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LIMITED PARTICIPATION, CAPITAL ACCUMULATION AND OPTIMAL
MONETARY POLICY

XAVIER RAGOT

ABSTRACT. Motivated by recent empirical findings on money demand, the paper presents

a general equilibrium model where agents have limited participation in financial markets

and use money to smooth consumption. In such setup, investment is not optimal because

only a fraction of households participate in financial markets in each period. Optimal mon-

etary policy substantially increases welfare by changing investment decisions over the busi-

ness cycle, but adverse redistributive effects limit the scope for an active monetary policy.

Recent developments in the heterogeneous-agents literature are used to develop a tractable

framework with aggregate shocks, where optimal monetary policy can be analyzed.

JEL : E41, E52, E32

Keywords : Limited participation, incomplete markets, optimal policy.

The rapid expansion of central bank balance sheets in the US, Japan and the Euro area

after the 2008 crisis has rejuvenated old but deep questions: What are the real effects

of money injections? Do they affect investment and economic activity ? Should money

creation be used to affect investment dynamics ? For policy makers, the link between

monetary policy and investment is explicit. The Federal Reserve Board actually produces

a systematic assessment of business investment when presenting monetary policy deci-

sions. Reading the minutes of the Fed, one observes that the prospects of business fixed

investment are discussed in the process of policy making.

The goal of this paper is to analyze the conditions under which optimal monetary policy

should consider investment, in a simple but micro-founded monetary model. It develops

This paper has benefited from the comments of Fernando Alvarez, Gadi Barlevy, Jordi Gali, François

Gourio, Jonathan Heathcote, Ricardo Lagos, John Leahy, Francesco Lippi, Pierre-Olivier Weil, Albert Marcet,

Plamen Nenov, François Velde, Jaume Ventura, Gianluca Violante, Fabrizio Perry and Victor Rios-Rull and

seminar participants in CSIC, BI in Oslo, NYU AD, CREI, New York University, Chicago Federal Reserve

Bank, Banque de France and the Minneapolis Federal Reserve Bank.

Xavier Ragot, SciencesPo CNRS (UMR 8259) and OFCE. Email: xavier.ragot@gmail.com.
1
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a tractable model where agents have limited participation in financial markets and face

aggregate shocks. In this setup, agents use money to smooth consumption between peri-

ods at which they adjust their financial portfolio. The focus on limited participation as the

key friction comes from two sets of results. First, the distribution of money across house-

holds generated by this friction is much more similar to the data than the distribution

generated by alternative money demand (Alvarez and Lippi, 2009; Cao, Meh, Rios-Rull

and Terajima, 2012; Ragot, 2014). Reproducing a relevant money distribution is key to

assess the redistributive effect of monetary policy. Second, Kaplan, Violante and Weidner

(2014) and Kaplan and Violante (2014) have shown that introducing limited participation

allows to better reproduce the empirical consumption/saving choice after a fiscal trans-

fer. Thus both the incentives to save and to hold money can be captured by this simple

friction. The main result of the paper is that this friction implies that investment is not

optimal and that monetary policy should indeed restore the right incentives to save over

the business cycle. It thus provides a rationale for monetary policy to consider investment

over the business cycle.

The paper first presents a simple general-equilibrium model to derive formal proofs.

Then, it provides a more general framework to study optimal monetary policy with a

simplified but realistic money distribution. It is already known that limited participation

generates some relevant sort-run effects, such as the liquidity effect of money injection:

An increase in the quantity of money decreases the nominal interest rate, as only a part of

the population must absorb the new money created (Lucas, 1990; Alvarez, Atkeson and

Edmond, 2009, among others). Nevertheless, this promising literature has faced some dif-

ficulties in dealing with agents’ heterogeneity (see the literature review below). This has

prevented the introduction of additional features which are important for understanding

the business cycle, such as long-lasting heterogeneity, aggregate shock and capital accu-

mulation. Developments of tractable environments in the heterogeneous agent literature

allow deriving new results about optimal monetary policy in these economies.

Analyzing the simple model, one first finds that the distortions generated by limited

participation are surprisingly not simple. In general, capital accumulation is not optimal,

as a part of the income generated by the capital stock is distributed as wages to households
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who do not participate in financial markets. The direction of the distortions (for instance

the over or under accumulation of capital after a technology shock) crucially depends

on the persistence of the technology shock, because of income and substitution effects.

Money creation can restore the first-best allocation by affecting capital accumulation. For

instance, to increase aggregate saving, money creation induces a transfer between non-

participating and participating households, which also implements optimal consumption

levels for all agents. In addition, the optimal allocation cannot be implemented by a time-

varying capital tax, because it would distort the intertemporal consumption smoothing.

In this sense, monetary policy is a powerful tool to restore the optimal level of investment.

The second part of the paper presents the generalized model to characterize the direc-

tion of the distortion, when a simplified but more realistic income and money distribution

is reproduced. It presents a model where households face both idiosyncratic and aggre-

gate shocks, and participate infrequently in financial markets. The model is developed to

capture the self-insurance motive and to introduce limited participation in a tractable en-

vironment. It extends previous work based on periodic reinsurance (Alvarez et al., 2009,

Khan and Thomas, 2015, Challe, Matheron, Ragot and Rubio-Ramirez, 2016) to introduce

capital accumulation and a richer heterogeneity to reproduce the US money and income

distribution. Optimal monetary policy is derived in this setup.

It is found that optimal monetary policy is countercyclical. Active monetary policy

contributes to increase inflation after a negative technology shock and to decrease infla-

tion after a positive technology shock. This policy generates an additional increase in the

capital stock by 5% after a positive technology shock. The tradeoff faced by monetary

policy is between improving capital accumulation and lowering risk-sharing, by increas-

ing inequality. Optimal monetary policy raises welfare by a roughly 0.2% consumption

equivalent through its ability both to partially insure households against the aggregate

risk and to affect capital accumulation over the business cycle. This welfare gain is high

compared to the gains of eliminating business cycles in representative agent economies.

To my knowledge, this paper is the first to analyse optimal monetary policy with capital

accumulation, limited participation and aggregate shocks. All these results are derived
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with flexible prices. This assumption is made to identify the key mechanisms. The poten-

tial new effects generated by nominal frictions are discussed as concluding remarks.

The rest of the Introduction is the literature review. Section 1 presents the simple model,

where distortions of the market economy and the optimal monetary policy are identified.

Section 2 presents the general model to quantify the mechanisms. Section 3 is the Conclu-

sion.

Related literature.

Limited Participation and money demand. This paper considers limited participation as

the key friction for monetary policy.1 Limited participation is indeed a modeling strat-

egy that is consistent with the data (Bricker, Dettling, Henriques, Hsu, Moore, Sabelhaus,

Thompson and Windle, 2014 shows that roughly half of the US population participates

in financial markets). The work of Alvarez and Lippi (2009) and (2014) or Ragot (2014)

shows that models with limited participation in financial markets can reproduce the dis-

tribution of money. Khan and Thomas (2015) prove that this friction is useful to reproduce

the correlation between consumption and the short-run interest rate. On the fiscal side,

Kaplan and Violante (2014) show that limited participation can explain the high marginal

propensity to consume after a fiscal shock. In this literature, the contribution of the current

paper is to identify the optimal policy with capital accumulation.

Optimal monetary policy and redistribution. Monetary policy with heterogeneous agents

was first studied in economies without capital (labeled pure currency economies by Wal-

lace, 2014). In these models, money is the only store of value. (Bewley, 1983; Kehoe,

Levine and Woodford, 1992; Algan, Challe and Ragot, 2010; Grossman and Weiss, 1983 or

the search-theoretic model of Kiyotaki and Wright, 1993 as in Williamson, 2006 or Gomis-

Porqueras and Sanches, 2013 among many others). Recently, Auclert (2017) identifies the

redistributive channels of monetary policy with nominal asset and a fixed capital stock.

Concerning optimal policies, Lippi, Ragni and Trachter (2015) derive optimal policy in a

two-agent economy with aggregate shocks, following Scheinkman and Weiss (1986). Bil-

biie (2008), Motta and Tirelli (2012), Nuno and Thomas (2017), Challe (2017) and Bilbiie

1 Limited participation models were first introduced in monetary economics to rationalize the liquidity

effect of money injections as the seminal contribution of Grossman and Weiss (1983) and Rotemberg (1984)
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and Ragot (2017) derive optimal policy with heterogeneous agents and additional frictions

in the goods or labor market. All these models abstract from capital accumulation, and

optimal monetary policy is a trade-off between consumption-smoothing and insurance.

Recent models in the search-theory of money consider both money and capital to char-

acterize optimal policies at the steady state (Aruoba and Chuch, 2010; Boragan, Waller

and Wright, 2011). Using limited participation as the key friction, I can derive new results

with aggregate technology shocks. For instance, optimal monetary policy can be either

procyclical or countercyclical depending on the persistence of the shock. Finally, the re-

distributive effects of monetary policy generate new results absent from representative

agent models, studied in Chari and Kehoe (1999).

Old literature. It is interesting to note that both the market failure induced by monetary

saving, and the role of monetary policy in affecting the incentives to save, were discussed

by Hayek. The idea that monetary policy can induce capital accumulation was indeed

strongly defended by Hayek (and all the Austrian school) and called ”forced saving”.

(Hayek, 1967). He argued forcefully that monetary policy shouldn’t generate excessive

fluctuations in the investment rate. The present analysis highlights an additional con-

straint on monetary policy: It shouldn’t increase too much inequality over the business

cycle.

1. THE SIMPLE MODEL

The simple model is based on two simplifying assumptions. First, some agents al-

ways participate in financial markets, whereas others never participate. Second, non-

participating households use money to smooth deterministic income fluctuations. These

assumptions are relaxed in the quantitative analysis presented in Section 2.

Time is discrete and periods are indexed by t = 0, 1... The model features a closed econ-

omy populated by a continuum of households indexed by i and uniformly distributed

along the unit interval, as well as a representative firm. Households have a CRRA utility

function u (c) = (c1−σ − 1)/(1− σ) if σ 6= 1 and u (c) = log (c) if σ = 1. The discount fac-

tor is β. It is assumed that the economy is composed of two types of households. There is

a fraction Ω > 0 of agents, denoted as N−households, who must pay a fixed cost κN each
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time they want to participate in financial markets. The remaining fraction 1−Ω of house-

holds, denoted as P−households, don’t pay any cost to participate in financial markets.

The cost κN is determined in Section 1.2 below. It is high enough that N-households never

participate in financial markets. All households can participate in the money market at no

cost2.

1.1. Agents.

1.1.1. Non-participating households. N−households are denoted by the superscript n. A

fraction Ω/2 consumes in odd periods and receives labor income in even periods. The

other fraction Ω/2 consumes in even periods and receives labor income in odd periods,

which is a modeling strategy similar to Woodford (1990). When working, households

supply one unit of labor and get a nominal wage Wt. In all periods, households receive

a net nominal transfer Ptτt, where Pt is the price of one unit of final goods and τt is the

transfer in real terms. As these households will not participate in financial markets, they

use money only to smooth consumption3.

Households cannot issue money. When they consume, it is guessed (and checked) that

they spend all their money holdings, and the condition for this to be the case is provided

below. From now on, real variables are denoted with lowercase. For instance, Mn
t is

the nominal amount of money held by the households at the beginning of each period,

and the real amount is mn
t = Mn

t /Pt. Denote as cn
t the consumption of non-participating

households in period t, then Ptcn
t = Mn

t−1 + Ptτt, or in real terms:

cn
t =

mn
t−1

1 + πt
+ τt (1)

where πt = Pt/Pt−1 − 1 is the net inflation rate. When households do not consume, their

money demand is their total income. As they spent all their money the previous period,

2This participation costs structure is a simplification of the general framework of Alvarez, Atkeson and

Kehoe (2002). It allows studying limited participation in a simple environment, as in Alvarez and Lippi

(2014) for instance. Introducing participation cost for participating households would only complicate the

algebra.
3Money has a positive value because it is a store of value in this infinite-horizon setting. The theory of

money embedded in the simple model is thus from Samuelson (1958).
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their real money demand is:

mn
t = wt + τt (2)

From standard dynamic optimization, the condition for households not to hold money

when they consume is:

u′ (cn
t ) > β2Et

1
1 + πt+1

1
1 + πt+2

u′
(
cn

t+2
)

The condition is that marginal gain from consuming an additional unit of money in the

current period is higher than the expected gain from consuming it two periods ahead.

1.1.2. Participating Households. Variables concerning P−households are indicated by the

superscript p. These households supply one unit of labor every period. P−households

can buy two types of assets: money, and the capital of firms. As money will always be

a dominated asset4, participating household never hold money in equilibrium. In period

t, they buy a quantity kp
t+1 of financial assets, which yield a real return 1 + rt+1 between

period t and t + 1. The budget constraint of a representative P−households is, in real

terms:

kp
t+1 + cp

t = wt + τt + (1 + rt) kp
t , (3)

where cp
t is real consumption, wt is real labor income and (1 + rt) kp

t is the return of finan-

cial savings. Standard intertemporal utility maximization yields the Euler equation:

u′
(
cp

t
)
= βEt (1 + rt+1) u′

(
cp

t+1

)
, (4)

and the transversality condition is limτ→∞ βτEu′
(
cp

t+τ

)
kp

t+τ = 0

1.1.3. Firms. There is a unit mass of firms, which produce with capital and labor. Capital

must be installed one period before production, and it fully depreciates in production. The

production function is Cobb-Douglas with a capital share µ : Yt = AtK
µ
t L1−µ

t and where

Kt, Lt and At are respectively the capital stock, the labor hired and the technology level at

4It will be assumed that shocks are small enough such that the zero lower bound does not bind in the

equilibrium under consideration, so that money is a dominated asset.
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the beginning of period t. Profit maximization is maxK,L AtK
µ
t L1−µ

t −wtLt − (1 + rt)Kt. It

yields the following two first-order conditions:

wt = (1− µ) AtK
µ
t L−µ

t (5)

1 + rt = µAtK
µ−1
t L1−µ

t (6)

The level of technology At is the only exogenous stochastic process in the economy.

At = eat , where at follows an AR(1) process:

at = ρaat−1 + εa
t (7)

where the shock εa
t is a white noiseN

(
0, σ2

a
)
. The steady-state technology level is defined

as At = 1.

Monetary policy and taxes. The new money is created by lump-sum transfers given to all

households. The central bank creates a nominal quantity of money MCB
t . The real quantity

is mCB
t = MCB

t /Pt . Denote as Mtot
t the total nominal quantity of money. The law of motion

of Mtot is simply Mtot
t = Mtot

t−1 + MCB
t , or in real terms:

mtot
t =

mtot
t−1

1 + πt
+ mCB

t (8)

The new money is created by a lump-sum transfer to all agents:

τt = mCB
t (9)

1.2. Equilibrium definition, steady state. There are four markets in this economy. First,

the equilibrium of the money market is:

mtot
t =

Ω
2

mn
t (10)

The previous equality stipulates that half of the N-households (Ω/2) hold money at the

end of each period. As only P−households participate in financial markets, the equilib-

rium of the financial markets is:

(1−Ω) kp
t = Kt (11)

The goods market equilibrium is:

(1−Ω) cp
t +

Ωcn
t

2
+ Kt+1 = Yt (12)
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As half N−households and all P−households supply one unit of labor, the labor market

equilibrium is Lt = L, where:

L ≡ 1−Ω +
Ω
2

= 1−Ω/2 (13)

Given the process for the technology and for a given monetary policy, an equilibrium of

this economy is a sequence of individual choices and prices {cn
t , mn

t , kp
t , cp

t , rt,πt, wt} and

a sequence of money stock, central bank profits and taxes {mtot
t , mCB

t , τt} such that agents

make optimal choices, the aggregate quantity of money is consistent with money creation

and markets clear.

1.2.1. Steady state. The steady state of the model gives first insights. In steady state, real

variables are constant and indicated with a star. For instance, A∗ = 1. The real interest rate

is given by the Euler equation of participating agents (4). It implies that 1+ r∗ = 1/β. One

easily deduces the steady-state capital stock from equations (5) and (6): K∗ = L (µβ)
1

1−µ

and w∗ = (1− µ) (βµ)
µ

1−µ . As π∗ is the steady-state net inflation rate, using equations

(2)-(9), one finds the consumption of N−households:

cn∗ = (1− µ) (βµ)
µ

1−µ
1 + 1

β
Ω
2 π∗

1 +
(

1− 1
β

Ω
2

)
π∗

The consumption of P−households is given by:

cp∗ =

(
1 + (1− β)

L
1−Ω

µ

1− µ
+ π∗

Ω/2
1 + π∗ (1−Ω/2)

)
(βµ)

µ
1−µ

One can check that Ctot∗ = (1−Ω) cp∗ + Ω
2 cn∗ does not depend on the inflation rate, but

that cp∗ increases with π whereas cn∗ decreases with π∗.

Indeed, only the money-holders pay the inflation tax, whereas the proceed of the infla-

tion tax is equally given back to all households. As a consequence, steady-state inflation is

just a transfer from money holders (N−households) to non-money holders (P−households).

This transfer doesn’t affect output because the real interest rate is pinned down by prefer-

ences of participating agents. 5

5 N−households don’t participate in financial markets if the participation cost κN is high enough such

that the total return of their saving in money would be higher than the one in financial markets. This

provides a lower bound to the participation cost of N-households: κN > (1− µ) (βµ)
µ

1−µ

(
1
β −

1
1+π∗

)
. It
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1.3. Discussion of the model. Before solving the model, it may be useful to discuss the

assumptions. This model is designed to be the simplest model with two features: 1)

Money is used by non-participating agents to smooth consumption, as in the Baumol-

Tobin literature 2) Participating agents invest in capital, affecting prices in general equi-

librium. It can be thought either as a monetary extension of Woodford (1990) or as intro-

ducing capital accumulation in simplified limited participation models along the lines of

Alvarez et al. (2009) or Khan and Thomas (2015).

To obtain a tractable framework, this simple model doesn’t admittedly consider other

margins studied in the literature. First, the participation structure is fixed because there

is constant segmentation across households. This modeling strategy, followed by Alvarez

et al. (2009) or Khan and Thomas (2015) can be generalized at the cost of more algebra.

For instance, Alvarez et al. (2002) consider a model where the participation decision may

change in the business cycle to obtain a more time-varying velocity of money. Kaplan

and Violante (2014) also consider this margin in a quantitative model. Second, there is

no change in price dispersion after a money shock in my model. This could be obtained

either with Calvo-type sticky prices or with flexible prices and good market segmentation

as in Williamson (2008). The gain of these two simplifying assumptions is to be able to

introduce capital accumulation in general equilibrium and to be able to derive optimal

policies in a transparent way, what is new in this literature to the best of my knowledge.

A third implication of this simple model is more problematic. The distribution of money

is not very realistic, what may be misleading as the main mechanism will rely on the

redistributive effects of monetary policy. This limit of the simple model will justify the

introduction of a more general setup in Section 2.

1.4. Optimal allocation and steady state comparison. Without loss of generality, it is as-

sumed that the planner gives a weight ωp to P−households and a weight 1 to N−households.

is assumed that this inequality is fulfilled and that shocks are small enough such N−households never

participate in financial markets.
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The tilde is used to indicate the optimal allocation. For instance c̃n
t is the optimal consump-

tion of a N-household in period t. The intertemporal social welfare function is:

max E0

∞

∑
t=0

βt
(

Ω
2

u (c̃n
t ) + ωp (1−Ω) u

(
c̃p

t
))

(14)

and the resource constraint of the planner is:

Ωc̃n
t

2
+ (1−Ω) c̃p

t + K̃t = AtK̃
µ
t−1L1−µ (15)

Solving the program one finds:

c̃n
t /c̃p

t = ω
− 1

σ
p (16)

In words, the ratio of consumption of participating and non-participating households is

constant over the business cycle, which is a direct implication of full risk-sharing. With

this property the Euler equation is:

u′
(
c̃p

t
)
= βEt (1 + r̃t+1) u′

(
c̃p

t+1

)
(17)

where 1 + r̃t = µAtK̃
µ−1
t L1−µ is the marginal productivity of capital in the optimal al-

location. The resource constraint of the planner is K̃t+1 +

(
Ω
2

(
ωp
)− 1

σ + (1−Ω)

)
c̃p

t =

AtK̃
µ
t L1−µ. This budget constraint and the Euler equation (17) fully characterize the opti-

mal allocation.

One can now compare the market and optimal allocation in steady state, i.e. when there

is no money creation mCB
t = 0 and where A = 1. The following Proposition summarizes

the result. All proofs are in the Appendix.

Proposition 1. 1) The steady state value of the capital stock is optimal in the market economy:

K∗ = K̃∗.

2)In addition, if

ωp =

(
1 +

µ

1− µ
(1− β)

1−Ω/2
1−Ω

)σ

(18)

then the steady-state market equilibrium is optimal when π∗ = 0: cn∗ = c̃n∗ and cp = c̃p∗.

First, in the market economy, the capital stock is optimal in steady state. Indeed, the

steady-state real interest rate (and thus the marginal return on capital) is pinned down by

the households’ discount factor in the market and optimal economy: 1 + r∗ = 1 + r̃∗ = 1
β
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(see equations 4 and 17). Second, for the value of the weight ωp given in the Proposition,

the inflation rate π = 0 generates the optimal steady-state market allocation6. As steady-

state inflation is only a transfer across households, there exists a pareto weight such that

the optimal inflation rate is 0. In what follows, it is assumed that ωp has the value given in

the Proposition and that the optimal steady-state inflation rate is thus π = 0, but it should

be clear that all the results below are valid for an arbitrary weight ωp. Considering the

case where the optimal steady-state inflation rate is 0 simplifies the algebra, in order to

focus on the business cycle distortions implied by limited participation. 7

1.5. Distortions in the market economy. To identify the distortions of the market econ-

omy in the business cycle, the allocation is first analyzed under the assumption that mon-

etary policy is inactive: mCB
t = 0. As a consequence, the nominal money stock M̄tot is

constant and τt = 0 in all periods. Using the money market equilibrium and money de-

mand (2) and (10), one finds that the price level in each period is Pt = 2M̄tot

Ωwt
, and the

inflation rate is thus 1 + πt = wt−1/wt. As a consequence, from (1), the consumption of

non-participating households is simply:

cn
t = wt

The structure of the equilibrium is thus quite simple. Non-participating households con-

sume the real wage in all periods. The model is thus close to consumer-saver models,

where some agents consume all their income (as Judd, 1985 for an early example).

To save some space, the difference between the optimal and market allocation is sum-

marized in two Propositions. The proofs are based on a first-order approximation of the

model and they are left in Appendix.

Proposition 2. If σ = 1, the market and the optimal allocations are the same.

The first result is that the existence of distortions depends on the utility function: When

households have log-utility, the market allocation is optimal (at the first order) even when

6The fact that the optimal steady-state inflation rate does not necessarily produce the Friedman rule in

an heterogeneous-agent economy is the standard result of Kehoe et al. (1992)
7When markets are complete and when all households participate in financial markets, it is easy to check

that the dynamics of aggregate consumption and capital are the same in the optimal allocation.
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there is limited participation in financial markets. Indeed, the steady-state is optimal and,

with log-utility, households consume a constant share of their income in all periods, which

is independent from factor prices. Hence, this share is the same in the market and optimal

economies.

Following the business-cycle literature, the case σ > 1 and σ close to 1 is considered as

the relevant one (see Hall, 2010, chap. 2 for a survey). With these assumptions we can

derive additional analytical results about capital accumulation.8

To do so, denote as ∂ ̂̃K
∂εa the contemporaneous increase in the total capital stock after a

small TFP shock in the optimal allocation, and as ∂K̂
∂εa the contemporaneous increase in the

total capital stock in the market allocation. We now compare ∂ ̂̃K
∂εa and ∂K̂

∂εa .

Proposition 3. If σ is close to 1, there is a threshold ρ̄ > 0, such that:

- If ρ < ρ̄ then ∂ ̂̃K
∂εa > ∂K̂

∂εa

- If ρ > ρ̄ then ∂ ̂̃K
∂εa < ∂K̂

∂εa

The Proposition states that the reaction of the total capital stock can be higher or lower

than the one in the first-best allocation depending on the persistence of the technology

shock. Hence, there can be either over or under investment after a technology shock. In-

deed, when the persistence of the technology shock is low, the central planner would like

the economy to save a lot to benefit from the temporary increase in TFP. In the market

economy, participating households, do not receive all the wealth generated by invest-

ment because a part of this return is given as wages to non-participating households. The

wealth effect is smaller than it would be under complete markets. As a consequence, they

do not save enough. When the persistence is high, the economy experiences a high wealth

effect and the central planner would like households to increase consumption to benefit

from the persistent increase in TFP. Again, as participating households in the market econ-

omy do not perceive the full wealth generated by the increase in TFP, they do not increase

consumption enough compared to the first best, and the capital stock is too high.

8When σ is very high, income effects create non-realistic behavior (such as a huge fall in saving after a

positive technology shock), which prevents analytical characterization.
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As a short summary, the market economy under-reacts compared to the first best alloca-

tion, for both income and substitution effect. The effect of limited participation on capital

accumulation is thus surprisingly complex, as it depends on both the shape of the utility

function and the persistence of the technology shock. The key mechanism identified in

this Proposition is that participating households don’t experience the right wealth effect

after a TFP shock. We will see below that optimal policy redistributes wealth across house-

holds to restore the right wealth effects. It will do so, not by affecting marginal returns,

but by generating non-distorting transfers across agents.

1.6. Optimal monetary policy. Optimal monetary policy is now derived in the non-linear

environment. We consider that the central bank creates some money in each period after

observing the state of the economy. As it is shown that the optimal monetary policy imple-

ments the first best, there are no commitment issues, as the central bank has no incentives

to deviate in any period.

To identify the effect of monetary policy in the non-linear environment, one can rewrite

the budget constraint of participating households, using the budget constraint (3), to-

gether with the equations (9) and (11):

Kt+1 + (1−Ω) cp
t = Yt − wt

Ω
2
+ (1−Ω)mCB

t︸ ︷︷ ︸
money transfer

(19)

The previous equality shows that monetary policy acts as a lump-sum transfer to partic-

ipating households (as a general equilibrium effect). Indeed, money is transferred to all

households, whereas only non-participating ones hold money and pay the inflation tax.

As a consequence, money creation is a transfer from non-participating to participating

households, as in the steady state. The term ”money transfer” thus captures the redis-

tributive effect of money creation between the two types of agents.

One can write the budget constraint of the central planner (15) in a similar form:

K̃t+1 + (1−Ω) c̃p
t = Ỹt − w̃t

Ω
2
+

Ω
2
(w̃t − c̃n

t )︸ ︷︷ ︸
missing saving

(20)

where Ỹt and w̃t ≡ (1− µ) AtK̃
µ
t L−µ are respectively the level of output and the mar-

ginal productivity of labor in the optimal allocation. The time-varying difference between
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the income and consumption of non-participating households appears in this budget con-

straint. This difference is denoted the ”missing saving”, because it is the part of the income

of non-participating agents that is actually invested in the optimal allocation, but not in

the market economy. This difference is key for the results. Indeed, the planner would like

that non-participation agents save, but it is not the case when there is no money creation,

as cn
t = wt. As a consequence, if monetary policy is able to implement a transfer to par-

ticipating agents, which compensates for the ”missing saving”, it may generate the right

saving decision for participating households, and thus the right wage rate and consump-

tion for non-participating agents.

The following Proposition shows that this intuition is right.

Proposition 4. 1) An active monetary policy can implement the first best allocation.

2) The optimal money rule has the following form:

mCB
t = H (Ω, At, Kt) (21)

where the function H is such that H (0, At, Kt) = 0 and H (Ω, 1, K∗) = 0.

The second part of the Proposition shows that the money rule depends on technology

and the aggregate capital stock. When all households participate in financial markets

Ω = 0, the incentives to save are optimal and no money is created H = 0, as expected.

Moreover, in steady state H (Ω, 1, K∗) = 0, as the steady-state allocation is optimal. The

time-variation in the money created by the central bank reproduces the transfer, which

corresponds to the ”missing saving” of non-participating households identified in the

discussion of equation (20). As a consequence, the consumption-saving choice of par-

ticipating households is optimal. The consumption of non-participating households is

thus also optimal, because of the goods market equilibrium.

One can derive some intuitions for the properties of the optimal monetary policy from

Proposition 3. When the persistence of the technology shock is low (close to 0) and the

utility function is not too concave, the economy under-invests after a positive technology

shock. Optimal monetary policy increases capital accumulation, and it is thus procycli-

cal. When the persistence of the technology shock is high (close to 1), then the market
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economy accumulates too much capital after a positive technology shock. Optimal mon-

etary policy decreases capital accumulation after a persistent positive technology shock.

Optimal monetary policy is thus countercyclical.

1.7. Monetary policy or fiscal policy ? Monetary policy can implement the first best by

inducing optimal transfers across agents. One could argue that this should be the role

of fiscal policy. As capital dynamic is not optimal in the business cycle, one could think

that a time-varying capital tax could implement the first best. This intuition is not correct.

Indeed, the distortion appears as a non-optimal wealth effect, not as a distorted marginal

return on capital. To see this, assume that in period t the central planner introduces a time-

varying capital tax λt on interest income on period t savings (the way the inflation tax is

redistributed to households is irrelevant for the proof). The Euler equation of participation

agents in period t is:

u′
(
cp

t
)
= βEt (1 + (1− λt) rt+1) u′

(
cp

t+1

)
where rt+1 is the before-tax marginal productivity of capital. If the first best is imple-

mented, the optimal allocation must satisfies u′
(
c̃p

t
)
= βEt (1 + (1− λt) r̃t+1) u′

(
c̃p

t+1

)
, in

all periods. But it is known from (17) that u′
(
c̃p

t
)
= βEt (1 + r̃t+1) u′

(
c̃p

t+1

)
. As a conse-

quence, we must have 0 = λtEtr̃t+1u′
(
c̃p

t+1

)
. This implies λt = 0, in all periods, because

we assume small shocks and r∗u′ (cp∗) 6= 0. The next Proposition summarizes this result.

Proposition 5. The first best can be achieved only if capital taxes are zero in all periods.

Finally, it should be clear that a time-varying lump-sum transfer between participating

and non-participating households equal to the ”missing saving” can reproduce the first-

best allocation. As monetary policy described above, such policy would restore the right

wealth effects without distorting the marginal incentive to save of participating agents.

Monetary policy has nevertheless a relative advantage. Indeed, optimal monetary pol-

icy depends only on aggregate variables, and the monetary authorities have no infor-

mation about the identity of who is actually participating or not. Monetary policy thus

requires less information-processing than fiscal policy.
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1.8. A remark on inside money and money creation. The result about the distortion of

the market economy does not depend on money being outside money. The results would

be the same if money were inside money, because the time-varying return on inside money

is different from the marginal productivity of capital. This result is proved in the Online

Appendix, to save some space, but the intuition is simple. In general equilibrium what is

not consumed must be invested. As a consequence, all the monetary savings (be it outside

or inside money) are invested. The key distortion relies on the incentives to save, and thus

on the return on the money.

The fact that monetary policy can implement the first best does not rely on the assump-

tion of lump-sum money creation, and the results are the same if money is created by

open-market operations. The results are thus robust to many alternative way to create

money. Only in the special case where the new money is given to non-participating

agents in a lump-sum manner, does monetary policy not generate redistribution across

agents (as the inflation tax is paid back to the money holders), and the first best cannot be

implemented. Any other process of money creation allows implementing the first best.9

This simple model has shown that the time-variations in the capital stock are not opti-

mal when there is limited participation in financial markets. It has identified a new role

for monetary policy, which is to affect capital accumulation in the business cycle because

of only one friction, which is limited participation in financial markets. As summarized

in the introduction, this role for monetary has not been identified yet, to the best of my

knowledge. This simple model is based on simplifying assumptions, some of which are

relaxed in the next Section.

2. THE GENERAL MODEL

The previous simple model can be obviously generalized in many dimensions, as dis-

cussed in Section 1.3. This Section considers three specific extensions, to bring the model

closer to money theory and to get the direction of the redistribution right. The simple

9In a previous version of this paper optimal monetary policy was also studied at the zero lower bound

(ZLB) as in Adam and Billi, 2010 among others. As the ZLB is analyzed in a separate literature, it is now

studied in a different paper.
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TABLE 1. Summary of the US distribution of money, using SCF 2004

Households in the income distribution

Bottom 50% Top 50%

Money 3,303 12,980

Income (in $) 26,000 137,000

model has indeed three shortcomings. First, non-participating agents don’t have a con-

sumption saving choice, due to the assumption that they both consume and receive their

labor income every other period. This assumption excludes the cost of inflation as a dis-

tortion to the consumption-saving choice, which is typically studied in the monetary and

Bewley literature. Second, participating agents don’t hold money, which is inconsistent

with the data, as discussed below. Reproducing a realistic (although simplified) distribu-

tion is key to assess the redistributive effet of monetary policy. Third, money is created by

lump-sum transfers, which is an obvious simplification. Introducing open-market opera-

tions is important not to give monetary policy an arbitrary advantage as a tool to provide

insurance.

I first discuss the shape of the money distribution, before presenting the modeling strat-

egy. Using the Survey of Consumer Finance (SCF), two groups of US households can be

identified according to their holdings of money and financial assets. First, roughly 50% of

the US population doesn’t participate in the stock market either directly or indirectly. This

fraction is roughly constant, and non-participating households are mostly low-income

households (Bricker et al., 2014). For this reason, the US population is divided into two

groups of equal size: the bottom 50% and the top 50% in the income distribution. Table 1

provides summary statistics for the two groups of households.

Households in the Top 50%, have an income roughly 5 times higher than households

in the Bottom 50% (137,000 compared to 26,000). A narrow definition of money, namely

M1 (checking deposits and currency) is used, so as not to over-estimate the redistributive
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effect of monetary policy10. The Survey of Consumer Finance (SCF) 200411 is used to

obtain data on checking accounts. As the SCF does not include data on currency, I use

the Kaplan et al. (2014) strategy to estimate the currency holdings: In US data, the ratio of

total currency to the total checking account is 32%. I thus increase the checking account

of each group of households by 32%. Households in the Top 50% hold much more money

than households in the Bottom 50%, but the ratio of money over income is smaller for

high-income households (9.5) than for low-income households (12.7), as found by Erosa

and Ventura (2002).

This money distribution is known to be best reproduced by limited-participation and

incomplete-market models (Alvarez and Lippi, 2009 and 2014). Indeed, models introduc-

ing a cash-in-advance constraint, even with increasing returns-to-scale transaction tech-

nology, cannot reproduce the observed heterogeneity in money holdings because the dis-

tribution of money is very different from the distribution of consumption expenditures

(Ragot, 2014). For this reason, the following model presents a generalization of the previ-

ous simple model, introducing a more general incomplete market and limited participa-

tion structure. The bottom 50% households will not participate in financial markets and

smooth consumption with money, as in the Bewley model. The top 50% will participate

infrequently in financial markets, as in the Baumol-Tobin model of money demand12.

Incomplete insurance markets and limited participation models are known to be very

difficult to analyze with aggregate shocks. To my knowledge, simulation techniques do

not allow to study such environments in the general case and with aggregate shocks, ex-

cluding the derivation of optimal policies. To capture the essence of limited participation

10A broader definition would not alter money inequality, as M1 and M2 are roughly similarly distributed

in the US population (Ragot, 2014), but the quantity of money (and thus the tax base of the inflation tax)

would be higher.
11The 2004 SCF survey is used to avoid the high house prices of the 2007 survey and the low nominal

interest rate in the 2010 survey. Nevertheless, it has been checked that the distribution of money does not

vary a lot between the various surveys.
12Infrequent participation in financial markets is also studied inVissing-Jogensen, 2002 and Alvarez and

Lippi, 2009.
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and market incompleteness, and to be able to define an optimal monetary policy with ag-

gregate shocks, I introduce two simplifying assumptions. First, following Alvarez et al.

(2009) and Alvarez and Lippi (2014) , I assume that the participation structure is fixed.

As the income levels of participating and non-participating households are very different,

this assumption can be micro-founded by a participation cost, but I abstract from this to

simplify the algebra. Second and more importantly, I use methodological tools to simplify

incomplete market models. This modeling strategy can be thought of as an extension of

Lucas (1990), who introduces perfect insurance within families, to allow for only partial

insurance as in Alvarez et al. (2009), Khan and Thomas (2015), Challe et al. (2016). It is

assumed that there is perfect insurance within some groups of the population living on

”islands”, but that there is no insurance across islands. The key modeling strategy is to

design a timing of market opening such that the model generates Euler equations for each

household, which are consistent with results in the incomplete insurance market litera-

ture, but where the heterogeneity is limited to a finite number of household types. It is

thus not necessary to follow a large distribution of agents as in Krussel and Smith (1998).

In this setup, optimal policy with aggregate shocks can be studied13.

2.1. Assets and production. There are now three types of assets in this economy. The first

one is money. It can be held by all households. As before, the net inflation rate between

period t and period t + 1 is denoted πt+1 = Pt+1−Pt
Pt

. The second one consists of claims on

the capital stock. The real return between period t and period t + 1 is denoted rt+1. The

third one is nominal bonds. The nominal interest rate between period t and period t + 1

is denoted it. Nominal bonds are introduced to model open market operations.

It is now assumed that capital doesn’t fully depreciate in production, the depreciation

rate being λ. Profit maximization is maxK,L AtKµL1−µ − wL − (rt + λ)K, where L is the

13In monetary economics this assumption is used for instance by Shi, 1997 to study the decentralization

of exchange, without having to keep track of the money distribution. Heathcote, Storesletten and Violante,

2014 use the same modeling strategy in a model based on Constantinides and Duffie, 1996, where idiosyn-

cratic shocks are persistent. Heathcote and Perri, 2015 also use a similar strategy. The contribution of the

current paper is to generalize this strategy to a limited participation framework. See Ragot, 2017 for a survey

of this literature.
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labor supply in efficient units. First-order conditions for the firm are:

rt + λ = µAtK
µ−1
t L1−µ

t and wt = (1− µ) AtK
µ
t L−µ

t (22)

with At = eat , and the process for at given by (7).

2.2. Households. All households have the same CRRA period utility function u(.), and

have the same discount factor β. They pay lump-sum taxes denoted as τt. The population

is composed of ΩN ≡ 50% of N−households, who do not participate in financial markets,

but who can hold money. It is composed of ΩP ≡ 50% of households, who are denoted as

participating agents or P−households, and who have access to both money and financial

markets.

N−Households N−households don’t participate in financial markets, but they face an

idiosyncratic risk. Following the literature on uninsurable risk, it is assumed that N−households

can be either employed or unemployed. An employed household stays employed next

period with a probability α (and falls into unemployment with a probability 1− α). The

household receives a wage wt. When unemployed, households stay unemployed with a

probability ρ (and find work with a probability 1− ρ). The household gets a revenue from

home production δN < wt. In other words, the transition matrix for the labor risk is: α 1− α

1− ρ ρ


As this transition matrix is not time-varying, the constant fraction of employed house-

holds among N−households is:

n =
1− ρ

2− α− ρ
(23)

and the unemployment rate is 1− n.

Insurance structure. It is assumed that N−households belong to a family, which has two

locations. Employed households live on an island, denoted as E−island, where there is

full risk-sharing. All employed N−households in the E−island supply one unit of labor

and earn an after-tax real wage wt − τt. Unemployed agents live on an island, denoted

as U−island, where there is also full risk-sharing. They get a per capita home production
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δN. By the law of large numbers14 there is a mass nΩN of households in the E−island

and a mass (1− n)ΩN in the U−island. Households who lose their job (with a proba-

bility 1 − α) must travel from the E to the U−island at the end of the period, after the

consumption-saving choice has been made. Households finding a job (with a probability

1− ρ) have to travel from the U to the E−island at the end of the period. In each island, the

consumption-saving choice is made by a representative of the family head before knowing

who will leave the island, and who maximizes the welfare of the whole family. Finally, all

households traveling across islands can take their money with them. To consume, house-

holds go to the consumption island where they can anonymously exchange goods against

money, before going back to E or U-island, according to their employment status. Finally,

households cannot issue money.

Timing of events. The sequence of actions is the following. First, at the beginning of

each period, the family head pools the resources within all islands. The beginning-of-

period money-holding is mNE
t in the E−island and mNU

t in the U−island. Second, the

technology shock is revealed and production takes place. Third, the consumption-saving

choice is made and households travel to the consumption island. Fourth, households’

idiosyncratic shock is revealed, and households changing employment status travel across

islands, carrying their money with them.

Money flows. Denote as m̃NE
t+1 the quantity of money chosen by the representative of

the family head in the E-island at the end of the current period (thus before the next

period pooling of resources). Similarly, m̃NU
t+1 is the current end-of-period money choice

in the U−island. A measure (1− α) nΩN of households travels from island the E to the

U−island and the remaining measure αnΩN stays in island E. A measure (1− ρ) (1− n)ΩN

of households travels from island U to island E and the remaining measure ρ (1− n)ΩN

stays in island E. As a consequence, the per capita beginning-of-period quantity of money

in the E island is

mNE
t+1 =

(
αnΩNm̃NE

t+1 + (1− ρ) (1− n)ΩNm̃NU
t+1

)
/
(

nΩN
)

14We assume that the law of large numbers is valid when applied to a continuum of variables. This law

is valid using the Feldman and Gilles, 1985 or Green, 1994 construction.
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and similarly for U−island mNU
t+1 =

(
(1− α) nΩNm̃NE

t+1 + ρ (1− n)ΩNm̃NU
t+1
)

/
(
(1− n)ΩN).

As (1− n) /n = (1− α) / (1− ρ), one easily finds:

mNE
t+1 = αm̃NE

t+1 + (1− α) m̃NU
t+1 (24)

mNU
t+1 = (1− ρ) m̃NE

t+1 + ρm̃NU
t+1 (25)

Program of the family head. The representative of the family head in both islands cares

about the total intertemporal welfare of the whole family. As a consequence, the program

of the family heads can be written compactly as15:

max
{cNE

t ,cNU
t ,m̃NE

t+1,mNU
t+1}t≥0

E0

∞

∑
t=0

βt
(

nΩNu
(

cNE
t

)
+ (1− n)ΩNu

(
cNU

t

))
where expectations are taken for the technology shock and subject to (for t ≥ 0):

cNE
t + m̃NE

t+1 =
mNE

t
1 + πt

+ wt − τt (26)

cNU
t + m̃NU

t+1 =
mNU

t
1 + πt

+ δN − τt (27)

m̃NE
t+1, m̃NU

t+1 ≥ 0 (28)

mNE
0 , mNU

0 given (29)

and subject to the laws of motion (24) and (25). The constraints (26) and (27) are respec-

tively the per capita budget constraint of households in the E−island and U−island, ex-

pressed in real terms. In each island, the resources are the per capita money holdings and

either the after-tax labor income or the after-tax home production. Inequality constraints

(28) stipulate that households cannot issue money. Finally, the initial conditions are given.

Using Lagrange coefficients, one easily finds the two constraints:

u′
(

cNE
t

)
) ≥ βE

[
αu′
(

cNE
t+1

)
+ (1− α) u′

(
cNU

t+1

)] 1
1 + πt+1

, (30)

and m̃NE
t+1 = 0 if u′

(
cNE

t

)
) > βE

[
αu′
(

cNE
t+1

)
+ (1− α) u′

(
cNU

t+1

)] 1
1 + πt+1

(31)

15As usual, in such a formulation cNE
t , cNU

t , m̃NE
t+1, mNU

t+1 should be thought of as a function of the history

of events up to period t, which is here the history of aggregate shock zt ≡ {z0, ...zt} (see Sargent, Lunqvist

2003). I skip the dependence on this history to ease the exposition.
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with

u
(

cNU
t

)
= βE

[
(1− ρ) u′

(
cNE

t+1

)
+ ρu′

(
cNU

t+1

)] 1
1 + πt+1

, (32)

and m̃NU
t+1 = 0 if u

(
cNU

t

)
> βE

[
(1− ρ) u′

(
cNE

t+1

)
+ ρu′

(
cNU

t+1

)] 1
1 + πt+1

(33)

As was argued above, these Euler constraints have the same expression as the ones

found in full-fledged incomplete-market models. In particular, the saving decision is

made comparing per capita current marginal utility and future expected marginal utili-

ties, which differ according to the employment status, with the relevant transition proba-

bilities. The gain of the previous assumptions is that the beginning-of-period distribution

of money has only two mass points, mNE
t and mNU

t .

P−households

P−households face the same employment risk as N−households, with the transition

probabilities α and ρ. These households are more productive than N−households, and

the labor supply is equivalent to κ units of labor of N−households. The wage they receive

when employed is thus κwt. When unemployed they get a revenue from home production

equal to κδN. The parameter κ will be calibrated to match the empirical income distribu-

tion.

In addition, these households participate infrequently in financial markets16. It is as-

sumed that when they participate in period t the probability that they participate in pe-

riod t + 1 is α f (and the probability that they do not participate is 1− α f ). When they do

not participate in period t the probability that they do not participate in period t + 1 is ρ f

(and the probability that they participate is 1− ρ f ). Finally, participating and working are

two independent stochastic processes.

The fraction of participating P−households is nA =
(
1− ρ f ) /

(
2− α f − ρ f ), and the

fraction 1− nA does not participate. In addition, and as before, the fraction of employed

P−households is n, defined in (23), and the fraction 1− n is unemployed. Note that to

16The methodological contribution of this Section is to provide a simple formulation of the households’

problem under limited participation.
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make the model tractable, the first assumption is to consider the participation opportunity

as a Poisson process.

In addition, to keep the model simple17 , it is assumed that P−households can be in two

locations or ”islands”. All P−households who are either participating in financial markets

or employed are on the same island, denoted as the PA−island. In this island, the family

head pools resources and has access to the financial portfolio of the P−households. The

fraction of P-households on the PA−island is nPA = n + nA (1− nA).
P−households who both do not participate in financial markets and are unemployed

are located on another island, denoted the PU−island. In this island, there is a family head

who maximizes the welfare of all P−households, whatever their location. The measure

of P−households on PU−island is nPU =
(
1− nA) (1− n). Households know at the

end of each period if they are participating or if they are employed next period. They

have to move across islands accordingly, and can only take their money with them. As a

consequence, households only hold money in the PU−island.

Asset flows. The flows across islands are the following. The fraction of P−households

leaving the PU−island each period is the number of households who can either partici-

pate (and were not participating the previous period) or who find a job: nPU (1− ρ f )+
nPUρ f (1− ρ) = nPU (1− ρρ f ). The fraction of P−households leaving the PU−island

is denoted H and is thus H ≡ 1 − ρρ f . Denote as T the fraction of P−households

leaving the PA−island. Flow accounting implies, nPA = (1− T) nPA + HnPU, or T =

nPU (1− ρρ f ) /nPA. As a consequence, a measure TnPAΩP leaves the PA island for the

PU−island at the end of each period. The measure (1− T) nPAΩP stays in the PA−island.

Denote as kPA
t , bPA

t and mPA
t , the per capita beginning-of-period capital, bonds and

money, respectively, in the PA−island. The end-of-period values (before agents move

across islands) are k̃PA
t+1, b̃PA

t+1 and m̃PA
t+1. Denote as mPU

t , the per capita beginning-of-period

17In a previous version of the paper, it was assumed that P-households could be in 4 different islands,

depending on being employed or unemployed, and participating or not. In addition one could easily intro-

duce an effort choice e in α f (e) to consider time-varying participation decision. The results are similar, at

the cost of a substantial increase in the number of equations.
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capital money in the PU−island (where the only asset is money). The end-of-period val-

ues (before agents move across islands) are m̃PU
t+1. Following the same reasoning as for

N−agents, we find:

mPA
t+1 = (1− T) m̃PA

t+1 + Tm̃PU
t+1 (34)

mPU
t+1 =

(
1− ρρ f

)
m̃PA

t+1 + ρ f ρm̃PU
t+1 (35)

Finally, as bonds and claims to the capital stock do not leave the PA island, we have:

kPA
t+1 = k̃PA

t+1 and bPA
t+1 = b̃PA

t+1

Program of the family head. The program of the representatives of the family head can be

written compactly, as:

max
{k̃PA

t+1,b̃PA
t+1,m̃PA

t+1,m̃PU
t+1,cPA

t ,cPU
t }t≥0

E0

∞

∑
t=0

βt
(

nPAu
(

cPA
t

)
+
(

1− nPA
)

u
(

cPU
t

))
subject to:

cPA
t + k̃PA

t+1 + b̃PA
t+1 + m̃PA

t+1 = κ
nwt + nA (1− n) δN

nPA − τt (36)

+ (1 + rt) kPA
t +

1 + it−1

1 + πt
bPA

t +
mPA

t
1 + πt

,

m̃PU
t+1 + cPU

t = κδN − τt +
mPU

t
1 + πt

(37)

m̃PA
t+1, m̃PU

t+1 ≥ 0 (38)

k̃PA
0 , b̃PA

0 , m̃PA
0 , m̃PU

0 given (39)

and the laws of motion (34) and (35). Equation (36) is the per capita budget constraint

in the PA island. Note that the per capita labor income κ
nwt+nA(1−n)δN

nPA takes into account

the share of unemployed agents in the PA island, which is nA (1− n) δN. Equation (37) is

the per capita budget constraint in the PU−island. Finally (38) are positive constraints on

money demand. Using Lagrange coefficients, one easily finds for the PA−island:
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u′
(

cPA
t

)
= βE (1 + rt+1) u′

(
cPA

t+1

)
(40)

u′
(

cPA
t

)
= βE

1 + it

1 + πt+1
u′
(

cPA
t+1

)
(41)

u′
(

cPA
t

)
≥ βE

[
(1− T) u′

(
cPA

t+1

)
+ Tu′

(
cPU

t+1

)] 1
1 + πt+1

, (42)

and m̃PA
t+1 = 0 if u′

(
cPA

t

)
> βE

[
(1− T) u′

(
cPA

t+1

)
+ Tu′

(
cPU

t+1

)] 1
1 + πt+1

u′
(

cPU
t

)
≥ βE

[(
1− ρρ f

)
u′
(

cPA
t+1

)
+ ρρ f u′

(
cPU

t+1

)] 1
1 + πt+1

, (43)

and m̃PU
t+1 = 0 if u′

(
cPU

t

)
> βE

[(
1− ρρ f

)
u′
(

cPA
t+1

)
+ ρρ f u′

(
cPU

t+1

)] 1
1 + πt+1

(44)

These equations summarize households’ portfolio choice with incomplete markets and

limited participation. The first two equations are the choices of bonds and of claims on the

capital stock. As households in the PA−island cannot bring their stock or bonds to other

islands, there is no self-insurance motive for these two assets. These assets are priced us-

ing the marginal utilities of participating households in each period. As a consequence,

the Euler equations for stock and bonds are the same as the ones of a representative agent.

This, again, will simplify the structure of the equilibrium. The third equation (42) deter-

mines the money choice of agents in the PA−island, which takes into account the fact that

money can be used by households moving to the other island, with the relevant transition

probabilities. Note that when T = 0, participating households always participate then

money would be held if its expected return is at least as high as for other financial assets.

In other words, the model does not deliver any role for money except the self-insurance

motive against bad idiosyncratic shocks. The last equation (43) determines the money

choice of agents in the PU islands, and it can be interpreted the same way.

2.3. Money creation, government budget and market equilibria. For the sake of realism,

the new money is created by open market operations. The central bank creates a nominal

quantity of money MCB
t . The real quantity is mCB

t = MCB
t /Pt and it is used to buy a real

quantity bCB
t+1 of assets by open market operation (to be consistent with the households

program, bCB
t+1 = mCB

t denotes the quantity of bonds bought in period t). Denote as Mtot
t
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the total nominal quantity of money. The law of motion of Mtot
t is simply Mtot

t = Mtot
t−1 +

MCB
t , or in real terms:

mtot
t =

mtot
t−1

1 + πt
+ mCB

t (45)

The real profits of the central bank (which bought a real quantity bCB
t of public debt the

previous period) are Γt = 1+it−1
1+πt

bCB
t . To keep the algebra simple, and without loss of

generality, we assume that b̄ = 0 and that there is no public spending. This implies that

the State gives back to households the profits of the central bank. As the population is

normalized to 1, this implies that taxes are:

τt = −
1 + it−1

1 + πt
mCB

t−1 (46)

The capital and bond market equilibria are:

ΩPnPAbPA
t + bCB

t = 0, (47)

ΩPnPAkPA
t = Kt, (48)

The two previous equations state that only P−households hold interest-bearing assets.

The goods market equilibrium is:

(1− n)ΩNcNU
t + nΩNcNE

t + nPUΩPcPU
t + nPAΩPcPA

t + Kt+1 = AKα
t L1−α

t + (1− λ)Kt

+ (1− n) δN
(

ΩN + κΩP
)

(49)

The labor market is, in efficient units:

Lt = n
(

ΩN + κΩP
)

(50)

Finally, the money market equilibrium is for t ≥ 1:

mtot
t = ΩNnm̃NE

t + ΩN (1− n) m̃NU
t + ΩPnPAm̃A

t + ΩPnPUm̃PU
t (51)
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2.4. Optimal monetary policy. We now derive the optimal monetary policy in this en-

vironment, assuming that the planner can commit to the optimal policy rule, as a first

benchmark. The instrument of the central planner is the quantity of money created in

each period mCB
t . The planner gives a Pareto weight ωn = 1 to N- households and a

weight ωp to P−households (without loss of generality) . The Ramsey program for the

planner is the following maximization:

WCE = max
{mCB

t }t=0..∞

E0

∞

∑
t=0

βt
[
ωNΩN

(
nNEu

(
cNE

t

)
+ nNUu

(
cNU

t

))
+ (52)

+ ΩPωp

(
nPAu

(
cPA

t

)
+ nPUu

(
cPU

t

))]
(53)

subject to six Euler equations (30)-(32) and (40)-(43), the four budget constraints (26), (27),

(36) and (37) the first-order conditions for the firm (22), the law of motion of the quantity

of money (8), the budget of the State (46), the five market equilibria (47)-(51), subject to

the law of motion of the technology shock given by (7), and given initial conditions.

Given initial capital stock K0, an equilibrium of this economy is a set

{cNE
t , cNU

t , cPA
t , cPU

t , mNE
t , mPA

t , bPA
t+1, kPA

t+1, Kt+1, rt, wt, mtot
t , mCB

t , τt}t=0..∞ which solves the plan-

ner program given the above constraints. The steady-state economy is an economy where

At = 1 and where real variables are constant.

2.5. Equilibrium structure. The equilibrium is constructed with a guess-and-verify strat-

egy. Indeed, some households choose not to hold money because the return on money is

too low in the equilibrium under consideration. More specifically, I make the following

conjecture.

Conjecture 1: Households in U, PU island do not hold money, i.e.:

m̃NU
t+1 = m̃PU

t+1 = 0 (54)

This conjecture implies that only high-income households hold money. The equilibrium

conditions for this conjecture to be true are:

u′
(

cNU
t

)
> βEt

[
(1− ρ) u′

(
cNE

t+1

)
+ ρu′

(
cNU

t+1

)] 1
1 + πt+1

(55)

u′
(

cPU
t

)
> βEt

[(
1− ρρ f

)
u′
(

cPA
t+1

)
+ ρρ f u′

(
cPU

t+1

)] 1
1 + πt+1

(56)
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The conjecture will be proven at the steady state for the calibration provided below, and

then it will be checked that shocks are small enough such that this conjecture is satisfied

in the dynamics.

2.6. First best. To quantify the distortions, the first best allocation is also studied. The

unconstrained planner can provide the same consumption level to N and P households.

As before, we note x̃t for the value of xt chosen by the planner. The planner now chooses

the consumption of N and P households, c̃N
t and c̃P

t . As before, the Pareto weight for N

households is normalized to 1. The objective is thus:

WFB = max
{c̃NM

t ,c̃NP
t ,c̃P

t ,K̃t+1}t=0..∞

E0

∞

∑
t=0

βt
[
ΩNu

(
c̃N

t

)
+ ωpΩPu

(
c̃P

t

)]
(57)

Subject to the budget constraint:

K̃t+1 + ΩN c̃N
t + ΩP c̃P

t

= AtK̃α
t L1−α + (1− λ) K̃t + (1− n) δN

(
ΩN + κΩP

)
with L given by (50). Solving the program, one finds as before c̃N

t = ω
− 1

σ
p c̃P

t and:

u′
(
c̃p

t
)
= βEt (1 + r̃t+1) u′

(
c̃p

t+1

)
(58)

where 1+ r̃t is the period t marginal productivity of capital 1+ r̃t = µAtK̃
µ−1
t L1−µ + 1− λ

2.7. Steady state. The next proposition presents steady-state properties to show the con-

ditions under which the conjecture equilibrium structure is valid.

Proposition 6. 1) The steady-state capital stock and aggregate consumption are the same in the

market and first-best allocation.

2) When π∗ = 0, Conjecture 1 is fulfilled, and cPU∗ < cPA∗ and cNU∗ < cNE∗.

Proof. The proof is simple. First, the Euler equations (40) and (58) in steady state imply

1 + r̃∗ = 1 + r̃∗ = 1
β . As a direct consequence, the steady-state level of capital stock

is optimal in the market economy, K∗ = K̃∗, and aggregate consumption (which can be
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deduced from the goods market equilibrium) is optimal, as in the simple model.

Second, under Conjecture 54, the two Euler equations (30) and (42) imply:

cPU∗

cPA∗ =

([
1 + π∗

β
− 1 + T

]
1
T

)− 1
σ

and
cNU∗

cNE∗ =

([
1 + π∗

β
− α

]
1

1− α

)− 1
σ

.

Plugging these expressions in (55) and (56), one finds that the two conditions (55) and (56)

are fulfilled when 1+π∗ > β (i.e. the economy is not at the Friedman rule), what includes

the case π∗ = 0. �

When 1 + π∗ > β then cPU∗ < cPA∗ and cNU∗ < cNE∗. Indeed, in this case it is costly

to self-insure using money because of inflation. Households thus rationally choose to

experience a fall in consumption in case of a bad idiosyncratic shock. The central planner

choosing the value π∗ faces a trade-off between insurance and redistribution, and the

optimal value of π∗ in the Ramsey problem will depend on ωp. As in the simple model

and as a normalization, I will choose the Pareto weight ωp such that the Ramsey problem

delivers an optimal steady-state net inflation rate equal to 0, when one constrains the

model to deliver a realistic amount of lack of insurance (see below).

2.8. Calibration and results. The period is a quarter. Preference parameters are set to

standard values. The discount factor is β = 0.99 and the curvature of the utility function

is σ = 2 (Hall, 2010. The production function is such that the capital share is µ = .36 and

the depreciation rate is λ = 0.025 (Cooley and Hansen, 1989 among others). The discount

factor determines the steady-state interest rate 1 + r∗ = 1/β, with equation (40). This and

the depreciation rate determine the steady-state capital stock and the steady-state wage

rate w∗ per efficient unit.

The steady-state inflation rate is assumed to be 0, π∗ = 0, and Pareto weights are set

accordingly (see below).

Concerning the labor market, a quarterly job-separation rate and job-finding rate is es-

timated using Shimer (2005) methodology. The quarterly job-separation rate is 5%, such

that α = 0.95, and the quarterly job-finding rate is 79%, such that ρ = 0.21. The replace-

ment rate is calibrated to match the average money holdings of households in the Bottom
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50% of the income distribution. It implies a replacement rate of 0.46, which is close to the

one used by Shimer (2005). Concerning inequality in income, I take κ = 4.42 to match the

ratio of the income of the Top 50% over that of the Bottom 50% (see the targets below).

Two parameters, α f and ρ f , concern the participation structure in financial markets. To

my knowledge there is no direct estimation of the participation frequency of households

in financial markets. I follow the strategy of Alvarez and Lippi (2009) which is to calibrate

participation frequency to match some monetary moments of the data. First, I set ρ f = 0.5

and α f = 0.85 to match two targets. The first one is the ratio of money over income of

the top 50% households. The second one is an average fall in consumption of households

transiting from employment to unemployment of 5%. This value is in line with the finding

of Gruber (1997) of 7%. As a consequence, the model generates a realistic amount of

uninsurable risk for money holders, which is key for welfare analysis. This calibration

strategy implies that 77% of the P-households participate in financial markets each period,

and the probability not to participate next period, when participating, is 15%.

The process for technology is set to standard values. The persistence of technology

shock is set to ρa = 0.95 and the standard deviation is σa = 1% (Cooley and Hansen,

1989). The last parameter to be determined is the Pareto weights ωp. I choose ωp such

that the optimal inflation in the steady-state Ramsey problem is 0. This is a normaliza-

tion, as we set parameter values such that the model delivers a realistic amount of lack of

self-insurance (measured by the fall in consumption when experiencing a fall in income).

Solving the model numerically, one finds ωp = 3.33. Table 2 presents the parameter val-

ues.

As a summary, Table 3 presents the outcome for the four targets, which are used to

calibrate the four parameters κ, ρ f , α f and δN.

The model outcome for all relevant variables is provided in the Online Appendix OA5.

Money and wealth Distribution The model matches well by construction the money (M1)

distribution for both type of agents. The top 50% hold 12.7% of their annual income in

money and the bottom 50% hold 9.5% of their income in money, both in the data and in

the model. As a consequence, the model reproduces a relevant amount of money held by
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TABLE 2. Parameter values

Population (%) and Pareto weight Preferences and technology

ΩN ΩP ωp β σ µ λ ρa σa

50 50 3.33 .99 2 .36 .025 .95 .01

Income structure Uninsurable risk

κ δN/w α ρ α f ρ f

4.42 0.46 .95 .21 .85 .5

TABLE 3. Calibration targets and model outcome

Data Model

Annual income T50/B50 5.3 5.3

Money/Annual Income T50 12.7 12.7

Money/Annual Income B50 9.5 9.5

Fall in consump. for unempl. 7% 5%

households. Finally, all financial wealth is held by the top 50% which is a consistent rep-

resentation of the data (see Bricker et al., 2014 for the discussion of the wealth distribution

using the SCF survey)

Model resolution. The gain of the assumptions made above is that the model is easy to

solve numerically. In particular, to derive the optimal Ramsey policy, I consider a second-

order approximation of the welfare objective and a first-order approximation of the con-

straints. Standard linear-quadratic methods allow deriving the optimal monetary policy

of the central planner. It is then possible to compute the steady-state inflation rate gener-

ated by the solution of the Ramsey problem, as a function of the Pareto weight. I iterate

over the Pareto weight until the steady-state optimal inflation rate is 0.

2.8.1. The effect of optimal monetary policy. To understand the trade-offs faced by mone-

tary policy in this environment, the optimal monetary policy after a positive technology

shock is now derived. Three economies are compared. The first one is the Ramsey alloca-

tion, where the planner solves the Ramsey problem (52). The second one is the first-best
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FIGURE 1. Outcomes of the three economies after the same technology shock
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Note: The green dotted line is the market economy with inactive monetary policy
(mCB = 0). The blue solid line is the market economy with a constrained efficient
monetary policy. The red dotted line is the first-best allocation.

allocation, where the central planner is unconstrained and can implement the first best

allocation. The third one is an inactive-policy allocation where monetary policy is inac-

tive, i.e. the nominal money stock is constant. In this last economy, we impose that mCB
t

is 0. As the Pareto weights have been chosen such that the optimal steady-state inflation

rate solving the Ramsey problem is 0, the steady-state inflation is the same in the Ramsey

and the inactive-policy allocations. As a consequence, the gain of an active monetary pol-

icy is only the result of its ability to affect the business cycle and is not the outcome of a

reduction in steady-state distortions.

We plot in Figure 1 the main variables in the three economies after the same technology

shock.
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The first panel (A), presents the technology shock At, as percentage deviation from the

steady-state value. The second panel (Mcb) presents optimal money created mCB
t when the

central planner solves the Ramsey program. Optimal monetary policy is countercyclical.

It reduces the money in circulation after a positive technology shock. Although aggregate

consumption is increasing in the three economies (as represented in the third panel (C)

of the first line), optimal monetary policy reduces the increase in consumption compared

to the inactive-policy allocation. The first-best increase in consumption is even smaller.

Optimal monetary policy generates an additional increase in the capital stock (compared

to the inactive-policy allocation, as can be seen in the Panel (K)), although less than its

level in the first-best allocation. Optimal monetary policy increases the capital stock by

5% at peak. It thus generates ”forced saving”. Panel (tau) are taxes and Panel (pi) is the

expected inflation rate.

Comparing Ramsey and inactive-policy allocations, one can see that the contractionary

monetary policy is a transfer from N−households to P−households. In the Ramsey al-

location, the consumption of employed N−households (who are the non-participating

money holders) is cNE and is represented in the Panel (cne). This consumption is lower

than the one in the inactive-policy allocation. In addition, the consumption of P-households

who are participating in financial markets (cPA represented in Panel (cpa)) is higher in the

Ramsey allocation than in the inactive-policy allocation. These P-households save more

after the technology shock in the Ramsey allocation than in the inactive-policy allocation,

as can be seen from the path of the aggregate shock.

Optimal monetary policy thus increases the capital stock after such a shock, but unde-

sirable redistributive effects limit the ability to restore the first best capital dynamics. To

see this, Panel (cp/cn) plots consumption inequalities as the ratio of total consumption

of participating households over total consumption of non-participating households. The

average consumption of participating households is higher than that of non-participating

households (who don’t hold the capital stock). As a consequence, the graph shows that

consumption inequality decreases less in the Ramsey allocation than in the inactive-policy

allocation. In other words, the contractionary monetary policy contributes to an increase

in inequality, which is consistent with recent empirical findings (Coibion, Gorodnichenko,



36 XAVIER RAGOT

TABLE 4. Second-order moments of key variables

Economies Variables

K (%) Ctot(%) corr(Ctot
t−1, Ctot

t )

Inactive-policy 3.03 13.1 0.988

Ramsey 3.15 13.0 0.990

First-best 3.26 13.0 0.992

Kueng and Silvia, 2012). The change in inequality in the first best allocation is not plotted,

as consumption inequality is constant in this case.

Before presenting the welfare implications, Table 4 reports the second-order moments

of aggregate variables for the three allocations. The volatility of the capital stock is higher

in the Ramsey allocation compared to the inactive-policy allocation, but it remains lower

than in the first best allocation. This implies that the volatility of aggregate consumption

falls in the Ramsey allocation compared to the inactive-policy allocation. In other words,

the capital stock does not react enough (and consumption reacts too much) to the technol-

ogy shock when monetary policy is inactive. In addition, the autocorrelation of aggregate

consumption increases in the Ramsey allocation, compared to the inactive-policy alloca-

tion: More volatile capital stock translates into smoother aggregate consumption, because

it is a way to save more in good times (and less in bad times), as can be seen from Figure

1.

2.8.2. Welfare gains of an active monetary policy. One can compute the welfare gains of an

active monetary policy (i.e. solving the Ramsey program) compared to an inactive mone-

tary policy, for both P and N households. I follow the standard measure of consumption

equivalent in the heterogeneous-agents literature. I first compute the average welfare for

the inactive allocation of N−households by simulating the economy with inactive policy

for 10,000 periods.

I then compute the ex-ante welfare as WN
IN = ∑∞

t=0 βt
(

nNEu
(

cNE
IN,t

)
+ nNUu

(
cNU

IN,t

))
(where IN stands for the inactive-policy allocation). Similarly, I compute the ex-ante wel-

fare of P households in the inactive allocation WP
IN = ∑∞

t=0 βt
(

nPAu
(

cPA
IN,t

)
+ nPUu

(
cPU

IN,t

))
.
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I then compute the ex-ante welfare for the Ramsey allocation by simulating the economy

where the central planner solves the Ramsey problem for 10,000 periods. I can similarly

compute the ex-ante welfare of the P and N households in the Ramsey allocation. This

gives WN
Ramsey and WP

Ramsey. The consumption equivalent is the average increase in con-

sumption that N and P households would need to enjoy in the inactive-policy allocation to

have the same ex-ante welfare as in the Ramsey allocation. Mathematically, one computes

∆N and ∆P such that:

∞

∑
t=0

βt
(

nNEu
(

cNE
IN,t

(
1 + ∆N

))
+ nNUu

(
cNU

IN,t

(
1 + ∆N

)))
= WN

Ramsey

∞

∑
t=0

βt
(

nPAu
(

cPA
R,t

(
1 + ∆P

))
+ nPUu

(
cPU

R,t

(
1 + ∆P

)))
= WP

Ramsey

One finds that ∆N = 0.39% and ∆P = 0.19%. Optimal monetary policy increases the

welfare of both types of agents, but it increases the welfare of N−households more than

the welfare of P−households. Monetary policy increases consumption smoothing (which

is not optimal because some households do not participate in financial markets). This

benefits relatively more N−households, who do not have access to financial markets. Note

that the welfare gains are much higher than the gains from eliminating business cycles in

representative agent economies.

3. CONCLUDING REMARKS

This paper derives implications for optimal monetary policy of limited participation in

financial markets, as a key friction to understand money demand. The distortions gener-

ated by this simple friction are surprisingly complex. Investment can be either too high or

too low in the business cycle compared to the first best allocation. Indeed, participating

agents don’t face the optimal wealth effect after technology shocks. The optimal policy is

not to distort the marginal return on investment, but to generate time-varying redistribu-

tion. As a consequence, the redistributive effect of monetary policy is actually a tool to

improve capital accumulation.

In the more general model matching a stylized money distribution, it has been shown

that the market economy underinvests after a typical technology shock, when monetary
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policy is inactive. In this setup, monetary policy is countercyclical : optimal money cre-

ation falls after a positive technology shock, but it has to balance a positive effect on capital

accumulation and undesirable redistributive effects.

The additional interest of the general model is to present a tractable incomplete in-

surance market model with limited participation, which generates a simple but realistic

distribution of money. The model is simple enough to perform a welfare analysis with

aggregate shocks. Admittedly, this model is not a full-fledged quantitative analysis of the

business cycle, as many other relevant ingredients for business cycle analysis are miss-

ing. An obvious path for future work is to introduce other frictions in this model, such as

nominal frictions or a search-and-matching model of the labor market, to study their in-

teraction with limited participation. These interactions may help to think about important

trade-offs for monetary policy and concerning capital accumulation.
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APPENDIX A. PROOF OF PROPOSITION 1

Using the equations for the optimal program (Equations 15 and 17), one finds 1+ r̃∗ = 1
β

and K̃∗ = L (Ω) (βµ)1/(1−µ), the same values as in the market economy. As a consequence,

K∗ = K̃∗ and Y = Ỹ∗, and total consumption is the same in both economy Ctot∗ = C̃tot∗.

The central planner allocation implies c̃n∗/c̃p∗ = ω
− 1

σ
p . The market allocation is, when

π = 0 :

cp∗ =

(
µ (1− β)

1−Ω/2
1−Ω

+ 1− µ

)
(βµ)

µ
1−µ and cn∗ = w∗ = (1− µ) (µβ)

µ
1−µ

As total consumption is the same in the market economy and for the optimal allocation, a

necessary and sufficient condition to have cn∗ = c̃n∗ and cp∗ = c̃p∗ is c̃p∗/c̃n∗ = cp∗/cn∗.

Using the three previous equations, this condition can be written as the one given by

equality (18).

APPENDIX B. PROOF OF PROPOSITIONS 2

To prove the proposition, the solution of the linear model is compared to the solution

of the linearized equations characterizing the first best allocation. The proportional de-

viation of the variables xt to its steady-state value is denoted x̂t, that is xt = x∗ (1 + x̂t) .

Linearizing and simplifying the model (3)-(6), (11) and (13), one finds that the dynamic of
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the economy is a simple two-equation model, based on the two variables ĉp
t and K̂t:

Et ĉ
p
t+1 − ĉp

t =
µ− 1

σ
K̂t+1 +

1
σ

Etat+1 (59)

K̂t+1 + (θ (Ω)− 1) ĉp
t = θ (Ω)

(
µK̂t + at

)
(60)

where the coefficient θ (Ω) stands for:

θ (Ω) ≡ 1
β

(
1 + (1−Ω)

1− µ

µL (Ω)

)
The coefficient θ (Ω) is higher than 1, θ (Ω) > 1 and decreasing in Ω. It captures the fact

that a part of the return on the capital stock is paid in wages to non-participating agents.

Knowing the value of the capital stock, the consumption of non-participating households

is simply (using the expression of the real wage):

ĉn
t = at + µK̂t (61)

The linearization of the equations characterizing the first best allocation yields:

Et̂̃cp
t+1 − ̂̃cp

t =
µ− 1

σ
̂̃Kt +

1
σ

Eat+1 (62)(
1

µβ
− 1
)̂̃cp

t +
̂̃Kt+1 =

1
µβ

(
at + µ ̂̃Kt+1

)
(63)

and the consumption of non-participating households is simply, from the optimal con-

sumption allocation (16): ̂̃cn
t = ̂̃cp

t (64)

Comparing the market economy (59)-(60) and the optimal allocation characterized by

(62)-(63), one finds that the Euler equation has the same expression in the two economies.

The only difference lies in the budget constraint. In the market economy the budget

constraint is modified because a part of the return of capital is given as a wage to non-

participating agents. The two equations are the same when Ω = 0, as θ (0) = 1/ (βµ), as

can be expected: when all agents participate in financial markets, the market economy is

optimal.

Consider the dynamic system (59)-(60). Using (60), one can substitute ĉp
t in (59), to

obtain a single equation in K̂t, K̂t+1 and K̂t+2. Using the method of unknown coefficients,
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one finds that the capital stock has the form:

K̂t+1 = B (σ, θ (Ω)) K̂t + Da (σ, θ (Ω) , ρa) at (65)

where ρa is the persistence of the technology shock, and where :

B (σ, θ) ≡ 1
2σ

((1− µ (1− σ)) θ + µ + σ− 1) (66)

− 1
2

√
1
σ2 ((1− µ (1− σ)) θ + µ + σ− 1)2 − 4θµ

Da (σ, θ, ρ) ≡
θ + ρ

σ (θ (1− σ)− 1)
1
σ ((1− µ (1− σ)) θ + µ + σ− 1)− B (σ, θ)− ρ

(67)

Comparing (59)-(60) and (62)-(63), on can observe that the optimal and market alloca-

tions are the same when Ω = 0 because θ (0) = 1/(µβ). One thus directly find the optimal

low of motion of the capital stock:

̂̃Kt+1 = B̃ ̂̃Kt + D̃aat with B̃, D̃a > 0 (68)

with B̃ = B (σ, θ (0)) and D̃a = Da (σ, θ (0) , ρ).

Moreover, when σ = 1, whatever the value of θ (and thus of Ω), one finds B (1, θ) = µ

and D (1, θ, ρ) = 1. As the consequence, the dynamics of the capital stock is the same in

both economies. It is then easy to show that the consumption of both P and N−households

is the same in both economies (using the good-market equilibrium), what concludes the

proof.

APPENDIX C. PROOF OF THE PROPOSITION 3

Denote as ∂x̂t
∂εa the increase in the contemporaneous proportional deviation of the vari-

able x̂t due to a marginal increase in the innovation in the TFP process.

Assume that σ = 1 + ε with ε small such that a first order expansion of B (1 + ε, θ) and

Da (1 + ε, θ, ρ) in ε is relevant. From (66) and (67). One finds

B (ε, θ) = µ + (µ− 1) (θ − 1)
1
2

(
1− 1

(θ + µ) (θ − µ)

)
ε

Da (ε, θ, ρ) = 1 +
θ − 1
θ − ρ

(
(1− µ)

θ

θ − µ
− ρ

)
ε
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Using (61), the dynamic of consumption can be written as ∂ĉn

∂εa = 1 and plugging the

expression of K̂t+1 given by (65), in the budget constraint of P−households (60), one finds

ĉp
t = θ−Da

θ−1 at +
θµ−B
θ−1 K̂t. Hence

∂ĉp

∂εa =
θ − Da (ε, θ, ρ)

θ − 1
(69)

As the solution of the optimal program for the P−households is the same as the one in

the market economy for θ (0), one has from (69):

∂ĉp

∂εa =
θ (Ω)− Da (ε, θ (Ω) , ρ)

θ (Ω)− 1
and

∂̂̃cp

∂εa =
θ (0)− Da (ε, θ (0) , ρ)

θ (0)− 1

Recall that θ (Ω) is decreasing in Ω, hence θ (Ω) < θ (0) for Ω > 0. Moreover, from (65)

and (68), one has:

∂ ̂̃K
∂εa = Da (ε, θ (0) , ρ) and

∂K̂
∂εa = Da (ε, θ (Ω) , ρ)

The proof relies on the following Lemma:

Lemma 1. There is a ρ̄ > 0, such that

If ρ < ρ̄, Da (σ, θ (Ω) , ρ) < D̃a (σ, θ (0) , ρ)

If ρ > ρ̄, Da (σ, θ, ρ) > D̃a (σ, θ (0) , ρ)

Proof of the Lemma. For small ε :

Da (σ, θ, ρ) = 1 +
θ − 1
θ − ρ

(
(1− µ)

θ

θ − µ
− ρ

)
ε

Using the previous expression, one finds:

1
ε

∂

∂θ
Da (σ, θ, ρ) =

(
1− ρ

θ − ρ

(
(1− µ)

θ

θ − µ
− ρ

)
− (θ − 1) (1− µ)

µ

(θ − µ)2

)
1

θ − ρ

Define F (ρ) ≡ 1−ρ
θ−ρ

(
(1− µ) θ

θ−µ − ρ
)
− (θ − 1) (1− µ)

µ

(θ−µ)2 . From the previous ex-

pression, the sign of ∂
∂θ Da (σ, θ, ρ) is the sign of F (ρ) .

If ρ > θ
1−µ
θ−µ then F (ρ) < 0.
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If ρ < (1− µ) θ
θ−µ then F (ρ) is decreasing and continuous in ρ., F (0) > 0 and F

(
(1− µ) θ

θ−µ

)
<

0. As a consequence, there is a ρ̄ > 0, such that F (ρ) > 0 if ρ < ρ̄ and F (ρ) < 0 if ρ > ρ̄.

As a consequence

∂

∂θ
Da (σ, θ, ρ) > 0 if ρ < ρ̄

∂

∂θ
Da (σ, θ, ρ) < 0 if ρ > ρ̄

Hence, ifρ < ρ̄, then Da (σ, θ (Ω) , ρ) < Da (σ, θ (0) , ρ), and the reverse when ρ > ρ̄,

what concludes the proof of the Lemma.�

To conclude the proof of the proposition, one can use the lemma to rank the impact

response for ĉp, ̂̃cp
, ̂̃K and K̂.

APPENDIX D. PROOF OF PROPOSITION 4

Define as g̃
(

At, K̃t
)

the optimal decision rule of the central planner : K̃t+1 = g̃
(

At, K̃t
)
,

solving the program (15) and (17) and which is uniquely defined by standard dynamic

programming argument. Assume that in the market economy the money supply follows

the rule mCB
t = H (Ω, At, Kt) where,

H (Ω, At, Kt) ≡
((

(1− µ)
1−Ω
1− Ω

2

+ µ

)
(K∗)µ L1−µ − K∗

)(
AtK̃

µ
t L1−µ − g̃

(
At, K̃t

)
(K∗)µ L1−µ − K∗

)

−
(
(1− µ)

1−Ω
1− Ω

2

+ µ

)
AtK

µ
t L1−µ + g̃ (At, Kt)

Although this expression is complex, it is only a function of the past state variables Kt, and

on the current technology shock At. I now shown that the first best allocation is a solution

of the program of all agents in the market economy, when monetary policy follows the

previous rule. As a consequence, optimal monetary policy can implement the first best18.

The proof is done in two steps.

First, using the budget constraint of participating households (3) and (9), one finds that

the budget constraint of participating households can be written as a simple system in cp
t

18It has been check that the first best allocation is the only possible equilibrium in a first order approxi-

mation of the dynamics. In other words, the equilibrium is locally unique.
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and Kt (plugging the expression of H and using c̃p∗ = cp∗)(
Ω
2
(
ωp
)− 1

σ + (1−Ω)

)
cp

t = AtK
µ
t L1−µ− g̃ (At, Kt)+

Ω
2

(
ωp
)− 1

σ + (1−Ω)

1−Ω
(g̃ (At, Kt)− Kt+1)

Second, we can show that the optimal decision rule Kt+1 = g̃ (At, Kt) (the one derived

from the solution of the program of the central planner) is a solution to the problem of

participating households. Indeed, the program of these households can be written as

u′
(
cp

t
)
= βEt

(
µAt+1Kµ−1

t+1 L1−µ
)

u′
(
cp

t+1

)
Kt+1 +

(
Ω
2
(
ωp
)− 1

σ + (1−Ω)

)
cp

t = AtK
µ
t L1−µ +

1
2

Ω
1−Ω

(
ωp
)− 1

σ (g̃ (At, Kt)− Kt+1)

One recognizes the program of the central planer (17) and the budget constraint given

in Section 1.4, with an extra term at the right hand side 1
2

Ω
1−Ω

(
ωp
)− 1

σ (g̃ (At, Kt)− Kt+1),

which is nul when Kt+1 = g̃ (At, Kt). As a consequence, if Kt+1 = g̃ (At, Kt) is a solution

of the central planner program, it is also a solution of the program of P−households in

the limited-participation economy. Hence, cp
t = c̃p

t and Kt = K̃t and cn
t = c̃n

t by the goods

market equilibrium.


	1. The simple model
	1.1. Agents
	1.2. Equilibrium definition, steady state
	1.3. Discussion of the model
	1.4. Optimal allocation and steady state comparison
	1.5. Distortions in the market economy
	1.6. Optimal monetary policy
	1.7. Monetary policy or fiscal policy ?
	1.8. A remark on inside money and money creation

	2. The general model
	2.1. Assets and production
	2.2. Households
	2.3. Money creation, government budget and market equilibria
	2.4. Optimal monetary policy
	2.5. Equilibrium structure
	2.6. First best
	2.7. Steady state
	2.8. Calibration and results

	3.  Concluding remarks
	References
	Appendix A. Proof of Proposition 1
	Appendix B. Proof of Propositions 2
	Appendix C. Proof of the Proposition 3
	Appendix D. Proof of Proposition 4

