our simulated microeconomic data. We pool firm size information

across different Monte-Carlo simulations. The results are spelled out in Table 3. Remarkably,

the estimated slope of the regression (coefficient θ) turns out not to be statistically different

from one, in line with the empirical evidence (see e.g. Bottazzi and Secchi, 2003a,b; Dosi, 2007,

among others), and suggesting that expected average firm growth rates are independent from

firm size. Figure 5 captures this result by displaying a scatter plot of the logarithm of firm size

at two consecutive periods together with the fitted line from the Gibrat’s regression.

13One important exception concerns the growth dynamics of small firms, that appear to be negatively correlated
with size (see Dosi, 2007, for a discussion).

14See Dosi et al. (2016b) for an industrial-dynamics agent-based model able to jointly explain the emergence
of such regularities.

15The estimation of the size distribution was performed by using the “power law package” discussed in Clauset
et al. (2009). For firm growth rates data, we estimated an exponential-power distribution, which encompasses as
a special case both the normal distribution and the Laplace (see Bottazzi and Secchi, 2006; Fagiolo et al., 2008).
The estimated coefficient of the shape parameter of the distribution was not statistically different from one, thus
indicating that the Laplace distribution provides indeed a good approximation of the distribution of firm growth
rates in the K+S model.
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Gibrat’s law

Dep. var: Size si(t)

α 0.387***
(0.050)

Size si(t− 1) 0.988***
(0.002)

N 8889
R2 0.963

Table 3: Gibrat’s law regression on simulated data. Standard errors in parentheses. *: significant
at 10% level; **:significant at 5% level; ***:significant at 1% level.
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Figure 5: Gibrat’s law. Scatter plot of the logarithm of firm size at two consecutive periods,
s(t), s(t − 1), together with Gibrat’s regression fit. Firm size data are generated by the K+S
model in the baseline scenario and pooled across 50 Monte-Carlo simulations.
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Volatility-size relation

Dep. var: Std. dev. of firm growth σi

α 1.885***
(0.158)

Size si -0.067***
(0.007)

N 100
R2 0.522

Table 4: Volatility-size regression on simulated data. Standard errors in parentheses. *: signifi-
cant at 10% level; **:significant at 5% level; ***:significant at 1% level.
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Figure 6: Relation between firm growth rates volatility and size. The red line was generated
out of the OLS estimation of the model in Equation (14). Firm size and growth rates data were
generated by the K+S model in the baseline scenario and pooled across 50 Monte-Carlo simu-
lations. The standard deviation of growth rates σi was computed with growth data according
to firm size percentiles.
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We now consider the higher moments of firm growth dynamics and relate the standard

deviation of firm growth with firm size. For this analysis, we follow the same procedure as

in Amaral et al. (1997) and Bottazzi and Secchi (2006). We take the firm size data resulting

from the K+S model, pooled across MC=50 simulations. We then bin the data according to

percentiles of the firm size distribution. Next, we compute the standard deviation of firm growth

rates and the average size within each bin. Table 4 reports the results of the OLS regression of

the standard deviation (σi), obtained according to the foregoing procedure, on the logarithm of

average size across bins si. More formally, we estimate the following relationship:

σi = α+ θsi + εi. (14)

The results show that the estimated slope is negative and statistically different from zero, thus

confirming the presence of a negative relation between firm growth volatility and their size, as

found in real data. Figure 6 provides a visualization of the estimated relationship, as well as the

goodness of fit of the regression model in Eq. (14).

4.2 Emergent granularity in the K+S model

The previous section showed that the K+S model fares very well in replicating the main empirical

properties of firm dynamics. In particular, the fact that the distribution of firm size has a power-

law shape (especially in the tail) opens the way to the possibility that business cycles can have

a granular origin, that is fluctuations in GDP growth may steam from shocks hitting the largest

firms in the economy. As the empirical analysis in Section 2 suggests the lack of robustness of

the original, productivity, supply-side granular hypothesis of Gabaix (2011), and the possible

relevance of an investment, demand-side residual, we will try to shed light on such puzzles

employing the simulation results generated by the K+S model.

We start by inspecting the share of GDP of the largest firms in the simulated data. Figure

7 shows the evolution of such shares for respectively the top 5%, 12.5% and 50% firms in the

manufacturing sector.16 As the consumption-good sector has a population of 200 firms, this

corresponds to the top 10, 25 and 100 firms. The shares of the largest firms are very stable over

time. In addition, the top 25 firms account for more than one third of total production. This is

exactly the same share accounted by top 100 U.S. firms in COMPUSTAT data (see also Gabaix,

2011). For this reason, our analysis will focus on the top 25 firms in the simulated data.

We compute the granular residuals among the top 25 firms using labor productivity and

investment growth rates. More precisely, the residual is computed as in equation 1 with K=25

and Q=200 (the growth rates are depurated from the average in the entire consumption-good

sector). In order to compare the results with the empirical ones, we compute a version of the

residuals à la Gabaix, with winsorizing at 20%, and a version without such cleaning. In addition,

the simulated data displays significant high-frequency noise. To eliminate it we filter both the

GDP growth rate and the granular residuals applying the Christiano-Fitzgerald bandpass filter.

This allows us to extract the business cycles components of all the variables considered in the

regressions on simulated data.

16To simplify our analysis, we consider only the consumption-good sector which accounts for 90% of GDP in
the simulations.
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Figure 7: Evolution of GDP shares of groups of different groups of large firms in the consumption-
good sector of the K+S model.

In Table 5 we report results of the regressions performed on the simulated data. We find

that the K+S model successfully reproduces the empirical patterns described in Section 2: the

productivity granular residual is never significant (with and without winsorizing), whereas the

investment growth residual significantly contributes to explain GDP growth, especially when

data are not winsorized. This outcome, together with the evidence about power-law firm size

distributions (cf. Section 4.1) shows that the K+S model can generate, as an emergent prop-

erty, an economy with granular fluctuations. Moreover, simulation results confirm that such

fluctuations have a Keynesian origin, possibly linked to the coordination failures arising from

the out-of-equilibrium interactions of heterogeneous firms in the capital and consumption-good

markets.

5 Concluding remarks

In this work we have investigated the granular origins of aggregate fluctuations from both an

empirical and theoretical perspectives. At the empirical level, we have replicated the work of

Gabaix (2011) employing the COMPUSTAT database to compute a granular residual consid-

ering the labor productivity growth of the largest US firms. We have also considered another

residual considering firms’ investment instead of productivity. The productivity growth resid-

ual is coherent with a Real Business Cycle (RBC) interpretation of business cycles, while the

investment growth residual is in tune with a demand-side Keynesian perspective.

We found that the empirical results on the granularity hypothesis are not very robust. The

productivity growth residual largely loses power when one does not winsorize the data as in

Gabaix (2011) to remove possible outliers. On the contrary, the investment granular residual

has a much higher explanatory power.

We have then employed the Keynes+Schumpeter (K+S) family of models (Dosi et al., 2010,

2013, 2015, 2017b) to shed further light on the sources of the granular residuals. The agent-

based model is particularly suited for such an analysis as it sports both a Schumpeterian and a

Keynesian engine which lead to the emergence of endogenous growth and business cycles.
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Productivity growth residuals Investment growth residuals

Dep. var: GDP growth

Winsorizing Not winsorizing Winsorizing Not winsorizing

Model 1 Model 2 Model 3 Model 4

(Intercept) 0.030*** 0.030*** 0.030*** 0.030***
(0.000) (0.000) (0.000) (0.000)

Γi(t) 0.182 0.379 0.069 0.057**
(0.660) (0.543) (0.051) (0.027)

Γi(t− 1) -0.258 -0.547 -0.105 -0.080**
(1.034) (0.850) (0.080) (0.040)

Γi(t− 2) 0.177 0.380 0.073 0.046*
(0.661) (0.543) (0.051) (0.027)

gGDP (t− 1) 1.496*** 1.495*** 1.493*** 1.498***
(0.030) (0.030) (0.030) (0.031)

gGDP (t− 2) -0.918*** -0.919*** -0.918*** -0.917***
(0.030) (0.030) (0.030) (0.030)

N 14850 14850 14850 14850
R2 0.151 0.151 0.151 0.151

Table 5: Regressions on simulated data. Notes: Granular residual calculated on top 25 firms in
the K+S model. Data were pooled across Monte-Carlo, MC=50 simulations. Standard errors
in parentheses. *: significant at 10% level; **:significant at 5% level; ***:significant at 1% level.

At the microeconomic level, we find that the K+S model can jointly account for the main

stylized facts of firm dynamics (e.g. power-law firm size distributions, Laplace firm growth-

rate distributions, Gibrat’s law, etc.). Moreover, in line with the empirical evidence, the model

suggests that the investment granular residual is more important than the productivity one in

explaining aggregate GDP fluctuations. Our simulation results show that granular fluctuations

– as well as all the main properties of firm dynamics – can be generated as the result of disequi-

librium interactions among heterogeneous firms. Moreover, both our empirical and theoretical

results suggest a Keynesian demand-side origin of aggregate fluctuation vis-à-vis a supply-side

RBC one.
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A The model: additional elements

Consumption good firms’ markup dynamics

Consumption-good firms’ price is chosen by applying a variable mark-up (µj) on unit costs of
production (cj):

pj(t) = (1 + µj(t))cj(t). (15)

where the unit cost at the firm level cj(t) is the average over all their current machines.
The variable mark-up is adjusted with respect to the evolution of firms’ market shares (fj),

where market share expansion allows firms to apply a higher mark-up:17

µj(t) = µj(t− 1)

(
1 + υ

fj(t− 1)− fj(t− 2)

fj(t− 2)

)
, (16)

with υ = 0.01.

Interest rates

The Taylor rule is as follows:

rt = rT + γπ(πt − πT ), γπ > 1 (17)

where πt is the inflation rate of the period and rT , πT are the target interest and inflation rates
respectively.

The firm-specific component of loan interest rates (or risk premium) depends on their credit
class, itself based on their position in the credit ranking. Firms can be assigned to one of the
four credit classes (q = 1, 2, 3, 4 – from best to worst) in every period, which corresponds to the
following loan rate:

rdebj,t = rdebt (1 + (q − 1)kconst) (18)

with µdeb > 0 and kconst a scaling parameter. Firms’ deposits are rewarded at the rate rDt ,
banks’ reserves at the Central Bank yield the reserves rate rrest , and government bonds pay an
interest rate rbondst = (1 + µbonds)rt, with −1 < µbonds < 0. The different interest rates are set
so that rDt ≤ rrest ≤ rbondst ≤ r ≤ rdebt .

17As based on “customer market” models.
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Description Symbol Value

Benchmark parameters
Montecarlo replications MC 50
Time sample T 600
Number of firms in capital-good industry F1 50
Number of firms in consumption-good industry F2 200
Number of banks B 10
Capital-good firms’ mark-up µ1 0.04
Consumption-good firm initial mark-up µ0 0.20

Wage setting ∆AB weight ψ1 1
Wage setting ∆cpi weight ψ2 0.05
Wage setting ∆U weight ψ3 0.05
Banks deposits interest rate rD 0

Bond interest rate mark-down µbonds −0.33

Loan interest rate mark-up µdeb 0.30

Bank capital adequacy rate τ b 0.08
Shape parameter of bank client distribution paretoa 0.08
Scaling parameter for interest rate cost kconst 0.10
R&D investment propensity ν 0.04
R&D allocation to innovative search ξ 0.50
Firm search capabilities parameters ζ1,2 0.30
Beta distribution parameters (innovation process) (α1, β1) (3,3)
Beta distribution support (innovation process) [x1, x1] [-0.15,0.15]
Mark-up coefficient υ 0.04
Competitiveness weights ω1,2 1

Policy experiment parameters
Inflation adjustment parameter (TRπ, TRπ,U ) γπ 1.10
Target interest rate rT 0.025
Target inflation rate πT 0.02
Tax rate tr 0.10
Unemployment subsidy rate ϕ 0.40

Table 6: Parameters
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