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ABSTRACT 

The political acceptability of climate policies is undermined by job-killing arguments, especially 

for the least-skilled workers. However, evidence for distributional impacts for different workers 

remains scant. We examine the associations between climate policies, proxied by energy prices 

and a stringency index, and workforce skills for 14 European countries and 15 industrial sectors 

over the period of 1995-2011. We find that, while the long-term decline in employment in most 

carbon-intensive sectors is unrelated to policy stringency, climate policies have been skill biased 

against manual workers and have favoured technicians and professionals. This skill bias is 

confirmed using a shift-share instrumental variable estimator. 
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1 Introduction 

Concerns about international competitiveness and job losses have often characterized the 

political debate over climate policies. The withdrawal of the US from the Paris Agreement 

is only the latest episode of a political discourse that, especially among the conservative 

parties, has exploited the job-killing argument to block the approval of ambitious climate 

policies (Coglianese et al., 2013). Cragg et al. (2013) showed that US Congressional 

representatives are less inclined to vote for climate policies if they were elected from 

areas that are both poorer and have a pollution-intensive industrial structure. While the 

job-killing argument is less popular in the European debate, generous exemptions have 

been adopted in all countries to shelter polluting industries from international competition 

(Ekins and Speck, 1999). According to Martin et al. (2014), policymakers have overstated 

the relocation risk brought about by the European Emission Trading Scheme (EU-ETS), 

which is the flagship EU policy on climate change mitigation. Empirical evidence has not 

disconfirmed these concerns: in most cases, air quality regulations and energy prices (a 

proxy for carbon tax) have modest negative employment effects, concentrated on 

polluting and energy-intensive industries (e.g., Greenstone, 2002; Kahn and Mansur, 

2013; Walker, 2013). Although such negative effects can be offset by well-designed tax 

recycling schemes (Yamazaki, 2017), direct subsidies to the green economy (Vona et al., 

2018b) and induced innovations (Horbach and Rennings, 2013; Gagliardi et al., 2016), 

climate policies can still have large distributional consequences for different groups of 

workers, undermining their political acceptability. 

Of particular importance is assessing whether the labour market impacts of climate 

policies reinforce or not the well-known secular trend of skill upgrading, induced by 

globalization and automation (Autor and Acemoglu, 2011; Goss et al., 2014; Lu and Ng, 

2013; Autor et al., 2015). Regarding information and communication technologies (ICT 

henceforth), firms exposed to stringent climate policies could adopt technologies and 

organizational practices that require different worker competencies. Ultimately, whether 

climate policies and the greening of our economies induce changes in skill demand, and 

the extent to which these changes are aligned with those of on-going technological 

transformations are empirical issues that our paper seeks to answer. 

The first step of our research is to provide an exploratory look at the way in which the 

adoption of climate policies interacts with other labour market trends in shaping long-

Climate Policies and Skill-Biased Employment Dynamics:
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term changes in the workforce composition. Indeed, reemployment opportunities for 

displaced workers depend on their skill sets and should be less hopeful for workers whose 

competencies are offshored or automated. Conversely, workers equipped with the 

competencies needed in new green jobs will benefit from the expansion in the demand 

for green goods and services induced by such policies (Vona et al., 2018b).  

We contribute in three ways to the scant empirical literature on the distributional impacts 

of environmental policies across different workers’ groups, which has mostly been 

limited to the US (Walker, 2013; Vona et al., 2018a). First, we enlarge the breadth and 

generality of previous works by considering a more aggregated level of analysis. More 

specifically, we examine the associations between climate policies and workforce skills 

for 14 European countries and 15 industrial sectors over the period of 1995-2011. Similar 

to previous research on the impact of ICT (Michaels et al, 2014), this approach allows us 

to examine within-sector cross-country differences in the associations between climate 

policies and labour demand divided by skill group.  

Second, we build a unique dataset containing information on exposure to climate policies, 

green innovations and other structural changes, essentially trade and (ICT and non-ICT) 

capital investments (section 2). On the one hand, this dataset allows us to isolate the 

effects of climate policies on workforce skills in our econometric analyses. On the other 

hand, we gain descriptive insights into how climate policies interact with other structural 

transformations in the labour market. We use cluster analysis to describe the overlap of 

different labour market changes and thus the potentially cumulative effects of present and 

future climate policies (section 3).  

Third, we estimate the long-term effects of climate policies on workforce skills addressing 

the issue of the endogeneity of climate policies using a standard shift-share methodology 

for the two main policies of interest (section 4). Our favourite measures of climate policies 

are sectoral energy prices, following the methodology of Sato et al. (2015), and the 

composite EPS index, synthetizing the plethora of environmental policies adopted by EU 

countries in a unique index suitable for instrumentation (Botta and Kozluk, 2014). Our 

results indicate that properly accounting for endogeneity changes only the magnitude of 

the estimated effects and that, if any, OLS estimates are downwardly biased.  

More generally, there are three main results of our analysis. First, the cluster analysis 

shows that clusters exposed to climate policies (with higher GHG emissions intensity) 
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and to other structural transformations (i.e., trade exposed) are not necessarily at a 

disadvantage, compared to other clusters. Second, we estimate a decline in employment 

in most emission-intensive sectors that occur independently on policy stringency. Third, 

both the cluster and the econometric analyses emphasize a pronounced skill bias in favour 

of technicians and against manual workers. The bias is stronger for energy prices, high-

tech sectors, and the combined effects of all climate policies, explaining up to 2/3 of the 

increase in the share of technicians over the sample period. Before delving into the cores 

of sections 2 (data and descriptive), 3 (cluster analysis and taxonomy of exposure to 

multiple shocks) and 4 (econometric analysis and main results) of the paper, the next 

subsection discusses in greater detail our contribution with respect to the previous 

literature.  

1.1 Related literature 

Our paper contributes to the active literature on the impacts of environmental policies on 

competitiveness (Dechezleprêtre and Sato, 2017), of which labour market impacts are an 

expression. Two contrasting hypotheses explicitly or implicitly tested are: the Pollution 

Haven hypothesis (e.g., Levinson and Taylor, 2008); and the Porter hypothesis (e.g., 

Porter and van der Linde, 1995). The former focuses on the increase in compliance costs 

induced by unilateral environmental policies that eventually lead to a relocation of 

pollution-intensive industries towards countries with less stringent policies. The latter 

emphasizes the dynamic incentives of strict, but flexible, environmental policies for green 

innovation (weak version) and competitiveness (strong version).  

Both hypotheses have important implications for labour market outcomes. As emphasized 

by the partial equilibrium model of Berman et al. (2001), the extent to which the Pollution 

Haven effect translates into job losses depending on the size of the scale effect induced 

by compliance costs, the labour intensity of abatement technologies and the degree of 

competition in product markets. To illustrate, if the decrease in labour demand associated 

with a reduction in the scale of production of polluting sectors is greater than the increase 

in labour demand required in abatement technologies, the aggregate effect is negative. 

Morgenstern et al. (2002) showed that the scale effect is small since firms have market 

power in polluting industries, and consequently, the increase in compliance costs can be 

passed on to consumers with negligible effects on total demand. For the sake of 

simplicity, the Porter hypothesis can be nested within this framework by allowing for 
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innovation in abatement technologies, including both end-of-pipe and cleaner 

technologies (Frondel et al., 2007; Horbach et al., 2012), to spur a green comparative 

advantage, possibly leading to net job creation.1 Overall, the aggregate effect of 

environmental policies on labour demand remains a largely unresolved empirical issue. 

On the one hand, the literature isolating the effects on most cost-exposed polluting 

industries has generally found negative employment effects. On the other hand, the 

literature focusing on employment, environmental policies and green innovation has 

generally found a positive correlation.2 The main difficulty in reconciling the empirical 

findings of the two literature streams is that it is easier to derive a reduced-form 

specification, identify a reliable control group and thus obtain the causal effects in the 

first strand of literature than in the second.3 Moreover, job destruction in polluting sectors 

can be offset by job creation in upstream suppliers of green technologies and services, 

which are difficult to assess in reduced-form econometric models. Finally, the timing of 

the effect is important because the offsetting mechanisms through innovation are likely 

to be effective in the medium to long term, while the increase in compliance costs occurs 

immediately (e.g., Lanoie et al. 2008) 

These research strands have so far focused on the aggregate employment impacts, while 

the impact of structural transformations can be highly skill biased. Looking at skill-biased 

impacts has been crucial to understanding the inequality-enhancing effects of 

globalization, ICTs and other policy reforms, especially market liberalization (Autor and 

Acemoglu, 2011; Goss et al., 2014). In developed countries, all of these transformations 

have: i) been mildly labour-saving, especially in manufacturing; ii) reduced the demand 

for unskilled labour and routine jobs; and iii) increased the demand for highly skilled 

labour and abstract jobs, especially for non-routine interactive skills, compared to non-

                                                 
1 Obviously, the theoretical mechanisms that support the Porter hypothesis are more sophisticated than this 

simple linkage effect. A good survey of the literature appears in Ambec et al. (2013). 
2 Reviewing the findings of these two strands of literature is beyond the scope of these papers, and the 

picture provided here is to a certain extent a drastic simplification due to space limitations. Examples of the 

first set of “negative” results are: Greenstone (2002); Walker (2011); Kahn and Mansur (2013) and Marin 

and Vona (2017); examples of the second set of “positive” results, especially for cleaner technologies, are 

Rennings et al. (2004); Horbach and Rennings (2013); Gagliardi et al. (2016) and Vona et al. (2017). 
3 Estimating the impacts of environmental policies on innovation and then that of innovation on 

employment is not an easy task, given the presence of pervasive endogeneity issues in estimating both 

equations and the difficulties in finding reliable exclusion restrictions for identification purposes.  
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routine cognitive skills.4 The theoretical rationale to account for these patterns is the so-

called Routine-Replacing Technical Change hypothesis, according to which ICT 

technologies replace routine cognitive tasks in the workplace and facilitate the 

fragmentation of global value chains and the relocation of manual tasks in developing 

countries. At the same time, the combined effects of ICT technologies and increased 

international competition have disproportionately benefited talented workers through a 

combination of complementarity effects, the scalability of intangible investments and 

increased market size.  

By analogy with these first-order structural changes, a key and yet unexplored question 

is whether the labour market impacts of environmental policies are biased towards certain 

workers’ groups and whether the direction of the bias is similar to that of these changes. 

Answering these questions not only is crucial for examining the labour market 

distributional impacts of climate policies, but it is also important for the acceptability and 

the design of environmental policies. Indeed, identifying the losers and supporting them 

during the transition to a new job will significantly increase the political acceptability of 

climate policies. Further, training workers with the skills required by green jobs would 

reduce the costs of coping with climate policies.  

A chief difficulty is that we do not have clear theoretical insights, but only conjectures, 

into the relationship between climate policies (as a proxy of the demand of greener 

productions) and skill demand. Consequently, our paper aims at identifying data-driven 

patterns, which could provide basic insights and calibrations for theoretical contributions 

regarding the skill-biased effects of climate policies. An example is the paper by Hafstead 

and Williams III (2018), which, using a search and matching general equilibrium model, 

showed that an aggregate, modest effect of a carbon tax masks a substantial relocation of 

labour between clean and dirty sectors. Because relocation costs are typically proportional 

to skill gaps (e.g., Gathmann and Schönberg, 2010), an extension of this model could take 

advantage of our findings to express relocation costs as a function of such skill gaps.5 

                                                 
4 In the seminal paper by Autor, Levy and Murnarne (2003), a key distinction within the high-skill group 

is that between non-routine cognitive skills, e.g., math, engineering and science, and non-routine 

interactive skills, e.g. language and social skills. 
5 Empirically, relocation costs associated with environmental policies are difficult to estimate due to data 

limitations. An exception is the paper by Walker (2013), who estimated the long-term earning losses of 

approximately 20% for workers displaced by the Clean Air Act, the main command-and-control 

environmental policy in the US. His main finding is that these losses are very heterogeneous, being 

particularly large for older workers, women and those forced to change sectors. In contrast with these 
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To the best of our knowledge, research on the skill biasedness of environmental policies 

is still scant and mostly limited to the US. Indirect evidence has been provided in three 

cross-sectional studies analysing the skill biasedness of green productions. Using the US 

Green Goods and Services Survey available for 2010 and 2011, Becker and Shadbegian 

(2009) and Elliott and Lindley (2017) found that plants producing green goods and 

services employ a lower share of production workers. Consoli et al. (2016) examined the 

skill difference between green and non-green jobs using standard skill measures, such as 

education and routine task intensity, based on data from the Occupational Information 

Network (O*NET), which contains detailed information about the skills and tasks content 

of approximately 1000 occupations. They generally found modest differences but also a 

bias towards higher skills for green jobs (see also Bowen et al., 2018). Vona et al. (2018a) 

was the first paper providing a direct test of the effect of recent amendments to the Clean 

Air Act on skill demand in US regions over the period of 2006-2014. Moving from the 

nuanced results of Consoli et al. (2016) for standard skill measures, they also used 

O*NET to identify the skills that are significantly different for green jobs, compared to 

other jobs. The key finding is that skill gaps tend to be relevant, especially for engineering 

and technical skills, including monitoring. Taking stock of these findings, we expect 

climate policies to amplify the long-term skill upgrading of the workforce, with a more 

pronounced effect for engineering and technical skills.  

2 Data, measures and descriptive statistics 

2.1 Data and measures  

We use standard data sources that, to the best of our knowledge, we are the first to 

combine in a unique dataset. Our final dataset includes 15 sectors: 13 manufacturing 

sectors, “mining and quarrying”, and “electricity, gas and water supply”, classified 

according to the NACE rev. 1.1 classification.6 Due to missing data on key variables 

described below, we focus on 14 countries only.7 The resulting dataset is a balanced panel 

for 15 industrial sectors and 14 countries.  

                                                 
findings, Curtis (2018) showed that the negative employment effects of the NOx Budget Trading Program 

are concentrated among younger cohorts.  
6 We excluded ‘construction’ (NACE F), which is very different from other sectors in two important 

dimensions. First, it is an outlier in terms of employment. Second, it is sheltered by other shocks, such as 

international competition and automation. 
7 The countries are Austria, Belgium, the Czech Republic, Germany, Denmark, Spain, Finland, France, 

Hungary, Ireland, Italy, the Netherlands, Sweden and the United Kingdom. Over the period of 1995-2011, 
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Our primary measure of sectoral exposure to climate policies is emissions intensity. The 

data source is the World Input Output Dataset (WIOD), which allows us to compute both 

the direct GHG emissions until 2009 (CO2, N2O and CH4 aggregated according to their 

global warming potential) of the sector and the indirect GHG emissions through the 

purchase of electricity from the power sector (using input-output technical coefficients). 

To account for the direct and indirect exposures, our measure of GHG is the sum of the 

direct and indirect emissions (from the power sector) per unit of the sectoral value added.8 

Because sectors producing green goods and technologies can benefit from climate 

policies and be sources of job creation through an increase in the demand for green 

machines and services, we build a second measure of exposure to climate policies, 

namely, the stock of climate-related patent applications at the European Patent Office 

from REGPAT as a proxy for green comparative advantage.9 Climate-related patents are 

identified based on their IPC and CPC codes according to the taxonomy developed by the 

OECD (ENV-TECH indicator) and are related to renewable energy sources, energy 

efficiency, carbon capture and storage, emission mitigation technologies (e.g., energy 

storage, hydrogen-based fuels, fuel cells) and efficient combustion technologies. We use 

the IPC-ISIC concordance proposed by Lybbert and Zolas (2014) to attribute climate-

related patents to each sector. Importantly, patents are assigned to sectors that 

manufacture the green technology, rather than to the sectors that use it, thus capturing 

comparative advantage in green technologies. We measure environmental patent intensity 

by rescaling the patent stock by the number of hours worked in the sectors.  

On the labour market side, we use the European Labour Force Survey to retrieve, for each 

industry, information about the total and the share of hours for workers by different “skill 

groups”. 10 Our favourite measure of skills is the share of workers employed in a certain 

occupational group, while our alternative measure breaks down the workforce by 

                                                 
these countries contribute to approximately 73.7% of employment and 92.3% of value added of the EU27 

in the selected sectors. Data on ICT and non-ICT capital from EUKLEMS are not available for Bulgaria, 

Cyprus, Estonia, Greece, Lithuania, Latvia, Malta, Poland, Portugal, Romania and Slovakia. Moreover, 

data on import penetration (OECD) are missing for Luxembourg, while data on EPS (OECD) are not 

available for Slovenia. 
8 We use emissions, rather than energy intensity: the two measures show a correlation of 0.91 in our sample. 
9 The stock is built with the perpetual inventory method, using the EPO patent count sorted by priority year 

from 1977. We apply a 20% depreciation rate. 
10 The Labour Force Survey employs the NACE rev 1.1. classification until 2007 and the NACE rev. 2 

classification from 2007 onwards. We build a country-specific weighted concordance table between the 

two classifications, exploiting the double coding of information for 2007. 
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educational categories. This choice reflects the findings of the recent literature in labour 

economics emphasizing that occupational categories have greater predictive power than 

educational categories for labour market outcomes (Acemoglu and Autor, 2011), which 

is also consistent with the Routine-Replacing Technical Change hypothesis mentioned in 

section 1.1. We focus our analysis on four occupational groups: managers (ISCO 1), 

professionals (ISCO 2), technicians (ISCO 3) and manual workers (ISCO 7, 8 and 9). The 

paper by Vona et al. (2018a), which empirically identifies the skills relevant for green 

and brown jobs, motivates the separate inclusion of professionals, managers and 

technicians. Indeed, engineering and design skills emerge as the most important skills for 

both the green and polluting sectors. We include the share of managers because both Vona 

et al. (2018a) and Martin et al. (2012) found managerial skills to be important for 

environmentally friendly productions. Routine manual workers are included because they 

are both intensively employed in polluting industries and negatively affected by trade and 

technology shocks (Autor and Dorn, 2013; Autor et al., 2015). The second skill measure 

breaks down different levels of educational attainment as follows: low skill (secondary 

International Standard Classification of Education, ISCED, level or less), medium skill 

(upper secondary ISCED level) and high skill (tertiary ISCED level).11  

EU-KLEMS provides information about ICT and non-ICT capital and labour productivity 

(until 2007), while we retrieved from OECD STAN (data available until 2009) the share 

of imports over total production, which is a conventional measure of import competition. 

As discussed in the introduction, ICT technologies and globalization have large labour 

market impacts, and a key goal of our analysis is to understand the extent to which these 

impacts overlap with those of climate policies.  

To capture climate policies that increase the price of emissions, we compute the share of 

total direct GHG emissions released by establishments that participate in the European 

Emission Trading Scheme (EU-ETS), using information on verified emissions of EU-

ETS plants (classified by sector) from the EU ETS registry and total sectoral GHG 

emissions from WIOD. In the absence of other carbon pricing policies, we follow 

previous research using historical energy prices to proxy for the likely effects of climate 

policies on firms’ competitiveness (Aldy and Pizer, 2015; Marin and Vona 2017; Sato et 

                                                 
11 For occupational groups not considered in our analysis, such as clerical (ISCO 4) and service occupations 

(ISCO 5), it is worth mentioning that they represent a tiny proportion of employment in the sectors 

considered by our analysis, i.e., 10.6% of the average industry workforce.  
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al., 2015). We follow Sato et al.’s (2015) methodology and estimate energy prices 

(country, sector and year specific) by combining country-level time-varying tax inclusive 

prices for each energy source (from IEA) with the sector-country-year specific energy 

mix (from WIOD). Finally, other climate and environmental policies are multi-

dimensional, consisting of a mix of subsidies, taxes and emission limits. To account for 

multi-dimensionality, we use the OECD dataset on environmental policy stringency 

(EPS; see Botta and Koźluk, 2014). To avoid double counting of the EU-ETS stringency, 

we re-calculated the aggregated indicator without the components of CO2 tax and CO2 

trading (labelled as EPS_no_ETS), following the same procedure described by Botta and 

Koźluk (2014). For instrumentation purposes, we use the aggregate EPS index, which 

incorporates the measure of EU-ETS stringency (labeled simply EPS).  

In what follows, our data are organized in long intervals delimited by 1995, 1999, 2003, 

2007, and 2011 to capture medium- to long-term associations between climate policies 

and labour market outcomes.12 Since some variables are available until 2007 only, our 

descriptive analysis is performed for the time span of 1995-2007, while the econometric 

part also uses the last year because we fix the exposure to various shocks during the initial 

period. 

2.2 Descriptive evidence  

Table 1 summarizes the main data sources and the acronyms of the variables that are used 

throughout the paper, and it presents basic descriptive statistics for our variables of 

interest. 

 

[Table 1 about here] 

 

As a first glance towards understanding the associations between climate policies and 

labour market outcomes, we correlate both the levels (Table 2) and long-term changes 

(Table 3) of our variables of interest. We highlight in italics the correlations that are not 

significantly different from zero (5% level). Examining the levels, the patterns for the two 

measures of exposure to climate policies are completely different. On the one hand, higher 

emissions per worker are associated with lower exposure to other shocks, namely, import 

                                                 
12 Clearly, we checked that our results are unaffected by the particular years selected to delimit the windows, 

and we perform extensive robustness checks using moving average transformations.  
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penetration and ICT capital investment, and lower skill intensity. On the other hand, as 

expected, higher green patent intensity is positively associated with ICT capital 

investments, as well as demand for highly educated workers, professionals, technicians 

and managers.  

 

[Table 2 and Table 3 about here] 

 

When we examine long-term 1995-2007 changes, we do not find any co-movements 

between our measures of exposure to climate policies and other structural shocks. Across 

the board, any increase in the exposure to structural transformations (ICT capital, trade 

or emissions intensity) leads to a decrease in hours worked. Interestingly, sectors 

becoming more intensive in green patents do not display any positive and significant 

changes in employment, while they reinforce their skill biasedness toward graduate 

workers and professionals. 

Finally, we observe another interesting pattern for the climate-related changes in demand 

for skills. In contrast with findings of Vona et al. (2018a), sectors that become cleaner 

reduce their relative demands for technicians and middle skills and increase that for 

unskilled and manual workers. The behaviour of sectors changing their emissions 

intensities is at odds with the common wisdom that employment contractions are usually 

accompanied by skill upgrading. An explanation of this unexpected pattern requires a 

more careful treatment of the overlap among different structural shocks, which is the goal 

of the cluster analysis in the next section.  

3 A taxonomy of exposure to multiple structural 

transformations 

Isolating the associations between climate policies and workforce composition is 

challenging due to the contemporaneous presence of other structural drivers that have 

well-known biased effects on labour demand. Climate policies can either reinforce or 

mitigate the skill-biased effect of these changes. To consider in a compact way the 

overlapping of different shocks, we develop a taxonomy of sectors based on their degree 
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of exposure to structural drivers affecting labour market outcomes. Cluster analysis is the 

most natural method for allowing the data reveal this taxonomy, if any.13 

3.1 Cluster analysis: methodology 

The variables used to build the clusters are the following: i) the capital deepening and the 

technological level of the sector are captured using both non-ICT and ICT capital stocks 

per hour worked; ii) exposure to international competition is captured by import 

penetration; and iii) GHG intensity and the stock of EPO climate-related patents per hours 

worked are, respectively, our primary and secondary proxies for exposure to climate 

policies.14 

Note that the distribution of clustering variables is skewed and characterized by the 

presence of outliers. Therefore, as a preliminary step in the search for a meaningful 

sectoral taxonomy, we transform each variable in percentile ranks to avoid the formation 

of clusters driven by extreme values. 

We cluster our country-sector pairs for each of the four years for which all data are 

available: 1995, 1999, 2003 and 2007. The aim of cluster analysis is to identify groups of 

observations that are distinct, that is, that: i) are different from the others; and ii) group 

together observations that are homogeneous within the cluster. We adopt a two-step 

procedure to identify the optimal composition of clusters, as suggested in Hair et al. 

(2009). As a first step, we perform hierarchical clustering to identify the 'optimal' number 

of clusters (Milligan and Cooper, 1985) by assessing how distinct the clusters are (see 

Appendix A). As a second step, we use the resulting clusters (and corresponding 

centroids) as a starting point for the optimal re-attribution of observations into clusters by 

means of non-hierarchical clustering.15 Our favourite clustering algorithm is the average 

linkage algorithm, which computes the distance (squared Euclidean distance) in 

clustering variables across all possible pairs of individuals across different clusters and 

aims at minimizing distances within the clusters and, at the same time, maximizing 

                                                 
13 For a similar use of cluster analysis to build a taxonomy based on skill diversity, see Consoli and 

Rentocchini (2016). 
14 Other variables could have been included as clustering variables, such as the total patent stock and 

investments in intangible capital, but at the cost of increasing complexity and losing observations.  
15 Hierarchical clustering techniques sequentially split clusters and do not allow for the re-allocation of 

observations across different branches of the clustering tree. Non-hierarchical clustering techniques are 

more flexible and allow for re-allocation of observations to render clusters more homogeneous and distinct. 
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distances across clusters. This procedure provides six main clusters, which are described 

in the following sub-sections (see Appendix A for details). 

3.2 Profiling of clusters 

Table 4 provides the description of the cluster taxonomy by reporting the average 

percentiles (and the median values in parentheses) of clustering variables across the six 

different clusters. These figures are the basis for understanding the typical features of 

observations belonging to different clusters and attributing a label to each cluster. 

 

[Table 4 about here] 

 

To evaluate the differences in clustering variables across clusters, we run five linear 

regressions with a clustering variable as a dependent variable and all of the cluster 

dummies as independent variables. Not surprisingly, given that the cluster analysis seeks 

to maximize the differences in clustering variables across clusters, cluster dummies are 

jointly (F-test) significantly different from zero for all of the clustering variables, and they 

explain a significant proportion of the whole variance (R squared far greater than 0.6). In 

the last row of the table, we also enlist pairs of clusters for which clustering variables are 

not significantly different (based on Scheffe’s test). Note that this outcome is more 

frequent for ICT capital (6 of 15 possible pairwise comparisons) than for the other four 

clustering variables, especially the climate-related ones, corroborating the well-known 

fact that ICT is a general-purpose technology with a broad range of applications 

(Helpman, 1998).  

We now discuss the features of the six clusters by combining information about the 

clustering variables (Table 4) with the dynamics of the clustering variables across 

different clusters (Figure 1). Theoretically, we should expect that being exposed to 

multiple shocks is worse than being exposed to a single shock because all structural 

transformations (except perhaps green innovations) are potentially labour saving.  

 

[Figure 1 about here] 

 

Clusters 1 (Brown Global Low-tech) and 2 (Brown Medium-tech) are both characterized 

by a medium pollution intensity. The main difference is that cluster 1 is opened to trade 
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and is extremely low tech, while cluster 2 is medium tech and is relatively sheltered by 

international competition. Over time, we observe a catching-up of these two clusters 

regarding capital deepening and green patents. Emissions intensity, instead, declined 

twice as fast in cluster 1 as in cluster 2. The first cluster contains a combination of diverse 

sectors, including Textile and Transport Equipment, while the second cluster is more 

concentrated in a few sectors, such as Basic Metals, Food and Wood production (Table 

A2 of the Appendix A).16 Importantly, the Brown Medium-tech cluster is the largest in 

terms of average employment share (31.2%), while the Brown Global Low-tech (14.8%) 

cluster is the fourth largest. 

The third cluster (Green Global High-tech) resembles the second with two notable 

differences: i) a significantly larger share of green knowledge; and ii) a very modest GHG 

emissions intensity. This cluster contains the Machinery and Equipment producers, as 

well as some Textile, Rubber and Plastics producers (Table A2), and it is the second in 

terms of size with an average of 20.6% in total employment. Notably, the cluster becomes 

significantly greener over time, in terms of both green patents and emissions intensity. 

Cluster 4 (Exposed to Automation) is also a large cluster with 19.5% of total employment 

on average. It collects observations that remain relatively, but not fully, sheltered by 

international competition and climate-related transformations. For this reason, we use it 

as a benchmark category in our regression analysis. For all of the clustering variables, the 

observed growth rates for this cluster resemble those experienced by other clusters. 

The last two clusters (Black and Exposed to Multiple Shocks and Black High-tech) are the 

most polluting ones, but they represent, on average, a remarkably smaller share of hours 

worked (7.2% and 6.7%, respectively). Both cluster 5 and cluster 6 score high along all 

of the dimensions, especially climate-related ones; the only notable difference is that 

cluster 6 has been fully sheltered by international competition. Both clusters are very 

concentrated sector-wise: Chemicals and Mining for cluster 5; and Coke, Petroleum, 

Nuclear and Electricity Generation for cluster 6. Concerning the trends over time, cluster 

6 is by and large the best performer in terms of increases in green patent intensity, while 

cluster 5 is an outlier in terms of increased trade exposure.  

                                                 
16 Interesting, the chi-square independence test presented in Table A2 shows that both sectors and countries 

are not randomly assigned to clusters. While this assignment is expected for sectors, the results for countries 

highlight country-specific features in the incidence of structural transformations in the labor market. 
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3.3 The taxonomy at work 

Before moving to our econometric analysis, in which use cluster dummies to flexibly 

control for exposure to structural shocks, we assess here the composition and dynamics 

of different clusters in terms of workforce skills. In Table 5, we observe that the 

composition of the labour force is different across clusters, and the differences go in the 

expected directions, following a general technology-skill complementarity argument. 

However, as evident in last three rows of the table, cluster dummies explain only a small 

proportion of the variance in our measures of skills, except for manual workers, and the 

pairwise differences across clusters are often not statistically significant, especially for 

managers. 

 

[Table 5 and Figure 2 about here] 

 

Figure 2 reports the trends in our skill measures across different clusters. According to 

the previous discussion, cluster 5 and, to a lesser extent, cluster 1 should be those at a 

higher risk of job loss since they are affected by a larger number of labour-saving shocks. 

We observe that hours worked declined mostly in clusters exposed to multiple shocks and 

international competition (1, 3, 5), although it is cluster 6 that experienced the largest 

employment decline. Visually, a pronounced skill upgrading is widespread, but we do not 

observe any striking pattern clearly related to climate-related factors, except for the switch 

from manual workers to technicians in cluster 6.  

 

[Table 6 about here] 

 

That the clusters do not reveal pronounced differences in employment patterns is also 

confirmed in Table 6, in which we regress the 4-year long-term changes (1995-1999, 

1999-2003, 2003-2007, 2007-2011) in employment on initial cluster dummies (columns 

1-2) and then on clustering variables (columns 3-4). Indeed, only cluster 1 experienced a 

significant decrease in employment, compared to other clusters. Importantly, the 

explanatory power of the initial cluster dummies alone (column 1) is greater than that of 

time-varying lagged clustering dummies (column 3), justifying the use of cluster 

dummies to consider in a flexible way the exposure to multiple shocks. Finally, the signs 
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of the two proxies for exposure to climate policies are in line with those expected from 

our discussion in section 1.1: negative and significant for GHG intensity and positive and 

significant for green patent intensity.  

We can conclude that cluster analysis provides a flexible method to control for exposure 

to multiple shocks, but a fully-fledged assessment of the associations of climate policies 

and skill-biased employment dynamics should directly include our two proxies for 

exposure to these policies. The next describes the methodology used to estimate such an 

association and the main results of the paper.  

4 Link between climate policies and labour market outcomes 

4.1 Empirical strategy 

In this section, we study the associations between climate policies and labour market 

outcomes through standard econometrics tools. Our starting point is the following 

equation, weighted for the initial employment level of the country-sector cell to account 

for differences in size: 

 

∆𝑌𝑖𝑗𝑡
𝑘 = 𝛽1𝐸𝑇𝑆_𝑠𝑡𝑟𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖̅𝑗𝑡 + 𝛽2𝐸𝑛_𝑃𝑟𝑖𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑗𝑡 + 𝛽3 log(𝐸𝐼)𝑖𝑗,𝑡=95 + 

+𝛽4log⁡(𝐸𝐼)𝑖𝑗,𝑡=95 × 𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑡 + ∑ 1{𝑖,𝑗}∈𝐶𝑑,𝑡=95

6
𝑑=1 + 𝜇𝑖𝑡 + 𝜃𝑗 + 𝜀𝑖𝑗𝑡, (1) 

 

where:  

i) Our dependent variable is the 4-year change in share of labour of type k, i.e., 

∆𝑌𝑖𝑗𝑡
𝑘 . There are two advantages to using a long difference estimator. First, we 

directly estimate the permanent changes in workforce skills. Second, first 

differencing removes time-invariant the fixed characteristics of the country-

sector pair and transforms 𝑌𝑖𝑗𝑡
𝑘 ⁡into a stationary variable.17 

ii) The independent variables of interest are the three policies: the EU-ETS 

(𝐸𝑇𝑆_𝑠𝑡𝑟𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖𝑗𝑡); energy prices (𝐸𝑛_𝑃𝑟𝑖𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖𝑗𝑡); and an index of all of the other 

policies except for the EU-ETS (𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑡). 

                                                 
17 We use the Harris-Tzavalis stationarity test, which is designed for panels such as ours that have small T 

and large N. The null hypothesis of the unit root is rejected for all of our dependent variables in first 

differences, while it is not rejected for total employment in levels.  
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iii) 1{𝑖,𝑗}∈𝐶𝑑,𝑡=95 are five cluster dummies (the omitted category being cluster 4 

“Exposed to automation”) that consider the initial exposure and overlapping 

of the various structural changes discussed above. Using the initial cluster 

avoids the problem of endogeneity related to cluster switching, which is 

however not as frequent as shown in Tables A3 and A4 in Appendix A. 

iv) We include the initial level of GHG intensity in logs (log⁡(𝐸𝐼)𝑖𝑗,𝑡=95)⁡to 

capture the differential performance of a country-sector pair within a given 

cluster, depending on the initial level of GHG emission. 

v) 𝜇𝑖𝑡 is a full set of country-specific year dummies that account non-

parametrically for a broad range of country-specific time trends (e.g., 

differential effect of the great recession, general level of technology and 

competencies), which are likely to be correlated with both ∆𝑌𝑖𝑗𝑡
𝑘  and our 

variables of interest. Note that estimating the autonomous influence of 

𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑡 is not possible when including country-by-time dummies.18 

vi) 𝜃𝑗  are sector dummies absorbing observable and unobservable sector-specific 

trends. We assume these trends to be linear because cluster dummies and non-

parametric country trends are already intended to capture deviations from 

long-term sectoral patterns, such as globalization and automation. 

vii) 𝜀𝑖𝑗𝑡 is a standard error term. 

Before turning to the issue of policy endogeneity, we discuss the functional form used for 

the three policy variables. An important issue is whether to include the policies in 

differences or in levels. Compared to the policy changes, policy levels have a first-order 

effect on the cost structure and thus on industry competitiveness, labour demand and 

workforce skills. For instance, the effect on costs of a given change in energy prices 

depends on the initial levels of energy prices. To capture synthetically both the levels and 

the difference effect, we compute the average of the policy of interest between the initial 

and final years of the time interval used for the corresponding long-difference; e.g., 

𝐸𝑛_𝑃𝑟𝑖𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑗𝑡 is the average energy price between time t and time t-4. 

                                                 
18 An alternative specification with orthogonal country and time dummies, in addition to 𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖𝑡 , 

delivers qualitatively similar results. However, the interpretation of the coefficient associated with 

𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑡  is cumbersome here because it also captures the nonlinear component of the country-

specific trends.  
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Another important choice regards the interactions between the policy variables, on the 

one hand, and the index of emissions intensity discussed above, on the other. To avoid 

multicollinearity, we decide to include only the interaction between 𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑡 and 

the initial GHG emission intensity of the sector-country pair. Indeed, unlike energy prices 

and ETS stringency, the EPS index varies only at the country level, so it is not possible 

to identify its autonomous effect once we include non-parametric country trends. This 

choice is corroborated by an additional econometric exercise in which we estimate 

variants of equation 1 with only one policy at a time and its interaction with GHG 

intensity. The results, reported in Table B2 of Appendix B, justify our choice as long as, 

in most cases, the interactions between 𝐸𝑇𝑆_𝑠𝑡𝑟𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖𝑗𝑡 (or 𝐸𝑛_𝑃𝑟𝑖𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖𝑗𝑡), on the one hand, 

and initial pollution (or energy intensity), on the other, are not statistically significant at 

conventional levels.  

There are several concerns in interpreting the policy coefficients as causal. First, lobbying 

efforts have warranted generous policy exemptions in sectors in which emission 

reductions were most needed. This issue is particularly relevant for the EU-ETS and the 

other policies included in the EPS index. Second, energy prices are also correlated with 

the error term because quantity discounts render the price of energy lower for large 

consumers. Moreover, changes in the energy mix are likely to be correlated with changes 

in the input mix, including the skill mix. 

Our strategy is to overcome these issues with instrumental variables that are standard in 

the literature for two of three endogenous variables, that is, energy prices and the EPS 

index. For the third variable, ETS stringency, since instrumenting is not straightforward19, 

we slightly amend equation 1, replacing the measures of ETS stringency and the variable 

𝐸𝑃𝑆_𝑛𝑜_𝐸𝑇𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑡 with the standard index (𝐸𝑃𝑆̅̅ ̅̅ ̅̅

𝑖𝑡), including the score for carbon trading 

schemes: 

 

 ∆𝑌𝑖𝑗𝑡
𝑘 = 𝛽1𝐸𝑃𝑆̅̅ ̅̅ ̅̅

𝑖𝑡 + 𝛽2𝐸𝑛_𝑃𝑟𝑖𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑗𝑡 + 𝛽3 log(𝐸𝐼)𝑖𝑗,𝑡=95 + 𝛽4 log(𝐸𝐼)𝑖𝑗,𝑡=95 × 𝐸𝑃𝑆̅̅ ̅̅ ̅̅

𝑖𝑡 + 

 +∑ 1{𝑖,𝑗}∈𝐶𝑑,𝑡=0
6
𝑑=1 + 𝜇𝑖𝑡 + 𝜇𝑗 + 𝜀𝑖𝑗𝑡.  (2) 

 

                                                 
19 Since the EU-ETS is a European policy, an ideal instrument for 𝐸𝑇𝑆_𝑠𝑡𝑟𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖𝑗𝑡 does not exist at the 

country-by-sector level because industrial groups directly lobby at the EU level to alter the effective 

stringency of the ETS.  
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The instrument of the interaction term log⁡(𝐸𝐼)𝑖𝑗,𝑡=95 × 𝐸𝑃𝑆̅̅ ̅̅ ̅̅
𝑖𝑡 is built as a combination of 

two variables. The average GHG of non-EU, high-income OECD countries (US, Japan, 

Canada, South Korea, New Zealand, Australia) in 1995 is the instrument for 

log⁡(𝐸𝐼)𝑖𝑗,𝑡=95, while we use the EPS in all EU countries except for i as an instrument for 

𝐸𝑃𝑆̅̅ ̅̅ ̅̅
𝑖𝑡. The exclusion restriction is satisfied by construction since we switch off the time-

varying idiosyncratic characteristics of each specific country-sector pair. At the sector 

level, the average GHG exposure in other countries should reflect deep technological 

factors, rather than idiosyncratic country characteristics. At the country and time levels, 

the policy variation in all of the other countries isolates the EU-driven, arguably more 

exogenous, component of national climate policies.  

The instrument of energy prices exploits a classical shift-share logic (Bartik, 1991) that 

becomes common in related papers estimating the impacts of energy prices (Lin, 2008; 

Marin and Vona, 2017; Sato et al., 2015). The instrument is obtained by multiplying the 

vector of sectoral shares of each energy source (coal, gas, electricity, etc.) at time 0 (1995 

in our case) by the vector of the time-varying prices of each source at the national level. 

The exclusion restriction is satisfied as long as two conditions hold: i) the national prices 

for each source are independent of sector-level idiosyncratic demand shocks; and ii) the 

initial energy mix of the sector does not affect long-term employment dynamics. The 

inclusion of sector dummies, capturing sector-level time trends, and of country-year 

dummies, implicitly capturing the idiosyncratic country-specific features of large energy 

consumers (e.g., utilities), ensures that these conditions are satisfied. 

To provide context to our results, Table B1 in the Appendix shows that all of our policy 

measures increased substantially over time. The average energy price increased by a 

remarkable 78%, while EPS stringency tripled between 1995 and 2011. ETS stringency 

jumped from zero to a positive value between 2003 and 2007 with the beginning of the 

first phase (2005) and then further increased in 2011 with the beginning of the second 

phase (2008).  

4.2 Estimation results 

Table 7 presents the OLS estimations of equation 1, while Table 8 contains the IV 

counterpart. In both tables, the results are presented for the changes in five dependent 

variables: the log of total hours worked and the shares of hours worked by managers, 

professionals, technicians and manual workers. Clearly, while the IV specification 
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provides a better estimation of the causal effects of climate policies, the OLS specification 

has a number of advantages worth mentioning. Above all, it allows for separately 

identifying the coefficient associated with the EU-ETS. Moreover, it is amenable to 

extensions to include the other variable that, as we discussed above, could shape the 

associations between climate policies and employment dynamics, that is, green patent 

intensity. Finally, it is of its own interest for evaluating the extent to which the OLS 

coefficients are biased.  

 

[Table 7 and Table 8 about here] 

 

Both Table 7 and Table 8 clearly highlight the two main findings of our paper. First, 

climate policies do not add to the observed decline in employment for polluting industries, 

as attested by the negative and significant coefficient of the initial GHG intensity, which 

resonates with the historical decline in energy-intensive industries in Europe (Rosés and 

Wolf, 2018). If anything, a more stringent EPS mitigates such a decline as shown by the 

positive and significant coefficient associated with the interaction between EPS and GHG 

intensity. Second, the missing association between climate policies and total employment 

masks significant heterogeneity across occupational groups. Similar to other structural 

transformations in the labour market, climate policies create winners and losers across 

occupations within a given industry, rather than directly affecting the total level of 

industrial employment.  

Broadly speaking, the skill bias of climate policies is aligned with that of globalization 

and automation: manual workers are the losers for all policies considered, while abstract 

professions (especially when considering energy prices) and managers (especially for 

ETS stringency) are the winners. A peculiar aspect of climate policies is the pronounced 

bias in favour of technical occupations (ISCO3), such as Physical and Engineering 

Science Technicians, Process Control Technicians and Government Regulatory Associate 

Professionals, in agreement with findings of Vona et al. (2018a) for the Clean Air Act in 

the USA. Indeed, the share of technicians significantly increases with energy prices and 

the EPS index. 
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For energy prices, we can directly compare the IV and OLS results.20 Interestingly, the 

OLS coefficients underestimate the skill-bias effects, especially for technicians and 

manual workers. By retaining only the exogenous variation in energy prices, the shift-

share instrument dampens the sources of organizational inertia, slowing the skill 

upgrading required by energy-saving technologies and organizational practices. For the 

other two policies, a direct comparison between OLS and IV is not possible because we 

estimate the ETS inside the EPS index. 

The magnitude of the estimated coefficients allows us to assess the policy relevance of 

our estimates. We use the IV specification to quantify the main effects of interest. Among 

the different policies, energy price has the strongest effect on workforce skills. An 

increase of 10% in the mean energy price explains 17.9% of the average increase in the 

share of technicians. The corresponding effects are slightly smaller but still economically 

significant: for professionals, 13.2% of their increase; and for manual workers, 13.1% of 

their decrease. The effects on technicians and manual workers are reinforced by the 

increase in EPS. For an industry at the mean level of GHG intensity, the average 4-year 

increase in EPS accounts for 17.3% of the increase in the share of technicians and 14.2% 

of the decline in the share of manual workers. In summary, 2/3 of the increase in the share 

of technicians and slightly more than ¼ of the decrease of the share of manual workers 

are explained by climate policies. 

This pronounced skill bias in favour of technical, scientific and engineering skills (i.e., 

engineers are a substantial proportion of professionals) bears policy relevance given the 

increase in carbon prices planned by European countries, both at the national (i.e., carbon 

taxes) and EU levels (i.e., carbon price floors). Our results indicate that investing in 

technical and engineering skills can significantly reduce the socio-economic costs of a 

high carbon price scenario. On the one hand, expanding the supply of such skills will 

decrease the hourly wages of technical workers and thus production costs. On the other 

hand, retraining manual workers for middle-skill technical jobs for clean and energy-

saving tasks will provide fresh opportunities to workers who bear the bulk of the costs of 

all of the recent structural transformations in the labour market.  

                                                 
20 Note that both instruments are strong, as testified to by an F of 270.9 for the instrument of energy price 

and 181.9 for the instrument of log⁡(𝐸𝐼)𝑖𝑗,𝑡=95 × 𝐸𝑃𝑆̅̅ ̅̅ ̅̅
𝑖𝑡 . 
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An interesting result that deserves further examination is the mitigating effect of EPS on 

total employment in polluting industries. We examine how the combined effects of the 

initial GHG intensity (𝛽̂3log⁡(𝐸𝐼)𝑖𝑗,𝑡=95 + 𝛽̂4log⁡(𝐸𝐼)𝑖𝑗,𝑡=95 × 𝐸𝑃𝑆̅̅ ̅̅ ̅̅
𝑖𝑡) varies by replacing 

the averages values 𝐸𝑃𝑆̅̅ ̅̅ ̅̅
𝑖𝑡 and log⁡(𝐸𝐼)𝑖𝑗,𝑡=95 within each decile of initial GHG intensity. 

We find that the monotonicity of the relationship is preserved: the fraction of the 

employment decrease explained by GHG intensity is nearly 0 at the first decile, while it 

is 11.7% at the median and 44.1% for the most polluting observations at the 9th decile. To 

interpret this result, note that there is a modest but negative correlation (-0.11) between 

initial GHG intensity and EPS stringency, as well as a positive and significant correlation 

between the green patent stock per capita and EPS stringency (0.30). Taken together, this 

evidence suggests that green tech leaders might be more willing to adopt stringent climate 

policies that can mitigate the long-term employment decline in polluting industries. 

We formally test this conjecture in estimating an augmented specification with a full set 

of interactions between EPS policy stringency (interacted with initial GHG intensity) and 

a “green tech” dummy variable equal to one for countries sufficiently close to the green 

technological frontier.21 For the sake of parsimony, we include only the interaction of the 

green tech dummy with EPS and the initial GHG terms. Since it would be nearly 

impossible to find satisfactory instruments for all of the interactions, we estimate this 

equation with OLS.  

 

[Table 9 about here] 

 

Table 9 presents the results of this exercise. Examining the interaction terms between EPS 

and the green-tech dummy, the only statistically significant result corroborates our main 

findings, that is, the share of technicians increases more with climate policies in countries 

closer to the green technological frontier. Examining the interaction terms between GHG 

intensity and the green-tech dummy, we find no support for our hypothesis that green 

high-tech countries are able to mitigate the negative relationship between initial GHG 

intensity and total employment. This outcome is in contrast with the positive association 

                                                 
21 We define the green tech dummy equal to one for a country sufficiently close to the green technological 

frontier in sector j. The green technological frontier is defined as the ratio between the green patent stock 

per capita and the maximum green patent stock in this sector year. The threshold defining the green tech 

dummy is set at a jump in the distribution of the variable “distance to the green frontier”, i.e., distance=0.67.  
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between employment and the green patent stock per worker that we found in Table 6. 

This finding indicates that the inclusion of country-by-year and cluster dummies killed 

this positive and significant association. Further research is required to better understand 

whether this result is reliable or not, considering the problems in our measurement of 

green leadership, or whether it is a mismatch between green inventors and polluting 

industries.22 

Appendix B replicates Table 7 and Table 8 for different dependent variables: labour 

productivity (value added per hour worked or gross output per hour worked) and the 

shares of high-, medium- and low-skilled workers defined in terms of educational 

attainment as, respectively, university graduates, high-school graduates and lower 

secondary graduates or less (Tables B3 and B4). The main takeaways from these tables 

are that climate policies have no effect on labour productivity and that skill biases are less 

evident when using an education-based measurement of skills. While the second finding 

corroborates previous research in labour economics that suggests using task- and 

occupation-based measures of skills, instead of education-based ones (Acemoglu and 

Autor, 2011), the first is not fully consistent with findings of Albrizio et al. (2017), who 

used Total Factor Productivity and a distance-to-the-frontier specification of productivity 

growth. We leave a more detailed examination of the effects of climate policies on labour 

productivity to future research.  

5 Concluding remarks 

Our paper investigates the effects of climate policies on the demand for workers with 

different skills. We find that the skill bias of climate policies mostly consists of a 

substitution of technical and professional workers for manual ones. While the main skill-

bias pattern is broadly consistent with that of other structural transformations, such as 

globalization and the ICT revolution, we observe for climate policies a more marked re-

direction toward technical and scientific skills (i.e., non-routine cognitive skills), 

compared to managerial and social skills (i.e., non-routine interactive skills). Since this 

result is broadly consistent with that of Vona et al. (2018a) for US regions, we argue that 

                                                 
22 Producers of green technologies are often not in the most polluting sectors, as confirmed by the low 

weighted correlation between initial GHG intensity and the green patent stock per capita, i.e., 0.17. 
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training investments for greening our economy should start from the technical and 

scientific disciplines. 

Importantly, a highly heterogeneous effect of climate policies across workers’ groups 

does not match the induced decrease in total employment. Climate policies did not 

contribute to the swift decline in employment in polluting industries, in contrast with the 

findings of the micro-econometric literature. This gap between macro and micro findings 

reveals once again an aggregation bias in the evaluation of the economic effects of 

environmental policies (e.g., Levinson and Taylor, 2008; Dechezleprêtre and Sato, 2017). 

Nevertheless, the mechanisms through which modest to large effects for the treated 

companies in polluting sectors translate into negligible effects at the sector-level are not 

clear. In our paper, we investigate the mediating effects of green technology, but we do 

not find conclusive evidence after controlling for sector and country effects.  

This paper is a first step toward understanding of distributional labour market impacts of 

environmental policies. Although we find evidence of distributional impacts in terms of 

changes in demand for different groups of workers, the next step should be to examine 

earnings’ effects. In this work, we refrain from examining the impact of climate policies 

on earnings for two reasons. First, estimating wage premiums for specific skill categories 

at the industry level introduces additional sources of bias related to compositional effects 

and self-selection regarding unobservable workers’ characteristics. Second, institutional 

differences in wage-setting rules across EU countries should be considered, which would 

add another layer of complexity to our analysis. This analysis is left for future research 

using matched employer-employee data that are better suited for an analysis of earnings’ 

dynamics (see Walker, 2013). 
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Tables and figures 

Table 1 – Definition of variables 

Variable Source Years Description Mean Median 
Standard 

deviation 

ICT capital intensity EU KLEMS 1995-2007 Stock of ICT capital per hour worked. 1.4125 0.5748 3.3224 

Non-ICT capital 

intensity 
EU KLEMS  1995-2007 Stock of non-ICT capital per hour worked. 9.2597 3.8193 21.0790 

Import penetration OECD STAN 1995-2009 Import / (Output + Import – Export). 0.5672 0.4358 1.4739 

Climate patent stock per 

empl 

OECD-REGPAT; 

Lybbert and Zolas 

(2014); OECD-
ENVTECH 

1995-2011 

Stock of EPO patent applications in climate-related technologies. Patents are attributed to the sectors 

according to the IPC-ISIC concordance table proposed by Lybbert and Zolas (2014). Climate related 

technologies are identified following the IPC- and CPC-based taxonomy proposed by the OECD 
ENVTECH Indicator. 

2.5391 0.3805 6.0176 

GHG/VA WIOD 
 

1995-2009 

Greenhouse gas emissions (CO2, CH4 and N2O expressed in CO2 equivalent tons) per real value 

added. The numerator also includes emissions embodied in the purchase of electricity (based on input-
output estimates). 

5.4161 0.7988 26.2186 

Managers EU LFS 1995-2011 Share of managers (ISCO 1) 0.0751 0.0649 0.0447 

Professionals EU LFS 1995-2011 Share of professionals (ISCO 2) 0.0783 0.0562 0.0660 

Technicians EU LFS 1995-2011 Share of technicians (ISCO 3) 0.1483 0.1250 0.1128 

Manual EU LFS 1995-2011 Share of manual workers (ISCO 7, 8 and 9) 0.5903 0.6150 0.1601 

High education  EU LFS 1995-2011 Share of workers with tertiary (ISCED) education 0.1903 0.1653 0.1220 

Mid education EU LFS 1995-2011 Share of workers with upper secondary (ISCED) education 0.5201 0.5084 0.1656 

Low education EU LFS 1995-2011 Share of workers with secondary or lower (ISCED) education 0.2895 0.2620 0.1585 

Hours worked WIOD 1995-2011 Hours worked by employed and self employed workers 251.1599 117.8889 335.7974 

Environmental Policy 

Stringency (EPS) 

OECD EPS 

Indicator 
1995-2011 

Environmental Policy Stringency indicator (CO2 tax and CO2 trading excluded). The indicator has 

been standardized to range between 0 and 1 
0.4488 0.1671 0.4811 

ETS stringency 
EU ETS Registry; 

WIOD 
1995-2011 

Ratio between GHG emissions of establishments that participate to the EU ETS over total GHG 

emissions of the sector 
0.4839 0.0000 0.4321 

Energy price IEA; WIOD 1995-2011 
Sector-country-year specific price of energy inputs. The price is the weighted average of country-year 

fuel specific energy prices, using country-sector-year specific energy mix as weight. 
0.2484 0.3165 0.2298 
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Table 2 – Correlation between measures of shocks and labour force composition (levels 

for years 1995, 1999, 2003 and 2007) 

  

log(ICT capital 

intensity) 

log(Non-ICT 

capital intensity) 

Import 

penetration 

Climate patent 

stock per empl 
log(GHG/VA) 

log(ICT capital intensity) 1.0000     

log(Non-ICT capital intensity) 0.6763 1.0000    

Import penetration 0.0886 -0.0018 1.0000   
Climate patent stock per empl 0.5005 0.3371 0.0670 1.0000  

log(GHG/VA) -0.1805 0.1671 -0.1621 0.0357 1.0000 

Managers 0.3385 0.1346 0.0774 0.1039 -0.0350 

Professionals 0.6127 0.2932 0.1399 0.3530 -0.2452 

Technicians 0.4324 0.2501 0.0702 0.3334 -0.0913 

Manual -0.6571 -0.3923 -0.0889 -0.3894 0.1109 

High education  0.6708 0.3665 0.1415 0.4474 -0.2125 

Mid education  -0.1983 -0.2276 0.0265 0.2574 0.1207 

Low education  -0.2034 -0.0021 -0.1054 -0.4866 0.0115 

Correlations weighted by hours worked. Correlation coefficients not significant at 5% level in italics 

 

Table 3 – Correlation between measures of shocks and labour force composition (long 

differences 1995-2007) 

  

Δ log(ICT capital 

intensity) 

Δ log(Non-ICT 

capital intensity) 

Δ Import 

penetration 

Δ Climate patent 

stock per empl 
Δ log(GHG/VA) 

Δ log(ICT capital intensity) 1.0000     

Δ log(Non-ICT capital intensity) 0.2189 1.0000    

Δ Import penetration 0.1513 0.1085 1.0000   
Δ Climate patent stock per empl -0.0541 0.0383 0.0334 1.0000  

Δ log(GHG/VA) -0.0065 -0.1870 -0.1282 0.1366 1.0000 

Δ log(hours worked) -0.2494 -0.3454 -0.2038 -0.1236 -0.1482 

Δ Managers 0.259 0.0767 -0.0036 -0.0234 -0.0695 

Δ Professionals -0.1341 -0.0352 -0.0423 0.1198 -0.0719 

Δ Technicians 0.1233 0.0248 -0.0438 -0.0701 0.2587 

Δ Manual -0.1712 -0.0455 0.0276 -0.0138 -0.1847 

Δ High education  0.1890 -0.0494 0.0430 0.1587 0.0305 

Δ Middle education  -0.0076 -0.0305 -0.0576 -0.0454 0.2252 

Δ Low education  -0.1302 0.0614 0.0174 -0.0749 -0.2116 

Correlations weighted by hours worked in 1995. Correlation coefficients not significant at 5% level in italics 
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Table 4 – Definition and profiling of clusters (average percentile of clustering variables, 

median value of variables in parenthesis) 

Cluster 
ICT K 

intensity 

Non-ICT K 

intensity 

Import 

penetration 

Climate patent 

stock per empl 
GHG/VA n Empl share 

1 Brown Global Low-tech 
18.43 15.84 67.23 19.76 47.8 164 0.1477 

(0.169) (1.069) (0.582) (0.023) (1.121)     

2 Brown Medium-tech 
23.72 32.71 24.48 36.54 57.15 144 0.3120 

(0.239) (2.452) (0.215) (0.104) (1.627)     

3 Green Global High-tech 
64.09 45.4 77.16 62.3 15.4 166 0.2062 

(1.031) (3.328) (0.726) (0.779) (0.315)     

4 Exposed to Automation 
65.5 62.39 32.21 34.12 38.34 121 0.1950 

(0.901) (4.844) (0.301) (0.085) (0.881)     

5 Black and Exposed to 

Multiple Shocks 

68.03 79.97 74.06 72.33 69.45 116 0.0724 

(1.212) (10.590) (0.660) (1.655) (3.249)     

6 Black High-tech 
73.53 83.03 19.64 85.12 85.73 129 0.0667 

(1.662) (19.493) (0.182) (4.794) (11.170)     

Total 50 50 50 50 50 840 1 

  (0.575) (3.819) (0.436) (0.290) (1.265)     

F test of joint significance 

of cluster dummies 
332.73*** 520.09*** 407.15*** 392.07*** 785.62***   

R squared of the 

regression 
0.6299 0.7162 0.6989 0.6374 0.6167   

Not statistically different 

(p-value>0.05) clusters 

according to Scheffe's test 

1-2, 3-4, 3-5, 

4-5, 5-6 
5-6 2-6 - -   
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Figure 1 – Average period-to-period growth in clustering variables by beginning-of-

period cluster 

   

  

 

 

Table 5 – Labour market characteristics of clusters 

Cluster Managers Professionals Technicians Manual High-education Mid-education Low-education 

1 Brown Global Low-tech 0.0607 0.0396 0.1045 0.7022 0.1023 0.5760 0.3218 

2 Brown Medium-tech 0.0608 0.0293 0.0889 0.6850 0.1031 0.4640 0.4330 

3 Green Global High-tech 0.0831 0.1162 0.1749 0.5188 0.2504 0.4993 0.2503 

4 Exposed to Automation 0.0772 0.0799 0.1260 0.5998 0.1906 0.4838 0.3256 

5 Black and Exposed to Multiple Shocks 0.0933 0.1091 0.1869 0.4810 0.2556 0.4839 0.2604 

6 Black High-tech 0.0744 0.0913 0.1757 0.5144 0.2255 0.5324 0.2421 

Total 0.0718 0.0685 0.1291 0.6105 0.1696 0.4977 0.3327 

F test of joint significance of cluster 

dummies 
9.27*** 58.63*** 43.42*** 83.43*** 79.77*** 2.89** 20.77*** 

R squared of the regression 0.0399 0.1990 0.1906 0.3307 0.2811 0.0584 0.1306 

Not statistically different (p-value>0.05) 

clusters according to Scheffe's test 

1-2, 1-4, 1-5, 1-

6, 2-4, 2-5, 2-6, 

3-4, 3-5, 3-6, 4-

5, 4-6, 5-6 

1-2, 3-4, 3-5, 3-

6, 4-5, 4-6, 5-6 

1-2, 1-4, 2-4, 3-

4, 3-5 
1-2, 3-4, 3-5 

1-2, 3-4, 3-5, 5-

6 

2-3, 2-4, 2-5, 2-

6, 3-4, 3-5, 3-6, 

4-5, 4-6, 5-6 

1-3, 1-4, 1-5, 3-

4, 3-5, 4-5, 5-6 

 

  

-0.1 0 0.1 0.2 0.3 0.4

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Import penetration

0 0.1 0.2 0.3 0.4 0.5 0.6

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ ICT capital intensity (log)

0 0.05 0.1 0.15 0.2

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Non-ICT capital intensity (log)

0 0.5 1 1.5 2 2.5

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Climate patent stock per empl

-0.25 -0.2 -0.15 -0.1 -0.05 0

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ GHG intensity (log)
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Figure 2 – Average period-to-period growth in labour-related measures by beginning-

of-period cluster 

   

   

  

 

 

  

-0.1 -0.08 -0.06 -0.04 -0.02 0

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Hours worked (log)

-0.003-0.002-0.001 0 0.001 0.002

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Managers share

0 0.005 0.01 0.015 0.02 0.025

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Professionals share

0 0.005 0.01 0.015 0.02 0.025 0.03

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Technicians share

-0.05 -0.04 -0.03 -0.02 -0.01 0

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Manual share

0 0.01 0.02 0.03 0.04

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ High education share

-0.005 0 0.005 0.01 0.015 0.02 0.025

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Mid education share

-0.04 -0.03 -0.02 -0.01 0

Total

6 Black High-tech

5 Black and Exposed to
Multiple Shocks

4 Exposed to Automation

3 Green Global High-tech

2 Brown Medium-tech

1 Brown Global Low-tech

Δ Low education share
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Table 6 – Predictive power of cluster dummies vs clustering variables 

Dep. var: Δ log(hours worked) (1) (2) (3) (4) 

1 Brown Global Low-tech -0.0824*** -0.0769***   
 (0.0315) (0.0267)   

2 Brown Medium-tech -0.0115 -0.0106   
 (0.0148) (0.0141)   

3 Green Global High-tech -0.0118 0.00555   
 (0.0203) (0.0127)   

4 Exposed to Automation [base cat] [base cat]   

     
5 Black and Exposed to Multiple Shocks -0.00870 0.00210   

 (0.0146) (0.0153)   
6 Black High-tech 0.00196 0.0126   

 (0.0187) (0.0222)   
Import penetration   -0.0112 -0.0111 

   (0.00951) (0.00890) 

log(ICT K intensity)   -0.0135 0.0221* 

   (0.0135) (0.0119) 

log(Non-ICT K intensity)   0.0183 0.00753 

   (0.0122) (0.0111) 

Climate pat. stock per empl.   0.00948*** 0.00947*** 

   (0.00316) (0.00269) 

log(GHG/VA)   -0.0106* -0.0130** 

      (0.00573) (0.00626) 

Controls Year dummies 

Country, sector 

and year 

dummies 

None 

Country, sector 

and year 

dummies 

R squared 0.143 0.223 0.132 0.240 

N 840 840 840 840 

OLS regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours 

worked in the first year of each time window. Standard errors clustered by sector-country in parenthesis. * p<0.1, 

** p<0.05, *** p<0.01. 

 

Table 7 – Baseline estimates 

  (1) (2) (3) (4) (5) 

  
Δ log(hours 

worked) 
Δ Managers Δ Professionals Δ Technicians Δ Manual 

Log of GHG intensity (1995) -0.0385** 0.000752 0.00146 -0.00910** 0.00826**  

 (0.0168) (0.00218) (0.00303) (0.00408) (0.00394)  

Average (t, t-4) energy price -0.0824 -0.00583 0.0402*** 0.0374* -0.0524**  

 (0.0749) (0.0116) (0.0125) (0.0226) (0.0256)  

Average (t, t-4) ETS stringency -0.0310 0.0121* 0.00731 -0.00131 -0.0221**  

 (0.0425) (0.00656) (0.0109) (0.0131) (0.00993)  

Average (t, t-4) EPS  0.0668*** -0.00202 -0.00310 0.0179** -0.0130**  

x Log of GHG intensity (1995) (0.0219) (0.00330) (0.00487) (0.00691) (0.00612)  

R squared 0.522 0.486 0.491 0.378 0.415  

N 840 840 840 840 840 

OLS regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours worked in the first 

year of each time window. Standard errors clustered by sector-country in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. All 

regressions include country-specific time dummies, sector dummies and initial (1995) cluster dummies. 
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Table 8 – Baseline estimates – instrumental variables 

  (1) (2) (3) (4) (5) 

  
Δ log(hours 

worked) 
Δ Managers Δ Professionals Δ Technicians Δ Manual 

Log of GHG intensity (1995) -0.0658*** -0.00159 -0.00217 -0.00777 0.0145*** 

 (0.0236) (0.00231) (0.00292) (0.00477) (0.00554)  

Average (t, t-4) energy price 0.0353 -0.0139 0.0412*** 0.0494** -0.0724*** 

 (0.0916) (0.0123) (0.0132) (0.0233) (0.0278)  

Average (t, t-4) EPS (with ETS) 0.124*** 0.00254 0.00401 0.0162** -0.0267*** 

x Log of GHG intensity (1995) (0.0392) (0.00420) (0.00471) (0.00803) (0.0102)  

R squared 0.508 0.481 0.489 0.377 0.410  

N 840 840 840 840 840 

IV regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours worked in the first 

year of each time window. Standard errors clustered by sector-country in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. All 

regressions include country-specific time dummies, sector dummies and initial (1995) cluster dummies. F test of excluded IV: 

33.35 

 

Table 9 – Role of technology 

  (1) (2) (3) (4) (5) 

  
Δ log(hours 

worked) 
Δ Managers Δ Professionals Δ Technicians Δ Manual 

Distant from climate tech frontier, t-4 (dummy) -0.0307 0.0319* 0.0104 -0.0396 0.0315  

 (0.125) (0.0183) (0.0380) (0.0298) (0.0480)  

Log of GHG intensity (1995) -0.0412** 0.00111 0.00148 -0.0102** 0.00874**  

 (0.0169) (0.00231) (0.00302) (0.00403) (0.00399)  

Log of GHG intensity (1995) x -0.00768 -0.0104 0.00132 0.00700 -0.00729  

Distant from climate tech frontier, t-4 (dummy) (0.0361) (0.00633) (0.00996) (0.0111) (0.0136)  

Average (t, t-4) energy price -0.0916 -0.00665 0.0410*** 0.0354 -0.0519**  

 (0.0743) (0.0116) (0.0123) (0.0225) (0.0257)  

Average (t, t-4) ETS stringency -0.0491 0.0113* 0.00877 -0.00569 -0.0213**  

 (0.0410) (0.00673) (0.0112) (0.0131) (0.00995)  

Average (t, t-4) EPS  0.0823*** -0.00227 -0.00418 0.0224*** -0.0144**  

x Log of GHG intensity (1995) (0.0242) (0.00373) (0.00527) (0.00722) (0.00644)  

Average (t, t-4) EPS 0.164 -0.0456 -0.0258 0.0866* -0.0475  

x Distant from climate tech frontier, t-4 (dummy) (0.247) (0.0307) (0.0565) (0.0480) (0.0667)  

Average (t, t-4) EPS x Log of GHG intensity (1995) -0.0486 0.0142 0.00342 -0.0254 0.0134  

x Distant from climate tech frontier, t-4 (dummy) (0.0687) (0.0101) (0.0148) (0.0172) (0.0197)  

R squared 0.531 0.487 0.493 0.389 0.416  

N 840 840 840 840 840  

OLS regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours worked in the first year of each time 

window. Standard errors clustered by sector-country in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. All regressions include country-specific 

time dummies, sector dummies and initial (1995) cluster dummies. 
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Appendix A - Details on the cluster analysis 

Optimal number of clusters 

The criteria to be used to select the ideal number of clusters are two: i) clusters should be 

distinct one from the other; and ii) individuals within the cluster should be similar. Even 

though there is no conclusive test to identify the optimal number of clusters, there are 

rules of the thumb based on the Pseudo T-squared statistics, the Je(2)/Je(1) statistics and 

the Chalinski-Harabasz pseudo F statistics (Table A1).1 These statistics provide 

indications on how distinct different cluster solutions are. More specifically, Milligan and 

Cooper (1985) suggest to select the number of clusters for which: i) the Pseudo T-squared 

is a local minimum (in our case, the 6-clusters solution); ii) the Je(2)/Je(1) statistics is 

large and a local maximum (6-clusters solution); iii) the Chalinski-Harabasz pseudo F 

statistics is the largest across different options (4-clusters solution if we exclude a priori 

the 3-clusters solution). Overall, despite the failure to identify a favourite solution based 

on the Chalinski-Harabasz pseudo F statistics, the other two tests suggest that the 6-cluster 

solution is the one with the most distinct clusters. 

Table A1 - Stopping rules for hierarchical clustering 

N of 

clusters 
Je(2)/Je(1) 

Pseudo T 

squared 

Calinski-

Harabasz 

pseudo F 

3 0.9885 4.69 355.48 

4 0.8572 47.48 239.75 

5 0.7684 7.53 202.19 

6 0.8448 4.23 163.47 

7 0.8433 74.68 136.86 

8 0.6635 130.87 139.16 

9 0.9428 8.8 152.46 

 

  

                                                 
1 For the purpose of our analysis, we narrow down the range of possible clusters numbers to be between 4 

and 8. 
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Table A2 - Distribution across clusters and: year, sector, country 

  

1 Brown 

Global Low-

tech 

2 Brown 

Medium-tech 

3 Green 

Global High-

tech 

4 Exposed to 

Automation 

5 Black and 

Exposed to 

Multiple 

Shocks 

6 Black High-

tech 

Year 

Chi square test of independence: 48.31 

1995 54 57 27 20 22 30 

1999 44 38 39 32 25 32 

2003 38 27 45 33 33 34 

2007 28 22 55 36 36 33 

Sector (NACE rev 1.1) 

Chi square test of independence: 1760.69 

C - Mining and Quarrying 10 4   37 5 

15-16 - Food, Beverages 

and Tobacco 
 22  32 2  

17-19 - Textiles and 

Textile; Leather and 

Footwear 

34 5 17    

20 - Wood and Products 

of Wood and Cork 
11 32 6 7   

21-22 - Pulp, Paper, 

Paper, Printing and 

Publishing 

8 4  43 1  

23 - Coke, Refined 

Petroleum and Nuclear 

Fuel 

1 1  1 12 41 

24 - Chemicals and 

Chemical Products 
5  2 3 46  

25 - Rubber and Plastics 12 6 22 16   
26 - Other Non-Metallic 

Mineral 
 22   3 31 

27-28 - Basic Metals and 

Fabricated Metal 
8 26 4 3 13 2 

29 - Machinery, Nec 11 4 40  1  

30-33 - Electrical and 

Optical Equipment 
8  48    

34-35 - Transport 

Equipment 
24 1 20 11   

36-37 - Manufacturing, 

Nec; Recycling 
32 12 7 5   

E - Electricity, Gas and 

Water Supply 
 5   1 50 

Country 

Chi square test of independence: 407.37 

Austria 6 8 18 7 11 10 

Belgium 5  23 7 17 8 

Czech Republic 38 15  1 2 4 

Germany 7 15 8 11 7 12 

Denmark 2 1 30 6 7 14 

Spain 8 18 8 13 4 9 

Finland 6 5 13 13 9 14 

France 3 9 12 16 8 12 

Hungary 40 14   2 4 

Ireland 20 10 7 10 8 5 

Italy 4 29 5 5 8 9 

Netherlands 10  18 8 15 9 

Sweden 7 6 13 15 12 7 

United Kingdom 8 14 11 9 6 12 

Total 164 144 166 121 116 129 

The null hypothesis of the Chi square test is that observations are independently distributed across rows and columns. 
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Stability of clusters over time 

To evaluate the robustness of our ‘pooled’ clustering, we here evaluate the stability of 

clusters over time. In Table A3 we show the period-to-period transition matrix (weighted 

by beginning of period hours worked). Overall, 83.49% of observations (that account for 

85.79% of hours worked) remain in the same cluster between two periods. In Table A4 

we consider in detail the actual transitions across different clusters and report measures 

of workforce composition for observations with different transition patterns. Overall, we 

do not observe clear patterns in these dimensions for observations that change cluster. 

Table A3 – Period-to-period transition matrix 

  

1 Brown 

Global Low-

tech 

2 Brown 

Medium-tech 

3 Green 

Global High-

tech 

4 Exposed to 

Automation 

5 Black and 

Exposed to 

Multiple 

Shocks 

6 Black High-

tech 

1 Brown Global Low-tech 76.47 2.21 15.44 2.94 2.94 0 

2 Brown Medium-tech 4.1 67.21 2.46 17.21 2.46 6.56 

3 Green Global High-tech 0.9 0 97.3 0.9 0.9 0 

4 Exposed to Automation 0 1.18 5.88 87.06 5.88 0 

5 Black and Exposed to Multiple Shocks 0 0 2.5 1.25 90 6.25 

6 Black High-tech 0 1.04 0 0 9.38 89.58 

Total 17.46 13.81 22.06 16.03 14.92 15.71 

 

Table A4 – Cluster-to-cluster transition – occupational dimension 

Period-to-period transition N 
Empl share  

(t-1) 

Δ log(hours 

worked) 
Δ Managers 

Δ 

Professionals 
Δ Technicians Δ Manual 

No change 526 0.8579 -0.0488 0.0036 0.0081 0.0096 -0.0169 

1 => 3 21 0.0228 -0.1419 0.0085 0.0082 0.0267 -0.0465 

2 => 4 21 0.0528 -0.0054 0.0043 0.0038 0.0112 -0.0115 

6 => 5 9 0.0024 -0.0550 -0.0192 0.0115 0.0083 0.0142 

2 => 6 8 0.0089 -0.0317 0.0082 0.0150 0.0184 -0.0225 

2 => 1 5 0.0080 0.0947 0.0074 0.0002 -0.0044 -0.0039 

4 => 3 5 0.0096 -0.0373 0.0090 0.0226 0.0015 -0.0420 

4 => 5 5 0.0045 -0.0124 0.0147 0.0259 0.0149 -0.0447 

5 => 6 5 0.0007 -0.0375 0.0071 0.0055 0.0639 -0.0451 

Other patterns (12 combinations) 25 0.0325 -0.0512 -0.0015 0.0155 0.0149 -0.0145 

Total 630 1 -0.0471 0.0037 0.0083 0.0102 -0.0175 
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Appendix B – Additional information and results 

Table B1 – Separate assessment of different policy measures 

EPS 

 Average Min Q1 Median Q3 Max 

1995 0.233 0.000 0.090 0.284 0.400 0.452 

1999 0.289 0.000 0.090 0.323 0.452 0.581 

2003 0.454 0.206 0.323 0.445 0.613 0.626 

2007 0.614 0.348 0.568 0.645 0.671 0.735 

2011 0.756 0.510 0.710 0.729 0.832 1.000 

ETS stringency 

 Average Min Q1 Median Q3 Max 

1995 0 0 0 0 0 0 

1999 0 0 0 0 0 0 

2003 0 0 0 0 0 0 

2007 0.334 0.000 0.037 0.202 0.605 1.000 

2011 0.412 0.000 0.043 0.341 0.825 1.000 

Energy prices 

 Average Min Q1 Median Q3 Max 

1995 0.420 0.132 0.326 0.388 0.509 0.757 

1999 0.317 0.092 0.253 0.305 0.388 0.675 

2003 0.369 0.100 0.290 0.360 0.456 0.760 

2007 0.615 0.157 0.496 0.646 0.748 1.137 

2011 0.749 0.155 0.633 0.761 0.895 1.289 

 

Table B2 – Separate assessment of different policy measures 

  (1) (2) (3) (4) (5) 

  
Δ log(hours 

worked) 
Δ Managers Δ Professionals Δ Technicians Δ Manual 

EPS 

Log of GHG intensity (1995) -0.0125 0.00426* -0.00206 -0.00426 0.00591 

 (0.0154) (0.00225) (0.00271) (0.00395) (0.00428) 

Average (t, t-4) EPS  0.0203 -0.00791** 0.00229 0.00758 -0.00761 

x Log of GHG intensity (1995) (0.0190) (0.00321) (0.00372) (0.00510) (0.00566) 

R squared 0.361 0.161 0.298 0.146 0.242 

N 840 840 840 840 840 

Energy prices 

Log of energy intensity (1995) -0.0193 -0.00132 0.000443 -0.000603 0.00577 

 (0.0175) (0.00329) (0.00360) (0.00389) (0.00532) 

Average (t, t-4) energy price -0.115 -0.000965 0.0470* 0.00896 -0.0220 

 (0.128) (0.0248) (0.0251) (0.0298) (0.0383) 

Average (t, t-4) energy price 0.0423 0.00222 0.000477 0.00788 -0.0136 

x Log of energy intensity (1995) (0.0279) (0.00537) (0.00535) (0.00739) (0.00909) 

R squared 0.363 0.148 0.308 0.146 0.249 

N 840 840 840 840 840 

ETS 

Log of GHG intensity (1995) -0.0120 0.000172 -0.000229 -0.00105 0.00212 

 (0.0126) (0.00126) (0.00160) (0.00234) (0.00252) 

Average (t, t-4) ETS stringency -0.269** 0.0281* 0.0105 -0.00668 -0.0398 

 (0.115) (0.0162) (0.0291) (0.0387) (0.0293) 

Average (t, t-4) ETS stringency 0.0833*** -0.00380 -0.00426 0.00537 0.00238 

x Log of GHG intensity (1995) (0.0277) (0.00415) (0.00620) (0.00831) (0.00656) 

R squared 0.381 0.158 0.299 0.145 0.251 

N 840 840 840 840 840 

OLS regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours worked in the first 

year of each time window. Standard errors clustered by sector-country in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. All 

regressions include country-specific time dummies, sector dummies and initial (1995) cluster dummies. 
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Table B3 – Additional dependent variables (OLS) 

  (1) (2) (3) (4) (5) 

  Δ log(Output/L) Δ log(VA/L) Δ High-skilled 
Δ Medium-

skilled 
Δ Low-skilled 

Log of GHG intensity (1995) -0.00617 -0.0281 -0.00264 0.0113*** -0.00871*** 

 (0.0183) (0.0203) (0.00241) (0.00289) (0.00281)  

Average (t, t-4) energy price 0.0395 0.136 0.0186 -0.0158 -0.00280  

 (0.137) (0.151) (0.0143) (0.0170) (0.0168)  

Average (t, t-4) ETS stringency 0.0708 0.0558 0.0154* 0.00977 -0.0252**  

 (0.0765) (0.0720) (0.00873) (0.00682) (0.00987)  

Average (t, t-4) EPS  0.0192 0.00154 -0.00228 -0.0150*** 0.0173*** 

x Log of GHG intensity (1995) (0.0282) (0.0239) (0.00326) (0.00364) (0.00381)  

R squared 0.187 0.186 0.282 0.263 0.294  

N 840 840 840 840 840 

OLS regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours worked in the first 

year of each time window. Standard errors clustered by sector-country in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. All 

regressions include country-specific time dummies, sector dummies and initial (1995) cluster dummies. 

 

Table B4 – Additional dependent variables (IV) 

  (1) (2) (3) (4) (5) 

  Δ log(Output/L) Δ log(VA/L) Δ High-skilled 
Δ Medium-

skilled 
Δ Low-skilled 

Log of GHG intensity (1995) 0.0145 -0.00772 -0.00810*** 0.00684* 0.00126 

 (0.0365) (0.0386) (0.00312) (0.00385) (0.00351) 

Average (t, t-4) energy price -0.252 -0.0896 0.00325 0.0103 -0.0135 

 (0.172) (0.175) (0.0160) (0.0226) (0.0223) 

Average (t, t-4) EPS (with ETS) -0.0275 -0.0432 0.00809 -0.00557 -0.00252 

x Log of GHG intensity (1995) (0.0652) (0.0668) (0.00535) (0.00611) (0.00619) 

R squared 0.254 0.236 0.458 0.485 0.522 

N 840 840 840 840 840 

IV regressions on stacked differences (1995-1999; 1999-2003; 2003-2007; 2007-2011) weighted by hours worked in the first 

year of each time window. Standard errors clustered by sector-country in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. All 

regressions include country-specific time dummies, sector dummies and initial (1995) cluster dummies. F test of excluded IV: 

33.35 
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