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Abstract

We investigate the effects of different regulatory policies directed towards high-frequency
trading (HFT) through an agent-based model of a limit order book able to generate flash
crashes as the result of the interactions between low- and high-frequency (HF) traders.
We analyze the impact of the imposition of minimum resting times, of circuit breakers
(both ex-post and ex-ante types), of cancellation fees and of transaction taxes on asset
price volatility and on the occurrence and duration of flash crashes. In the model, low-
frequency agents adopt trading rules based on chronological time and can switch between
fundamentalist and chartist strategies. In contrast, high-frequency traders activation is
event-driven and depends on price fluctuations. In addition, high-frequency traders employ
low-latency directional strategies that exploit market information and they can cancel their
orders depending on expected profits. Monte-Carlo simulations reveal that reducing HF
order cancellation, via minimum resting times or cancellation fees, or discouraging HFT
via financial transaction taxes, reduces market volatility and the frequency of flash crashes.
However, these policies also imply a longer duration of flash crashes. Furthermore, the
introduction of an ex-ante circuit breaker markedly reduces price volatility and removes
flash crashes. In contrast, ex-post circuit breakers do not affect market volatility and they
increase the duration of flash crashes. Our results show that HFT-targeted policies face
a trade-off between market stability and resilience. Policies that reduce volatility and the
incidence of flash crashes also imply a reduced ability of the market to quickly recover from
a crash. The dual role of HFT, as both a cause of the flash crash and a fundamental actor
in the post-crash recovery underlies the above trade-off.
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1 Introduction

This paper studies the effects of a set of regulatory policies aimed at curbing the possible

negative effects of high-frequency trading (HFT henceforth), and at reducing market

volatility and the occurence of flash crashes.

Over the past decade, HFT has sharply increased in US and European markets

(e.g., AMF, 2010; SEC, 2010; Lin, 2012, and references therein). HFT also represents a

major challenge for regulatory authorities, partly because it encompasses a wide array of

algorithmic trading strategies and partly because of the big uncertainty yet surrounding

the net benefits it has for financial markets. Indeed, on the one hand, some studies have

highlighted the benefits of HFT as a source of an almost continuous flow of liquidity (see

e.g., Brogaard, 2010; Menkveld, 2013). On the other hand, other works (see e.g., SEC,

2010; Angel, Harris, and Spatt, 2011; Lin, 2012; Kirilenko and Lo, 2013) have pointed

to HFT as a source of higher volatility in markets and as a key driver in the generation

of extreme events like flash crashes, whose incidence has grown in the last decades

(Johnson, Zhao, Hunsader, Meng, Ravindar, Carran, and Tivnan, 2012; Golub, Keane,

and Poon, 2012). The regulatory framework is complicated by the fact that - although

many explanations have so far been proposed for flash crashes - no consensus has yet

emerged about the fundamental causes of these extreme phenomena (see Haldane, 2011).

Overall, these open issues leave policy-makers empty-handed about possible policies that

could be used to mitigate the negative effects of HFT without affecting its benefits, and

about policies that could prevent flash crashes and/or dampen their impact on markets.

Earlier empirical and theoretical works have already attempted to study the effect

of different sets of regulatory measures (e.g., Westerhoff, 2008; Brewer, Cvitanic, and

Plott, 2013; Vuorenmaa and Wang, 2014) and of some specific regulation policies such as

financial transaction tax (Colliard and Hoffmann, 2013; Fricke and Lux, 2015; Lavicka,

Lichard, and Novotny, 2014), minimum resting times (Hayes, Paddrik, Todd, Yang, Bel-

ing, and Scherer, 2012), market design (Budish, Cramton, and Shim, 2015), cancellation

fee (Friederich and Payne, 2015), position limits (Lee, Cheng, and Koh, 2011). However,

these works have either not considered the role of HFT (e.g., Westerhoff, 2008), or they

have treated flash crashes as resulting from an exogenous shock (e.g., Brewer, Cvitanic,

and Plott, 2013) or, finally, they have only focused on a very narrow set of policies (e.g.,

Hayes, Paddrik, Todd, Yang, Beling, and Scherer, 2012; Vuorenmaa and Wang, 2014).

On these grounds, we contribute to the current debate about the regulatory re-

sponses to flash crashes, and to the potential negative externalities, of HFT by studying

the impact of a set of policy measures in an agent-based model where flash crashes en-

2



dogenously emerge out of the interplay between low- and high-frequency traders. The

goal is to shed some light on which policy measures are effective to curb volatility and

the incidence of flash crashes and/or to fasten the process of price-recovery after a crash.

To this end, we extend the ABM developed in Jacob Leal, Napoletano, Roventini, and

Fagiolo (2016) to allow for endogenous orders’ cancellation by HF traders, and we then

use the model as a test-bed for a number of policy interventions directed towards HFT.

This model is particularly well-suited and relevant in this case because, differently from

existing works (e.g., Brewer, Cvitanic, and Plott, 2013), it is able to endogenously gener-

ate flash crashes as the result of the interactions between low- and high-frequency (HF)

traders. Moreover, compared to the existing literature we consider a broader set of poli-

cies, also of various nature. The list includes market design policies (circuit breakers) as

well as command-and-control (minimum-resting times) and market-based (cancellation

fees, financial transaction tax) measures.

The model in Jacob Leal, Napoletano, Roventini, and Fagiolo (2016) portrays a

market wherein LF agents trade a stock, switching between fundamentalist and chartist

strategies according to strategies’ profitability. HF agents differ from LF ones in many

respects. First, unlike LF traders, activation of HF traders is not based on chronological

time but it is event-based i.e., depends on specific market conditions (see Easley, López de

Prado, and O’Hara, 2012). Second, HF agents adopt low-latency directional strategies

that exploit the price and volume information released in the book by LF traders (cf.

Aloud, Tsang, Olsen, and Dupuis, 2012). Third, HF traders keep their positions open

for very short periods of time and they pursue tight inventory management (Kirilenko,

Kyle, Samadi, and Tuzun, 2011). Lastly, HF endogenously cancel their orders based on

expected profits (see Kirilenko, Kyle, Samadi, and Tuzun, 2011; SEC, 2014, for a review

of cancellation practices of HF traders).

After checking the ability of the model to reproduce the main stylized facts of financial

markets, we run extensive Monte-Carlo experiments to test the effectiveness of policies

which have been proposed and implemented both in Europe and in the US to curb HFT

and to prevent flash crashes, namely the implementation of i.) trading halt facilities

(both ex-post and ex-ante designs); ii.) minimum resting times, ; iii.) order cancellation

fees; iv.) transaction tax. Computer simulations show that slowing down high-frequency

traders, by preventing them from frequently and rapidly cancelling their orders, ought

to the introduction of either minimum resting times or cancellation fees, has beneficial

effects on market volatility and on the occurrence of flash crashes. Also discouraging HFT

via the introduction of a financial transaction tax produces similar outcomes (although

the magnitude of the effects is smaller). All these policies impose a speed limit on trading.
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Thus finding that they are valid tools to cope with volatility and the occurrence of flash

crashes confirms the conjectures in Haldane (2011) about the need of tackling the “race

to zero” of HF traders in order to improve financial stability. At the same time, we

find that all these policies imply a longer duration of flash crashes, and thus a slower

price recovery to normal levels. Furthermore, the results regarding the implementation

of circuit breakers are mixed. On the one hand, the introduction of an ex-ante circuit

breaker markedly reduces price volatility and completely removes flash crashes. This is

merely explained by the fact that this type of regulatory design prevents the huge price

drop, source of the flash crash. On the other hand, ex-post circuit breakers do not have

any particular effect on market volatility, nor on the number of flash crashes. Moreover,

they increase the duration of flash crashes.

Overall, our results indicate the presence of a fundamental trade-off characterizing

HFT-targeted policies, namely one between market stability and market resilience. Poli-

cies that improve market stability - in terms of lower volatility and incidence of flash

crashes - also imply a deterioration of market resilience - in terms of lower ability of the

market price to quickly recover after a crash. This trade-off is explained by the dual role

that HFT plays in the flash crash dynamics of our model. On the one hand, HFT is the

source of flash crashes by occasionally creating large bid-ask spreads and concentrating

orders on the sell side of the book. On the other, HFT plays a key role in the recovery

from the crash by quickly restoring liquidity.

The paper is organized as follows. Section 2 describes the model. In Section 3,

we present and discuss the simulation results, starting with a discussion of the main

features of the flash crash dynamics in our model, and then moving to the presentation

of the results concerning policy experiments. Finally, Section 4 concludes. The appendix

briefly discusses the ability of the model to reproduce the main stylized facts of financial

markets and contains the table of the parameters’ values used in the baseline scenario.

2 The Model

We use the model, developed in Jacob Leal, Napoletano, Roventini, and Fagiolo (2016),

of a stock market populated by heterogeneous, boundedly-rational traders. Agents trade

an asset for T periods and transactions are executed through a limit-order book (LOB)

where the information about the type, the size and the price of all agents’ orders is

stored (see, for instance, Maslov, 2000; Zovko and Farmer, 2002; Avellaneda and Stoikov,

2008; Bartolozzi, 2010). The market is populated by two groups of agents depending

on their trading frequency (i.e., the average amount of time elapsed between two order
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placements), namely NL low-frequency (LF) and NH high-frequency (HF) traders (N =

NL + NH). Although the number of agents in the two groups is kept fixed over the

simulations, the proportions of low- and high-frequency traders change over time, as

some agents may not be active in each trading session. Furthermore, agents of both types

are different not only in terms of trading frequencies, but also in terms of strategies and

activation rules. A detailed description of the behavior of LF and HF traders is provided

in Sections 2.1 and 2.2.

In the model, a trading session is assumed to last one minute. At the beginning of

each trading session t, active LF and HF agents know past market prices as well as past

and current fundamental values of the traded asset. Based on the foregoing information

set, each trading session t proceeds in the following way. First, each active LF trader

submits a buy or sell order to the LOB market, specifying its size and its limit price.

Then HF orders are inserted in the book after LF ones and before the matching process

takes place. The size and the price of their orders are also displayed in the LOB. We

assume that HF traders are able to compute the transactions that would take place given

the existing book, their prices and, therefore, their expected profits.1 They then use the

computed expected profits to decide whether to confirm or to cancel their orders from

the book.2 We capture the last feature by assuming that the matching procedure takes

place in two steps. First, orders are matched according to their price and then arrival

time in a “temporary” matching procedure. A “temporary” trading session price is hence

computed. HF agents then check the expected profits they would make given the current

book and decide to confirm/cancel their orders. Cancelled orders are removed from the

book. Second, the actual matching takes place and the actual trading session price (P̄t) is

determined as the price of the last executed transaction in the trading session.3. LF and

HF unexecuted orders rest in the book for the next trading sessions (γL and γH periods,

respectively). Lastly, given P̄t, all agents compute their actual profits and LF agents

update their strategy for the next trading session (see Section 2.1 below). Notice that

the possibility that some orders are removed from the book before the actual matching

process takes place implies in general a difference between temporary and actual trading

prices, as well as a difference between expected and actual traders’ profits.

1In particular, we assume that HF agents simultaneously compute transactions, prices and expected
profits based on the same order book information.

2The assumption that HF orders are inserted after the ones of LF traders and that HF agents are
able to calculate expected profits before actual matching takes places are convenient ways of capturing
one of the distinctive feature of HFT i.e., their ability to rapidly process a large amount of information
and to exploit low-latency strategies (see e.g., Hasbrouck and Saar, 2013).

3The price of an executed contract is the average between the matched bid and ask quotes.
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2.1 Low-Frequency Traders

In the market, there are i = 1, . . . , NL low-frequency agents who take short or long posi-

tions on the traded asset.4 The trading frequency of LF agents is based on chronological

time, which is heterogeneous across LF agents and constant over time. In particular,

each LF agents’ trading speed is drawn from a truncated exponential distribution with

mean θ and is bounded between θmin and θmax minutes.5

In line with most heterogeneous agents models of financial markets, LF agents deter-

mine the quantities bought or sold (i.e., their orders) according to either a fundamen-

talist or a chartist (trend-following) strategy (see, e.g., De Long, Shleifer, Summers, and

Waldmann, 1990; Lux and Marchesi, 2000; Farmer, 2002; Kirman and Teyssiere, 2002;

Chiarella and He, 2003; Hommes, Huang, and Wang, 2005; Westerhoff, 2008). More pre-

cisely, given the last two market prices P̄t−1 and P̄t−2, orders under the chartist strategy

(Dc
i,t) are determined as follows:

Dc
i,t = αc(P̄t−1 − P̄t−2) + εct , (1)

where 0 < αc < 1 and εct is an i.i.d. Gaussian stochastic variable with zero mean and

σc standard deviation. If a LF agent follows a fundamentalist strategy, her orders (Df
i,t)

are equal to:

Df
i,t = αf (Ft − P̄t−1) + εft , (2)

where 0 < αf < 1 and εft is an i.i.d. Gaussian random variable with zero mean and

σf standard deviation. The fundamental value of the asset Ft evolves according to a

geometric random walk:

Ft = Ft−1(1 + δ)(1 + yt), (3)

with i.i.d. yt ∼ N(0, σy) and a constant term δ > 0. After γL periods, unexecuted orders

expire, i.e. they are automatically withdrawn from the book. Finally, the limit-order

price of each LF trader is determined by:

Pi,t = P̄t−1(1 + δ)(1 + zi,t), (4)

where δ > 0 and zi,t measures the number of ticks away from the last market price P̄t−1

and it is drawn from a Gaussian distribution with zero mean and σz standard deviation.

4We assume that LF traders are not able to employ low-latency trading since they process information
and respond to market events with a scale that is equal or higher than the one of the trading session.

5See also Alfarano, Lux, and Wagner (2010) for a model with different time horizons in a setting
different from ours.
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In each period, low-frequency traders can switch their strategies according to strat-

egy’s profitability. At the end of each trading session t, once the market price P̄t is

determined, LF agent i computes her profits (πsti,t) under chartist (st = c) and funda-

mentalist (st = f) trading strategies as follows:

πsti,t = (P̄t − Pi,t)D
st
i,t. (5)

Following Brock and Hommes (1998), Westerhoff (2008), and Pellizzari and Westerhoff

(2009), the probability that a LF trader will follow a chartist rule in the next period

(Φc
i,t) is given by:

Φc
i,t =

eπ
c
i,t/ζ

eπ
c
i,t/ζ + eπ

f
i,t/ζ

, (6)

with a positive intensity of switching parameter ζ. Accordingly, the probability that LF

agent i will use a fundamentalist strategy is equal to Φf
i,t = 1 − Φc

i,t.

2.2 High-Frequency Traders

As mentioned above, the market is also populated by j = 1, . . . , NH high-frequency

agents who buy and sell the asset.6 Contrary to LF agents, HF traders employ low-

latency technologies which enable them to place their orders with high speed. Moreover,

HF agents differ from LF ones not only in terms of trading speed, but also in terms of

activation and trading rules. In particular, contrary to LF strategies, which are based

on chronological time, HF agents adopt trading rules framed in event time (see e.g.,

Easley, López de Prado, and O’Hara, 2012),7 i.e., the activation of HF agents depends

on the extent of the last price change observed in the market. As a consequence, HF

agents’ trading speed is endogenous. More specifically, each HF trader has a fixed price

threshold ∆xj , drawn from a uniform distribution with support bounded between ηmin

and ηmax. This determines whether she will participate in the trading session t (see

Aloud, Tsang, and Olsen, 2013, for a similar attempt in this direction):∣∣∣∣∣ P̄t−1 − P̄t−2

P̄t−2

∣∣∣∣∣ > ∆xj . (7)

6We assume that NH < NL. The proportion of HF agents vis-à-vis LF ones is in line with empirical
evidence (Kirilenko, Kyle, Samadi, and Tuzun, 2011; Paddrik, Hayes, Todd, Yang, Scherer, and Beling,
2011).

7On the case for moving away from chronological time in modeling financial series see Mandelbrot
and Taylor (1967); Clark (1973); Ané and Geman (2000).
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Active HF agents submit buy or sell limit orders with equal probability p = 0.5 (Maslov,

2000; Farmer, Patelli, and Zovko, 2005).

HF traders adopt directional strategies that try to profit from the anticipation of

price movements (see SEC, 2010; Aloud, Tsang, Olsen, and Dupuis, 2012) and exploit

the price and order information released by LF traders and by other HF traders (if any).

First, HF traders account for current order flows to determine their order size Dj,t.

More specifically, HF traders’ order size is drawn from a truncated Poisson distribution

whose mean depends on volumes available in the sell-side (buy-side) of the LOB, if the

order is a buy (sell) order.8 The ability of HF traders to adjust the volumes of their

orders to the ones available in the book reflects their propensity to absorb LF agents’

orders. Moreover, in order to account for empirical evidence indicating that HF traders

do not accumulate large net positions (CFTC and SEC, 2010; Kirilenko, Kyle, Samadi,

and Tuzun, 2011), we add two additional constraints to HF order size. On the one hand,

HF traders’ net position is bounded between +/-3,000. On the other hand, HF traders’

buy (sell) orders are smaller than one quarter of the total volume present in the sell

(buy) side of the book (see, for instance, Kirilenko, Kyle, Samadi, and Tuzun, 2011;

Bartolozzi, 2010; Paddrik, Hayes, Todd, Yang, Scherer, and Beling, 2011).9

Second, HF traders account for current best ask and bid prices to set their order limit

price (see Section 2.2 below). In particular, in each trading session t, HF agents trade

near the best ask (P askt ) and bid (P bidt ) prices available in the LOB (see e.g., Paddrik,

Hayes, Todd, Yang, Scherer, and Beling, 2011).10 Accordingly, HF buyers and sellers’

limit prices are formed as follows:

Pj,t = P askt (1 + κj) Pj,t = P bidt (1 − κj), (8)

where κj is drawn from a uniform distribution with support (κmin, κmax). Figure 1

illustrates HF order placement using directional strategy based on a spread of one tick.

A key characteristic of empirically-observed high-frequency trading is the high order

cancellation rate (CFTC and SEC, 2010; Kirilenko, Kyle, Samadi, and Tuzun, 2011).

We introduce such a feature in the model in two ways. First, we assume that HF agents’

unexecuted orders are automatically removed from the book after a given time period

8In the computation of the mean of the Poisson distribution, the relevant market volumes are weighted
by the parameter 0 < λ < 1.

9Our assumption about HF orders’ size reflects empirically-observed HF characteristics, namely HF
traders are few firms in the market but represent more than 30% of total trading volume (Kirilenko,
Kyle, Samadi, and Tuzun, 2011; Aldridge, 2013).

10This assumption is consistent with empirical evidence on HF agents’ behavior, which suggests that
most of their orders are placed very close to the last best prices (SEC, 2010).
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Current market conditions                                                                                    

                                            Bid          Ask 

            8      8      9      9      10          11   11   11   12   12 

 

HF trading 

Buy orders 

                                            Bid         Ask 

       8     8     9     9     10     12         11   11   11   12   12 

Sell orders 

                                            Bid          Ask 

                8     8     9     9     10          9   11   11   11   12   12                                                         

Figure 1: Directional strategy order placement.

γH (i.e., exogenous cancellation), which is shorter than LF agents’ one, i.e. γH < γL.

Moreover, in each period, HF traders are able to process and to use available market

information to decide whether to cancel their orders, while these orders could be executed

(i.e., endogenous cancellation). More precisely, we assume that - once new orders have

been inserted in the book - HF traders are able to simultaneously compute the volumes

and prices of the transactions that would take place conditionally on the existing book,

and on this basis, they are able to compute their expected profits. HF agents will cancel

their orders when expected profits are negative. Instead, they will confirm their orders

when expected profits are non-negative. More formally, let πEj,t be the expected profits

of HF trader j conditional on the book available in period t, we get:
πEj,t < 0, cancel order

πEj,t ≥ 0, confirm order

where πEj,t is determined by:

πEj,t = (P̄ tempt − P tempj,t )Dj,t. (9)

where P̄ tempt and P tempj,t are the temporary market price and the temporary transaction

price of agent j, respectively, and Dj,t is the size of the order of agent j. Lastly, at the

end of each trading session, HF traders’ profits (πj,t) are computed as follows:

πj,t = (P̄t − Pj,t)Dj,t. (10)
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where Pj,t is her actual transaction price and P̄t is the actual market price. As already

mentioned at the beginning of the section, given that HF traders can intentionally cancel

orders, the final order book would be different from the one before HF traders’ endoge-

nous cancellation. Accordingly, expected profits of HF traders could be different from

expected ones.

3 Simulation Results

We investigate the properties of the model presented in the previous section via Monte-

Carlo simulations. More precisely, we carry out MC = 50 Monte-Carlo iterations,

each one composed of T = 1, 200 trading sessions using the baseline parametrization,

described in Table 8 (see Appendix A.2). The value of the parameters employed in our

simulations are in line with existing works.11

As a first step in our analysis of simulation results, we verify that our ABM is able to

jointly reproduce the main stylized facts of financial markets with the same configuration

of parameter values (see details in Appendix A.1). We then assess the properties of

the model in generating flash crashes and we investigate the key determinants of flash

crashes, distinguishing the initial sharp price drop and the subsequent price recovery

(see Section 3.1). Lastly, we investigate the effectiveness of a set of regulatory policies

on market volatility, the frequency and the duration of flash crashes (see Section 3.2).

3.1 HFT and the Anatomy of Flash Crashes

In line with empirical evidence (CFTC and SEC, 2010; Kirilenko, Kyle, Samadi, and

Tuzun, 2011), we identify flash crashes as drops in the asset price of at least 5% followed

by a sudden recovery of at most 30 minutes (corresponding to thirty trading sessions in

each simulation run). Applying such a definition, in line with Jacob Leal, Napoletano,

Roventini, and Fagiolo (2016), we find that our model is able to endogenously generate

flash crashes as an emergent property resulting from the interactions between low- and

high-frequency traders (see Table 1). Indeed, we find that flash crashes emerge only

when HF traders are present in the market and their frequency is significantly higher

than one. In contrast, when the market is only populated by LF traders, flash crashes

do not emerge.

11More precisely, for the LF trading strategies equations, we chose the same values employed in previous
ABM works (e.g., Westerhoff, 2008). In addition, following Paddrik, Hayes, Todd, Yang, Scherer, and
Beling (2011), several values of the parameters concerning HF traders’ behavior (e.g., order size) were
selected in order to be consistent with the evidence reported in Kirilenko, Kyle, Samadi, and Tuzun
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Table 1: Market volatility (σP ) and flash crashes statistics in the baseline scenario with HF traders and
in the scenario with only LF traders.

σP Number of Avg. duration of
flash crashes flash crashes

Baseline 0.016 4.636 7.139
(0.002) (0.398) (0.484)

Only-LFT 0.002 - -
(0.000) - -

0 10 20 30 40 50 60 70 80 90 100
Bid Ask Spread Values

0

0.1

0.2

0.3

0.4
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0.8

0.9

1

1-
F(

x)

normal times
crash
recovery

Figure 2: Complementary cumulative distributions of bid-ask spreads in different market phases. Pooled
sample from 50 independent Monte-Carlo runs.

What are the main drivers of the emergence of flash crashes in our model?

First, the directional strategies employed by HF traders can lead to large bid-ask spreads,

setting the premises for the emergence of flash crashes. Figure 2 shows the distributions

of bid-ask spreads conditioned on different market phases i.e., normal times, crash and

recovery phases.12 We observe that the mass of the distribution of bid-ask spreads is

significantly shifted to the right during crashes, clearly indicating the presence of large

(2011).
12In particular, we construct the pooled samples (across Monte-Carlo runs) of bid-ask spread values

singling out “normal time” phases and decomposing “flash-crash” periods in “crash” phases (i.e. periods
of sharp drops in the asset price) and the subsequent “recovery” phases (i.e. periods when the price goes
back to its pre-crisis level). Next, we estimate the complementary cumulative distributions of bid-ask
spreads in each market phase using a kernel-density estimator.
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Figure 3: Contour plot of the relation between agents’ order aggressiveness and size of the bid-aske
spread generated by the model.

bid-ask spreads at the time of the price fall. The emergence of large bid-ask spreads is

explained by the different strategies employed by high- and low-frequency traders in our

model. Active LF traders set their order prices “around” the price of the last trading

session, which tends to fill the existing gap between the best bid and ask prices at the

beginning of a given trading section. In contrast, active HF traders, who submit their

orders after LF agents, place large buy (sell) orders just few ticks above (below) the best

ask (bid), which tends to widen the bid-ask spread in the LOB.

HFT-induced large bid-ask spreads are therefore one key driver of flash crashes in

our model. This is further confirmed by the analysis of agents’ aggressiveness behaviour

conditional on different market phases. First Figure 3, shows that the model generates

a positive relationship between agents’ orders agressiveness and the size of the bid-ask

spreads.13 Thus, higher orders’ aggressiveness (of any agents’ type) leads to larger bid-

ask spreads in our model. However, the degree of aggressiveness of HF and LF agents

markedly differ across market phases. Table 2 shows average orders’ aggressiveness ra-

13The plot in Figure 3 shows the contour of the theoretical function between bid-ask spreads and HF
and LF orders’ aggressiveness ratios that is implied by the dynamics of the model. The function was
generated by interpolating the scattered data of aggressiveness ratios of HF and LF traders and bid-ask
spread pooled across Monte-Carlo simulations in the baseline scenario. The interpolation was performed
by using the scatteredInterpolant function in Matlab.
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Table 2: Orders’ aggressiveness ratios for different categories of traders and different market phases.
Values are averages across 50 independent Monte-carlo runs. Monte-carlo standard errors in parentheses.

LFT buy HFT buy LFT sell HFT sell

Normal times 0.086 0.130 0.041 0.108
(0.003) (0.002) (0.003) (0.002)

Crashes 0.000 0.013 0.000 0.831
(0.000) (0.008) (0.000) (0.031)

Recovery 0.083 0.106 0.004 0.095
(0.013) (0.009) (0.002) (0.010)

Unconditional values 0.086 0.130 0.041 0.110
(0.003) (0.002) (0.003) (0.002)

tios14 for both types of agents and book sides, and conditional on different market phases

(i.e., “normal times”, “crash”, “recovery”). As the table shows, in all market phases,

aggressiveness ratios of LF traders are much lower than HF traders ones. Moreover,

order aggressiveness of HF traders is low during normal market phases. For instance,

nearly 90% of buy and sell orders placed by HF traders do provide liquidity to the mar-

ket, which contributes to keep bid-ask spreads low. In constrast, orders’ aggressiveness

of HF agents increases abruptly in the crash phase (see Table 2). In particular, in such

a phase, most HF sell orders are aggressive (about 85%) and thus remove liquidity from

the market and generate large bid-ask spreads. Instead, HF aggressiveness is very low

on the buy side.15

To sum up, the above discussion shows that flash crashes in our model are the result

of: i.) large bid-ask spreads and ii.) concentration of aggressive orders on the sell-side of

the book. It is worth noticing that these explanations for the emergence of flash crashes

are in line with the empirical evidence about the market dynamics observed, for instance,

14Alike Jacob Leal, Napoletano, Roventini, and Fagiolo (2016), we use the definition provided by
trading platforms (e.g., CME Globex), and widely used in the empirical literature (Kirilenko, Kyle,
Samadi, and Tuzun, 2011; Baron, Brogaard, Hagströmer, and Kirilenko, 2015). An incoming order is
considered “aggressive” if it is matched against an order that is resting in the book, i.e., if it removes
liquidity from the market. In contrast, an order provides liquidity on the market if it fills the book of
resting orders. Finally, it has no effect on market liquidity if it is matched against another incoming
order in the same trading session.

15In Jacob Leal, Napoletano, Roventini, and Fagiolo (2016), we also show that such an asymmetry is
further confirmed by the distribution of overall orders of HF traders across market sides. There, we also
explain how HF orders’ synchronization is an emergent property related to the event-time strategy of
HF traders and may emerge even if the choice of each HF agent between selling or buying is a Bernoulli
distributed variable with probability p = 0.5.
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during the flash crash of May 6th, 2010 (CFTC and SEC, 2010; Kirilenko, Kyle, Samadi,

and Tuzun, 2011). Moreover, computer simulations highlight the key role that high-

frequency trading has in generating such extreme events in financial markets. Indeed,

the emergence of periods of high market illiquidity is endogenous and intimately related

to the pricing strategies of HF traders (see Eq. 8). In that, flash crashes are therefore

not simply generated by large orders and thus cannot be associated with “fat finger”

explanations (see Haldane, 2011, for a discussion of the different proposed explanations

of flash crashes). Finally, our simulation results confirm on the one hand that - in line

with recent empirical evidence (see e.g. Brogaard, 2010; Menkveld, 2013) - HF traders

may have a beneficial effect on markets during normal times, by providing non-aggressive

orders and therefore contributing to keep bid-ask spread low. On the other hand, they

also show that the liquidity provided by HFT is extremely fragile and that orders of HF

agents can occasionally be extremely aggressive, removing liquidity from the market,

and generate abrupt and large drops in the market price.

The above discussion has made clear that HFT plays a key role in causing the signif-

icant price falls, which are the footprint of all flash crashes. However, HFT also actively

contributes to the quick recovery after the crash. Table 2 shows indeed that the or-

ders’ aggressiveness ratios of HF agents are much lower during the recovery phase of the

flash crash. In addition, orders’ aggressiveness ratios are symmetric between the buy

and sell sides of the book. Thus, orders of HF agents contribute to restore liquidity in

such a phase, thereby favoring the recovery of the price. The return to normal liquid-

ity conditions during the recovery is also documented by the behavior of the conditional

bid-ask spread distribution (cf. Figure 2). The distribution of the bid-ask spreads during

recoveries is indeed not statistically different from the one during normal times.

Two factors explain the positive role played by HFT in favoring price-recovery after

the crash. The first is that wide variations in asset prices trigger the activation of a large

number of high-frequency traders which leads to a surge in order volumes of HF agents.

In addition, as each HF trader is either a buyer or a seller with probability p = 0.5,

when the number of active HF agents is large, HF orders will tend to be equally split

between the sell- and buy-side of the LOB, which explains the symmetry in HF orders’

aggressiveness ratios observed during the recovery (see Table 2). The second element

supporting the rapid price recovery is the order-cancellation rate of HF traders. Indeed,

high order cancellation implies a short duration of HF orders in the book. As a matter of

fact, this also implies that the HF bid and ask quotes will tend to reflect current market

conditions. Such a memory effect of HF orders explains the low time persistence of

high bid-ask spreads after a crash and contributes to the quick replenishment of market

14



liquidity and price.

3.2 Regulatory policies experiments

In the previous section, we have documented that the model is able to robustly reproduce

the main stylized of financial markets and to endogenously generate flash crashes as the

result of the trading activity of HF traders. We pointed out the very reasons underlying

both phases of a flash crash, namely the sharp price drop and the swift recovery of

the price. In this context, we now turn to use the model as a test-bed to investigate

the effectiveness of a set of regulatory policies which have been so far implemented

and proposed to cope with the possible negative effects of high-frequency trading and to

curb flash crashes. We focus on the following policies: i.) circuit breakers, ii.) minimum

resting times, iii.) cancellation fees, iv.) financial transaction taxes. Moreover, we study

the impact of the aforementioned policies on price-returns volatility as well as on the

number and duration of flash crashes.

3.2.1 Circuit breakers

Section 3.1 provides insights about the mechanisms through which HFT may be a source

of episodic price instability and systemic risk. Regulators have recently taken proactive

steps to avoid flash crashes and to deal with periodic illiquidity in markets. In par-

ticular, in the aftermath of May 2010 Flash Crash, the CFTC and the SEC proposed

several measures to prevent this type of extreme events such as, for instance, updated

circuit breakers (SEC, 2011b, 2012) and limit up/limit down mechanisms (also known

as ex-ante circuit breakers, see SEC, 2011a, 2012; Haldane, 2011). Indeed, extreme

price fluctuations are likely to exacerbate execution uncertainty and discourage trading

(Greenwald and Stein, 1991; Subrahmanyam, 2012). Instead, trading halts should allow

for a “cool-down” period, improve market liquidity and reduce volatility (Greenwald and

Stein, 1991; Kodres and O’Brien, 1994; Ackert, 2012). Circuit breakers (or impediments

to trade), i.e., mechanisms designed to reduce the risk of a price collapse by means of

trading halts in presence of excessive price volatility, have been implemented for long

time in many exchanges, both in Europe and in the US (CFTC and SEC, 2010; Furse,

Haldane, Goodhart, Cliff, Zigrand, Houstoun, Linton, and Bond, 2011; Prewitt, 2012;

Gomber and Haferkorn, 2013). However, they were traditionally market-wide and trig-

gered only by large price movements. They were therefore conceived only as ex-post

reactions to excessive price volatility. After the events of May 6, 2010, new and more

sensitive stock-specific systems, which work on an ex-ante basis, have therefore been im-
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plemented (SEC, 2012). Nowadays, circuit breakers can take many forms, from trading

halts in single stocks or in entire markets to limit up and down prices with a variety

of percent price change and different reference points, and restrictions on one trading

venue or across multiple venues (Furse, Haldane, Goodhart, Cliff, Zigrand, Houstoun,

Linton, and Bond, 2011; Subrahmanyam, 2012).

The empirical evidence on the efficacy of circuit breakers16 and price limits17 is still

limited. Accordingly, it is still not clear what type of breakers are the most effective.

In this section we try to contribute to the existing literature on circuit breakers by

performing a computational test of their impact on volatility and the duration of flash

crashes.

We focus on two distinct types of circuit breakers, namely: i. a trading halt in single

stock triggered by a certain percent price change from the last price, as implemented, for

instance, at the NYSE-Euronext, the London Stock Exchange and the Deutsche Bourse

(i.e., an ex-post device); ii. a limit up/limit down price mechanism in place e.g., on

the NYSE and NASDAQ, Tokyo Stock Exchange and Korea Exchange (i.e., an ex-ante

device). More precisely, we first study the effect of introducing an ex-post trading halt

mechanism in response to substantial price drops which is intended to stop trading in

the exchange for a time period (np). In this Monte-Carlo experiment, the circuit breaker

is triggered by a relative price change from the last price that is in absolute value larger

than β%, where β = 5%,18 and the trading halt is assumed to last for np = 5 periods.

Notice that, by construction, this type of circuit breaker leaves unaffected the number of

flash crashes, but it could have an impact on the duration of flash crashes and on market

volatility. In the second type of experiment, we introduce a limit up/limit down price

of β = 5% which, when triggered, stops trading in the exchange for np = 5 periods. In

this case, the trading halt occurs before the trading session price is formed. In such a

case, the imposition of limit up/limit down price completely removes flash crashes from

the dynamics.

The results of both experiments are shown in Table 3.19. We only report results

for market volatility and the average duration of flash crashes. First, we find that

the introduction of ex-post circuit breakers has a negligible effect on market volatility.

16Few examples include e.g., Lauterbach and Ben-Zion (1993); Santoni and Liu (1993); Goldstein and
Kavajecz (2004); Brugler and Linton (2014).

17Some examples include, for instance, Kim and Rhee (1997); Cho, Russell, Tiao, and Tsay (2003);
Diacogiannis, Patsalis, Tsangarakis*, and Tsiritakis (2005); Bildik and Gülay (2006); Stamatiou (2008).

18Notice that, in our parametrization, the threshold for the trading halt activation corresponds to the
one used to identify flash crashes.

19We also ran simulations for alternative values of γH ( γH = 1 and γH = 1200) and for β = 3%.
Results are however consistent with the ones presented in Table 3.
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Table 3: The effect of different types of circuit breakers on price volatility and flash crash statistics
when γH = 20 and β = 5%. Values are averages across 50 independent Monte-Carlo runs. Monte-Carlo
standard errors in parentheses. (σP ): price returns volatility.

σP Avg. duration of
flash crashes

No circuit breaker 0.016 7.139
baseline (0.002) (0.484)

ex-post circuit breaker 0.010 13.345
(0.001) (0.609)

ex-ante circuit breaker 0.005 -
(0.000) -

Moreover, this defensive regulation has a detrimental effect on the duration of the flash

crash, since the trading halt merely slows down the price recovery. Indeed, we observe

that the price would have recovered sooner without the imposition of the circuit breaker,

i.e., if HF traders would have been able to fully play their role in the recovery phase of

the flash crash. This is mainly explained by the positive role played by HF traders in

the recovery from the crash (see Section 3.1). The imposition of a trading halt instead

prevents HF traders from providing the required liquidity after the crash and thus leads

to longer flash crashes.

How do results change if we turn from ex-post to ex-ante circuit breakers? First,

besides removing flash crashes in our parametrization, ex-ante trading halts lead to a

reduction in price volatility compared to the baseline (compare first and third row of the

first column in Table 3). This is mainly explained by the fact that this device is triggered

before trade is actually performed and therefore it prevents extreme price fluctuations.

Overall, and in line with earlier works (see e.g. Subrahmanyam, 2013; Apergis, 2014),

our results show that breakers should be used with caution, especially when they repre-

sent impediments to trade and deteriorate the trading process within a particular stock.

In particular, our findings indicate that ex-ante circuit breakers are a much more ef-

fective tool than ex-post trading halts, because they completely remove extreme drops

in price from the market and they significantly dampen market volatility. In contrast,

ex-post trading halts have only a limited impact on volatility. In addition, they may

introduce important distortions in the natural process of recovery from a crash that

would otherwise took place.
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3.2.2 Minimum resting times

Minimum resting times specify a minimum time that a limit order must remain in the

book i.e., it cannot be cancelled within a given time span (γH). The impetus for impos-

ing this command-and-control regulatory instrument is that markets operating at high

speed are characterized by a large number of orders that are cancelled very quickly after

submission. Orders’ cancellation is a inherent feature of many HF traders strategies

and has raised many critiques against HFT (CFTC and SEC, 2010; Kirilenko, Kyle,

Samadi, and Tuzun, 2011). Indeed, the ability of HF traders to quickly cancel their

orders could render market liquidity misleading (Kirilenko, Kyle, Samadi, and Tuzun,

2011; Prewitt, 2012; Breckenfelder, 2013; Friederich and Payne, 2015), and it could favor

price short-term volatility (Hanson, 2011; Bershova and Rakhlin, 2013; Breckenfelder,

2013). Furthermore, rapid order cancellations are likely to increase the cost of monitor-

ing the market for all participants and reduce the predictability of a trade’s execution

quality, given that the quotes displayed may have been cancelled by the time the new

order hits the resting order (Furse, Haldane, Goodhart, Cliff, Zigrand, Houstoun, Lin-

ton, and Bond, 2011). Nevertheless, the net benefits of minimum resting times are still

unclear (Furse, Haldane, Goodhart, Cliff, Zigrand, Houstoun, Linton, and Bond, 2011).

On the one hand, minimum resting times can increase the likelihood of a viewed quote

being available to trade and therefore make the order book dynamics more transparent.

In addition, longer expiration times create liquidity that reduces price variance in the

market (Brewer, Cvitanic, and Plott, 2013). Lastly, by “slowing down” markets, mini-

mum resting times may favor participation, especially if some traders (e.g., small retails

investors) feel that high speed makes market unfair and hursts market integrity (see, for

instance, Haldane, 2011). On the other hand, minimum resting times can impinge upon

hedging strategies that operate by placing order across markets and expose liquidity

providers to increased “pick-off risk” due to the inability to cancel stale orders (Oxera,

2012). Liquidity provision may be even more impeded during times of high volatility,

when it is particularly expensive to post limit orders. Furthermore, this measure may

also change the dynamics of the market by attracting more aggressive HFT (Farmer

and Skouras, 2013). Lastly, market quality may be diminished due to higher transaction

costs for the end users and lower price efficiency.

In this context, and given that the empirical evidence about the effects of minimum

resting times is still limited,20 in this section, we aim at shedding some light on the

20For instance, the work of Furse, Haldane, Goodhart, Cliff, Zigrand, Houstoun, Linton, and Bond
(2011) reports only two cases for the implementation of minimum resting times. Namely ICAP which
introduced a minimum quote lifespan on its electronic in June 2009 and the Istanbul Stock Exchange
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Table 4: HF traders’ minimum resting times, price volatility and flash crash statistics. Values are
averages across 50 independent Monte-Carlo runs. Monte-Carlo standard errors in parentheses. (σP ):
price returns volatility.

γH σP Number of Avg. duration of
flash crashes flash crashes

1 0.017 7.114 9.527
(0.002) (0.845) (0.746)

3 0.005 1.556 10.537
(0.000) (0.103) (0.834)

5 0.005 1.143 13.929
(0.000) (0.053) (1.476)

10 0.004 1.250 13.500
(0.000) (0.071) (1.577)

15 0.003 1.000 13.000
(0.000) (0.000) (1.497)

20 0.007 1.000 26.333
(0.001) (0.000) (0.898)

40 0.002 - -
(0.000) - -

60 0.002 - -
(0.000) - -

impact of minimum resting times on market dynamics by investigating the effects of

such a measure on market volatility as well as on the number and the duration of flash

crashes. To this end, we run a Monte-Carlo experiment where we impose that HF orders

cannot deliberately cancel their orders for a number of periods equal to the expiration

time γH . We then increase the expiration time while keeping all other parameters at

their baseline values (see Appendix A.2). In this experiment, we vary the parameter γH

from 1 to 60 periods/minutes. The results of this experiment are reported in Table 4.

Table 4 reveals that increasing minimum resting times (i.e., making γH higher) dampens

market volatility (see second column in Table 4). The beneficial effect on volatility is

one of the purported primary effects of the measure (see in particular SEC, 2010) and

which did not allow the cancellation of limit orders during continuous auction mode until mid-2011.
However, it is not clear what one can really learn from these two experiments.
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is consistent with earlier works (see in particular Hayes, Paddrik, Todd, Yang, Beling,

and Scherer, 2012). This outcome is mainly explained by the fact that minimum resting

times slow down HF traders and prevent them from aggressively trading on the most

recent news and information disclosed in the LOB.

Minimum resting times (i.e., higher γH) have also a beneficial effect on the number

of flash-crash episodes (see third column of Table 4). This outcome again stems from the

lower aggressiveness that such a measure imposes on HF trading strategies. In contrast,

we find that the duration of flash crashes is inversely related to the duration of minimum

resting times (cf. fourth column of Table 4). This finding is explained by the fact that

stricter rules on orders’ expiration of HF orders also imply a longer memory effect (cf.

Section 3.1). In fact, as γH increases, the bid and ask quotes posted by HF agents stay

longer in the LOB and therefore large bid-ask spreads persist more. Furthermore, less

HF traders participate in the market based on the most recent market information. This

slows down the replenishment of market liquidity and prevents the quick price recovery.

Lastly, the number of contracts traded at prices close to the flash-crash one rises which

prevents the price rebound.

Overall, the above results thus indicate that the imposition of minimum resting

times can be a very effective tool in order to dampen market volatility and to reduce

the incidence of flash crashes. In that, they bring support to earlier works advocating

for such a measure (Haldane, 2011; SEC, 2010). At the same time, they also hint to the

presence of a trade-off between volatility and incidence of extreme events, on the one

hand, and price-resilience (because of longer recoveries) on the other hand.21 As we shall

discuss in the next sections, such a trade-off is also inherent the market-based measures

on which we focus on, namely cancellation fees and financial transaction taxes.

3.2.3 Cancellation fees

We now turn to investigate the effect of the imposition of cancellation fees on price

volatility, the frequency of flash crashes and their duration. Both US and EU regulators

have called for the imposition of cancellation fees. However, they have been only incom-

pletely enforced in a couple of exchanges since 2012 (Nasdaq and Direct Edge, Borsa

Italia and Deutsche Brse stock exchanges). Cancellation fees are primarily intended to

prevent overload in the exchange computer systems and to discourage the most flagrant

excessive cancellations which represent unnecessary messages that do not result in trades

and which, rather, come along with higher volatility (Prewitt, 2012). A portion of such

21Haldane (2011) also points to the presence of a similar trade-off when deciding whether to impose
resting rules or not (market efficiency versus stability).
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traffic is likely to be inefficient and may raise costs to other investors who try to mon-

itor the market. Such fees would therefore discourage traders from posting orders that

are not intended to be executed (Prewitt, 2012). They will also discourage manipula-

tive HFT strategies (like stuffing and spoofing) that involve massive order cancellations

by rendering them uneconomical (Biais and Woolley, 2011; Prewitt, 2012). At the same

time, rapid reaction to new information is often a way for market makers to minimize the

risks of offering prices to other traders, and contributes to lower trading costs (Copeland

and Galai, 1983; Foucault, Röell, and Sand̊as, 2003). In that, the imposition of cancel-

lation fees could instead discourage the activity of active market makers and liquidity

providers, and lead to an increase in transaction costs.

In our experiment, HF traders who deliberately decide to cancel their orders before

γH periods are charged a fee c. As a result, a HF agent will cancel her order if expected

losses from trade are higher in magnitude than the cancellation cost, i.e., when πEj,t <

−c.Dj,t. The policy exercise was carried under three scenarios: i.) when γH = 1, HF

traders can deliberately decide to cancel their orders before the expiration date (γH

periods). However, given that the expiration date, in this case, is very small (i.e.,

γH = 1), HF traders will have to pay the cancellation fee only on very fast order

cancellation. This scenario represents a very soft policy measure where most cancelled

orders are not charged the fee; ii.) when γH = 20, HF traders can decide to deliberately

cancel their orders before their expiration date (γH periods), which leads to the payment

of the cancellation fee c. However, older unexecuted HF orders which are automatically

withdrawn from the book after γH are not charged the cancellation fee. This scenario

represents a moderate policy measure where not all cancelled orders are charged the fee;

iii.) when γH = 1200 (i.e. it corresponds to the length of a Monte-Carlo iteration in our

setting), HF orders can only be intentionally cancelled by HF agents. In this case, HF

unexecuted orders stay in the LOB until the end of the simulation (i.e., T = γH = 1200)

and the cancellation fee is charged on all cancelled HF orders. This scenario represents

the imposition of a very stringent policy measure. Furthermore, given the wide variety of

fee levels currently used worldwide, we tested the effect of different levels of cancellation

fees, c varying from 0.01% to 1%. The results of the above experiments are reported in

Table 5.

First, and not surprisingly, we find that, when γH = 1, the imposition of a cancel-

lation fee is not effective in dealing with volatility and flash crashes, whatever the size

of the cancellation fee is. Indeed, in this case, price volatility, the frequency and the

duration of flash crashes are not significantly different with respect to the baseline case.

This is mainly explained by the fact that, when γH = 1, HF traders frequently cancel
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Table 5: HF traders’ order cancellation fees, price volatility and flash crash statistics for different values of
γH and different values of c. Values are averages across 50 independent Monte-Carlo runs. Monte-Carlo
standard errors in parentheses. (σP ): price returns volatility.

γH = 1 c σP Number of Avg. duration of
flash crashes flash crashes

0 0.017 4.652 7.552
(0.002) (0.390) (0.575)

0.01% 0.015 6.262 11.061
(0.001) (0.568) (0.632)

0.1% 0.017 6.808 10.209
(0.002) (0.793) (0.576)

1% 0.016 7 9.071
(0.002) (0.720) (0.568)

γH = 20 c σP Number of Avg. duration of
flash crashes flash crashes

0 0.016 4.636 7.139
(0.002) (0.398) (0.484)

0.01% 0.006 2.200 17.108
(0.000) (0.238) (0.957)

0.1% 0.006 1.750 9.264
(0.001) (0.123) (1.234)

1% 0.007 2.115 12.115
(0.001) (0.231) (1.162)

γH = 1200 c σP Number of Avg. duration of
flash crashes flash crashes

0 0.014 3.909 7.424
(0.001) (0.389) (0.531)

0.01% 0.002 1.000 27.000
(0.000) (0.000) (0.200)

0.1% 0.003 1.000 17.750
(0.000) (0.000) (1.794)

1% 0.002 − −
(0.000) − −
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their orders because they are not penalized by the cancellation fee.

In contrast, we find that, in scenarios (ii.) and (iii.), the introduction of a cancellation

fee may be an effective tool to deal with market volatility and the number of flash

crashes. Furthermore, the level of the fee matters, since we observe that the higher

is the cancellation fee, the greater are the effects on price volatility and the occurence

of flash crashes. In particular, under the most stringent scenario (i.e., γH = 1200),

flash crashes completely vanish for high values of the cancellation fee and this regulatory

instrument is thus very effective to deal with such extreme events. In the mild scenario

(i.e., γH = 20) this type of policy measure is still effective to curb HFT and to mitigate

flash crashes. These findings confirm one common claim against HFT according to

which HF high cancellation rates may destabilize markets (SEC, 2014). Accordingly,

preventing HF traders from quickly cancelling their orders decreases market volatility

and completely removes flash crashes from the market.

Furthermore, the introduction of a cancellation fee tends to significantly reduce HF

orders’ aggressiveness. Table 6 shows the (buy and sell) orders’ aggressiveness ratios for

both HF and LF traders in the mild scenario when γH = 20 and c = 0.01. Reported

values are unconditional and for different market phases. The table also compares orders’

aggressiveness ratios with the a cancellation fee to the one that emerge in presence of

a financial transaction tax (see next section). As this table reveals, the introduction

of the cancellation fee generates a situation where the aggressiveness of HF traders is

significantly lower than the one of LF traders, both unconditionally as well as in the

normal times and recovery phases. Not surprisingly, when γH = 20, the average bid-ask

spread is significantly lower than in the baseline (1.022 versus 1.577). These outcomes

are explained by the fact that the existence of the cancellation fee effectively discourages

HF traders to frequently cancel their orders, since they have an incentive to keep orders

with a lower expected profit.

However, and similarly to minimum resting times and circuit breakers, the beneficial

effects of cancellation fees come at the cost of a longer duration of flash crashes. Again,

this outcome is explained by the fact that in presence of a cancellation fee, HF orders

stay longer in the book. This does not only prevent the activation of HF traders in

the recovery. It also implies that HF quotes in the book tend to reflect close-to-crash

conditions. We therefore point out that preventing HF traders from quickly modifying

and cancelling their orders slows down the price recovery, since HF orders do not reflect

the most recent market conditions. As a result, the positive role HFT plays in the

recovery from the crash is significantly dampened. This is further supported by the fact

that, when γH = 20, the trading to book volume ratio is significantly lower than in the
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Table 6: Orders’ aggressiveness ratios for different categories of traders and different market phases when
γH = 20 and c = ftt = 0.01. Values are averages across 50 independent Monte-carlo runs. Monte-carlo
standard errors in parentheses.

Cancellation fee Financial transaction tax
LFT orders HFT orders LFT orders HFT orders

Normal times 0.157 0.036 0.133 0.159
(0.008) (0.003) (0.006) (0.005)

Crashes 0.000 0.999 0.000 0.866
(0.000) (0.000) (0.000) (0.039)

Recovery 0.332 0.109 0.069 0.215
(0.021) (0.015) (0.007) (0.032)

Unconditional 0.159 0.038 0.131 0.161
values (0.009) (0.003) (0.006) (0.005)

baseline (0.067 versus 1.147).22

Overall, we suggest that HF traders’ high cancellation rates are harmful for the

market since such a behavior favors market volatility and the occurrence of flash crashes.

The imposition of a cancellation fee is effective in reducing market volatility and to

mitigate flash crashes. Nevertheless, given the positive influence of HF traders during the

recovery phase, this type of regulatory policy may prevent HF traders from participating

to the recovery process and it may lengthen the duration of flash crashes.

3.2.4 Financial transaction taxes

To conclude our investigation of regulatory measures, we investigate the effects of the

introduction of a financial transaction tax (FTT). So far different schemes and levels

of taxes have been implemented all over the world. Examples are the stamp duty in

the UK, the French financial transaction tax on high-frequency trading and the pricing

scheme introduced on NYSE Euronext. In this work, we assume that HF executed orders

are charged a fee ftt > 0. Accordingly, HF traders will intentionally cancel their orders

whenever πEj,t < ftt ·Dj,t.

Although its recent introduction in some markets has mainly been motivated by the

goal of raising revenues in response to major financial crises (IMF, 2010; Pollin, Baker,

and Schaberg, 2003), financial transaction taxes have traditionally been indicated as a

22Note that values are averages across 50 independent Monte-Carlo runs.
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possible effective tool to discourage short-term speculation (Tobin, 1978), to curb neg-

ative effects of HFT practices and to improve systemic resilience of financial markets

(Griffith-Jones and Persaud, 2012). Nevertheless, the effectiveness of a financial trans-

action tax is still a controversial and highly debated topic among academics (see, for

instance, McCulloch and Pacillo, 2011, for a review of existing works on financial trans-

action taxes). On the one hand, empirical evidence on the relationship between FTT and

market quality delivers mixed results (see, for instance, Roll, 1989; Umlauf, 1993; Jones

and Seguin, 1997; Habermeier and Kirilenko, 2001; Hau, 2006; Gomber, Haferkorn, and

Zimmermann, 2015), although some studies (e.g. Colliard and Hoffmann, 2013) find that

an FTT may have a permanent positive effect on low-latency trading, due to lower order

aggressiveness and fewer rapid cancellations. On the other hand, many theoretical works

suggest that an FTT can have a stabilizing effect (Ehrenstein, 2002; Westerhoff, 2003,

2004; Westerhoff and Dieci, 2006).23 However, other theoretical works also point out that

such a stabilizing role is highly dependent on some important conditions such as market

liquidity (Haberer, 2004), the level of the tax (Giardina and Bouchaud, 2004; Dupont

and Lee, 2007; Demary, 2010; Fricke and Lux, 2015), the structure of the market (Pel-

lizzari and Westerhoff, 2009). Lastly, many scholars view HFT as the main providers of

liquidity in modern markets (Hendershott, Jones, and Menkveld, 2011; Menkveld, 2013).

In this view, a financial transaction tax would not be beneficial because it would hurt

the functioning of markets and reduce market quality (Dupont and Lee, 2007).

We therefore contribute to the above debate by running Monte-Carlo experiments

where we impose different levels of financial transaction tax as a percentage of HF

orders’ size, and we then investigate the resulting impact on market volatility as well as

on the occurrence and the duration of flash crashes. Table 7 shows the results of this

experiment when γH = 20.24 This table shows that the introduction of an FTT has

a beneficial impact on market stability and on the occurrence of flash crashes. When

the FTT is implemented in the market, we observe a reduction in price volatility and in

the number of flash crashes. Again, these positive effects come at the cost of a longer

duration of flash crashes. However, the effectiveness of financial transaction taxes is

much milder compared to other policy measures discussed so far (e.g. minimum resting

times and cancellation fees). In particular the reductions in volatility and in the number

of flash crashes with respect to the baseline are much lower than the one obtained with

cancellation fees of the same level as the tax (compare results in Table 7 to the results

23For a different view see the work of Mannaro, Marchesi, and Setzu (2008).
24Notice that we ran the above experiments for other values of γH and different levels of ftt. However,

simulation results are consistent with the ones presented in Table 7.
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Table 7: The effect of different transaction tax levels on price volatility and flash crash statistics when
γH = 20. Values are averages across 50 independent Monte-Carlo runs. Monte-Carlo standard errors in
parentheses. (σP ): price returns volatility.

γH = 20 ftt σP Number of Avg. duration of
flash crashes flash crashes

0% 0.016 4.636 7.139
(0.002) (0.398) (0.484)

0.05% 0.010 3.279 7.782
(0.000) (0.271) (0.843)

0.5% 0.009 2.697 8.144
(0.000) (0.249) (0.800)

1% 0.009 3.094 8.753
(0.000) (0.306) (0.690)

10% 0.004 1.429 11.286
(0.000) (0.107) (1.147)

50% 0.002 - -
(0.000) - -
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in Table 6 with the scenario γH = 20). Significant improvements are obtained only with

draconian tax rates (i.e. 10% or 50%, see Table 7). Moreover, the introduction of a

financial transaction tax does not lead to lower HF orders’ aggressiveness, as it was the

case for the introduction of a cancellation fee (see Table 6). On the contrary, with an

FTT HF orders’ aggressiveness is higher than the one of LF traders, especially in the

recovery phase.

The above outcomes are explained by the different mechanisms through which can-

cellation fees and transaction taxes transmit their effects in markets. As we discussed in

Section 3.2.3, a cancellation fee encourages HF traders to keep their orders in the book.

As a result, orders’ cancellation is reduced as well as orders’ aggressiveness. In contrast,

an FTT boosts order cancellation by increasing the required expected profit threshold

to keep an order in the book. Without a transaction tax, a HF trader has the incentive

to maintain the order in the book if the expected profit is non-negative πEj,t ≥ 0. In our

model, with a transaction tax, an order is kept in the book if πEj,t ≥ ftt ·Dj,t. Thus the

higher is the transaction tax rate, the larger is the amount of HF orders removed from

the book in each trading session. However, sufficiently large amounts of order cancella-

tions (as e.g., it is the case for draconian tax rates) have the paradoxical effect of almost

removing HF traders from the market, thus reducing volatility and leading flash crashes

to vanish.

Overall, the above results cast doubts on the effectiveness of financial transaction

taxes on HFT, especially if its validity is compared to the one other market-based

measures such as cancellation fees (or command-and-control ones like minimum rest-

ing times). Indeed, besides exhibiting the same trade-off between stability and resilience

already highlighted for the other policy measures, financial transaction taxes can achieve

significant reductions in volatility and have some incidence on financial crashes only if

they implemented at sufficiently high rates.

4 Concluding Remarks

We developed an agent-based model of a limit-order book (LOB) market based on Ja-

cob Leal, Napoletano, Roventini, and Fagiolo (2016) to analyze the effectiveness of a

set of regulatory policies on market volatility, and on the occurrence and the duration

of flash crashes. In the model, low-frequency (LF) traders interact with high-frequency

(HF) agents. The former can switch between fundamentalist and chartist strategies.

HF traders instead employ low-latency directional strategies to exploit the order book

information released by LF agents. In addition, LF trading rules are based on chronolog-
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ical time, whereas HF ones are framed in event time, i.e., the activation of HF traders

endogenously depends on past price fluctuations. Finally, HF traders can endogenously

cancel their orders from the book based on expected profits. In this framework, we an-

alyzed via Monte-Carlo simulations, the impact of policies like i.) trading halt facilities

(both ex-post and ex-ante designs); ii.) minimum resting times; iii.) order cancellation

fees; iv.) transaction taxes. These policies have been proposed and implemented both in

Europe and in the US to mitigate the possible damaging effects of HFT and to prevent

flash crashes.

Computer simulations reveal that, policies slowing down the order cancellation of

high-frequency traders, like the implementation of minimum resting times or cancellation

fees lead to significant improvements in terms of lower market volatility and incidence of

flash crashes. Also the introduction of a financial transaction tax, by discouraging HFT,

can improve market stability, although the effectiveness of such a measure is much lower

compared to policies targeting order cancellation, and effects are relevant only for high

values of the tax. These results are all consistent with the remarks in Haldane (2011),

who conjectures that the above set of policies are effective because they tackle the “race

to zero” of HFT at source by imposing a speed limit on trading. At the same time, all

these policies are characterized by a trade-off between market stability (in terms of lower

volatility and number of flash crashes) and market resilience (in terms of longer recoveries

from a crash). This trade-off emerges because of the positive role played by HFT in

quickly restoring good liquidity conditions after a crash. Regulatory policies introduce

important distortions in such a process, thereby contributing to lengthen the duration

of price-recoveries. The beneficial impact of HFT on price resilience also underlies the

results concerning the study of the impact of circuit breakers, and in particular explain

why ex-post circuit breakers have no effect on volatility and have a negative impact on

the duration of flash crashes. In contrast, we find that ex-ante circuit breakers are very

effective, as they markedly reduce price volatility and completely remove flash crashes.

Overall, our results suggest that regulatory policies can have quite complex effects

on markets populated by low and high-frequency traders. From the viewpoint of policy

design, our analysis highlights in particular the importance of understanding the dif-

ferent transmission mechanisms through which the effects of regulatory policies unfold.

Moreover, it points out the need of taking into account the fundamental dual role played

by high-frequency traders. On the one hand, high-frequency trading can be the source of

extreme events like flash crashes by placing aggressive sell orders and removing liquidity

from the market. On the other hand, it can play a leading role in the recovery from the

crash, by quickly restoring liquidity.
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Our analysis could be extended in several ways. First, we could enlarge the set of

policies considered, by including measures such as make/take fees, restrictions on tick

size, position limits. Second, so far, we have only considered one asset market in the

model. However, regulatory authorities should also focus on the linkages across markets,

recognizing that some coordination is needed to ensure the effectiveness of regulatory

interventions (see CFTC and SEC, 2010; Furse, Haldane, Goodhart, Cliff, Zigrand,

Houstoun, Linton, and Bond, 2011), especially in high frequency markets, where HF

traders can rapidly process and profit from the information stemming from different

exchanges (e.g., Wah and Wellman, 2013). The May 6, 2010 highlighted, for instance,

the importance of the the interconnectedness of equities and derivatives markets.
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Appendix A

A.1 Stylized Facts of Financial Markets

We follow an indirect calibration approach to the validation of our agent-based model
(see Windrum, Fagiolo, and Moneta, 2007, for a discussion of this approach) by checking
its ability to jointly reproduce several stylized facts of financial markets with the same
configuration of parameter values.

First, in line with the empirical evidence (e.g., Fama, 1970; Pagan, 1996; Chakraborti,
Toke, Patriarca, and Abergel, 2011, and references therein), we find that our model gen-
erates zero autocorrelation values of price-returns (calculated as logarithmic differences,
see Figure 4). In contrast to price returns, the autocorrelation functions of absolute
returns display a slow decaying pattern (cf. Figure 5), thus indicating the presence
of volatility clustering in our simulated data (Mandelbrot, 1963; Cont, Potters, and
Bouchaud, 1997; Lo and MacKinlay, 1999).
Another widely-studied property of financial markets is the presence of fat tails in the
distribution of price returns. We plot in Figure 6 the density of pooled returns across
Monte-Carlo runs (stars) together with a normal density (solid line) fitted on the pooled
sample. As the figure shows, the distribution of price returns significantly departs from
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Figure 4: Price-returns sample autocorrelation function (solid line) together with 95% confidence bands
(dashed lines). Values are averages across 50 independent Monte-Carlo runs.
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Figure 5: Sample autocorrelation functions of absolute price returns (solid line) together 95% confidence
bands (dashed lines). Values are averages across 50 independent Monte-Carlo runs.
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Figure 6: Density of pooled price returns (stars) across 50 independent Monte-Carlo runs together with
a Normal fit (solid line). Logarithmic scale on y-axis. Densities are estimated using a kernel density
estimator using a bandwidth optimized for Normal distributions.
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the Gaussian benchmark (Mandelbrot, 1963; Cont, 2001). Moreover, Figure 7 shows
the tail of the distribution of (negative) price returns together with a power-law fit.25

In line with empirical evidence (see Lux, 2006, and references therein)‘, the power law
distribution provides a good approximation of the simulated data of tail returns.

A.2 Parameters

Table 8: Parameters values in the baseline scenario

Description Symbol Value

Monte Carlo replications MC 50
Number of trading sessions T 1, 200
Number of low-frequency traders NL 10, 000
Number of high-frequency traders NH 100
LF traders’ trading frequency mean θ 20
LF traders’ min and max trading frequency [θmin, θmax] [10,40]
Chartists’ order size parameter αc 0.04
Chartists’ shock standard deviation σc 0.05
Fundamentalists’ order size parameter αf 0.04
Fundamentalists’ shock standard deviation σf 0.01
Fundamental value shock standard deviation σy 0.01
Fundamental value price drift parameter δ 0.0001
LF traders’ price tick standard deviation σz 0.01
LF traders’ intensity of switching ζ 1
LF traders’ resting order periods γL 20
HF traders’ resting order periods γH 20
HF traders’ activation threshold distribution support [ηmin, ηmax] [0,0.2]
Market volumes weight in HF traders’ order λ 0.625
size distribution
HF traders’ order price distribution support [κmin, κmax] [0,0.01]
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Ané, T. and H. Geman (2000), “Order flow, transaction clock and normality of asset
returns”, Journal of Finance, 55: 2259–2284.

Angel, J. J., L. E. Harris and C. S. Spatt (2011), “Equity trading in the 21st century”,
The Quarterly Journal of Finance, 1(01): 1–53.

Apergis, N. (2014), “The role of circuit breakers in the oil futures market”, Journal of
Economics and Finance, pp. 1–16.

Avellaneda, M. and S. Stoikov (2008), “High-frequency trading in a limit order book”,
Quantitative Finance, 8(3): 217–224.
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