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Majority voting aggregates individual preference profiles into a binary relation
on the set of alternatives. Condorcet cycles are cycles of the aggregated binary
relation. We show that the relative volume of the subset of the (n !&1)-simplex
that represents profile distributions such that the aggregated preferences display
Condorcet cycles is a decreasing function of the super majority level { bounded by
the expression

n ! \ 1&{
0.4714+

n !

.

This expression shows that Condorcet cycles become rare events for super majority
rules larger than 530. Journal of Economic Literature Classification Number: D71.
� 1997 Academic Press

1. INTRODUCTION

It is known since Condorcet that the aggregation of individual preference
preorderings by the simple majority rule may yield cycles. Condorcet's
original example involves three alternatives a, b, and c and three agents
with the rankings aoboc, bocoa, and coaob. Pairwise comparisons
of these alternatives under majority rule show that there is always a
majority to prefer a to b, b to c, and c to a. Such a cycle occurs not only
for the simple majority rule but, more generally, for any super majority
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rule { smaller than 2�3. Condorcet's observation can easily be extended to
n alternatives by considering the circular permutations of an arbitrary
ordering of the n alternatives, which shows that cycles cannot be avoided
by super majority rules smaller than 1&1�n: see [9]. Since super majority
rules are unable by themselves to prevent the occurrence of cycles, an alter-
native line of research that dates back to Arrow in [1] has been to weaken
the unanimity condition. A continuity argument suggests that individual
preferences that are not too far apart within the spectrum of all possible
individual preference profiles must aggregate by majority voting into
binary relations that display no cycles. Results by Black, Caplin and
Nalebuff, Grandmont, Kramer, Plott, Tullock, in [3, 4, 8, 13, 15, 19] give
sufficient conditions on individual preferences (e.g., the famous single
peakedness condition and its multi-dimensional extensions) to guarantee
that aggregation by simple or super majority voting does not lead to cycles.
In contrast with these sufficient conditions of increasing levels of generality,
other results show that the probability of observing cycles is close to one
for many preference profiles and alternatives. Such a viewpoint is stressed
in particular by Arrow and Raynaud in [2] following previous work by
DeMeyer, Fishburn, Gehrlein, Guilbaud, Kelly, Maskin, May, and Plott in
[5�7, 10, 11, 14]. Note, however, that almost all the latter results are
proved under the assumption that ``all alternatives are intrinsically equally
favored'' [14, loc.cit.], a significant restriction as we will see in a moment.

The research reported in this paper first defines a model where the two
different lines of study that we have briefly described��the first approach
placing restrictions on preferences; the second one assuming that all
preferences are equally probable��can fit together. Our own research fits in
between these two approaches by considering the distribution of individual
preferences as a parameter of the aggregation problem and by studying the
relationships between the properties of the aggregated preferences (defined
by simple majority and super majority rules) and the distribution of
individual preferences.1 The second line is equivalent to imposing a fixed
distribution of preference profiles (with a variable number of alternatives)
while the first amounts to finding regions of the set of distribution profiles
for which there are no Condorcet cycles.

An important feature of the parametric approach is to enable one to
characterize sets of parameters for which a given property is satisfied. In our
case, this becomes the characterization, i.e., the description, of preference
distributions for which a given super majority rule yields Condorcet cycles.
Unfortunately, such description becomes practically impossible as soon as
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1 When the final version of this paper was almost completed, we became aware that the
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the number of alternatives becomes larger than 5. A weaker form of the
characterization problem is therefore to study the (relative) volume or
Lebesgue measure of the set of parameters that satisfy a given property. The
volume is a poor substitute for a complete geometrical characterization of
a set. Nevertheless, the information provided by the volume becomes
almost sufficient in itself when the volume gets close to zero. We therefore
estimate in this paper an upper bound Y(n, {) of the relative volume V(n, {)
of the subset of the (n !&1)-simplex that consists of distributions for which
the aggregated preferences for the {-super majority rule display Condorcet
cycles. We find an expression of the form

Y(n, {)=n ! \ 1&{
0.4714+

n !

.

For {=540 and n�7, for example, this implies Y(n, {)<10&52, an
extremely small number indeed. This upper bound is certainly not the best
one, but we did not place much effort in refining it given its remarkably
low value when either the number of alternatives tends to infinity or the
super majority level defined by { increases above the threshold value of
530. Within our setup, this makes the Condorcet cycles a theoretical
curiosity without any practical bearing for super majority rules that exceed
the threshold value of 530.

The paper is organized as follows. The main assumptions and definitions
are contained in section two, where we also introduce some tools of com-
binatorics. In section three, we define and state the main properties of the
upper bound Y(n, {) of the volume V(n, {) and show how remarkably small
this bound (and the volume henceforth) is as a function of the number of
alternatives n and of the level { of the super majority. The mathematical
proof of the central theorem is given in the Appendix.

2. DEFINITIONS, ASSUMPTIONS, AND NOTATION

Consider the set An=[1, ..., n] of n elements (identified with the n first
natural integers) that represent n alternatives. Any permutation _ of the set
An defines a complete ordering of these alternatives and can be identified
with an individual preference relation. We therefore denote by Sn the set
of individual preference relations. The preferences of a collection of m
agents are then defined by a map from the set [1, 2, ..., m] into Sn . The set
of such maps is finite, and therefore discrete. This makes it a poor
candidate as a set of parameters because infinitesimal variations of the
parameters are not possible. A better parameter space is obtained by con-
sidering the distribution of preferences among agents. Let us associate with

239CONDORCET CYCLES
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every individual preference ordering the number of agents whose preferen-
ces are defined by that ordering. Since any majority rule is based on the
relative proportions of voters, only the ratio of agents having a given
ordering to the total number of agents matters. The distribution of
individual preference ordering can then be represented by an element of the
(n !&1)-simplex. Conversely, any element of the (n !&1)-simplex can be
interpreted as representing a distribution of individual preferences provided
the number of agents is allowed to tend to infinity. This makes the (n !&1)-
simplex a continuum and, therefore, a parameter space suitable for the
application of Calculus. Restrictive assumptions on individual preferences
then translate into assumptions on the location of the distribution profile
in the (n !&1)-simplex. For example, assuming an infinite number of
agents, the commonly used assumption that ``all alternatives are intrinsi-
cally equally favored,'' also known in the literature as ``impartial culture,''
amounts to considering distribution profiles located at the center of the
(n !&1)-simplex. Similarly, the assumption that all preferences are identical
translates into distribution profiles located at one of the n! vertices of the
(n !&1)-simplex.

2.1. Miscellanies about Preference Profiles, Binary Relations,
and Permutations

Cycles of Alternatives for an Arbitrary Binary Relation

Let us consider an arbitrary binary relation o on the set of alternatives
An . A cycle for the binary relation o is an ordered collection of elements
a=(a1 , a2 , ..., aq) that satisfy

a1 oa2 o } } } oaqoa1 .

The cycle a is then said to have length q. The length of a cycle is necessarily
�3. Note that the image by a circular permutation of the ordered set a
represents the same cycle for the binary relation o. Therefore, a cycle of
o can be identified with an equivalence class of ordered sets, two ordered
sets being equivalent if one is obtained from the other by a circular per-
mutation, i.e., a permutation without subcycles.

The following lemma gives an upper bound of the number of cycles for
an arbitrary binary relation on the set An of n alternatives.

Lemma 1. The total number of cycles for an arbitrary binary relation on
the set An is �n !.

Proof. The number of ordered q-tuples of the set An is equal to the
product of ( n

q), the number of ways to choose q elements among n elements,

240 BALASKO AND CRE� S
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and of the number q ! of permutations of the q elements. Since each equiv-
alence class of cycles contains exactly q elements, the number of classes
corresponding to the cycles of length q is therefore equal to

The number of different cycles of the set An is therefore equal to

(q&1)! \n
q+=

n !
q(n&q) !

.

:
q=n

q=3

n !
q(n&q) !

=n ! :
q=n

q=3

1
q(n&q) !

(1)

=n ! \ 1
3(n&3)!

+ } } } +
1

(n&2) 2!
+

1
(n&1) 1!

+
1
n+ (2)

<n ! \ 1
n&1

+ } } } +
1

n&1+=n !
n&2
n&1

<n !. (3)

(n&2) times

2.2. Readings and Eulerian Numbers

In this subsection, we review some properties of permutations that will
be needed in the next section. For further details, we refer the reader to
[12, 16].

Readings

A permutation is said to require k readings if we must scan it k times
from left to right in order to read off its elements in increasing order. For
example, the permutation

(491825367)

requires four readings that are obtained as follows: the first reading consists
of the elements 1, 2, and 3; the second reading consists of 4, 5, 6, and 7;
the third and fourth readings consist of 8 and 9, respectively.

Eulerian Numbers

By definition, the number of permutations of P elements featuring r
readings is the Eulerian number ( p

r) . By convention, one defines ( 0
0) =1

and ( 0
r) =0 for r{0.

The first values of the Eulerian numbers are shown in the following
table:

241CONDORCET CYCLES
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p, r 1 2 3 4 5 6 7

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 20416 1191 120 1

The Eulerian numbers satisfy the following recurrence relation:

�p
r�=r �p&1

r �+(p+1&r) �p&1
r&1� .

The Eulerian numbers satisfy the following almost obvious properties:

�p
0�=�p

1�+ } } } +�p
p�=p ! (4)

�p
r�=� p

p+1&r� , p�1. (5)

2.3. Preference, majority voting, and a partition of the Sn

The Setup

Let _ be a permutation of the finite set of alternatives An=[1, ..., n], a
permutation that represents an individual preference profile o_ , by which
it is understood that we have the following ordering of alternatives:

_(1)o_ _(2)o_ } } } o_ _(n).

In order to represent in a mathematically convenient way the outcome of
aggregate pairwise comparisons of alternatives, we introduce the set

P_=[(i, j) # An_An | io_ j, i{ j]

and we let /_ denote its characteristic function, i.e.,

/_(i, j)={1
0

for i{ j and io_ j
otherwise.

The following simple lemma will turn out to be useful later.

242 BALASKO AND CRE� S
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Lemma 2.

/_(i, j)=/id (_&1(i), _&1( j)).

Proof. The statement of the lemma follows from io_ j equivalent to
_&1(i)<_&1( j), itself equivalent to _&1(i)oid _&1( j). K

Let m_ denote the number of agents whose preference profile is _,
m=�_ # Sn

m_ the total number of people, *_=m_�m the relative number
of people whose preferences profile is _ # Sn . The vector *=(*_)_ # Sn

in the
(n !&1)-simplex then represents the distribution of preference profiles.

When the alternatives i and j are compared, the total number of people
that prefer i to j is equal to

:
_ # Sn

m_/_(i, j)

and their relative number is therefore equal to

:
_ # Sn

*_/_(i, j).

Let us introduce {, the level of the super majority rule. The following
lemma is obvious:

Lemma 3. The alternative i is preferred to the alternative j under the
super majority rule { if and only if

:
_ # Sn

*_/_(i, j)>{. (6)

This condition can readily be applied to yield a necessary condition for
the existence of cycles. More specifically, let a=(a1 , a2 , ..., aq) be a cycle of
length q for the binary relation defined on the set An by super majority vot-
ing. Define aq+1=a1 . In the remaining part of this section, we are going
to partition the set of individual preference profiles depending on how
``close'' they are to the cycle a. This will lead us to compute the number of
elements of related sets. We will eventually show that the numbers of
elements of the most important sets will not depend on the actual cycle a
but only on the length q of that cycle; these numbers will also be related
to the Eulerian numbers that have already been introduced. With a fixed
cycle of alternatives a, we have:

243CONDORCET CYCLES
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Lemma 4. The inequality

:
_ # Sn

*_ \ :
q

i=1

/_(ai+1 , ai)+<q(1&{)

is satisfied for the cycle a=(a1 , a2 , ..., aq).

Proof. The addition of the q inequalities implied by Lemma 3, namely

:
_ # Sn

*_/_(ai , ai+1)>{

for i=1, ..., q, yields the inequality

:
_ # Sn

*_ \ :
q

i=1

/_(ai , ai+1)+>q{.

We also have the equality

q= :
_ # Sn

*_ \ :
q

i=1

/_(ai , ai+1)+/_(ai+1 , ai)

=1

+

that follows readily from the equality to 1 of the sum /_(ai , ai+1)+
/_(ai+1 , ai). Subtracting from this equality the above inequality yields the
inequality of the lemma. K

It follows from Lemma 4 that it will be helpful to have the following
integer valued function associated with every ordered subset a of An :

X_(a)= :
q

i=1

/_(ai+1 , ai)

with the convention aq+1=a1 . Though the function X_(a) is defined for
any subset a of An , its definition is related to the interpretation of these
subsets as cycles.

Lemma 5. The expression X_(a) is an integer that satisfies the inequalities

1�X_(a)�q&1.

Proof. The values 0 and q are obviously excluded because the permuta-
tion _ defines an ordering of An , which is a transitive binary relation. K

244 BALASKO AND CRE� S
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Lemma 6. Let s be a permutation of the set of alternatives An . We then
have

X_(a)=Xs b _(s(a)).

Proof. By definition, we have

Xs b _(s(a))= :
q

i=1

/s b _(s(ai+1), s(ai))

= :
q

i=1

/id(_&1 b s&1 b s(ai+1), _&1 b s&1 b s(ai))

= :
q

i=1

/id(_&1(ai+1), _&1(ai))

=X_(a)

as follows from two successive applications of Lemma 2. K

Partition of Sn by the Function X_(a)

Let us partition the set of permutations or, in our context, of individual
preference profiles Sn into the subsets Bn, r(a) defined for r=1, ..., q&1 and
q�n by

Bn, r(a)=[ _ # Sn | X_(a)=r].

A first step is to compute the number of elements bn, r(a) of these sets
Bn, r(a). We observe that this number does not depend on the choice of a
specific cycle a but only on its length q as follows from:

Lemma 7. Let s be a permutation of the set An . Then we have

bn, r(a)=bn, r(s(a)).

Proof. Follows readily from the definition of the set Bn, r(a) combined
with Lemma 6. K

This result enables us to assume from now on that the cycle a is the set
Aq=[1, 2, ..., q] of the first q alternatives. We therefore denote by bn, r(q)
the number of elements of the set Bn, r(a), number that we now know does
not depend on the actual cycle but only on its length.

The computation of bn, r(q) proceeds by iteration on n.

245CONDORCET CYCLES
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Lemma 8. Let r, n, and q be fixed and satisfy 1�r�q&1; we then have

bn+1, r(q)=(n+1) bn, r(q).

Proof. Consider a preference profile _ in Bn, r(a). From the definition,
this profile has r pairwise comparisons that are identical with the q
pairwise comparisons that define the cycle a. Let us add one more alter-
native denoted by (n+1); this addition has no effect on the cycle a. On the
other hand, the preference profile _ defines (n+1) new preference profiles
on the (n+1) alternatives because there exist (n+1) places for the new
alternative. All these preference profiles belong to the set Bn+1, r(a), which
implies that the number of elements of Bn+1, r(a) is equal to (n+1) times
the number of elements of Bn, r(a). K

The following corollary is then straightforward.

Corollary 9. For all n, k, and q such that 3�q�n and 0�k�n&q,
we have

bn, r(q)=
n !

(n&k) !
bn&k, r(q),

and

bn, r(q)=
n !
q !

bq, r(q).

The only numbers to compute are therefore the coefficients (br, q(q))1�r�q&1.
The following proposition relates them to the Eulerian numbers. First,

we need a technical result where _ is a permutation of Aq

Lemma 10. The number of readings of the permutation _ is equal to

1+ :
q&1

i=1

/_(i+1, i).

Proof. The proof proceeds by induction on the number q of elements of
the permutation.

For q=2, there are only two possible permutations _, either (12) or
(21), and the number of readings has to be compared with

1+/_(2, 1).

The permutation (12) requires only one reading while /_(2, 1) is equal to
0. The permutation (21) requires two readings but then /_(2, 1) is equal to 1.

246 BALASKO AND CRE� S
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Therefore, in both cases, the expression giving the number of readings is
correct.

Assume now that the formula has been established up to q&1. Let _
denote an arbitrary permutation of the q elements 1, 2, ..., q. Let _q̂ be the
permutation of the first q&1 elements 1, 2, ..., q&1 obtained by deleting
the element q from the permutation _. Let us compare the number of
readings of _q̂ with the number of readings of _. The scans for these two
permutations that involve the numbers up to q&2 are identical. The scan
of _q̂ that contains q&1 can be extended to read q in _ if and only if
q&1o_ q. On the other hand, for qo_ q&1, an additional scan (that con-
sists only of the element q) is necessary to read the permutation _. The
induction assumption is that the number of readings of the permutation _q̂

is equal to

1+ :
q&2

i=1

/_q̂(i+1, i).

It follows from the definition of _q̂ that /_q̂(i+1, i)=/_(i+1, i) for
i�q&2. The additional term /_(q, q&1) is equal to 0 or 1 depending on
whether we have q&1o_ q or qo_ q&1. This therefore shows that the
number of readings of the permutation _ having q elements is indeed given
by the formula of the lemma. K

Proposition 11. For all q and r, 1�r�q&1, we have

bq, r(q)=q �q&1
r � .

Proof. First, we note that, if _ belongs to the set Bq, r(Aq), then the q
permutations obtained by composing _ with the q circular permutation of
Aq also belong to Bq, r(Aq). Therefore, we can assume that we have
_(q)=q. The second step consists of computing X_(Aq). By definition, this
number is equal to

X_(Aq)= :
q

i=1

/_(i+1, i)

with the convention that /_(q+1, q) is equal to /_(1, q)=1. One notices
that /_(q, q&1) is equal to 0. This implies that

X_(Aq)=1+ :
q&2

i=1

/_(i+1, i),

itself equal to the number of readings of the permutation _q̂ by
Lemma 10. K
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2.4. From the (n !&1)-Simplex to the (q&1)-Simplex.

In this section, the cycle a is again arbitrary with length q. Let us intro-
duce the vector +(a)=(+1(a), ..., +q&1(a)), where

+r(a)= :
_ # Bn, r(a)

*_

will to play an important role in the forthcoming developments. Note also
that the following equality is obviously satisfied,

:
q&1

r=1

+r(a)=1,

which that implies that the vector +(a) actually belongs to the (q&2)-
simplex. We readily use the vector +(a) to reformulate Lemma 4 in a form
that will be easier to exploit:

Lemma 12. The inequality

:
q&1

r=1

r+r(a)<q(1&{)

is satisfied for the (aggregated) cycle a=(a1 , a2 , ..., aq).

Proof. The sum

:
_ # Sn

*_X_(a)

can be rewritten as

:
q&1

r=1
\ :

_ # Bn, r(a)

*_X_(a)+
and is therefore equal to

:
q&1

r=1
\ :

_ # Bn, r(a)

*_+ r= :
q&1

r=1

r+r(a). K

This necessary condition enables us to give a necessary condition for the
existence of cycles of length q for a given super majority rule {. Compare
with [9].

Lemma 13. The super majority rule {�1&1�q is necessary and suf-
ficient to exclude cycles of length equal to q. It is sufficient to exclude cycles
of length �q.

248 BALASKO AND CRE� S
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Proof. The condition is obviously necessary: it suffices to follow the
lines of Condorcet's example. Consider the collection of q agents having
respectively the q preference profiles (ai , ai+1 , ..., aq , a1 , a2 , ..., ai&1 , _~ ) for
i=1, ..., q where _~ is a fixed permutation of the complement
An"[a1 , a2 , ..., aq]. Then the set (a1 , a2 , ..., aq) is a cycle for {�1&1�q.

It follows from Lemma 12 that, if a is a cycle, then the following
inequalities are satisfied,

1= :
q&1

r=1

+r(a)� :
q&1

r=1

r+r(a)<q(1&{)

which implies the inequality 1<q(1&{) equivalent to {<1&1�q. There-
fore, having {�1&1�q is incompatible with the existence of a cycle of
length q. K

3. THE COMPUTATION OF THE UPPER BOUND Y(n, {)

Working in the (q&1)-simplex by way of the map * � + greatly sim-
plifies the analysis of the geometry of the sets V(n, {) for which cycles are
observed for super majority rules. The proof of Proposition 13 has already
exploited the dimension reduction brought by that map. The computation
of an upper bound of the volume V(n, {) makes crucial use of the smaller
dimension given by the map.

3.1. Volume of the Set

4N, =={(*i)1�i�N # RN
+ } :

i=N

i=1

*i=== .

We first compute the volume of the set

4$N, =={(*i)1�i�N&1 # R+
N&1 } :

i=N&1

i=1

*i<== ,

which is the projection of 4N, = on the space defined by the (N&1) first
coordinates along the direction of *N .

The volume is equal to the multiple integral

|
=

0
d*1 |

=&*1

0
d*2 } } } |

=&*1&*2& } } } &*N&2

0
d*N&1 ,
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and is therefore equal to

V(4$N, =)=
=(N&1)

(N&1)!
.

From now on, bn, r stands for bn, r(a), where the cycle a is fixed of length q.

Lemma 14. The volume of the set defined in Lemma 12 projected in the
hyperplane *_=0 (_ # Bn, 1(a) fixed) is given by the multiple integral

|
:q&1

0

+bn, q&1&1
q&1

(bn, q&1&1)!
d+q&1 |

:q&2

0
} } } |

:1

0

+bn, 1&2
1

(bn, 1&2)!
d+1 ,

where

:r=q(1&{)& :
j=q&1

j=r+1

j+j ,

itself equal to

\1
2+

bn, 2

\1
3+

bn, 3

} } } \ 1
q&2+

bn, q&2

\ 1
q&1+

bn, q&1 (q(1&{))n !&1

(n !&1) !
.

Proof. The first assertion follows from a computation by successive
integrations of the volume of the set 4$N, = defined by the inequality

:
q&1

r=1

4r<=

using a partition of the coordinates into q components made of the subsets
Br with 1�r�q&1 and *Br=br , and the auxiliary integration variables
4r=�h # Br *h. The volume of the projection on (br&1) coordinates of the
set defined by the equation �h # Br *h=4r is equal to 4br&1

r �(br&1)!.
Therefore, the volume of 4$N, = is given by the multiple integral

|
=

0

4bq&1&1
q&1

(bq&1&1)!
d4q&1 |

=&4q&1

0

4bq&2&1
q&2

(bq&2&1)!

_d4q&2 } } } |
=&4q&1& } } } &42

0

4b1&2
1

(b1&2)!
d41 . K
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Proposition 15. An upper bound of the relative volume of the set of
parameters for which the cycle a of length q exists is given by
(V(q&1)(1&{))n !, where

V(q&1)=
q

2( q&1
2 )�(q&1)!

3( q&1
3 )�(q&1)!

} } } (q&1)(
q&1
q&1)�(q&1)!

Proof. The expression of the volume given in Lemma 14 can be rewritten
as

1
(n !&1) !

1
q(1&{) _

q(1&{)
1bn, 1�n !2bn, 2�n! } } } (q&1) bn, q&1�n !&

n !

.

The volume of the projection of the (n!&1)-simplex on the hyperplane
*_=0 is equal to 1�(n !&1)!. Recall from Proposition 11 combined with
Corollary 9 that we have

bn, r

n !
=
�q&1

r �
(q&1)!

.

(These numbers are known in the literature as the normalized Eulerian
numbers.) Combined with the inequality q(1&{)�1, this yields an upper
bound for the relative volume. K

The sequence V(q) plays a crucial role in determining the bound we are
looking for. Its first values are

V(2)=2.12132 . . .

V(3)=2.09823 . . .

V(4)=2.07601 . . .

V(5)=2.06177 . . .

V(6)=2.05207 . . .

V(7)=2.04502 . . . .

Numerical computations seem to suggest that this sequence is decreasing,
which we have not been able to prove. This property of the sequence is
similar to a property of monotonicity of the convergence on the interval
[0, 1�2) of the distribution function of the mean value of uniformly dis-
tributed random variables defined on [0, 1]; for details, see the Appendix.
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The latter property2 is not satisfied in general; direct computations suggest
that the property is for uniformly distributed random variables.

Nevertheless, we do not need these strong properties for establishing our
upper bound. It suffices that we show that V(2) bounds all the other
elements of the sequence V(q). The following property regarding the
sequence V(q) is all that we need:

Theorem 16. The sequence V(q) tends toward 2 and all its elements are
smaller than V(2) for q�2, with

V(2)=
3

21�2=
1

0.4714 . . .
. K

Proof. See the Appendix.

Remark. We also show in the Appendix that our proof would be
significantly simplified had we had a proof of the monotone convergence
(over the interval [0, 1�2) of the distribution function of the mean value of
uniformly distributed random variables).

From the theorem and from Lemma 1, we get the following upper bound
Y(n, {) of the relative measure of V(n, {):

Theorem 17.

Y(n, {)=n ! \ 1&{
0.4714+

n !

.

Proof. Obvious from the previous developments. K

4. CONCLUDING COMMENTS

This paper can be viewed as another illustration of the power of the
parametric approach, this time within the setup of social choice theory.
A key ingredient in the success of the parametric approach in the current
setup is the identification of individual preference orderings with permuta-
tions, an identification that enables us to relate the existence of Condorcet
cycles to combinatorial properties of permutations��through the Eulerian
numbers��not to mention the far-reaching probabilistic interpretation of
these Eulerian numbers through the uniform distribution.
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2 It is well known by the central limit theorem that the distribution function converges to
the function equal to 0 on the interval [0, 1�2); it is the monotone convergence that is at stake
here.
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The main conclusion of this paper is that the relative size of the set of
parameters for which a Condorcet cycle occurs is incredibly small under
the suitable circumstances. We prove this result by computing an upper
bound that is itself very small so that, in order to make our point, we do
not have to and, therefore, we do not try to find the least upper bound of
this volume. Our results can easily be improved to yield better bounds.
Such bounds will actually be necessary if one wants to compare the impor-
tance of acyclicity (the lack of Condorcet cycles) with the importance of
incompleteness for aggregated preferences obtained through super majority
rules, a point raised to us by Karl Shell. A referee contributed a bound that
can be used in dealing with the comparison problem. The referee's results
are to be published in this Journal.

APPENDIX. THE PROOFS

Proof of Theorem 16. Define

A(q)=log V(q)=log(q+1)& :
r=q

r=1

br(q) log r,

where

br(q)=
�q

r�
q !

.

The first assertion of the theorem will be proved if we can show that the
sequence A(q) tends toward log 2.

We first rewrite A(q) using

:
r=q

r=1

br(q)=1

and obtain

A(q)=\ :
r=q

r=1

br(q)+ log(q+1)& :
r=q

r=1

br(q) log r;

hence,

A(q)=& :
r=q

r=1

br(q) log \ r
q+1+ . (7)
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The proof will go through the computation of an upper and a lower bound
of &A(q). We start with an upper bound.

Proposition 18. For all q�2,

&A(q)�&log 2.

Proof. Given symmetry:

br(q)=bq+1&r(q),

if q is even,

&A(q)= :
r=q�2

r=1

br(q) _log \ r
q+1++log \1&

r
q+1+& ,

and if q is odd,

&A(q)=b(q+1)�2 log \1
2++ :

r=(q&1)�2

r=1

br(q) _log \ r
q+1++log \ r

q+1+& .

But in each case, the convexity of the logarithm implies that

log \ r
q+1++log \1&

r
q+1+�2 log \1

2+ .

One concludes by observing that �r=q
r=1 br(q)=1. K

Let Yq be the sum of q independent uniform random variables on [0, 1]
and let Fq be the distribution function of Yq . One knows from [18] that

Fq(x)=
1
q !

:
j=[x]

j=0

(&1) j \q
j+ (x& j)q,

where [x] is the greatest integer �x. One also knows that, for any integer
r such that 1�r�q,

Fq(r)&Fq(r&1)=
1
q! �

q
r�=br(q).

Define Gq as the distribution function of the random variable Yq �q; we
then have the following lower bound:
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Proposition 19. For all q�2,

&A(q)�&
2
q

&|
1

0

Gq(t)
t

dt.

Proof. Given Eq. (7), &A(q) is the mathematical expectation of the
random variable

log \[Yq]+1
q+1 + .

One has

[Yq]+1
q+1

�
Yq

q+1
=\1&

1
q+1+

Yq

q
.

This implies the inequality

log \[Yq]+1
q+1 +�log \1&

1
q+1+&log \Yq

q + .

This yields for the expected value the inequality

&A(q)�log \1&
1

q+1+&|
1

0
log t dGq(t).

Using integration by parts, we get

|
1

0
log t dGq(t)=[log tGq(t)]1

0&|
1

0

Gq(t)
t

dt,

and one checks readily that

[log tGq(t)]1
0

is equal to 0. This readily implies the inequality

&A(q)�log \1&
1

q+1+&|
1

0

Gq(t)
t

dt.

But, for q�2, we have

log \1&
1

q+1+�&
2

q+1
�&

2
q

,

hence the proposition. K
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A sufficient condition for Theorem 16 to hold true would be that, for all
fixed t # [0, 1�2), the sequence (Gq(t))q�2 is decreasing (a symmetry argu-
ment then implies that the sequence is increasing for t # (1�2, 1].) We
conjecture that this property is true; it would imply that the sequence
(&2�q&�1

0 Gq(t)�t dt)q�2 is increasing and tends toward log 2. Numerical
computations yield the inequality &2�q&�1

0 (Gq(t)�t) dt� &A(2) for
q�20, and &A(q)�&A(2) for q�20.

Attempting to prove this conjecture has led us into challenging mathe-
matical problems that we have not been able to solve. We therefore have
had to use an indirect route to prove Theorem 16. We have proceeded
using a sequence of functions ,q with the property that Gq(t)�,q(t) on
[0, 1�2) for all q and (&�1

0 (,q(t)�t) dt)q�2 is increasing and tends toward
log 2.

Consider the integers q�100, and define :(q)=q�2&- q and
x(q)=q�2&3 - q�2. Define the functions 81

q and 82
q on [0, q�2] by

81
q(x)=

1
2 \

x
:(q)+

- q

,

and

82
q(x)=a(q) \x&

q
2++

1
2

,

where

a(q)=
1

3 - q \1&\x(q)
:(q)+

- q

+ .

Proposition 20. For all q�100,

{0�Fq(x)�81
q(x)

0�Fq(x)�82
q(x)

if 0�x�x(q),
if x(q)�x�q�2.

Corollary 21. For all q�324,

&log 2&
2

q
&

2

- q
�&A(q)�&log 2.

It follows from this corollary that for q large enough, actually q�1000,
V(q) is smaller than V(2). A computer-aided computation of the terms
V(q) for q�999 that shows that the inequality V(q)�V(2) is satisfied
completes the proof of Theorem 16. K
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Proof of Corollary 21. For all t in [0, 1�2), Gq(t)=Fq(qt); define in the
same way ,i

q(t)=8i
q(qt) for i=1, 2. From Proposition 20 and from the

inequality Gq(t)�1, for all t in (1�2, 1], it follows that

|
1

0

Gq(t)

t
dt�|

x(q)�q

0

,1
q(t)

t
dt+|

1�2

x(q)�q

,2
q(t)

t
dt+|

1

1�2

dt
t

.

But

|
x(q)�q

0

,1
q(t)

t
dt=

1

2 - q \
x(q)

:(q)+
- q

and

\x(q)

:(q)+
- q

=\1&
1

- q&2+
- q

,

which increases monotonically towards 1�e. Then, for all q�4,

\x(q)
:(q)+

- q

�
1
e

and

|
x(q)�q

0

,1
q(t)

t
dt�

1

2e - q
.

From ,2
q(t)�1�2 for t�1�2 combined with q�1, one also gets

|
1�2

x(q)�q

,2
q(t)

t
dt�

1

2 \
1

2
&

x(q)

q +
q

x(q)
=

1

2

3

2 - q

q

x(q)
.

From

q

x(q)
=

2

1&3�- q
�

2

1&3�18
=

12

5

for q�182=324 it follows that

|
1�2

x(q)�q

,2
q(t)

t
dt�

9

5 - q
.
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This implies the inequality

|
1

0

Gq(t)

t
dt�log 2+

9

5 - q
+

1

2e - q
�log 2+

2

- q
. K

Proof of Proposition 20. One first needs a property of the distribution
functions (Fq)q # N . By definition, Fq is the distribution function of Yq=
Yq&1+Xq where Yq&1 has Fq&1 as a distribution function, and Xq is a
uniformly distributed random variable on [0, 1]. A convolution product
yields the following induction formula.

Lemma 22. For all q,

Fq(x)=|
x

x&1
Fq&1(t) dt.

Corollary 23. For all q, Fq is symmetrical with respect to the point
(q�2, 1�2), i.e., for all x # [0, q],

Fq(x)+Fq(q&x)=1.

Moreover, the function Fq is increasing and convex on [0, q�2].

Proof. We prove the corollary by induction on q. The symmetry
property is obvious for q=1. Let us compute

Fq+1(x)+Fq+1(q+1&x)=|
x

x&1
Fq(t) dt+|

q+1&x

q+1&x&1
Fq(t) dt

which, by the change of variable u=q&t in the second integral, is equal
to

|
x

x&1
Fq(t) dt&|

x&1

x
Fq(q&t) dt=|

x

x&1
(Fq(t)+Fq(q&t)) dt=|

x

x&1
dt=1,

which proves the symmetry property.
The property that the function Fq is increasing is obvious for any q.

Convexity is obvious for q=1. Again, let us use induction on q. The second
derivative of Fq+1 is

F"q+1(x)=F $q(x)&F $q(x&1).
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If Fq is convex on [0, q�2], F $q is increasing, so that on [0, q�2] F"q+1 is
positive. Now take x # [q�2, (q+1)�2]; thanks to F $q(x)=F $q(q&x), which
follows from the symmetry of Fq , one has

F"q+1(x)=F $q(q&x)&F $q(x&1).

The conclusion follows from x&1�(q&1)�2�q&x�q�2, combined with
F $q increasing on [0, q�2]. K

We are going to prove Proposition 20 through the analysis of the fol-
lowing five cases: (1) x # [0, 1]; (2) x # [1, x(q)]; (3) x # [1+x(q), q�2];
(4) x # [x(q), 1+x(q)]; (5) x # [q�2, (q+1)�2]. We use induction except
for the last case.

First Case: x # [0, 1]. A simple induction argument yields Fq(x)=xq�q.
For the inequality Fq(x)�81

q(x) to hold, since for all q�1 and t # [0, 1],
t- q�tq, it is sufficient to prove that Fq(1)�81

q(1), which reduces here to
proving that

'(q)=
1
q !

�
1
2 \

1
:(q)+

- q

=#(q).

We prove in fact that #(q)�'(q) is �1 using the inequality

\(q)=
#(q+1)
'(q+1)

'(q)
#(q)

�1.

One has

#(q+1)

#(q)
=\1&

1

q+1+
- q

\ 2

q+1+
- q+1&- q (1&2�- q)- q

(1&2�- q+1)- q+1
.

One can check that

\1&
1

q+1+
- q

�1&
- q

q+1
�1&

1

- q

and

\ 2
q+1+

- q+1&- q

�\ 2
q+1+

1�(2 - q+1)

�0.77.

(Indeed, let c=- 2�(q+1); the last expression can be rewritten cc�- 2.
The function f (x)=xlog x reaches its minimum at x=1�e, hence the
inequality.)
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Lemma 24. For q�10,

(1&2�- q)- q

(1&2�- q+1)- q+1
�1&

1

q - q
&

36

q2
.

Proof. Take the logarithm of the expression

- q \log \1&
2

- q+&\1+
1

q+
1�2

log \1&
2

- q \1+
1

q+
&1�2

++ .

For all q,

\1+
1

q+
&1�2

�1&
1

2q
,

so that

log \1&
2

- q \1+
1

q+
&1�2

+�log \1&\ 2

- q
&

1

q - q++
and, for =(q) smaller than 1,

log(1&=(q))�&=(q)&
=(q)2

2
&

=(q)3

3
&

=(q)4

4
,

which yields

log \1&\ 2

- q
&

1

q- q+�&
2

- q
&

2

q
&

5

3q - q
&

2

q2

+\ 4

q2
- q

+
1

3q4
- q

+
8

q3
+

2

q5+
�15�q2 - q

(We delete the negative terms from the right-hand side of the inequality,
the same thing will be done later to get rid of similarly complex terms.)
One also has for all q

\1+
1
q+

1�2

�1+
1

2q
,
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so that one obtains, through the same simplification,

\1+
1

q+
1�2

log \1&
2

- q \1+
1

q+
&1�2

+�&
2

- q
&

2

q
&

8

3q - q
&

3

q2
+

23

q2
- q

.

A simple computation shows that, for q�10,

log \1&
2

- q+�&
2

- q
&

2

q
&

8

3q - q
&

4

q2
&

13

q2
- q

,

and then

log \ (1&2�- q)- q

(1&2�- q+1)- q+1+� &
1

q - q
&

36

q2
.

One concludes by using the inequality ex�1+x. K

The inequality

\(q)=
#(q+1)

#(q)

'(q)

'(q+1)
�0.77(q+1) \1&

1

- q+\1&
1

q- q
&

36

q2+
�0.77(q+1) \1&

1

- q
&

1

q - q
&

35

q2+ .

can then be derived. The right hand side term is obviously bigger than 1
when q�10. Given

#(q+1)
'(q+1)

=\(q)
#(q)
'(q)

,

if #(q)�'(q)�1, we have #(q+1)�'(q+1). Also, #(5)�'(5)�1. Hence the
first case.

Second case: x # [1, x(q)]. The proof proceeds by induction on q. We
suppose that Proposition 20 holds true for some q. One then has

Fq+1(x)=|
x

x&1
Fq(t) dt�|

x

x&1
81

q(t) dt.

The inequality

|
x

x&1
81

q(t) dt�81
q+1(x)
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holds if and only if we have

1

2 \
1

:(q)+
- q

\ 1

1+- q+ (x1+- q&(x&1)1+- q)�
1

2 \
x

:(q+1)+
- q+1

,

which is equivalent to the inequality

hq(x)=x1+- q&- q+1 \1&\1&
1

x+
1+- q

+�(1+- q)
:(q)- q

:(q+1)- q+1
. (8)

Lemma 25. The function hq is increasing on [1, q�2].

Proof. Compute the derivative of hq :

h$q(x)=(1+- q&- q+1) x- q&- q+1 _1&\1&
1
x+

1+- q

&
+x1+- q&- q+1 \&(1+- q) \1&

1
x+

- q 1
x2+

=x- q&- q+1 \(1+- q&- q+1) _1&\1&
1
x+

1+- q

&
&(1+- q) \1&

1
x+

- q 1
x+ .

Let y=1&1�x; h$q(x) is positive for x # [1, q�2] whenever

(- q+1) y1+- q&(1+- q) y- q+(1+- q&- q+1)

is positive for y # [1, 1&2�q]. Let z= y- q and define

h� q(z)=(- q+1) z(1+- q)�- q&(1+- q) z+(1+- q&- q+1);

the derivative of h� q ,

h� $q(z)=- q+1 \1+- q

- q + z1�- q&(1+- q)

is negative when y=z1�- q�- q�(q+1)=(1+1�q)&1�2 which is always true
for y�1&2�q since for all q,

\1+
1
q+

&1�2

�1&
1

2q
�1&

2
q

.
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Then, h� q being decreasing with respect to z, the only thing that remains to
be shown for the lemma to hold is that the value at (1&2�q)- q of h� q is
positive. This is equivalent to proving that

h� q((1&2�q)- q)

- q+1
=\1&

2

q+
- q

\1&
2

q
&

1+- q

- q+1++
1+- q

- q+1
&1�0.

A simple computation shows that for x # [0, 1] and :�2, (1&x):�
1&:x+:(:&1) x2�2 which implies

\1&
2

q+
- q

�1&
2

- q
+

2

q
&

2

q - q
;

moreover, 1&1�(2q)�(1+1�q)&1�2�1&1�(2q)+3�(8q2), so that

\1+
1

- q+\1&
1

2q+�
1+- q

- q+1
=\1+

1

- q+\1+
1

q+
&1�2

�\1+
1

- q+\1&
1

2q
+

3

8q2+ ,

and, therefore,

1+- q

- q+1
&1�

1

- q
&

1

2q
&

1

2q- q

and

1+- q

- q+1
&1+

2

q
�

1

- q
+

3

2q
&

1

2q - q
+

3

8q2 \1+
1

- q+
which yields

\1&
2

q+
- q

\2

q
+

1+- q

- q+1
&1+�

1

- q
&

1

2q
&

3

2q - q
+

19

8q2
+

1

q3
,

the latter inequality being obtained by deleting in the right-hand side
expression all the negative terms we are not interested in. Then the lemma
holds true as soon as

1

q - q
�

19

8q2
+

1

q3
,

which is satisfied for q�8.
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Hence, hq being increasing, the second case will be established if we can
show

hq(x(q))�(1+- q) :(q)- q�:(q+1)- q+1,

which will prove inequality (8). This follows from:

Lemma 26. For all q�20,

hq(1+x(q))�(1+- q)
:(q)- q

:(q+1)- q+1
.

Proof. Simple computations reduce the problem to showing the
inequality

q

2 \1&\ 3

- q
&

2

q++
1+- q&- q+1

\1&\1&
2

q \1&\ 3

- q
&

2

q++
&1

+
1+- q

+
�(1+- q) \ q

q+1+
- q+1 (1&2�- q)- q

(1&2�- q+1)- q+1
.

Consider the quantity

&log \ q
q+1+

- q+1

=- q \1+
1
q+

1�2

log \1+
1
q+ ;

given that (1+1�q)1�2�1+1�(2q) and log(1+1�q)�1�q, the former
expression is smaller than (1�- q)+1�(2q - q). Then we have

log \ q

q+1+
- q+1

�&
1

- q
&

1

2q - q
.

For x negative, we have ex�1+x+x2�2+x3�6, which, by taking the
exponential of the previous inequality, yields

\ q

q+1+
- q+1

�1&
1

- q
&

1

2q - q
+

1

2q
&

1

6q - q
&

5

2q2
- q

and then

(1+- q) \ q

q+1+
- q+1

�- q&
1

2 - q
&

1

6q
&

2

3q - q
&

5

q2
.
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Combined with Lemma 24, this yields the inequality

(1+- q) \ q

q+1+
- q+1 (1&2�- q)- q

(1&2�- q+1)- q+1

�- q&
1

2 - q
&

7

6q
&

2

3q - q
&

41

q2
.

Starting from 1+- q&- q+1=1&1�(- q+- q+1)�1&1�(2 - q),
we get

\1&\ 3

- q
&

2

q++
1+- q&- q+1

�\1&\ 3

- q
&

2

q++
1&1�(2 - q)

.

The logarithm of the right-hand side term is smaller than

\1&
1

2 - q+\&
3

- q
&

5

2q
+

6

q - q
&

2

q2+ ,

and an upper bound for q�2 is

&
3

- q
&

1

q
+

9

q - q

as follows from =(q)<1, and log(1&=(q))�&=(q)&=(q)2�2. For x
negative, one knows that ex�1+x+x2�2 so that, after simplifications, one
gets

\1&\ 3

- q
&

2

q++
1&1�(2 - q)

�1&
3

- q
+

7

2q
+

12

q - q
+

11

q2
.

Moreover, for =�1&0.51�3, the inequality 1�(1&=)�1+=+2=2 yields, for
q�300,

\1&\ 3

- q
&

2

q++
&1

�1+
3

- q
+

16

q
+

24

q2
,

which, denoting =(q)=2�q+6�(q- q)+32�q2+48�q3, implies that

\1&
2

q \1&\ 3

- q
&

2

q++
&1

+
1+- q

�(1&=(q))1+- q.
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For q�400, =(q)�=~ (q)=2�q+8�(q- q). Simple computations show that
for x # [0, 1] and : � 3, (1 & x): � 1 & :x + :(: & 1) x2�2 & :(: & 1)
(: & 2) x3�6 so that (1 & =~ (q))1+- q � 1 & - q =~ (q) & =~ (q) + q=~ (q)2�2 +
- q =~ (q)2�2&q - q =~ (q)3�6. This yields

(1&=~ (q))1+- q�1&
2

- q
&

6

q
&

22

3q - q
&

34

q2
&

64

q2
- q

&
88

q3

�1&
2

- q
&

6

q
&

22

3q - q
&

42

q2

for q�400.

Then, we get

q

2 _1&\1&
2

q \1&(
3

- q
&

2

q++
&1

+
1+- q

&�- q+3+
11

3 - q
+

21

q

which yields the following inequality:

q

2 \1&\ 3

- q
&

2

q++
1&1�(2 - q)

_1&\1&
2

q \1&\ 3

- q
&

2

q++
&1

+
1+- q

&
�- q&

11

6- q
+

63

2q
+

28

q - q
+

246

q2
+

714

q2
- q

+
882

q3
.

These bounds enable us to prove that the lemma holds for q�1000,
because, then

&
4

3 - q
+

66

2q
+

40

q - q
+

288

q2
+

714

q2
- q

+
882

q3
�0.

It follows from direct computations that the lemma also holds true for
100�q�1000. K

Third Case: x # [1+x(q), q�2]. The proof proceeds by induction on q.
Let us assume that Proposition 20 holds true for q, then we get

Fq+1(x)=|
x

x&1
Fq(t) dt�|

x

x&1
82

q(t) dt.

The inequality

|
x

x&1
82

q(t) dt�82
q+1(x)
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holds true if and only if

1
2

+a(q) \\x&
1
2+&

q
2+�

1
2

+a(q+1) \x&
q+1

2 +
which is equivalent to

(a(q)&a(q+1)) \x&
1
2+�(a(q)&a(q+1))

q
2

.

But a(q) is decreasing: it is the product of the decreasing quantity 1�(3 - q)
by the other decreasing quantity 1&(x(q)�:(q))- q; indeed, in the proof of
Corollary 21, (x(q)�:(q))- q has already been shown to be increasing. Then
the above inequality holds true as soon as x&1�2�q�2; and here we have
x�q�2. Hence the third case.

Fourth Case: x # [x(q), 1+x(q)]. The proof proceeds again by induction
on q. If Proposition 20 holds true for q, given x&1�x(q)�x�x(q)+1,
one has

Fq+1(x)=|
x

x&1
Fq(t) dt�|

x(q)

x&1
81

q(t) dt+|
x

x(q)
82

q(t) dt.

But 81
q and 82

q have been defined with the same value at x(q) while the
slope on [&1+x(q), 1+x(q)] of 81

q is always bigger than a(q), which is
the slope of 82

q . Indeed, since the slope of 81
q is increasing and the graph

of 82
q is a line, the inequality is satisfied if the slope of 81

q at (&1+x(q))
is bigger than a(q), as it is stated in the following lemma.

Lemma 27. For all q�100,

8q
1$(&1+x(q))�a(q).

Proof. Recall the definition of a(q):

a(q)=
1

3 - q \1&\1&3�- q

1&2�- q+
- q

+ .

One has

\1&
2

- q+
&1

�1+
2

- q
,
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then

\1&3�- q

1&2�- q+�1&
1

- q
&

6

q
.

Simple computations show that, for =(q)�0.3, log(1&=(q))�&=(q)&
=(q)2, so that for q�20, we get

- q log \1&3�- q

1&2�- q+�&1&
7

- q
&

12

q
&

36

q - q
.

Then, since ex�1+x, we get

\1&3�- q

1&2�- q+
- q

�
1

e \1&
7

- q
&

12

q
&

36

q - q+
and

a(q)�
1&1�e

3 - q
+

7

3eq
+

4

eq - q
&

12

eq2
. (9)

Similarly, we have

8q
1$(&1+x(q))=

1

- q(1&2�- q) \
1&(3�- q+2�q)

1&2�- q +
- q&1

.

We also have

1&(3�- q+2�q)

1&2�- q
�\1&

3

- q
&

2

q+\1+
2

- q+
�1&

1

- q
&

8

q
&

4

q - q

�1&
1

- q
&

12

q
.

Then, for q�20, the inequality

log \1&(3�- q+2�q)

1&2�- q +�&
1

- q
&

13

q
&

24

q - q
&

144

q2
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holds thanks to =(q)�0.3, log(1&=(q))�&=(q)&(q)2. This yields

(- q&1) \1&(3�- q+2�q)

1&2�- q +�&1&
12

- q
&

11

q
&

120

q - q
.

Since ex�1+x, we have

\1&(3�- q+2�q)

1&2�- q +
- q&1

�
1

e \1&
12

- q
&

11

q
&

120

q - q+
and

8q
1$(&1+x(q))�

1

- q \1+
2

- q+
1

e \1&
12

- q
&

11

q
&

120

q - q+
�

1

e - q \1&
10

- q
&

35

q
&

142

q - q
&

240

q2 + .

This last inequality, compared to inequality (9), yields the lemma for
q � 1050. The lemma is shown to be true for 70 � q � 1050 by direct
computations. K

Then the graph of 81
q lies under the graph of 82

q for x<x(q), and above
for x>x(q). This implies that

|
x(q)

x&1
81

q(t) dt�|
x(q)

x&1
82

q(t) dt

and

|
x

x(q)
82

q(t) dt�|
x

x(q)
81

q(t) dt.

This implies, for i=1, 2, that

Fq+1(x)�|
x

x&1
8i

q(t) dt

and we have seen that, when x is �1+x(q), the two inequalities

|
x

x&1
8i

q(t) dt�8i
q+1(x)

are satisfied.

Fifth Case: x # [q�2, (q+1)�2]. A direct line of reasoning through
Corollary 23 enables us to conclude immediately. Indeed, we have
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Fq+1((q+1)�2)=82
q+1((q+1)�2) and Fq+1(q�2)�82

q+1(q�2), thanks to
the preceding case. In addition, the graph of 82

q+1 is a line whereas the
graph of Fq+1 is convex on [q�2, (q+1)�2]. Then Fq+1(x)�82

q+1(x) for
x # [q�2, (q+1)�2]. K

The proof of Proposition 20 is therefore completed once we show that
we can start the induction. Though numerical computations show that the
proposition is already true for q=20, we start the induction argument only
at q=100 because we have proved various inequalities (see in particular
Lemma 27) only for q�100. K
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