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Abstract: We investigate the determinants of driving speed in large
us cities. We first estimate city level supply functions for travel in an
econometric framework where both the supply and demand for travel
are explicit. These estimations allow us to calculate a city level index
of driving speed and to rank cities by driving speed. Our data suggest
that a congestion tax of, on average, about 1.5 cents per kilometer yields
welfare gains of about 30 billion dollars per year, that centralized cities
are slower, that cities with ring roads are faster, and that the provision
of automobile travel in cities is subject to decreasing returns to scale.
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1. Introduction

The average us driver spent about 72 minutes driving per day in 2008; the average household

devoted nearly 9,000 dollars or about 18% of its expenditure to transportation, 95% of which went

to buying, maintaining, or operating a private vehicle; in a typical year, the us spends about 150

billion dollars on road construction and maintenance; and the value of capital stock associated

with road transportation in the us tops 7 trillion dollars (us bts, 2013). In short, household road

transportation is economically important.

The problem of understanding household transportation behavior is also conceptually difficult.

Road transportation allows households to get to work, buy consumption goods, and enjoy leisure.

Travel may also have independent consumption value. For households, the transportation prob-

lem involves decisions about the number, purpose, destinations, mode and the time of departure

for their trips. These decisions in turn affect the amount and quality of household leisure, con-

sumption of housing, choice of jobs, retail stores, amenities, and friends.

Underlying all of these choices is a road travel technology that governs the relationship between

resources directed to the provision of transportation and road travel. We estimate this relationship.

As we will see, the relationship between aggregate city travel time, road infrastructure and speed is

formally equivalent to a production function for travel. Therefore, it implies marginal and average

cost curves and, together with information about travel demand, describes the equilibrium provi-

sion of road travel in cities. This allows us to evaluate the welfare implications of counterfactual

infrastructure policies and to arrive at estimates of the deadweight loss of congestion.

We estimate that the deadweight loss from congestion is about 30 billion dollars per year. We

find that the high costs of expanding the roadway imply that larger welfare gains are to be had

by managing demand for travel, rather than by expanding supply of roads. In particular, our

estimates suggest that gasoline tax of about 30 cents per gallon would be a welfare improving

response to traffic congestion. These are precisely the sorts of calculations that economists have

sought since Vickrey’s pioneering characterization of traffic congestion (Vickrey, 1963).

The description of travel provision above implicitly assumes a scalar ‘price’ for travel. Reality

is more complicated. Our data indicate that the speed of trips increases systematically with their

distance. That is, cities do not offer a scalar cost of travel, but a menu of unit travel costs that

vary with the distance of the trip to be undertaken. Given this, our exercise requires an important
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preliminary step. We must estimate the menu of speed and distance combinations on offer in each

city and use this menu to calculate a scalar speed index to describe the cost of travel in a city. The

process of calculating our speed index is exactly analogous to the calculation of more conventional

prices indices, and our speed index describes the cost of road travel in a city in exactly the same

sense that a city specific price index would describe the price of goods.

Complicating our exercise further, we expect individual drivers to adjust their behavior in

response to the menu of trip distance and speed combinations they face. Estimating a city’s speed

distance menu requires an econometric response to this simultaneity problem. Our econometric

model explicitly accounts for this simultaneity problem. We exploit demand variation arising from

differences in trip distances across trips made for different purposes to identify the supply rela-

tionship. Our results suggest that this simultaneity problem is both economically and statistically

important.

In addition to its importance to our subsequent investigation of the technology of travel pro-

vision, our speed index is of independent interest as a measure of city level the cost of travel.

In particular, it provides an alternative to the Texas Transportation Institute’s (tti) widely cited

congestion index (Schrank and Lomax, 2009, Schrank, Lomax, and Turner, 2010). However, unlike

the tti index, our index is grounded in economic theory and hence can be more easily interpreted.

We find that Miami is the slowest city in the us and that it is 28% slower than Louisville, the fastest

city in our sample.

Our investigation of the relationship between our speed index, aggregate vehicle travel time

and roads is in the spirit of standard analyses of factor productivity. Since the supply of roads or

aggregate travel time in a city may reflect unobserved determinants of speed, we are careful to

account for the probable endogeneity of inputs in this estimation. Our main findings are that the

elasticity of speed with respect to roads is about 0.09 whereas the elasticity of speed with respect to

aggregate vehicle travel time is -0.13. As we will show below, that the sum of these two numbers is

negative suggests that travel is produced with decreasing returns to scale in us cities. We also find

suggestive evidence that more centralised cities are slower and that cities with more ring roads are

faster.

Our investigation also addresses one of the central questions of transportation economics, ‘what

does the speed-flow curve look like?’ The current literature on this question finds that speed

decreases by between 50 to 60% in response to a doubling of the number of vehicles on a road. Our
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methodology allows us to estimate a similar elasticity describing the relationship between speed

and the total time devoted to travel. Our estimates for this elasticity are on the order of 15%.

This reflects two important methodological differences. First, our unit of study is a city/year,

while the existing literature typically considers particular roads or small areas at particular times.

By considering averages over large areas and long time periods, we calculate a speed flow curve

that implicitly reflects possible equilibrium response to traffic such as changes in routes or the

timing of trips. While segment specific estimates are clearly of use, for the purpose of setting

metropolitan or national transportation policy, our city level estimates appear to be more relevant.

Second, extant estimates of speed flow curve have largely ignored the fact that observed travel

behavior results from an equilibrium that depends upon both supply and demand conditions.1

Our econometric strategy deals with this problem explicitly.

Our results are also broadly relevant to urban economics. In the ubiquitous monocentric models

based on the work of Alonso (1964), Mills (1967), and Muth (1969) and in their multicentric

extensions, unit travel cost is usually the fundamental parameter that determines the location

choices of households within cities, their consumption of housing, land use, and the population

size of cities. Our work provides better estimates for this fundamental parameter, and how it varies

with population and road infrastructure. We also refine the results in Duranton and Turner (2011).

Where Duranton and Turner (2011) is primarily concerned with the relationship between the stock

of roads in a city and the equilibrium level of traffic, we are here more interested in uncovering

the underlying structure of the supply of travel. This, in turn, allows a more explicit evaluation of

welfare than this earlier work permitted.

Finally, while productivity in the manufacturing and service sectors is extensively studied, in

spite of its size, the transportation sector has received much less attention.2 The estimation of

production functions is usually afflicted by serious issues of unobserved prices and the simul-

taneous determination of inputs and productivity. The first part of our methodology, which

estimates the supply of travel in cities, allows us to recover appropriate prices for urban travel.

The specific nature of the two main inputs into the production of travel also enables us to use

1In their authoritative book, Small and Verhoef (2007) exposit the supply and demand for travel separately, indeed,
in different chapters. The fact that some variables may affect both supply and demand is recognised but only discussed
in the context of car purchases. This absence of recognition of this simultaneity problem is all the more puzzling since
transportation theory makes heavy use of supply and demand frameworks which constitute the starting point of all the
economic calculations of the costs of congestion.

2Public transportation is an exception. Following Meyer, Kain, and Wohl’s (1965) classic work, the estimation of the
productivity of public transportation providers is a standard exercise (see Small and Verhoef, 2007, for a review).
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plausible instruments to circumvent the problem of the simultaneous determination of inputs and

productivity. Our estimated city-level supply functions allow us to investigate the cross-sectional

determinants of efficiency in transportation. Consistent with the large extant literature investi-

gating productivity in firms (e.g., Syverson, 2011), we find that some cities are dramatically more

efficient than others. This suggests that there may be large gains if slow cities can emulate fast

cities. As highlighted above, we also find evidence of mild decreasing returns to scale in the

production of transportation and of a low share for the fixed factor (roads). This is in contrast

with standard findings for the production of consumption goods.

2. Data

Our data describe aggregate travel behavior in a set of large us cities and the individual driv-

ing trips taken by a sample of each city’s residents. Our cities are mainly us (Consolidated)

Metropolitan Statistical Areas (msa) drawn to 1999 boundaries. msas are census reporting units

and are aggregations of counties containing a major urban center and its surrounding region. To

assess the robustness of our findings, we also sometimes use us Primary Metropolitan Statistical

Areas (pmsa). Our analysis relies heavily on household survey data. To ensure that we observe a

sufficiently large number of households in each msa, in most of our work we consider a sample

of the 100 largest msas according to their census population in 2010. When our analysis requires a

large sample of households in each city, we restrict attention to the 50 largest msas.

Data on individual travel behavior come from the 1995-1996 National Personal Transportation

Survey and the 2001-2002 and 2008-2009 National Household Transportation Surveys. In a slight

abuse of language, we to refer these surveys as the 1995, 2001 and 2008 nhts. Each of the nhts

surveys reports household and individual demographics for a nationally representative sample of

households.3 More importantly, the ‘travel day file’ of each nhts survey codifies a travel diary kept

by every member of each sampled household. For each adult member of participating households

we observe the distance, duration, mode, purpose, and start time for each trip taken on a randomly

assigned travel day. See Appendix A for further details. We eliminate trips entered by non-drivers

in order to focus our investigation on the movement of vehicles rather than the movement of

people. In our sample of 100 msas, the nhts describes 419,331 trips, 102,462 drivers and 71,287

3The sample may not be representative for smallers msas with fewer observations, but we control for individual and
trip characteristics.
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households in 2008; 168,683 trips, 40,333 drivers and 27,574 households in 2001; and 152,512 trips,

33,860 drivers and 22,592 households in 1995.

We aggregate to describe travel behavior at the msa level. To estimate msa vehicle kilometers

traveled (vkt) and vehicle time traveled (vtt), we sum the time and distance of each trip over all

of an individual’s trips. We then compute the average distance and time driven by an individual

in each msa. We multiply this individual average by msa adult population (from the us Census)

to obtain total msa vkt and vtt.

Our data on msa road infrastructure are from the 1995, 1996, 2001, 2002, and 2008 Highway

Performance and Monitoring System (hpms) Universe and Sample data. The us federal govern-

ment administers the hpms through the Federal Highway Administration in the Department of

Transportation. This annual survey, which is used for planning purposes and to apportion federal

highway funding, collects data about the entire interstate highway system (hpms Universe data)

and a large sample of other roads in urbanized areas (hpms Sample data).

The hpms Universe data describe every segment of interstate highway (ih) and allow us to

calculate the number of lane kilometers of ih in each msa for each nhts year. To calculate lane

kilometers of major urban roads (mru) in the urbanized parts of an msa, we sum lane kilometers

for four classes of roads reported in the hpms Sample data; ‘collector’, ‘minor arterial’, ‘principal

arterial’ and ‘other highway’. We omit a residual class, ‘local roads’ because they are not systemat-

ically reported. To ensure that the resulting measures of road infrastructure are comparable to the

nhts surveys, which are collected over two years, we average each of the hpms variables over the

two relevant nhts sampling years.

Table 1 contains summary statistics for our main variables in the 100 largest msas. Means and

standard deviations for trip-level variables are reported in Panel a. Trip distance and trip duration

increase from 1995 to 2001, from 12.5 to 13.2 km and from 15.1 to 17.6 minutes. Some of the increase

in average trip duration is accounted for by a decrease in average trip speed (computed across

trips) from 43 to 39 km/h. Average trip duration, distance, and speed are very similar in 2001 and

2008. The average number of trips decreases from 4.5 in 1995 to 4.1 in 2008. We note that 1995 nhts

survey asks respondents to report the time it took to get to their destination, while the 2001 and

2008 surveys ask respondents to report exact departure and arrival times. This slight difference
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Table 1: Summary Statistics for the 100 largest MSAs

Variable 1995 2001 2008

Panel A. Trip-level data based on the NHTS

Mean trip distance (km) 12.5 13.2 12.8
(16.2) (17.1) (16.4)

Mean trip duration (min) 15.1 17.6 17.5
(14.2) (15.3) (15.2)

Mean trip speed (km/h) 43.1 39.5 38.5
(23.0) (22.5) (22.2)

Mean trip number (per driver) 4.5 4.2 4.1
(2.6) (2.4) (2.3)

Total observed number of trips 152,512 168,683 419,331

Panel B. MSA-level data based on the HPMS and Census

Mean daily vehicle kilometers traveled (’000,000 km) 51.3 59.7 64.2
(74.7) (85.1) (90.9)

Mean daily vehicle travel time (’000,000 min) 62.1 79.2 87.3
(91.4) (114.6) (126.2)

Mean lane km (interstate highways, ’000 km) 2.1 2.3 2.4
(2.3) (2.4) (2.4)

Mean lane km (major urban roads, ’000 km) 10.5 11.9 14.4
(13.5) (16.1) (18.2)

Mean MSA population (’000) 1,777 1,923 2,090
(2,715) (2,877) (3,028)

Notes: Authors’ computations using NHTS sampling weights to compute the means of Panel A. Standard
deviations in parentheses. Total vehicle kilometers traveled and total vehicle time traveled are estimates
for privately operated vehicles in MSAs. Interstate highways are for entire MSAs. Major urban roads are
measured within the urbanized area of MSAs.

in wording may partly explain the observed decrease in speed between 1995 and 2001.4 We also

note that driving is sensitive to the business cycle, another reason to be cautious when comparing

across years.

Panel b of table 1 reports means and standard deviations for msa-level aggregates. Average vkt

and vtt grow from 1995 to 2008, by 20% for vkt and by 29% for vtt, with much of the increase

in vkt accounted for by the sample average msa population growth of 10%. Lanes of interstate

highway grow by 14% between 1995 and 2008 while lanes of major urban roads grow by 40%.

While msa boundaries are constant over time, urbanized area boundaries are not, so that some of

4To support this conjecture we note that our results below show that the drop in speed in 2001 is nearly entirely
accounted by a small increase of slightly above 1 minute in the cost of the first kilometer of each trip. All comparisons
between the 1995 nhts and other years are subject to this caveat.
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Table 2: Mean trip distance in kilometers, by trip purpose, for the 100 largest MSAs

Trip purpose Frequency (1995-2008) km 1995 km 2001 km 2008

To/from Work 23.6% 18.6 18.8 19.1
(19.0) (18.8) (19.1)

Work-related business 3.3% 17.6 20.9 18.4
(21.0) (23.4) (21.5)

Shopping 21.8% 7.8 8.6 8.2
(11.3) (12.1) (11.2)

Other family/personal business 24.3% 9.4 10.1 9.4
(12.7) (14.3) (13.7)

School/church 4.6% 11.5 11.6 12.2
(13.3) (13.6) (13.5)

Medical/dental 2.2% 13.3 12.8 13.0
(14.9) (13.2) (13.5)

Vacation 0.3% 35.1 34.5 25.6
(41.0) (40.3) (34.6)

Visit friends/relatives 5.7% 15.7 17.8 17.2
(20.2) (23.0) (22.7)

Other social/recreational 13.8% 12.4 12.2 11.1
(17.1) (16.4) (15.1)

Other 0.5% 13.4 20.3 22.4
(18.6) (25.4) (23.9)

Notes: Authors’ computations using NHTS sampling weights and all three years of data (pooled together to
compute frequencies) by averaging across all trips. Standard deviations in parentheses.

the growth in lane kilometers of major urban roads reflects the expansion of urbanized areas.5

The nhts data report the purpose of each trip using 10 consistently defined categories such as

‘to/from work’, ‘shopping’, or ‘medical/dental’. Table 2 shows the mean and standard deviation

of distance by trip purpose for the msas in our sample. There is significant and persistent variation

in average trip distance across trip purposes. Shopping trips are shortest at about 8.2 km on

average in 2008. Vacation trips are the longest and average 25.6 km. We note that ‘vacation’ and

‘other’ trips occur infrequently in the data and we sometimes exclude them from our analysis.

Figure 1 plots log distance and log (inverse) speed for two groups of trips in Chicago in 2008.

The triangles represent commute trips and the circles represent trips taken for one of two other

purposes, school/church or medical/dental. It is clear from the figure that for both groups, speed

is higher for longer trips. In fact, this relationship between speed and trip distance is one of the

most important features of our data. Consistent with sample averages reported in table 2, for

5Schrank and Lomax (2007) argue that vkt grows more quickly than road capacity. While our data confirm this
for Interstate Highways, this is not the case for major urban roads. Besides the issues of boundary changes, we also
note that our nhts based travel estimates capture more travel than do the hpms based estimates on which Schrank and
Lomax (2007) is based. See Duranton and Turner (2011) for a more extensive discussion of the differences between hpms

and nhts data.
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Figure 1: Speed and distance for some Chicago trips in 2008.
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Commute trips are represented by triangles (mean log distance 2.52, plain line). Church, school, medical, and dental
trips are represented by circles (mean log distance 1.81, dashed line). Linear trend line in black and 5th-order polynomial
trend line in green (grey).

Chicago in 2008 commute trips are about twice as long as the other class of trips described in

figure 1 (20.3 km for commutes, 9.0 km for school/church trips, and 12.6 km for medical/dental

trips). The figure also represents two trend lines: linear and 5th-order polynomial. The high-order

polynomial stays remarkably close to the linear trend, deviating only for very short trips that

account for a small fraction of total travel. We see a similar pattern in other cities.

In addition to the nhts and hpms, we exploit several other sources of msa level data as explana-

tory variables or as instrumental variables. Specifically, in our investigation of the determinants

of msa driving speed, we consider a number of geographical characteristics of cities: ruggedness,

elevation range, and cooling and heating degree days. We also develop novel variables to measure

urban form and the shape of the road network in cities. Finally, we use variables describing his-

torical transportation networks (1947 interstate highway plan, 1898 railroads, and old exploration

routes of the continent dating back to 1528) as instruments for the modern road network. Details

about these variables are available in Appendix A and in Duranton and Turner (2011).
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3. A theory of speed and the supply of travel

3.1 A city level model of the equilibrium provision of VKT

We begin by defining a production function for vehicle kilometers travelled. Let i index our sample

of cities, Ri measure city i’s stock of roads, vtti be aggregate vehicle travel time for the city, Xi be

a set of other city characteristics and let νi be an error term. With this notation in place, we can

define

log vkti = α log Ri + (1− θ) log vtti + Xiφ + νi . (1)

This is a standard Cobb-Douglas production function: vehicle kilometers traveled is our measure

of output; roads and vehicle time traveled are factors of production; α is the share of roads in

the production of travel; 1 − θ is the share of vehicle travel time; and finally, Xiφ + νi is total

factor productivity, the ability of a city to move its residents conditional on its stock of roads and

aggregate time spent in cars. Some of the determinants of that productivity may be observed and

included in Xi. Other determinants are unobserved and included in the residual νi.

Vehicle kilometers traveled is equal to vehicle time traveled multiplied by speed, S: vkt ≡

vtt× S. Using this expression, we can rewrite equation (1) as a regression of speed on roads and

vehicle travel time,

log Si = α log Ri − θ log vtti + Xiφ + νi . (2)

Although equation (2) is equivalent to the travel production equation (1), we prefer to focus on

the former in the second of our two main empirical exercises for a number of reasons. First, the

dependent variable, Si – an index describing the speed of travel in an msa, is a measure of travel

efficiency that is easier to interpret than city aggregate vkt. Second, the exact definition of is Si

is non-trivial as we discuss below. More generally, focusing on speed as dependent variable will

make our discussion of identification issues clearer. Third, equation (2) maps more directly into

our welfare analysis.

For later reference, note that we can determine the nature of returns to scale in the provision of

automobile transportation from the production function (1) and estimates of α and θ. In particular,

α − θ is a measure of returns to scale and if α < θ there are decreasing returns to scale in the

production of vkt.

From equation (2) we can easily derive average and marginal cost curves for vkt in a city. To

proceed, define − log Ωi ≡ α log Ri + Xiφ + νi. Substituting in to (2), rearranging and suppressing
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the i subscript for legibility gives,

C ≡ 1/S = Ω vtt
θ . (3)

Equation (3) gives the average cost of a kilometer of travel as a function of msa aggregate travel

time. Using the fact that vtt = vkt/S = vkt× C and substituting into equation (3) implies,

C = AC(vkt) = Ω
1

1−θ vkt

θ
1−θ . (4)

Roads are congestible and, in an equilibrium where access to the roads is not priced, drivers do not

account for the costs their presence on the roads imposes on their fellow drivers. Hence, Equation

(4) is an aggregate inverse supply curve for automobile travel in an msa as all drivers experience

the prevailing average time cost of travel. Multiplying the average cost of travel in equation (4) by

vkt and differentiating gives the marginal time cost of travel

MC(vkt) =
C

1− θ
. (5)

This marginal cost function reflects the private cost of a marginal kilometer of travel and also the

extent to which this marginal kilometer slows down other drivers. That is, this marginal cost curve

reflects the full social cost of travel and congestion. Thus, from regression equation (1) we derive

the marginal and average cost curves for vkt.

Turning to the demand for vkt, we define it as vkt = ΓC−σ, where Γ is a constant and σ is

the price elasticity of the demand for vkt. We rearrange this expression to write it as an inverse

demand curve,

C = Γ
1
σ vkt

− 1
σ . (6)

Following Vickrey (1963), figure 2 illustrates a simple partial equilibrium model of the provision

of automobile travel. The vertical axis of this figure describes the cost of travel in minutes per

kilometer, the inverse of speed. The horizontal axis describes vehicle kilometers travelled per year

in the city. Equilibrium travel, vkt
eq
1 , is determined by the intersection of demand and average cost,

AC1. The optimal level of travel, vkt
opt
1 , is determined by the intersection of marginal cost, MC1,

and demand. The deadweight loss in equilibrium is given by the hatched region with vertices A,

B, and C. This is the economic cost of excess equilibrium congestion. The optimal congestion tax is

given by the height of the segment AH. With a tax of |AH| per kilometer, we shift up the average

cost curve AC1 so that the intersection of AC1(vkt
opt
1 ) + |AH| is equal to the demand at vkt

opt
1 . To
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Figure 2: Welfare analysis.
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calculate this tax, we must evaluate the difference between supply and marginal cost at optimal

vkt.

Equating average cost (4) and demand (6) we can solve for equilibrium vkt. Optimal vkt results

from equilibrating demand (6) and marginal cost (5). In Appendix B, we derive expressions for

equilibrium and optimal travel as a function of parameters. In the same appendix, we also derive

two expressions that will facilitate the welfare and policy analysis presented later.

The first of these is,

∆ =

[(
1− (1− θ)

σ
1−θ(1−σ)

)
− σ

σ− 1

(
1− (1− θ)

(σ−1)(1−θ)
1−θ(1−σ)

)]
. (7)

This expression gives the deadweight loss from congestion in a particular city as a proportion of

the total travel time. It depends on just two parameters, the supply and demand elasticities, θ and

σ. The second is an expression for τ∗, the optimal congestion tax as a function of parameters and

observed quantities,

τ∗ = θ(1− θ)
σθ

1−θ(1−σ)
−1Ceq (8)

3.2 A model of individual travel behavior and city level trip length supply schedules

The preceding analysis describes the behavior of city level aggregates, including a city level index

of the speed of travel. Such an aggregate measure of travel speed must derive from individual
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trips. However, ‘the speed of travel in a city’ is not well defined at the trip level. Cities do not

offer a single speed of travel. They offer a menu of feasible speed and trip distance combinations.

Therefore, we now turn to the problem of measuring the speed of travel in a city.

To describe a city’s ability to supply road travel we will eventually calculate a speed index

analogous to a Laspeyres price index. Loosely speaking, this index will indicate the time premium

required to complete a standard bundle of trips in a given city relative to an average city. Before we

compute this index, we need to estimate the menu of feasible speed and trip distance combinations

in each city.

More specifically, we need to estimate the time cost of travel per unit distance for any trip of a

given distance in each city. Although this is again a supply relationship that relates the time cost of

travel to vehicle kilometers traveled, these quantities differ from those we discussed in the context

of figure 2. We are here concerned with the behavior of an individual in a given city choosing how

far to drive to accomplish a particular errand, taking as given the behavior of all other drivers and

all other city level characteristics.

Our unit of observation is a trip, k, made by a particular driver, j, in a particular city, i. Let

xijk denote distance for trip ijk in kilometers, and cijk the log time cost of the trip in minutes per

kilometer. Note that c, the time cost of distance, is simply the inverse of speed. Let τijk ∈ {1,..T}

index the possible purposes for trip ijk and let χτ
ijk be an indicator variable that is one for trips of

type τ and zero otherwise. We are primarily concerned with variation in trip speed and distance

within a city and therefore often omit the i subscript to increase legibility.

As figure 1 shows, the relationship between speed and distance is an important feature of our

data. The unit price of travel is declining in trip length. Given this, define the inverse trip length

supply schedule to be

cs
jk = x−γ

jk exp(c + δj + εjk). (9)

Here, the locus cs
jk describes technically feasible prices and trip lengths. It reports the average

price in minutes per kilometer, on a particular trip of length x. The parameter δj measures drivers’

abilities to drive fast on all trips and reflects characteristics such as the driver’s skillfulness or

the proximity of his or her home to a freeway. The parameter εjk measures a driver’s ability to

drive fast on a particular trip and reflects events such as stormy weather or road construction. The
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parameter c is the (log) time cost of a one kilometer trip when δj = 0 and εjk = 0. Finally, γ is the

price elasticity of the supply of distance.

The trip length supply schedules in equation (9) are central to our analysis. They allow us

to calculate the total time required to complete standardized trip bundles, components of our

speed index. Estimating these curves, the parameters c and γ in particular, is the goal of our

first empirical exercise.

Let cd
jk be driver j’s willingness to pay, in minutes per unit distance, for trip k. Define the driver’s

willingness to pay schedule as,

cd
jk = x−β

jk exp(ΣT
τ=1Aτχτ

jk + ηj + µjk), (10)

Since χτ
jk is a trip purpose indicator for trip k, the summation ΣT

τ=1Aτχτ
jk describes a trip purpose

specific constant and allows the intercept of the driver’s willingness to pay curve to vary with

trip purpose. Aτ measures the log willingness to pay for a one kilometer trip of type τ when

ηj = 0 and µjk = 0. With β > 0, the unit cost of distance falls with trip length for all trip

purposes. Hence, drivers are willing to drive longer distances to their preferred restaurant or

supermarket as the time cost per unit of distance falls. Similarly, they may also choose to reside in

more remote locations. The ‘slope’ parameter β is the price elasticity of the willingness to pay for

trip distance and determines the rate of decline in a driver’s log willingness to pay for a kilometer

as trip distance increases. The parameter ηj describes a driver’s idiosyncratic willingness to give

up time for distance depending on his innate impatience or value of time. The parameter µjk

reflects trip-specific factors which affect willingness to give up time for distance, for example, how

busy a day the driver is having.

Since drivers recognize that their choice of distance affects the speed of travel, they choose trip

distance to satisfy

cd = MC(x) ≡ d(x cs)

dx
= (1− γ)cs. (11)

That is, the marginal willingness to pay for trip distance equals the marginal cost of trip distance.

Note that despite affecting the unit price of distance with their choice of trip length, drivers are

still price takers in the sense that they take the trip length supply schedule as given. In particular,

they do not recognize that their driving behavior may contribute to congestion in the network and

thus shift the whole supply schedule.
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Figure 3: Model of equilibrium trip distance.
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Figure 3 illustrates this equilibrium. The axes on this figure are identical to those of figure 1.

In figure 3, cs
1 describes our supply relationship for a particular realization of ε. The marginal

cost curve associated with this average cost curve is MC1, a dashed line. cd
1 describes a driver’s

demand schedule for a particular realization of µ. An optimizing driver chooses trip distance, x1,

to equalize marginal trip cost with its marginal value. The resulting unit price of distance for this

trip is c1, which is determined by the average cost curve. The curves cs
2 and cd

2 reflect different

draws of ε and µ and give rise to different equilibrium trip distance and speed. Our data consist of

equilibrium pairs of speeds and distances, e.g., the points a and b: this is exactly what is illustrated

by figure 1. Our goal is to estimate the average cost functions, cs
1 and cs

2. From the figure, it is

clear that naively plotting the line of best fit for these equilibrium pairs, the dotted line connecting

points a and b, need not accomplish this objective. To estimate average cost curves, we require
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variation in demand that is unrelated to variation in supply.6

More formally, using equations (9) and (10) in (11), and taking (natural) logarithms we arrive at

the following system of equations,

log xjk = Dj + ΣT−1
τ=1 Ãτχτ

jk + ζ jk (12)

log cjk = c + δj − γ log xjk + εjk , (13)

where c is the observed equilibrium price, Dj ≡ −c
β−γ + AT

γ−β +
ηj−δj
β−γ , Ãτ ≡ AT−Aτ

γ−β , τ ∈ {1,..,T − 1},

and ζ jk ≡
µjk−εjk

β−γ . Note that the equilibrium price is cs, not cd, since equation (11), requires the two

quantities to diverge in equilibrium.

Inspection of equations (12) and (13) shows that Aτ, the willingness to pay for a trip of type τ,

χτ
jk, the dummy for the trip being of type τ, and ηj (a component of Dj) the individual character-

istics affecting the demand for trips of driver j, all appear in the distance equation (12), but not in

the speed equation (13). It follows that variables measuring these quantities are candidate sources

of exogenous variation in demand with which to resolve our simultaneity problem.

In practice, it is hard to think of individual characteristics that affect the demand for trips but

not the ability to produce them. Educational attainment affects a driver’s opportunity cost of time

and hence demand for trip distance, but may also affect driving skills and thus the ability to drive

at a high speed. This suggests that individual characteristics are unlikely to provide good sources

of exogenous variation in demand.

Trip type indicators are more defensible sources of variation with which to identify the inverse

supply curve described by equation (9). Trip type dummies occur explicitly in equation (12) and

not in equation (13), so the rationale for using them as an instrument is transparent. Denote these

instruments Zjk. As made clear by the discussion above, valid instruments for trip distance must

satisfy two conditions. First, they must predict trip distance conditional on the other controls:

cov(Zjk, xjk|.) 6= 0 (relevance). We demonstrate that this condition holds below. Second, instru-

ments must be uncorrelated with the error term of equation (13): cov(Zjk, εjk|.) = 0 (exogeneity).

If trip type dummies are orthogonal to εjk then we are not more (or less) likely to observe trips

of type τ when such trips are particulary fast. In fact, we suspect that some trips (e.g., ‘recreational’

trips, to take an example from the data) might be taken with greater propensity when traffic

6This is a complicated figure because it portrays two common problems at the same time. The first is the driver’s
optimization problem, which is formally equivalent to the problem of partial equilibrium with monopsony. The second
is simultaneous equations bias. Thus, this figure illustrates the problem of simultaneous equations bias in the context of
a monopsony equilibrium.

15



conditions are good, i.e., when εjk is high. To understand why such a correlation might arise,

assume there are only two types of trip: to the gym and to work. Also suppose that drivers stop

going to the gym when there is more than 10 centimeters of snow on the ground and stop going

to work when there is more than 30 centimeters of snow (and traffic gets even slower). In this

case, trips to the gym will be positively correlated with the error term. This violates the exogeneity

condition.

To circumvent this possible problem, we can restrict attention to trips which are not discre-

tionary such as trips ‘to and from work’, ‘work related business’, ‘school church’, and ‘medi-

cal/dental’ trips.7 Adding controls reduces the role of unobserved determinants of speed. In

our case, we know trip characteristics like; month, day of week, and time of day. If adding

these controls does not cause big changes in our estimations it suggests that our instruments are

uncorrelated with εjk.

In addition to trip type dummies, we also rely on mean distance by trip type by city as instru-

ments. The rationale for this instrument is somewhat different from that for trip type dummies

and is described in Appendix C.

Apart from concerns about the validity of our instruments, we may worry that fast drivers sort

into fast cities. As we see in equation (13), the constant term in the speed equation is the sum of

the intercept of the inverse-supply curve c (the coefficient of interest), and driver characteristics

affecting supply δj. Since we only observe drivers driving in one city, c and δj cannot be separately

identified. Our concern is that fast drivers, those with high δ’s, might systematically choose to

locate in fast cities, those with high c’s.

We have two responses to this problem. The first is to consider large areas, the largest us

consolidated statistical metropolitan areas (msas), as our unit of observation. As long as the

problematic sorting of drivers occurs at a smaller scale than our unit of observation, it will not

lead to systematic differences between drivers in one msa and another. Drivers with a desire to

drive fast can always locate close to highways in a less densely populated part of nearly any large

msa in the us. Much the same logic is widely used to identify local peer group effects (e.g., Evans,

Oates, and Schwab, 1992, for an early example). Our second response to the sorting problem is

to parameterize individual effects as a function of observable driver characteristics. In particular,

we expect that controls such as age, income, gender, and education are correlated with individual

7Actually, we only need to restrict attention to trips with the same level of discretion.
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unobservables. Since only the residual εijk will be confounded with the intercept, we use our

controls to reduce this residual as much as possible.

3.3 Calculation of the speed index

After estimating a ‘trip length supply schedule’ relating trip speed to trip length in each city, we

can now compute a speed index for each city.

Let cUS denote our estimates of c from a particular regression specification for all msas. Let ci

be a corresponding estimate for a particular msa, and let ∑jk be a sum over all individuals j and

trips k (i.e., the universe of all trips taken in the data). Then, suppressing nhts trip weights and

year indices, the speed index for city i is

Si =
Σjkxjk exp (cUS − γUS log xjk)

Σjkxjk exp (ci − γi log xjk)
. (14)

That is, we compute the time that it would take to realize all (weighted) us trip distances in our

data at the average estimated us speed relative to how much time it would take to realize the same

trips at the estimated speed of a given msa. Formally, this is the inverse of a time cost index or

equivalently, a speed index.8

The speed index defined in equation (14) is analogous to a Laspeyres price index in the sense

that we compare the speed of travel across us msas for the same (national) bundle of trips. A

possible worry with this index is that the relative time cost of different types of trips may vary a lot

across msas and these different trips may be highly substitutable. To assess this potential problem,

we also compare the speed of travel across msas for the trips that actually occur in these msas in

robustness checks below. This alternative speed index is analogous to a Paasche price index.

Finally, recall that in our analysis of the determinants of speed, we examine the relationship

between our speed index and probable determinants of travel speed. In particular, the extent and

configuration of the road network, and the physical geography and configuration of sample msas.

By construction our index describes the cost of travel. This allows us to abstract from the changes

in the value of travel often associated with changes in accessibility, although we allow for changes

in the value of travel in our welfare analysis.

8Formally, S is a scalar without units. However, we can easily interpret it as a speed. An msa for where the national
bundle of trips requires only half as much time the us average speed has an index of 2 and is twice as fast as an average
msa.
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4. Estimation of the city level supply schedules and calculation of the speed index

Our goal is to understand the production of travel in cities. We proceed as follows. First, estimate

city level supply schedules. Second, use these supply schedules to calculate a speed index for each

city. Third, use this speed index, together with city level measures of vkt and infrastructure to

estimate the aggregate supply relationship described by equation (2).

We now turn to the estimation of city level speed distance schedules. We start by estimating

variants of the equation

log cijk = ci + Yj δ− γi log xjk + Tjk ξ + εijk . (15)

This equation differs from equation (13) in two regards. First, it includes a vector of trip attributes,

Tjk, not present in (13). These trip attributes control for variation in traffic conditions by time of

day, day of week, and month of year. Second, equation (15) includes a vector of individual control

variables Yj. This generalizes equation (13) which restricts attention to individual fixed effects.

We estimate equation (15) using nhts trips by drivers residing in each of the msas in our sample.

For each msa, we thus estimate an intercept ci and a slope γi. Because it is not enlightening to report

a large number of coefficients, table 3 reports some summary results. In each panel, we report the

mean values of the msa intercept ci and the msa slope γi. For both variables, we also report the

standard deviations of the mean of these coefficients in parenthesis and the mean of their standard

errors in squared brackets. Panel a report results based on the 2008 nhts for trips by drivers in the

100 largest msas. Panel b replicates panel a but restricts attention to the 50 largest msas. Panels c

and d reproduce panel b but are based on the 2001 and 1995 nhts.

In column 1, we estimate equation (15) without driver or trip controls. The mean value of ci for

the 100 largest msas in 2008 appears in the first row of panel a. Its value of 1.412 implies just above

4 minutes for a trip of one kilometer.9 This is slightly less than 15 kilometers per hour. The second

row of the same column reports the standard error of the mean of the intercepts across msas. Its

value of 0.094 implies an e0.094 ≈ 10% difference in speed for a trip of one kilometer. The third

row reports that the mean of the standard error within msas is only 0.030. This suggests that the

differences in intercepts across msas reflect mostly true differences in speed, not sampling error.

9Since this quantity is an exponential of an average of logs from which we omit the errors, strictly speaking, it is not
predicted speed.
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Table 3: Estimation of inverse-supply curves

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS1 OLS2 OLS3 FE IV1 IV2 IV3 IV4 IV FE

Panel A. 100 largest MSAs for 2008

Mean c 1.412 1.389 1.390 1.393 1.314 1.308 1.310 1.248 1.265
(0.094) (0.091) (0.093) (0.102) (0.147) (0.148) (0.132) (0.143) (0.253)
[0.030] [0.002] [0.001] [0.033] [0.051] [0.050] [0.046] [0.052] [0.147]

Mean γ 0.426 0.421 0.421 0.416 0.356 0.353 0.355 0.342 0.348
(0.034) (0.034) (0.034) (0.037) (0.074) (0.078) (0.066) (0.075) (0.131)
[0.014] [0.001] [0.001] [0.024] [0.035] [0.034] [0.031] [0.036] [0.105]

Panel B. 50 largest MSAs for 2008

Mean c 1.415 1.396 1.396 1.396 1.293 1.283 1.293 1.223 1.252
(0.068) (0.068) (0.069) (0.073) (0.096) (0.089) (0.093) (0.085) (0.131)
[0.020] [0.002] [0.001] [0.022] [0.036] [0.036] [0.034] [0.039] [0.067]

Mean γ 0.421 0.416 0.415 0.411 0.336 0.330 0.337 0.318 0.336
(0.020) (0.019) (0.018) (0.021) (0.046) (0.042) (0.045) (0.042) (0.062)
[0.010] [0.001] [0.001] [0.016] [0.025] [0.025] [0.023] [0.026] [0.047]

Panel C. 50 largest MSAs for 2001

Mean c 1.385 1.384 1.380 1.351 1.326 1.318 1.328 1.260 1.264
(0.071) (0.067) (0.070) (0.067) (0.113) (0.121) (0.104) (0.132) (0.241)
[0.025] [0.002] [0.001] [0.029] [0.048] [0.048] [0.045] [0.050] [0.098]

Mean γ 0.412 0.407 0.406 0.394 0.349 0.344 0.350 0.341 0.350
(0.021) (0.021) (0.021) (0.023) (0.061) (0.064) (0.056) (0.066) (0.113)
[0.011] [0.001] [0.001] [0.020] [0.032] [0.031] [0.029] [0.033] [0.066]

Panel D. 50 largest MSAs for 1995

Mean c 1.189 1.196 1.186 1.133 1.115 1.110 1.111 1.065 1.044
(0.083) (0.080) (0.080) (0.090) (0.117) (0.120) (0.115) (0.124) (0.141)
[0.027] [0.006] [0.002] [0.029] [0.050] [0.049] [0.046] [0.051] [0.075]

Mean γ 0.380 0.375 0.373 0.350 0.335 0.332 0.331 0.326 0.320
(0.021) (0.023) (0.023) (0.028) (0.058) (0.059) (0.053) (0.061) (0.064)
[0.013] [0.001] [0.001] [0.022] [0.035] [0.034] [0.032] [0.036] [0.054]

Notes: Mean of the coefficients across all cities. Standard deviation of city coefficients in parentheses. Mean
of the standard deviation of city coefficients in squared parentheses. OLS estimations in columns 1-4 and IV
in columns 5-9.
Dependent variable: minutes per kilometer for individual trips.
Controls: No control in column 1. Controls for household income and its square, driver’s education and its
square, age, dummies for males, blacks, and workers, and a quartic for the time of departure in columns 2
and 5-8. 17 dummies for household income, four dummies for education, age, dummies for males, blacks,
hispanics, and workers, 23 dummies for the hour of departure, 11 dummies for the month of departure,
and a dummy for trip taken during the weekend in column 3. Driver fixed effects in columns 4 and 9.
Instruments: Mean trip distance for trips of the same purpose in the same MSAs in column 5. Same
instrument but computed from the four most similar MSA in term of population in columns 6 and 9. Trip
purpose in column 7 (8 categories) and column 8 (2 categories; commutes and other work related trips,
shopping, medical and dental, and school and church). See the text for a discussion of instrument strength.
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The fourth row of panel a reports the average of the coefficients for log distance. In column 1,

its value of 0.426 implies that speed increases by about 20.426 ≈ 34% when trip distance doubles.

Of course, we cannot expect this relationship to scale up for extremely long trips. However, 99% of

the trips we observe are between zero and 83 kilometers and this elasticity estimate applies in this

range. The fifth row reports the average standard deviation for these estimates of γ across msas. It

equals 0.034. Since this is more than twice as large as the mean standard error for γ within msas,

0.014, reported in the sixth row, this probably reflects again true heterogeneity across msas and not

sampling error.

In column 2, we augment the regression of column 1 with several controls for driver character-

istics; household income and its square, driver’s education and its square, age, and dummies for

males, blacks, and workers. We also include a quartic in departure hour and a weekend dummy

as trip controls. In column 3, we include more exhaustive driver and trip controls. For drivers we

include 17 dummies for household income, four dummies for education, age, and dummies for

males, blacks, hispanics, and workers. For trips, we include 23 dummies for the hour of departure,

11 dummies for the month of departure, and a dummy for trips taken during the weekend.

We constrain the effect of driver and trip characteristics to be the same for all msas. This in-

creases the efficiency of our estimations, increases the transparency of the speed indices calculated

below, and eases the calculation of these indices. Moreover, since regressions with driver and trip

characteristics give similar results to regressions with driver fixed effects, it seems unlikely that

this simplifying assumption is important to our estimates of the speed distance schedules.10

Because our explanatory variables are centered, we can directly compare estimates of ci across

columns 1, 2, and 3. Their means are within 0.023 of each other or less than 2% apart. We can

also compare estimates of the distance elasticity of speed, γ, across columns. These estimates are

stable. The R2s for the different specifications are also stable. The (adjusted) R2 associated with

column 1 when estimating an intercept (c) and a slope (γ) for each city in a single regression is

56.7%. Adding driver and trip controls in column 2 raises this R2 slightly, to 57.7%. The more

exhaustive controls of column 3 also increase the R2 slightly, this time to 57.8%. Controls for trip

and driver characteristics do not affect our estimation of the distance elasticity.

This does not imply that driver and trip characteristics do not affect speed. They do. While we

10It would also be of interest to investigate whether the effect of driver and trip characteristics vary across msas, e.g.,
to check if ‘peak’ hours differ in intensity and duration across msas. However, given that our ultimate objective is an
understanding of city level determinants of speed, we leave such an investigation for future research.
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do not report these coefficients, several are interesting. Women are about 0.5% slower than men.

Age is more important. A year of age is associated with 0.3% slower speed. Black drivers drive

about 8% slower. Drivers with more education and drivers with higher income are faster, although

in both cases the relationship tapers off after a threshold: drivers with a Bachelor degree are about

7% faster than workers with less than high school; drivers from households with annual income

around $60,000 are about 9% faster than drivers from the poorest households.11 Our findings on

the effect of trip characteristics are unsurprising: weekend trips are about 4% faster than week-day

trips; trips departing during the morning peak are about 4% slower than trips in the middle of the

night; trips departing during the evening peak are about 10% slower than trips in the middle of

the night; there are small differences between months, Winter and Fall months are about 1% faster

than Spring and Summer months.

In column 4, we return to the specification of column 1 and introduce driver fixed effects.

The results for this column confirm that driver characteristics do not affect the estimation of our

parameters of interest. With driver fixed effects, the mean of both intercepts and slopes are nearly

unchanged from column 1.

Column 5 replicates the specification of column 2, but, to instrument for trip distance, uses

the mean log distance of other trips with the same purpose in the same msa. We note that this

estimation raises a technical issue. We want to estimate a separate intercept and slope for each msa.

This implies estimating a separate iv regression for each msa so that we instrument trip distance in

a city by only the instruments for this city instead of the entire set of instruments. At the same, we

want to constrain the effect of driver and trip characteristics to be the same everywhere to remain

consistent with the ols estimations of column 2. This calls for a two-step approach where the

effects of driver and trip characteristics on speed are estimated first from the cross-section of msas.

We then take these coefficients as given (i.e., treat them as constraints) when estimating a separate

tsls regression for each msa.

If drivers take longer trips when travel is faster, then ols estimates of γ are biased upwards.

Comparing the iv results in column 5 panel a with the corresponding ols results in column 2 we

see that, as expected, the iv estimates of γ are smaller than the ols estimates. In column 5, the

mean iv mean elasticity of speed with respect to distance is 0.356. The corresponding ols value

11This might obviously be related to the state of their vehicles which we control for indirectly with demographic
characteristics.
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from column 2 is 0.421. Although modest, this 20% difference between the ols and iv estimates is

statistically significant for a large majority of cities. These elasticities imply that after controlling

for simultaneity in the choice of trip distance and speed, speed increases by only about 20.360 ≈ 28%

when trip distance doubles as opposed to the 34% increase we observe in equilibrium speed.

We also observe that the estimates of c are lower with iv than ols. From figure 3, the equilibrium

relationship between the unit time cost of travel and trip distance is given by the line passing

through the points a and b. On the other hand, the supply relationship is given by cs and has a

smaller slope and intercept. This corresponds exactly to the observed relationship between ols and

iv estimates. Consistent with this, the iv results of column 5 imply a speed of nearly 17 kilometers

per hour for a trip of one kilometer. This is about two kilometers per hour faster than is implied

by the ols estimate of column 2 (recall that a smaller value of c implies a lower time cost of travel

and hence a higher speed).

A possible worry is that these results are driven by weak instruments. For the 50 largest cities

in 2009, the average first-stage F statistic for the excluded instrument is equal to 595. There is

nonetheless a lot of heterogeneity across cities. At one extreme, we have nearly 33,000 trips for

Dallas and commutes are about twice has long as shopping trips. With driver characteristics

playing only a minor role, it is unsurprising that the F statistic is above 3,000 in this msa. While

no msa in the top 50 in 2008 has an F statistic below 10, there is one below 20. This is Baton Rouge

(la) for which we observe only about 800 trips. For 2001, one msa has an F statistic below 10 and

three are below 20. For 1995, the numbers are respectively 5 and 9. Ignoring msas for which the

instrument is weak makes no difference to our results. We also experimented with clustering our

estimations at the household level for each msa and with robust standard errors and this makes no

perceptible difference either.

In column 6, we replicate the iv estimations of column 5, but instrument for trip distance using

mean log distance for trips of the same type in the four msas with most nearly the same population.

The results are close to those of column 5. Mean log distance for trips of the same purpose in msas

with similar population is a marginally stronger instrument than mean log distance by trip purpose

in the same msa because the instrument is measured with more precision, being computed using

more observations (i.e., trips from four msas instead of only one). As a result, no msa among the

largest 50 has an F test below 20 in 2008, only one in 2001, and five in 1995. For this reason and

because mean trip distance in other cities is arguably more likely to satisfy the exclusion restriction
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we prefer the specification of column 6 and we use these regressions to compute our benchmark

speed index.

In column 7, we use seven trip purpose dummies as instruments. Despite the different ratio-

nales for the validity of the instruments, this yields mean estimates close to those of columns 5 and

6. In column 8, we restrict our sample of trips to less discretionary trips: commutes, work-related

trips, school and church, and medical/dental and use a dummy for commutes and work-related

trips as instrument. The slopes we estimate for the inverse-supply curves are close to those from

the other iv estimates. We note that the mean intercept is lower than for previous iv estimations

since less discretionary trip are often taken at busier hours and tend to be slower.

Finally, in column 9 we return to the same instruments as in column 6 but apply them to the

fixed effect estimation of column 4. This is a very demanding estimation strategy since the effect

of distance on speed is identified within driver from the speed differences between long work

trips and shorter trips. We can see that the estimates of the slopes of the inverse supply curves

nonetheless remain close to previous iv estimations but have larger standard errors.12

Panel b replicates panel a for our sample of the 50 largest msas. For more demanding estima-

tions like column 9, the coefficients of interest are more precisely estimated than when we consider

the 100 largest msas. Even for the specification of column 1, the mean of the standard error on c

and on γ is about twice as large for msas ranked between 51 and 100 in terms of population as for

the largest 50.

Panels c and d replicate panel b for 2001, and 1995, respectively. The results for 2001 are similar

to those for 2008. This is consistent with mean trip distances and speeds being essentially the

same in 2001 and 2008. We note nonetheless that the variances of the city intercepts and distance

elasticities are larger in 2001 than in 2008. This probably reflects the larger sample drawn by the

2008 nhts. For 1995, the estimated distance elasticities of speed are close to but smaller than

those for 2001 and 2008. The city intercepts are also smaller. This is consistent with the observed

reduction in mean speed after 1995.

To assess the robustness of our findings further, we perform a variety of estimations using

alternative samples and geography. The results are reported in table 9 in Appendix D. A first

worry is that we may identify the speed distance schedules mostly from long trips which are

12This is to some extent driven by weaker instruments. The mean F is less than half relative to column 5 or 6. Among
the largest 50 msas in 2009, one has an F below 10 and 5 are below 50. Among the largest 100 msas, 21 are below 10 and
30 are below 20.
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relatively rare. In addition, the variance for short trips is larger as made clear by the data for

Chicago represented in figure 1. To tackle these two issues, we replicated the ols estimates of

column 3 of table 3 and the iv estimates of column 5 of the same table excluding all trips in the top

and bottom distance quartile in each city. Although the iv estimates are imprecise, the average ols

elasticity of speed with respect to distance remains close to those based on the whole sample.

A second worry is that the trip distance instrument we use above may be affected by the times

at which people travel. These times of travel differ across types of trips. To assess this potential

problem, we again replicated our preferred ols and iv estimates of table 3 restricting our sample to

peak-hour trips. The ols and iv elasticities of the speed of travel with respect to distance are very

similar to those of table 3. The intercepts are slightly lower given that travel is generally slower at

peak hour. Related to this, one may also worry that commutes, which are typically longer trips,

may also differ in other respects including for instance the direction of travel. To assess whether

commutes affect our results, we also performed separate estimations that restrict our sample to

commuting and work-related trips. The ols results are very close to those for all trips. The iv

results are less conclusive since the dramatic reduction in sample size when we only consider

commutes and work-related trips implies that iv regressions can be meaningfully estimated for

only the largest cities in 2008.

In addition, our estimations rely on (consolidated) metropolitan statistical areas. These are

geographically large units that will group, for instance, Baltimore with Washington dc, Gary with

Chicago, Fort Lauderdale with Miami, and Northern New Jersey with New York City. While the

congestion of Miami and New York City may spill over to Fort Lauderdale or to Northern New

Jersey, it is much less clear whether Baltimore and Gary (in) are part of the same transportation

equilibrium as Washington or Chicago. For 1995 and 2001, we only know household location for

msas. For 2009, we have more precision for household location and can re-estimate the speed

distance schedules for primary metropolitan statistical areas. As reported in table 9, this makes

virtually no difference to our estimates of the average slopes and intercepts of the inverse supply

schedules.

As a final robustness check, we experiment with alternative functional forms. First, we estimate

polynomial regressions, and add non-linear terms of log trip distance to the equation in column

1 of Table 3. The polynomial regressions only marginally improve the fit of the regressions.

The mean (non-adjusted) R2 computed across the 100 largest cities in 2008 increases from 0.571
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in the linear regression to 0.595 in the fifth-order polynomial regression. While the coefficients

associated with the non-linear terms are in most cases statistically significant, they make little

economic difference. The linear specification implies an elasticity of speed with respect to trip

distance of 0.417 in 2009. The fifth-order polynomial specification implies an elasticity of 0.444 for

a three-kilometer trip (at the first decile of trip distance) and an elasticity of 0.325 for a much longer

trip of 31 kilometers (at the ninth decile of trip distance). In comparison, the largest corresponding

elasticity reported in the top panel of table 3 is 0.426 and the smallest is 0.342, so this range

is not large relative that associated with other variations in specification. As we report below,

we also experimented with local polynomial smoothing regressions and show that taking these

non-linearities into account makes close to no difference to our estimation of the speed-distance

schedules and the speed indices we derive from them.

In sum, we draw four conclusions from our estimations of the speed distance schedules. First,

from the differences between our ols and iv estimates, there is evidence of the simultaneous

determination of speed and distance. This modestly affects our estimates of the elasticity of speed

with respect to distance. Second, different iv strategies yield similar estimates for c and γ. Third,

our estimates are robust to the inclusion of other trip and driver controls. Fourth, our estimates are

also robust to considering a different subsamples of trips, departure time, and geographical units.

5. Speed index

5.1 Calculation of speed indices

Table 4 reports our preferred speed index for the largest 50 us msas in 1995, 2001, and 2008.

This index is based on our preferred estimate of equation (3) from column 6 of table 3, where

we instrument for trip distance with mean distance for trips of the same type in the four cities

most nearly the same size.

For 2008, we find that the speed of driving in the slowest msa, Miami, is 28% lower than in

the fastest, Louisville. Despite its name, Grand Rapids is only the second fastest msa. More

generally, among the 10 slowest msas, we find the four largest (New York, Los Angeles, Chicago,

and Washington), another from the top 10 largest (Boston), four large cities with a difficult geog-

raphy (Miami, Seattle, New Orleans, and Pittsburgh) and one city with famously stringent zoning

regulations (Portland).
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Table 4: Ranking of the 50 largest MSAs, slowest at the top

2008 2008 2001 2001 1995 1995 Population
Index Rank Index Rank Index Rank rank

Miami-Fort Lauderdale, FL 0.88 1 0.87 1 0.92 2 12
Chicago-Gary-Kenosha, IL-IN-WI 0.91 2 0.94 2 0.90 1 3
Portland-Salem, OR-WA 0.94 3 1.04 18 1.09 27 21
Seattle-Tacoma-Bremerton, WA 0.94 4 0.95 3 0.99 8 14
Los Angeles-Riverside-Orange County, CA 0.95 5 0.98 7 1.00 11 2
New York-Northern NJ-Long Isl., NY-NJ-CT-PA 0.95 6 0.95 4 0.94 3 1
New Orleans, LA 0.96 7 0.98 9 1.04 14 44
Washington-Baltimore, DC-MD-VA-WV 0.96 8 0.98 9 0.98 6 4
Boston-Worcester-Lawrence-Low.-Brock., MA-NH 0.96 9 0.98 11 0.99 9 8
San Francisco-Oakland-San Jose, CA 0.96 10 1.01 13 1.02 13 5
Pittsburgh, PA 0.96 11 0.98 8 1.02 12 22
Houston-Galveston-Brazoria, TX 0.97 12 1.06 21 1.11 30 9
Sacramento-Yolo, CA 0.98 13 1.03 17 1.22 47 24
Philadelphia-Wilmington-Atl. City, PA-NJ-DE-MD 0.98 14 0.97 5 0.97 5 6
Tampa-St. Petersburg-Clearwater, FL 0.98 15 1.03 15 1.09 26 19
Orlando, FL 0.98 16 1.03 16 1.05 15 19
Baton Rouge, LA 0.98 17 1.12 35 1.14 38 46
Las Vegas, NV-AZ 0.98 18 0.98 10 1.16 42 23
Norfolk-Virginia Beach-Newport News, VA-NC 0.99 19 1.12 37 1.09 23 34
Phoenix-Mesa, AZ 1.00 20 1.04 19 1.10 29 13
Cleveland-Akron, OH 1.01 21 1.12 36 0.96 4 18
Austin-San Marcos, TX 1.03 22 1.07 22 1.08 21 33
Atlanta, GA 1.03 23 1.08 24 1.09 24 11
San Diego, CA 1.04 24 1.09 26 1.11 31 16
St. Louis, MO-IL 1.04 25 1.09 29 1.20 44 20
Detroit-Ann Arbor-Flint, MI 1.04 26 1.08 23 1.06 18 10
Dallas-Fort Worth, TX 1.04 27 1.08 25 1.12 33 7
Salt Lake City-Ogden, UT 1.05 28 1.10 30 1.09 25 36
Denver-Boulder-Greeley, CO 1.06 29 0.99 12 0.99 10 17
San Antonio, TX 1.06 30 1.11 32 1.15 40 27
Indianapolis, IN 1.06 31 1.04 20 1.12 34 30
Jacksonville, FL 1.07 32 1.15 42 0.99 7 40
Hartford, CT 1.07 33 1.14 41 1.26 49 43
Charlotte-Gastonia-Rock Hill, NC-SC 1.07 34 1.13 39 1.15 41 29
West Palm Beach-Boca Raton, FL 1.09 35 1.11 33 1.07 20 39
Columbus, OH 1.09 36 1.16 43 1.07 19 32
Minneapolis-St. Paul, MN-WI 1.10 37 1.11 34 1.12 32 15
Memphis, TN-AR-MS 1.10 38 1.25 48 1.14 36 41
Milwaukee-Racine, WI 1.10 39 1.09 28 1.06 16 31
Cincinnati-Hamilton, OK-KY-IN 1.10 40 1.01 14 1.05 17 26
Richmond-Petersburg, VA 1.11 41 1.19 45 1.18 43 47
Nashville, TN 1.12 42 1.10 31 1.22 46 37
Buffalo-Niagara Falls, NY 1.12 43 1.19 44 1.09 28 48
Raleigh-Durham-Chapel Hill, NC 1.12 44 1.21 46 1.22 45 35
Oklahoma City, OK 1.15 45 1.12 38 1.14 37 42
Rochester, NY 1.16 46 1.14 40 1.15 39 50
Kansas City, MO-KS 1.18 47 1.29 49 1.08 22 28
Greensboro–Winston-Salem–High Point,NC 1.19 48 1.24 47 1.25 48 38
Grand Rapids-Muskegon-Holland, MI 1.22 49 1.29 50 1.13 35 45
Louisville, KY-IN 1.22 50 1.09 27 1.29 50 49

Notes: Speed index constructed from the estimations reported in column 6 of table 3.
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There are some changes in ranking between 1995 and 2008. The Spearman rank correlation

between the 2008 and 2001 ranking is 0.82 while that between the 2008 and 1995 ranking is 0.59.

These correlations are high but far from perfect. In part at least, these changes in rank reflect

changes in city level fundamentals: in a regression of changes in the speed index from 1995 to

2008 against population changes over the same period and the 1995 value of the same index, we

find a coefficient -0.078 (significant at 10%) for the 50 largest msas and -0.132 (significant at 5%)

for the 100 largest msas. With this said, some changes in ranking across years are probably due to

sampling error.

5.2 Robustness checks

To assess the robustness of our preferred ranking, we compare it to alternative rankings based on

the same data but different aggregation methods to construct the speed index, different estimation

strategies, or different geography.

First, the exact construction of our index does not matter. Our speed index compares how much

time it would take to complete all us trips at the average estimated us speed with how much time it

would take to complete all us trips at the estimated msa speed. As an alternative, we can measure

how much time it would take to complete all trips in an msa at this msa’s speed relative to average

us speed. This would be a Paasche index instead of a Laspeyres index. This alternative index

allows us to compare msas for the trips drivers actually take in those cities. This is of particular

importance when trips of different types or different distances are easily substitutable. However,

this alternative index is more difficult to interpret since speed differences across msas can now be

caused by both the speed and composition of trips.

Empirically, allowing for differences in the composition of trips is not important. Using our

preferred estimation strategy and our sample of the 50 largest msas, the rank correlation between

our preferred (Laspeyres) ranking and the alternative (Paasche) index just described is above 0.99

for 1995, 2001, and 2008. If we consider the 100 largest msas the corresponding correlations are

all above 0.96. These findings are not specific to our choice of estimation. We find similarly high

correlations for the Laspeyres and Paasche rankings constructed from the output of ols estimation

for column 2 of table 3 (i.e., the ols estimation that corresponds to our preferred iv).

Next, we compare our preferred ranking, calculated from column 6 of table 3, with alternative

rankings calculated from other columns of the same table and with average speed calculated
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directly from the data. Starting with the latter, the rank correlation between our preferred ranking

and one obtained based on msa average speed is 0.68 for 50 msas in 2008. The rank correlations be-

tween our preferred ranking and alternative rankings obtained from the ols estimates of columns

1 to 3 of table 3 are between 0.89 and 0.94 for 50 msas in 2008. For the fixed-effect estimation of

column 4, the correlation is slightly lower at 0.87. For the iv estimations of columns 5, 7, 8, and 9,

the correlations are 0.98, 0.97, 0.97, and 0.68, respectively. This last correlation is lower because it

is based on the noisier estimates of column 9 (our most demanding estimation, with driver fixed

effects in an iv regression). For 1995 and 2001, correlations across rankings are slightly lower.13

We also experimented with nonparametric specifications of the speed-distance schedules us-

ing local polynomial smoothing regressions.14 Comparing the ranking obtained from this non-

parametric estimation for the largest 50 msas in 2008 with that obtained from the corresponding

linear ols estimation of column 1 of table 3, the rank correlation is 0.88. The rank correlations for

2001 and 1995 are even higher at 0.94 and 0.91. In other words, a nonparametric specification gen-

erates a ranking of cities by speed that closely matches what we derive from a linear specification.

We draw a number of conclusions from these correlations. First, the relatively low correlation

between our preferred ranking and raw measures of speed underscores the importance of control-

ling for trip distance. Second, the high correlations between the indices derived from our various iv

estimations suggest that our preferred ranking is not sensitive to the details of our instrumentation

strategy provided the relationship between speed and distance is precisely estimated. Third, the

relatively high correlations between our preferred ranking and the rankings derived from ols

estimates suggest that controlling econometrically for the simultaneous determination of speed

and distance has only a small effect on the final ranking of msas. Finally, the high correlations

between our parametric non-parametric indices indicates that the exact functional form chosen to

control for distance does not have big effects on the resulting speed index.

13In our sample of the 50 largest msas, the rank correlation between our preferred ranking and the alternative ranking
obtained from the ols estimates of column 2 of table 3 is 0.85 in 2001 and 0.79 in 1995 instead of 0.94 in 2008. For the
100 largest msas, the rank correlation between our preferred ranking and the same alternative based on ols estimates is
0.81 in 2008. More generally, correlations drop when we use 100 msas instead 50.

14We use a standard Epanechnikov kernel function to weight the local polynomial, a rule-of-thumb bandwidth
estimator, and local-mean smoothing (i.e., polynomial of degree 0 used in the smoothing).
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5.3 Comparisons with TTI’s index and a PMSA speed index

The Texas Transportation Institute produces the best known and most widely reported indices of

travel speed. We here investigate the differences between our index and the 2008 and 2009 tti

indices (Schrank and Lomax, 2009, Schrank et al., 2010).

While tti reports their index annually, their methods changed from 2008 to 2009 (Schrank and

Lomax, 2009, Schrank et al., 2010). The 2008 tti index is based on an estimate of the time cost

of travel constructed from data in the hpms describing road characteristics and traffic levels on

interstate highways and other federally funded roads. The 2009 tti, on the other hand, is based

on directly observed time costs of travel on highways and major arterial roads for a self selected

sample of commercial vehicles and the drivers of privately-owned vehicles. Unlike the tti index,

our index is based on a sample constructed to be broadly representative of all trips in privately-

owned vehicles. In addition, the tti indices do not attempt to control for the simultaneity in the

choice of distance and speed.15

Aside from differences in the quality of the underlying data and methodology, the tti indices

are based on a different geography than we use (see Appendix A). While neither geography is

intrinsically preferable, this difference complicates the comparisons of indices. For the 47 cities

reported by tti also in our sample of the 50 largest msas, the rank correlation of our preferred

speed index is 0.69 for the inverse of the 2008 tti travel cost index and 0.74 for 2009. For the 71

cities reported by tti also in our sample of the 100 largest msas, those correlations are 0.61 and 0.63

respectively.

As mentioned above, we also duplicate our analysis for primary statistical metropolitan areas.

Among the 50 largest pmsas, 17 are the core regions of larger msas, 11 are secondary centers in

larger msas, and 22 contain and coincide with their entire msa. Changing the unit of observation

makes it difficult to provide direct comparisons with our msa based results. From the ranking of

the 50 largest pmsa (not reported here) we note the following features. Excluding New Orleans

which is not among the largest 50 pmsas and thus no longer considered, the 10 slowest msas

are all among the 14 slowest pmsas. The four ‘entrants’ in this group are Nassau-Suffolk (ny),

Bergen-Passaic (nj), Fort Lauderdale (fl), and Oakland (ca), all secondary centers from slow msas:

15The tti indices are ‘linked-based’ as they measure the time cost of travel for specific road segments. This makes the
simultaneity slightly different relative to trip-based measures like ours. Still, the major roads and interstate highways
over which the time cost of travel is measured are relatively more likely to be used when travel is fast. Also, the tti

indices ignore local roads over which a significant fraction of travel occurs and for which speed may vary differently
across cities.
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Table 5: The determinants of speed, 100 MSAs in 2008

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
Sraw SOLS1 SOLS2 SOLS3 SFE SIV1 SIV2 SIV3 SIV4 SIV FE

log lane 0.073c 0.073a 0.083a 0.085a 0.064a 0.084b 0.090b 0.084b 0.096a 0.037
(0.037) (0.024) (0.023) (0.023) (0.023) (0.038) (0.040) (0.033) (0.036) (0.038)

log VTT -0.094b -0.094a -0.11a -0.11a -0.085a -0.13a -0.13a -0.13a -0.14a -0.064c

(0.036) (0.020) (0.020) (0.020) (0.020) (0.034) (0.035) (0.029) (0.033) (0.033)
R2 0.12 0.35 0.46 0.47 0.31 0.37 0.38 0.41 0.39 0.06

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. 100 observations per column. In column 0, the dependent variable is average
trip speed. In columns 1-9, the dependent variable is the log of the index computed from the results of the
regressions reported in the corresponding column of table 3. An F-test in all columns rejects that the sum of
the two coefficients is zero.

New York, Miami, and San Francisco. More generally, secondary centers of slow msas tend to be

slow as well, much slower than their population size alone would suggest.16 This explains why

the rankings of the main urban centers are very close whether we use msa or pmsa. The rule is

not absolute though. A few secondary centres are much faster than their main urban core. This

is for instance the case of Gary (in) and Chicago. As a result, after taking away Gary, Chicago

turns out to be the slowest pmsa overtaking Miami. The absence of exurban counties in large

pmsas also implies that the slowest pmsa are slower than their corresponding msa. For instance

the speed index of Chicago pmsa is 0.83 instead of 0.91 for the Chicago msa. Nonetheless the high

correlation of the speed index between the pmsas that compose the largest msas suggests that msas

are a relevant level of analysis.

6. Determinants of speed

6.1 Determinants of speed, empirical results

Table 5 reports ols estimations of equation (2) for our sample of the 100 largest msas. In all

specifications we regress a measure of travel speed on the log of msa lane kilometers of inter-

state highways and major urban roads and the log of msa vehicle travel time. In column 0, the

dependent variable is a measure of average speed taken directly from the data. In columns 1 to 9,

16The Jersey City (nj) pmsa is a case in point. Although too small to enter the group of the 50 largest pmsas, it is
actually the slowest pmsa in the entire country. This is unsurprising. Large parts of this pmsa have a density higher
than Manhattan without its wide avenues, not to mention their heavily congested accesses to Manhattan by bridge or
by tunnel.

30



the dependent variable is the log of the speed index computed from the results of the regressions

reported in the corresponding column(s) of table 3.

Column 6 reports our preferred regression in table 5. In this regression the dependent variable

is our preferred speed index calculated from the results of column 6 in table 3. This regression

implies an elasticity of travel speed with respect to lane kilometers of road of 0.09. This quantity

also corresponds to the share of roads in the production of travel. The coefficient for log vtt implies

a negative elasticity of speed with respect to aggregate vehicle travel time of −0.13. This value of

θ = 0.13 also implies that the elasticity of vehicle kilometers traveled with respect to travel time is

1− 0.13 = 0.87.

The estimated coefficients for the log of lane kilometers and vehicle travel time are very similar

in columns 0-8 of table 5. In all specifications, the coefficient on log lane kilometers remains

between 0.06 and 0.10, while that on log vehicle travel time remains between −0.09 and −0.14.

Column 9 uses a speed index based on the least precisely estimated speed-distance relationship,

which may create to an attenuation bias.

Appendix E describes extensive robustness tests for the results reported in table 5. We show that

the coefficients we find on roads, on aggregate travel time, and the existence of modest decreasing

returns are also robust to our choice of sample, year of data, definition of roads, and measure of

aggregate travel time. In this appendix we also tackle the endogeneity of both roads and vtt.17

In a first exercise, we instrument roads and/or vtt. In a second exercise, we implement the

methodology developed by Levinsohn and Petrin (2003). Both exercises largely confirm the results

of table 5.

For 2008, we also experimented with similar regressions for primary metropolitan statistical

areas instead of consolidated metropolitan areas. Because many pmsa among the largest 100

in 2008 are secondary centers where travel is slow and population relatively small, this should

weaken the relationship between speed and population. At the same time, when we isolate

the cores of metropolitan areas into separate pmsa, they retain a large fraction of the overall

metropolitan population, represent a relatively small fraction of the roadway, and are slower. This

strengthens the relationship between speed, roads and vehicle travel time. Overall, this second

17The econometric problems with estimating production functions are well-known and have received considerable
attention (e.g., Ackerberg, Benkard, Berry, and Pakes, 2007, Syverson, 2011). Very much the same issues apply here
except that we observe the true cost of travel. Hence, our analysis is not subject to problems associated with unobserved
prices.
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effects dominate. When regressing our preferred speed index on roads and vehicle travel time,

we estimate elasticities of 0.15 for roads and -0.20 for vehicle travel time. These are slightly larger

magnitudes than for msas where the analogous elasticities are 0.09 for roads and -0.13 for vehicle

travel time.

We do not know of estimates directly comparable to ours in the literature. Bombardini and

Trebbi (2012) regress the tti time cost of travel index and another tti-generated measure of travel

delay on population. They report an unconditional elasticity of speed with respect to population

of -7.5% and a corresponding elasticity of 10% for travel delay. Using slightly different population

data and a slightly different sample, we obtain a similar unconditional elasticity of speed with

respect to population of -7.2%. Further estimates using tti data are reported in Appendix E.

Using a very different approach and further away from our focus, Combes and Lafourcade (2005)

decompose the decline in generalized transportation costs for trucks in France over 1978-1998 and

find that changes in the road infrastructure only accounts for 8% of this decline.

Our results also relate to the large literature estimating speed-flow curves in transportation eco-

nomics and engineering. Estimates for typical road segments (or for small sets of road segments)

typically suggest elasticities of speed with respect to the number of vehicles of around -50 to -60%

(see for instance the speed-flow curves reported in Small and Verhoef, 2007).18 In their area study

for central Yokohama, Geroliminis and Daganzo (2008) report a speed-flow curve that implies

similar speed elasticities. These magnitudes are much larger than those reported in table 5 for the

coefficient on vehicle time travel.

To understand these differences, it is best to think of standard speed-flow elasticities as ‘micro-

elasticities’ whereas our estimates are ‘macro-elasticities’. The first difference is that with standard

speed-flow curves each observation considers the actual number of vehicles on the road at one

point in time whereas our measure of vehicle time travel is averaged over time. By re-scheduling

their trips drivers can avoid the worst of traffic. Consistent with this conjecture, our data indicate

that peak-hours last longer in larger cities. The second difference is that drivers can also choose

alternative routes when traffic gets too dense somewhere. Finally, as we emphasize above, extant

estimates of speed-flow curves are subject to a simultaneity problem.

18Strictly speaking, traditional estimates of the elasticity of speed with respect to the number of vehicles estimate
θ/(1− θ). Recall that we regress speed on vehicle travel time to estimate θ. In turn, vehicle travel time is proportional
to the number of vehicles and their speed (keeping trip length constant). Hence, the traditional speed flow regressions
of travel speed on the number of vehicles estimate θ/(1− θ). This makes little difference in our context given that our
preferred value of θ is 0.13.
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Given the analogy between our estimating equation (2) and a firm level production function, it

is also interesting to compare our results about the production of travel with what is known about

the production of other goods. We find that the share of roads in the production of travel is around

0.10, whereas typical estimates regarding the share of capital in conventional sectors tend to be

around one third. Notwithstanding the fact that standard production function estimation ignores

consumer time as an input, this suggests that the production of travel is an extremely labour (or

time) intensive activity.

We also find evidence of slightly decreasing returns. In all columns of table 5 except for column

0 and column 9 (for which the coefficients are perhaps less reliably estimated) an F-test soundly

rejects that the sum of the two coefficients is zero. We note that these calculations of decreasing

returns do not take into account the fact that building a lane kilometer of interstate highways of

major urban roads in larger cities is considerably more expensive (Ng and Small, 2012). Using

a measure of cost of capital instead of a measure of roads suggests that construction costs may

increase more rapidly with scale than productivity decreases.19 Theoretically, one may think of a

variety of reasons why there could be decreasing returns to scale in the provision of road travel.

As suggested long ago by Strotz (1965) and Mohring (1976), a greater density of roads implies

a more than proportional increase in intersections, arguably a source of decreasing returns. One

may also imagine that bottlenecks in the more central part of cities are worse in larger cities.20 By

contrast, the literature that estimates the production function for firms contains a variety of results

but micro-data estimates are often suggestive of constant returns.

Decreasing returns in the provision of travel has important implications for the financing of

highways, and more specifically to the debate about whether optimally priced highways are self-

financing (Mohring and Harwitz, 1962). Although existing studies suggest mild economies of scale

in road construction, which almost certainly disappear for the largest, densest cities, we are the

first to estimate returns to scale in the congestion technology for a network. If decreasing returns

19Using data from Duranton and Turner (2012) combined with highway construction costs from Ng and Small (2012),
we obtain 0.37 as a rough estimate elasticity of the cost of construction of a lane kilometer of highway with respect to
city population. We can then calculate a measure of highway capital cost for each msa by multiplying lane kilometers by
population elevated to the power 0.37. When we re-estimate the regressions of table 5 with this measure of road capital
cost instead of lane kilometers, we obtain marginally lower coefficients for roads and for vehicle travel time. As a result,
decreasing returns go from about -4% in table 5 to about -6% to -7%. More precise estimates of highway costs are likely
to make returns even more strongly decreasing. These two forms of decreasing returns are conceptually different. Our
main exercise is concerned with measuring how output varies with the quantity of inputs whereas this second exercise
is about costs.

20Be it only because the central part of larger cities is denser. This prediction of standard urban models (Alonso, 1964,
Mills, 1967, Muth, 1969) is strongly supported in our data.
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Table 6: The determinants of speed, further explanatory variables

(1) (2) (3) (4) (5) (6) (7) (8)
Added: Emp. Pop. Job/resid. E pop. log pop. s. manuf. Cooling Heating

central. central. mismatch growth 1920 emp. deg. days deg. days

log lane (total) 0.085b 0.077b 0.098b 0.071c 0.072c 0.070c 0.087b 0.080c

(0.039) (0.036) (0.039) (0.042) (0.040) (0.042) (0.040) (0.041)
log VTT -0.15a -0.14a -0.14a -0.11a -0.14a -0.11a -0.13a -0.13a

(0.033) (0.031) (0.035) (0.037) (0.035) (0.037) (0.035) (0.036)
Added variable -0.12b -0.18a -50.7b -0.20a 0.019a 0.27a -0.016a 0.007b

(0.058) (0.065) (24.0) (0.057) (0.0052) (0.071) (0.006) (0.003)
R2 0.40 0.42 0.41 0.42 0.43 0.45 0.42 0.41

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. 100 observations per column. Dependent variables is log SIV2 in all columns.

in congestion dominate economies of scale in construction, then optimally priced networks would

be revenue generating.

Finally, consistent with extant research on productivity in firms, we find considerable dispersion

in productivity across cities. However, there is much less dispersion in the ability of us cities to

produce travel out of roads and vehicle travel time than in the ability of firms to produce output

from capital and labour. A city at the 90th percentile in our preferred estimation (column 6 of

table 5) produces around 20% more travel from the same inputs than a city at the 10th percentile.

Firm level data usually imply that a firm at the 90th percentile of productivity produces 100 to

200% more output from the same inputs than a firm at the 10th percentile (Syverson, 2011, Fox and

Smeets, 2011).

6.2 Other determinants of speed

In table 6 we consider a broader set of determinants of travel speed. In column 1, we introduce

a measure of employment centralization, the share of employment within 20 kilometers of the

employment weighted centroid of the msa in 1992.21 In column 2, we use instead the corre-

sponding measure of centralization for population. The results for both columns indicate that

more centralized cities are slower. These findings should be regarded as suggestive since the R2

increases only marginally relative to the benchmark estimation without these additional variables

and the significance of these coefficients often disappears when further controls are added. In

21We prefer to use lagged variables to minimize endogeneity problems. These lags typically reduce the significance
of the coefficients.
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column 3, we use a measure of mismatch between employment and residents and find again that

a greater mismatch is associated with slower traffic speeds. We have experimented more broadly

with ‘urban form’ variables than we report here. Consistent with the results reported in table 6, we

find that conditional associations with various measures of density, physical area and employment

concentration, occur routinely in our results. Consistent with earlier results in the literature, (e.g.,

Glaeser and Kahn, 2004), these findings suggest that more compact, centralized cities are slower.

Of course, compact centralized cities could still be desirable even if travel within them is more

costly. Speed is not synonymous with optimality.

In column 4 of table 6, we turn to a different type of variable, population growth. We find

a strong association between slow travel speeds and higher expected growth between 1980 and

2000.22 A similar but weaker association is found with actual population growth between 1980

and 2008. That traffic should be slower in cities that have grown fast even after controlling for

their current roadway and vehicle travel time is perhaps unsurprising. Roadway expansion often

takes place at the urban fringe while bottlenecks worsen in the more central parts. In column

5, we replace expected population growth with 1920 population. Given that we also condition

for current vehicle time travel, which is highly correlated with current population, our negative

coefficient implies that cities that have grown less since 1920 are faster. This confirms the finding

of column 4. In column 6, we turn to the share of manufacturing in employment in 1983 and find

that cities more specialized in manufacturing are much faster. Given that cities with a greater share

of manufacturing employment have grown less in population and tend to be more decentralized

(Glaeser and Kahn, 2001), the positive sign on manufacturing employment is consistent with our

two main findings so far.

In columns 7 and 8, we introduce two measures of temperature, cooling and heating degree

days, and uncover a weak association between slower traffic and more extreme weather condi-

tions. We also experimented with other geographic characteristics of cities such as their elevation

range or the ruggedness of their terrain but found nothing. We also found no result for a broad

range of socioeconomic characteristics of cities such as their income, education, etc. Finally, we

note that introducing all these supplementary explanatory variables has little effect on the coeffi-

cients of our two main regressors, roads and vehicle travel time, both of which remain significant

22We use growth predicted by the composition of economic activity of cities in 1980 and the subsequent changes in
employment by sector.
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Table 7: The determinants of speed, road network variables

(1) (2) (3) (4) (5) (6) (7) (8)
Rings Rays Both Both IH IH + pop + s. manuf.

IH IH IH IH+MR per km in log central. emp.

log lane (total) 0.072c 0.079c 0.071c 0.081b 0.088b 0.071c 0.059 0.073c

(0.042) (0.041) (0.042) (0.040) (0.043) (0.042) (0.039) (0.043)
log VTT -0.13a -0.13a -0.13a -0.13a -0.13a -0.13a -0.14a -0.11a

(0.036) (0.036) (0.036) (0.035) (0.037) (0.036) (0.032) (0.037)
Ring index 0.019a 0.016b 0.0029c 0.12b 0.039b 0.036b 0.035b

(0.0068) (0.0076) (0.0017) (0.058) (0.016) (0.015) (0.014)
Rays index 0.0081c 0.0046 -0.0018 0.014 -0.0026 0.0012 -0.0017

(0.0046) (0.0051) (0.0014) (0.043) (0.016) (0.014) (0.013)
Added variable -0.17b 0.25a

(0.066) (0.071)
R2 0.42 0.40 0.43 0.40 0.41 0.42 0.46 0.48

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. 100 observations per column. Dependent variables is log SIV2 in all columns.
In columns 1, 2, and 3, the ring and rays indices are computed as described in Appendix A from the 2005
interstate network. In column 4, the ring and rays indices are computed from the 2005 network of
interstate highways and major urban roads. In column 5, we normalize the ring and rays indices (from the
2005 interstate network) by lane kilometers of interstate highways and major urban roads (measured in
thousands). In column 6, we take the log of one plus the ring and rays indices (from the 2005 interstate
network). In columns 7 and 8, we enrich the specification of column 3 with an index of population
centralisation and the share of manufacturing employment, respectively.

and nearly constant in all the columns of table 6.

In table 7, we investigate the relationship between road network configuration and speed.

Following Baum-Snow, Brandt, Henderson, Turner, and Zhang (2012) we construct measures of

ring road and radial road capacity of two networks for each msa, the interstate highway network

and the union of this road network with all major urban roads, both for 2005. Appendix A provides

details about the construction of these variables. In column 1, we add a ring road index computed

from the 2005 interstate highway network to our preferred specification of table 5, column 6. In

column 2, we use instead an index of 2005 interstate highway rays. In column 3, we use both

indices at the same time. The rays index becomes insignificant. In contrast, the ring road index

remains significant and indicates that speed is about 1.5% higher in cities where the ring road index

is one unit higher. Since a unit increase in the ring road index reflects a road traveling about one

fourth of the way around a city, the addition of a complete ring road is associated with about a 6%

increase in speed. We note that the coefficient on vehicle travel time is virtually unchanged and

the coefficient on lane kilometers is marginally lower.
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In column 4, we consider the same two indices but compute them for the entire network of

interstate highways and major urban roads. The coefficient on ring roads becomes much smaller.

Next, we return to the rays and ring roads indices computed solely from the interstate highway

network but normalise them by kilometers of interstate highways in column 5 or take them in logs

in columns 6. In both cases, the results are unchanged and the ring road index remains significant.

That ring roads appear to matter in explaining traffic speed is reminiscent of the results of table

6 that show the importance of characteristics describing urban decentralisation. To compare both

network and urban form variables, in column 7 we add a measure of centralization for population

to the specification of column 3, while in column 8 we add the 1983 share of manufacturing

employment. Interestingly the coefficients on these two variables are very close to those of table

6 while the coefficient on the ring road index more than doubles relative to column 3. This last

set of results suggests that both city characteristics and road network characteristics play a role in

explaining traffic speed.

Overall, the results of table 7 suggest an important role for highway network characteristics,

and ring roads in particular, in explaining speed. Some caution is nonetheless needed because

we cannot establish causality. We note nonetheless from results not reported here that using rays

computed from planned 1947 interstate highways yields similar estimates to those reported in

table 7.23

7. The value of speed

Section 3 presents expressions for the deadweight loss from congestion and for the optimal con-

gestion tax. We now turn our attention to evaluating these expressions.

In our preferred regression in column 6 of table 5, we estimate the average supply elasticity θ

to be 0.13. We do not estimate the elasticity of the demand for vkt here. However, Duranton and

Turner (2011) suggests that the demand for vkt is highly elastic and provides a point estimate of

16.24

23Note that there are no ring roads in the 1947 highway plan.
24The working paper version of that work (table 6, columns 4 and 8 in Duranton and Turner, 2009) contains an

explicit estimation of the demand for vkt which yields σ ≈ 16. We note that this number regards travel that takes place
on interstate highways. For other roads, this elasticity may be lower. This is why we consider a range of alternative
values for σ below.
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Table 8: Estimates of the value of congestion and the optimal congestion tax

θ σ ∆ DWL ($×109) DWL (hours/person) τ∗

0.13 16 0.040 29.8 12.4 0.035
0.13 8 0.032 24.2 10.1 0.036
0.13 32 0.045 33.6 14.0 0.035
0.07 16 0.017 12.6 5.2 0.019
0.19 16 0.065 49.2 20.5 0.052

If we use these values to evaluate equation (7) then ∆ is about 0.040. That is, the value of

deadweight loss from congestion is equal to about 4% of total travel time. Taking aggregate travel

time for 2008 from panel b of table 1, converting from minutes per day to hours per year, and

adjusting upwards by 1.25 persons per car, we find 26 million hours per year of deadweight

loss due to congestion in an average msa in our sample, or about 12.4 hours per person. If,

following common practice in the transportation economics literature, we value these hours at

half the average wage of 23 dollars per hour, this is 142 dollars per person per year or 29.8 billion

dollars for our entire sample of 100 msas.25.

The top row of table 8 presents these calculations and subsequent rows replicate them for

different values of θ and σ. In the second row, we consider our preferred estimate of θ and reduce

demand elasticity by 50%. This reduces our estimate of the cost of congestion from about 4% of

travel time to about 3.2%. Doubling travel demand elasticity, in row 3, also changes our estimate of

deadweight only modestly. In row 4 of table 8 we use our preferred estimate of σ and consider an

estimate of supply elasticity of 0.07. This is about half our preferred estimate from table 5 column

6, and is almost two standard errors smaller than our preferred estimate for θ, i.e., the threshold

for a two sided 95% confidence interval. Row 5 presents estimates of deadweight loss based on

a larger supply elasticity, this time almost two standard errors above our preferred estimate. Our

deadweight loss estimates decrease to 12.6 billion dollars and 5.2 hours per person for the smaller

value, and increase to 49.2 billion dollars and 20.5 hours for the larger value. In sum, this table

suggests that the value of congestion is on the order of tens of billions of dollars per year, with our

best estimate at about 30 billions dollars per year.

These results require a number of comments. First, if we think that the appropriate object of

25Existing estimates of value of time traveled for commuters generally center around 50% of an individual’s hourly
wage (Small and Verhoef, 2007). We note that the Texas Transportation Institute uses a much higher number of nearly
24 dollars per hour per person (Schrank et al., 2010)
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study is not speed, as above, but some combination of changes in the value and cost of trips, i.e.,

accessibility, then it is straightforward to analyze the simultaneous change of demand and supply

conditions in this framework.26 Alternatively, if we are concerned that one response to slow travel

conditions is to take a longer, less congested and faster route, then we can represent this in our

framework as a systematic decline in the value of travel with increases in aggregate vtt, i.e., a

change in σ. While we regard both inquiries as interesting, they appear to be beyond the reach of

our current understanding of aggregate travel demand.

Second, our estimate of a 30 billion dollar annual deadweight loss is conservative. We only

consider the time cost of travel and ignore fuel and other car usage costs, e.g., maintenance,

pollution and collisions for which estimates are reviewed in Parry, Walls, and Harrington (2007).

We also consider only travel by residents and ignore commercial traffic for which the time and

fuel costs of congestion are arguably higher.27 In addition, our estimates are based only on the

population of the 100 largest msas. While these msas account for about two thirds of the us

population, and presumably, most of the traffic congestion, to the extent that congestion occurs

outside of these 100 msas, our estimates are too low. Finally, we expect drivers to change their

time of departure to avoid congestion.28 Such re-scheduling is costly and is not reflected in our

calculations.

We can also evaluate the optimal congestion tax that we calculate in equation (8). We see from

the top row of table 8 that evaluating this tax at equilibrium quantities with θ = 0.13 and σ = 16

gives τ∗ = 0.035. This tax is almost unchanged in response to changes in the demand elasticity,

but varies between 0.019 and 0.052 in response to large changes in the supply elasticity θ.

In equation (8), τ∗ is a percentage increase in the time cost per kilometer of travel that is required

to decrease the equilibrium to the optimal level of travel. Congestion taxes, however, are usually

stated in terms of cost per unit of distance. To convert our calculated tax into these units, consider

a trip conducted at the sample average speed of about 40 kilometers per hour (see table 1, or 1/40

hours per kilometer. Multiplying by τ∗ gives a tax of 3.5% of this value. Multiplying by half the

26Indeed, our analysis suggests that the notion of accessibility might be usefully formalized as the social surplus from
travel.

27To fix ideas, according to Duranton and Turner (2011), the share of trucks traffic for interstate highways in 228 large
us msas was 13% in 2003. In the calculations of the Texas Transportation Institute the cost of truck congestion represents
slightly more than a quarter of the total cost of congestion. As for fuel losses, they represent only a fraction of the time
cost of congestion. To see this, consider an hour lost to drive 10 kilometers. With a car consuming 15 liters per 100

kilometers, this is only 1.5 liters of fuel or about 1.5 dollars at one dollar per liter. This is small relative to a time cost of
11.5 dollars per hour.

28Trip scheduling is the subject of a large literature, e.g., Vickrey (1969), Noland and Small (1995).
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average wage, as we did for the deadweight loss calculation above, gives a tax of about one cent

per kilometer. The estimates of τ∗ are fairly stable across the different parameter values used in

table 8 and so the corresponding range is from about 0.5 to about 1.5 cents per kilometer.

In their review of the literature, Parry et al. (2007) recommend a value of 3.2 cents per kilometer

on the basis of ‘back-of-the-envelope calculations by the us Federal Highway Administration.

Parry and Small (2005) propose using a range from of 1.7 to 3.2 cents per kilometer with, as

they mention, “a considerable range of uncertainty”. Morhing (1999) suggests a value of 2.5 cents

per kilometer for Saint Paul and Minneapolis. Studies with a more limited focus often suggest

larger congestion taxes. For instance Keeler and Small (1977) find a range of values between 6

and 22 cents per kilometer for rural highways and between 87 and 112 cents per kilometer for city

highways.

Our 0.5 to 1.5 cent per kilometer figure is lower than these estimates. This reflects three main

differences in methodology. First, we have calculated an average congestion price over roads and

time. Our relatively small congestion tax reflects the fact, suggested by the average travel speeds

of table 1, that most trips occur at uncongested times and places. Second, our methodology fully

reflects responses to congestion that are not permitted in other estimates. In particular, we calculate

the cost of congestion conditional on drivers optimizing against all possible reroutings and changes

in trip times. Ours is a congestion price to be applied to all roads at all times. That this quantity

is smaller than taxes we might apply to important roads at busy times is not a surprise. On the

other hand, that such a crude tax should yield a welfare gain of 30 billion dollars per year is more

surprising and indicates the economic importance of traffic congestion.

It is also of interest to compare the magnitude of our optimal congestion tax with the magnitude

of the gasoline tax. In 2008, gasoline taxes in the us were about 40 cents per gallon.29 At 20 miles per

gallon, our 0.5 to 1.5 cents per kilometer congestion price suggests a gasoline tax of 16 to 48 cents

per gallon. Since the current federal gasoline tax is a user fee intended to pay for the construction

and maintenance of the highway system, in order to provide the same level of highway funding

and address congestion, albeit very crudely, gasoline taxes in the us would need to increase by 50

to 100%.

Expansions of the road network are often proposed as a response to congestion. To assess

29Federal gasoline taxes in the us were 18.4 cents per gallon in 2008 and the average state gasoline tax was about 20

cents per gallon (http://www.fhwa.dot.gov/policyinformation/statistics/2014/mf205.cfm, February 2016) for a
total of 38.4 cents per gallon.
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this policy we compare the change in social surplus with construction costs. In figure 2, social

surplus at vkt
eq
1 is the integral from zero to vkt

eq
1 of the difference between the demand and

marginal cost curves. As a consequence of the fact that access to the road network is unpriced,

Ceq = AC(vkt
eq) in equilibrium. Because the total cost of vkt

eq is vkt
eq × AC(vkt

eq), it follows

that in any equilibrium where access to the road network is unpriced, the value of social surplus

is simply consumers surplus, the area under the demand curve but above the price line. Thus,

the equilibrium change in social surplus resulting from a decrease in the cost of transportation is

simply the corresponding change in consumers surplus.

For small changes in price, we can approximate the resulting change in consumers surplus with

the product of the price change and the ex ante equilibrium quantity. With this in mind, from

table 5, column 6, a 1% increase in the stock of roads implies a 0.09% increase in the speed of

travel. With a mean daily msa vkt of 64.2 million, this increase in speed implies an increase in

consumers surplus of about 478,000 hours annually (which corresponds to about 15 minutes per

person). Valuing this time at 11.5 dollars per hour and scaling by 100 to calculate a total for our

whole sample, give an increase in consumers surplus of about worth about 550 million dollars per

year.

Using data from Duranton and Turner (2012) based on estimates of road construction costs by

(Ng and Small, 2012) and maintenance costs from the us Bureau of Transportation Statistics (2007),

increasing the supply of interstate highways by 1% in all of the 100 largest msas has an annual cost

of 1.45 billion dollars. It is much harder to know the cost of expanding other major urban roads

by 1%. Panel a of table 1 indicates that they represent five to six times as many lane kilometers.

Even if major urban roads are much cheaper to build, a total annual cost of 3 billion dollars for a

1% expansion of the road network is most likely a lower bound. This is higher than the estimated

benefits by more than a factor of five.

Comparing this calculation of costs and benefits suggests that the alleviation of congestion is

probably not a sufficient justification for wholesale expansions of the road network. Because much

of the benefit from road expansions is dissipated by increases in driving, the increase in social

surplus from such construction appears to be dramatically smaller than construction costs. With

this said, there are other reasons to build roads and the alleviation of congestion might help to

justify road construction in some cases, particularly for specific bottlenecks or in places less well

provided with roads than our sample of major us cities. We note that this calculation confirms the
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conclusion of a similar calculation performed in Wheaton (1978).

8. Conclusion

Road transportation accounts for 18% of the budget for an average us household and about 72

minutes per day for an average us driver in 2008. In a typical year, the us spends about 150 billion

dollars on road construction and maintenance. Congestion naturally arises in the course of turning

these resources into travel. Despite a distinguished history of research in transportation economics,

the extant literature has struggled to measure the value of investments in road transportation or

the social cost of road congestion.

We make three advances in this agenda. First, we develop an econometric methodology and

data to identify city level supply curves for trip travel. With these supply curves, we construct

an index of travel speed for each of the largest us cities. This index number, for the first time,

provides a theoretically founded measure of the efficiency with which different locations produce

transportation.

Our investigation of the determinants of our speed index suggests that the production of trans-

portation at the city level is subject to slight decreasing returns to scale. This finding provides an

empirical basis for the positive relationship between city size and congestion costs that is axiomatic

in nearly all extant theoretical models of city size. It also reveals the role of roads, travel time, and

unobserved productivity. The presence of economically important variation in the unobserved

productivity of cities at producing transportation suggests the possibility of large gains in effi-

ciency if slow cities are able to emulate fast cities. We conduct a rudimentary investigation of

city characteristics associated with efficiency. Our findings are unsurprising: dense centralized

cities do not allow automobiles to travel at a high speed, while cities with ring roads do allow

automobiles to travel at high speeds. Refining this investigation is an important topic for further

research and may provide an empirical basis for the design of cities where travel is provided more

efficiently.

Our investigation of the efficiency of travel amounts to the comparison of equilibrium speed

with counterfactual, out-of-equilibrium scenarios. In this, it resembles the widely known travel

cost indices published by tti. Fundamentally, these counterfactual cases do not evaluate an

economically meaningful definition of congestion. Such a measure of congestion is intrinsically

subtle, and requires the calculation of the deadweight loss incurred at equilibrium levels of travel
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as opposed to optimum. Our estimates allow us a rough, and highly aggregated calculation of the

deadweight loss from congestion. This calculation indicates that the losses from congestion are

probably even larger than those suggested by counterfactual supply improvements. Since equilib-

rium responses dissipate much of the benefit from supply improvements, our results suggest that

the largest gains in transportation policy can be obtained by managing demand.
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Appendix A. Data

Consistent msa definition: msas are defined as aggregations of counties. We use the 1999 defini-

tion of consolidated metropolitan statistical areas (msa) and, in some robustness checks, primary

metropolitan statistical areas (pmsa). For 2008-2009, nhts data contain a county identifier that al-

lows us to identify the corresponding msa and pmsa. For 1995-1996 and 2001-2002, the npts/nhts

data only contain an msa identifier consistent with our msa definition. Other msa level variables

are constructed either from administrative data reported at the county level, or from gis data

assigned to msas on the basis of an electronic map of 1999 county or msa boundaries.

nhts data (trip-level data): Our trip-level data are from the 1995-1996 National Personal Trans-

portation Survey (npts) and its successors, the 2001-2002 and 2008-2009 National Household

Transportation Surveys (nhts). The surveys are sponsored by various agencies at the us Depart-

ment of Transportation. Detailed documentation on the nhts sample design and data content

is available on the nhts website (http://nhts.ornl.gov/). The data are intended for use by

transportation planners in governmental agencies and aim at providing reliable, representative

and comprehensive micro-data about the daily travel of Americans.

nhts aggregate data: As explained in the text, the general idea behind our method for computing

msa totals (vkt and vtt) from trip level data is to multiply averages for individual travel in each
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msa by population size. In practice however, this simple multiplication could lead to biased

estimates, because of how we remove outliers.

We therefore proceed as follow. Our sample consists of all trips entered by the driver of a car,

van, suv, pick-up or other truck in the 100 largest msas. We identify the 0.5% of trips with the

longest distance and the 0.5% of trips with the shortest distance, and eliminate all trips by an

individual who entered any of these extreme values. This is because including individuals with

an incomplete trip schedule would bias any averages that we compute later. We use a similar

procedure to remove outliers for trip time and speed. The individuals that we drop from the

sample are more likely to be drivers, so to obtain population totals out of average distance and time

in this clean sample, we need to compute, prior to eliminating outliers, the share of individuals

who drive at least one trip in each msa. Then, we multiply this share by msa adult population to

obtain an estimate of the total number of people who drive at least one trip in each msa. Finally, to

obtain an estimate of vtt and vkt in each msa, we just take the average time and distance traveled

from the clean sample of drivers, and multiply it by the population of drivers.

As an example, suppose that in a given msa, the nhts contains 5 individuals driving at least

one trip, out of 10 individuals in our sample for that msa. If msa adult population is equal to 100,

then our estimate of the number of drivers in this msa is (5/10)× 100 = 50. Now suppose that for

the drivers who remain in the sample after removing outliers, average distance driven is equal to

20 kilometers. Then our estimate of vkt in this msa is 50× 20 = 1000 vehicle kilometers traveled.

hpms data (road infrastructure): To estimate our travel production function, we rely on the

Highway Performance Monitoring System (hpms) data for 1995, 1996, 2001, 2002, and 2008. These

data are collected and maintained by the us Federal Highway Administration in cooperation with

many sub-national government agencies. Documentation is available in several reports from the

Federal Highway Adminstration (dot, 2003a, 2003b, and 2005). See also Duranton and Turner

(2011).

For the interstate highway system, the hpms records number of lanes, length, average annual

daily traffic (aadt), and county. By construction, road segments do not cross county borders.

For segments in urbanized areas, the hpms also provides an urbanized area code. Since msas are

county based units, these data allow us to calculate lane kilometers for the urbanized and non

urbanized area interstate systems by msa.
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Figure 4: Illustrations of ring and radial road algorithms for Oklahoma City in 2005.

Left panel illustrates radial road algorithm. Right panel illustrates ring road algorithm.

Road network measures: Our ring road and radial road index variables are based on the 2005

National Highway Performance Network (nhpn) map of the us road network. This map, which

complements the entirely tabular hpms data, describes all interstate highways in the us and a

subset of other major roads. From the source (nhpn) we construct two subnetworks. The first

consists of all open segments of the interstate highway network, the second consists of all open

segments of interstate highway, along with all principal arterial roads and urban freeways or

expressways. These two networks correspond closely to the measures of interstate highways and

major urban roads (including interstate highways) that we construct from the hpms.

For each of these networks we calculate a measure of ring road capacity and a measure of

radial road capacity. As their names suggest, these indices measure the ability of the network to

carry traffic radially from the center and circumferentially around the center. Since both concepts

fundamentally rely on knowing where the center of each city is, our first step is to locate the centers

of our msas. To accomplish this, we use the 2000 zipcode business patterns data and the 2000

census zipcode boundaries files to identify the zipcode in each msa with the highest employment

density.30

Once we have identified the center of each msa we are able to calculate our ring and radial

road indexes. The left panel of figure 4 illustrates the calculation of our radial road index for the

Oklahoma City msa and the interstate highway network. To calculate the radial road index, we

first draw two circles centered on the cbd, the first with radius 5 kilometers and the second with

30The census maintains ‘zipcode’ boundary files based on census blocks. They do not exactly correspond to the zip
codes boundaries used by the post office and are more stable over time.
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radius 10 kilometers. We then calculate the number of times the road network intersects each ring.

The minimum of these two values is our radial road index, which in this case is 5. If doing this

calculation by ‘eyeball’ one would probably struggle over whether there were 4 or 5 radial roads.

Calculating the ring road index is more involved, and is illustrated in the right panel of figure 4.

To begin, we draw two rays out from the center, one due North and the other Northwest. We

next calculate the number of times the road network intersects each ray in the interval between 5

and 9 kilometers from the center. The minimum of the these two is the radial road index for this

quadrant in the 5 to 9 kilometers donut. In the right panel of figure 4, this value is one. We then

replicate this exercise for larger donuts, 9-15 kilometers and 15-25 kilometers, and sum over all

three donuts to get the radial road index for the first quadrant. The size of the three disks is chosen

to preserve proportions as we scale up the size of the disks. To calculate our ring road index, we

replicate this procedure in each quadrant and sum over quadrants. We note that these indexes are

based on logic first developed in Baum-Snow et al. (2012).

Population and employment data: Population data for 1995-1996, 2001-2002, and 2008-2009 is

obtained from annual population estimates provided by the us census for these years. These

estimates are themselves based on interpolations and extrapolations of population counts made

by the us census. In some regressions we also use population data dating back to 1920, the first

census year which allows us to retain our samples of msas. We also use employment data from

the County Business Patterns to build two variables for our exploration of the determinants of

speed. The first is that of manufacturing employment. The second is an exogenous measure of

msa employment growth which interacts the sectoral composition of economic activity in an msa

in 1980 with the national growth of these sectors between 1980 and 2000.

Climate: We use two measures of temperature in us msas taken from the data used by Burchfield,

Overman, Puga, and Turner (2006).

Urban form: We have available the data underlying Burchfield et al. (2006). These data provide

fine scale employment data from 1994 zipcode business patterns and from 1990 tract level census

data: for every 990 meter× 990 meter cell in a regular grid covering the whole of the continental us,

these data report imputed 1990 population and 1994 employment. These data allow us to calculate

the measures of urban form used in the first three columns of table 6; employment centrality,

population centrality, and employment-residence mismatch.
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The population centrality measure reports the largest share of population that occurs in any

ring of radius 20 kilometers whose center lies in the msa. The employment centrality measure is

identical, but is based on employment rather than population.

The mismatch variable provides an aggregate measure of the extent to which people do not

live where jobs are (though not of the extent to which people do not live where their jobs are).

Specifically, let ei be employment in cell i and pi be population. Our mismatch measure is

∑i∈msaj
|pi − αei|

∑i∈msaj
pi

,

where α is the inverse share of employment in total population
(

α ∑i∈msaj
ei ≡ ∑i∈msaj

pi

)
. Since

we are normalizing by population, this is a per capita measure of mismatch.

Instruments for contemporary interstate highways: Our measures of the 1947 interstate highway

plan and the 1898 railroad network are taken from Duranton and Turner (2011) and are docu-

mented there. Further discussion of the 1947 highway plan is available in Baum-Snow (2007) and

Duranton and Turner (2012).

Texas Transportation Institute travel time indices: Until 2009 (using 2008 data), the annual tti

travel time indices were constructed using counts of vehicles on interstate highways and major

urban roads from the average annual daily traffic (aadt) item measured in the hpms ‘Sample’ data.

More specifically, the tti methodology subjected the aadt variable to a series of transformations

using external information and turned it into a measure of speed. This measure of speed was

then ‘operationally’ adjusted for several factors (e.g., the existence of a ramp metering system to

access interstate highways) to obtain a final measure of speed by city. These quantities were then

compared to a measure of free flow traffic to infer a travel cost index by city and their travel cost

index for the us.

In 2010 (to exploit 2009 data), the tti paired with inrix, a leading provider of traffic information,

directions, and driver services. Real speed data is now measured using information provided by

location devices from vehicles operated by various fleet operators and by the smart phones of

voluntary individuals for a subsample of segments of roads covered by the hpms ‘Sample’ data.

Importantly, the tti data cover only urbanized areas. This implies that areas for which the tti

computes its index are smaller than the msas that we use. This said, the ‘urbanized’ part of msas

will host the vast majority of their residents and jobs. In order to compare our msa based index
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with tti, we merged several tti urbanized areas to approximate msas more closely. To do this,

we weighted urbanized areas by their population. The full list of merged tti urbanized areas

is: Washington dc and Baltimore, San Francisco-Oakland and San Jose, Cleveland and Akron,

Los Angeles and Riverside-San Bernardino, Denver and Boulder, Greensboro and Winston-Salem,

Boston and Worcester. Finally, for Fort Myer-Cape Corral msa, the only tti data point is for Cape

Corral and for Norfolk-Virginia Beach-Newport News msa, the only tti data point is for Virginia

Beach. Overall we can match 47 of the 50 largest msas and 71 of the 100 largest using data for the

90 urban areas for which the tti reports an index for 2008.

Appendix B. Derivation of VKTopt,VKTeq,τ∗ and ∆

To solve for equilibrium vkt, we set average cost (4) equal to the demand for vkt (6) and solve to

get,

vkt
eq =

(
Γ1−θΩ−σ

) 1
1−θ(1−σ) . (b1)

Optimal vkt results from equating demand (6) with marginal cost (5)

vkt
opt = (1− θ)

σ(1−θ)
1−θ(1−σ)

vkt
eq. (b2)

We note that we can use these expressions to evaluate the amount of ‘overdrive’, that is, the

difference between equilibrium vkt and optimal vkt.

Equilibrium deadweight loss is the area of the approximately triangular region of figure 2 with

vertices at points A, B and C. More precisely, this area is,

dwl =
∫

vkt
eq

vkt
opt

[
1

1− θ
Ω

1
1−θ vkt

θ
1−θ − Γ

1
σ vkt

− 1
σ

]
dvkt . (b3)

Evaluating this integral, we have

dwl = Ω
1

1−θ

[
(vkt

eq)
1

1−θ −
(
vkt

opt) 1
1−θ

]
− σ

σ− 1
Γ

1
σ

[
(vkt

eq)
σ−1

σ −
(
vkt

opt) σ−1
σ

]
. (b4)

Using equation (b2), this becomes

dwl =
(

1− (1− θ)
σ

1−θ(1−σ)

)
Ω

1
1−θ (vkt

eq)
1

1−θ −
(

1− (1− θ)
(σ−1)(1−θ)
1−θ(1−σ)

)
σ

σ− 1
Γ

1
σ (vkt

eq)
σ−1

σ . (b5)

In equilibrium, we can use the supply curve (4) and the demand curve (6) to write

Γ
1
σ = C

eq (vkt
eq)

1
σ (b6)
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and

Ω
1

1−θ = C
eq (vkt

eq)−
θ

1−θ . (b7)

Using these two identities, along with the fact that vtt
eq = Ceq × vkt

eq, we can write deadweight

loss entirely in terms of total travel time and parameters,

dwl =

[(
1− (1− θ)

σ
1−θ(1−σ)

)
− σ

σ− 1

(
1− (1− θ)

(σ−1)(1−θ)
1−θ(1−σ)

)]
vtt

eq . (b8)

Dividing by vtt
eq gives ∆.

The magnitude of the optimal Pigovian congestion tax is the difference between the marginal

and average cost of vkt at the optimum. Using equation (5), we have

τ∗ =
θ

1− θ
AC(vkt

opt). (b9)

Together with equation (4), this gives

τ∗ =
θ

1− θ
Ω

1
1−θ (vkt

opt)
θ

1−θ . (b10)

To proceed, note that we can use equation (b7) to write Ω
1

1−θ in terms of vkt
eq and equation (b2) to

write vkt
opt in terms of vkt

eq. Substituting and simplifying gives,

τ∗ = θ(1− θ)
σθ

1−θ(1−σ)
−1Ceq. (b11)

Recalling that vtt
eq = Ceq

vkt
eq gives the desired result.

Appendix C. Discussion of trip length instrument

While mean distance by trip type does not appear explicitly in our the system of equations (12)-

(13), it is arguably a good proxy for the willingness to pay for a trip of a given type. Just as trip

type dummies vary with the intercept of the demand curve, so does mean trip distance by type.

However, the arguments for the validity of trip type dummies and the validity of mean distance

by trip type are different.

Trips to the gym may be observed on average under better weather (and traffic) conditions than

trips to work. This is not an issue as long as this differential selection of trips does not affect the

distance of trips to the gym relative to the distance of trips to work. However, suppose that when

the weather is worse drivers go to a closer gym and to a closer workplace. If weather conditions af-

fect distances equally for all types of trips, then unobserved weather introduces noise but does not
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lead to a violation of the exogeneity condition. On the other hand, if more than 10 centimeters of

snow causes drivers to choose a closer gym but does not affect the choice of workplace, then mean

trip distance by type is correlated with the error term in the speed regressions. More generally,

average distances by trip type do not satisfy the exogeneity condition when the unobserved state

of traffic differentially affects the distance of different types of trips depending on mean distance.

Whether the length of shorter trip types should be more (or less) sensitive to traffic conditions

than distance for longer trips types is not obvious. While (on average) distance for short shopping

trips may be sensitive to traffic conditions, that of longer recreational trips might be as well. On the

other hand, distance for short trips to school may be insensitive to traffic conditions and long trips

to work may be similarly insensitive. This said, to avoid a possible correlation between average

trip distance and unobserved traffic conditions, we can again restrict attention to trips with low

discretion. We can also use extensive controls for trip characteristics, as we do when using trip

type dummies as instruments.

We note that if trip type dummies and mean distance by trip type fail their respective exogeneity

conditions, they do so for different reasons. Trip type dummies may be subject to a selection bias

where different types of trips are observed only under systematically different unobserved traffic

conditions. Mean trip distance may be subject to a simultaneity problem where mean distance for

trips of different types is affected differently under different unobserved traffic conditions in a way

that is correlated with this speed. Therefore, if both types of instruments lead to similar estimates

this indicates that they are either both valid or, improbably, that the selection problem for trip type

dummies has the same bias on our estimates as the hypothetical simultaneity problem for average

distance by trip types.

Appendix D. Further robustness tests for the speed-distance relationship

Table 9 reports further results which are commented in the text.

Appendix E. Robustness tests for determinants of speed

Table 10 confirms our findings using different samples of msas, years of data, and variables. In

column 1 we duplicate our preferred estimation of column 6 of table 5 using only the 50 largest

msas and estimate slightly larger magnitudes for both the coefficient on lanes and vehicle travel
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Table 9: Robustness checks of the estimation of inverse-supply curves

(1) (2) (3) (4) (5) (6) (7) (8)
mid. dist. 2 quartiles peak hours commutes PMSA

OLS IV OLS IV OLS IV OLS IV

Panel A. 100 largest MSAs for 2008

Mean c 1.258 1.022 1.390 1.190 1.352 - 1.413 1.331
(0.144) (0.466) (0.107) (0.182) (0.166) - (0.090) (0.142)
[0.003] [0.171] [0.003] [0.068] [0.004] - [0.001] [0.047]

Mean γ 0.372 0.251 0.413 0.352 0.394 - 0.420 0.350
(0.063) (0.243) (0.043) (0.089) (0.060) - (0.028) (0.071)
[0.001] [0.118] [0.001] [0.044] [0.001] - [0.001] [0.032]

Panel B. 50 largest MSAs for 2008

Mean c 1.269 1.032 1.386 1.180 1.381 1.101 1.417 1.303
(0.108) (0.433) (0.075) (0.123) (0.142) (0.831) (0.075) (0.094)
[0.002] [0.144] [0.002] [0.053] [0.003] [0.069] [0.001] [0.034]

Mean γ 0.371 0.196 0.402 0.329 0.393 0.291 0.411 0.323
(0.039) (0.228) (0.024) (0.061) (0.047) (0.283) (0.020) (0.041)
[0.001] [0.101] [0.001] [0.034] [0.001] [0.046] [0.001] [0.023]

Panel C. 50 largest MSAs for 2001

Mean c 1.311 1.093 1.372 1.262 1.349 - - -
(0.109) (0.355) (0.083) (0.116) (0.125) - - -
[0.004] [0.180] [0.003] [0.067] [0.005] - - -

Mean γ 0.388 0.198 0.395 0.334 0.385 - - -
(0.045) (0.191) (0.028) (0.058) (0.037) - - -
[0.002] [0.125] [0.001] [0.042] [0.001] - - -

Panel D. 50 largest MSAs for 1995

Mean c 1.042 0.890 1.190 0.992 1.162 - - -
(0.144) (0.358) (0.090) (0.155) (0.140) - - -
[0.008] [0.173] [0.005] [0.070] [0.009] - - -

Mean γ 0.312 0.208 0.363 0.323 0.347 - - -
(0.056) (0.186) (0.023) (0.073) (0.039) - - -
[0.002] [0.121] [0.001] [0.042] [0.002] - - -

Notes: Columns 1 and 2 censor the bottom and top quartile of distance per MSA and year. Columns 3 and 4
only consider trips taken at peak hours. Columns 5 and 6 consider only commutes and work-related trips.
Columns 7 and 8 use primary instead of consolidated metropolitan areas. Instruments in columns 6 are
weak except for the largest cities in 2009. Household location at the PMSA level is known only for 2009.
Mean of the coefficients across all cities. Standard deviation of city coefficients in parentheses. Mean of the
standard deviation of city coefficients in squared parentheses.
Dependent variable: minutes per kilometer for individual trips.
Controls: Controls for household income and its square, driver’s education and its square, age, dummies
for males, blacks, and workers, and a quartic for the time of departure in all columns.
Instruments: Mean trip distance for trips of the same purpose computed from the four most similar MSA in
term of population in columns 2, 4, 6, and 8.
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Table 10: The determinants of speed, alternative years, samples, and variables

(1) (2) (3) (4) (5) (6) (7) (8)
SIV2 SIV2 SIV2 TTI2008 TTI2009 SIV2 SIV2 SIV2
2008 2001 1995 2008 2008 2008 2008 2008

log lane (total) 0.15a 0.066c 0.022 0.11a 0.032 0.066c

(0.037) (0.034) (0.049) (0.023) (0.022) (0.038)
log lane (interstate highways) 0.071a 0.069a

(0.014) (0.013)
log lane (major urban roads) 0.066b

(0.030)
log VTT -0.19a -0.12a -0.074 -0.17a -0.077a -0.11a -0.17a

(0.031) (0.032) (0.046) (0.019) (0.018) (0.012) (0.031)
log population -0.12a

(0.035)
Observations 50 100 100 71 78 100 98 98
R2 0.52 0.35 0.24 0.70 0.65 0.34 0.46 0.49

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. Dependent variables is in log in all columns. In columns (4) and (5), we use the
inverse of the TTI indices to be able to interpret them as speed.

time. The R2 is also higher given the greater precision of our index in larger msas. In columns 2

and 3, we also duplicate our preferred regression from table 5 but use 100 msas for 2001 and 1995,

respectively. While the results for 2001 are close to those for 2008, the coefficient on lanes for 1995

is insignificant and the R2 is much lower. In columns 4 and 5, we use a log speed index computed

from the 2008 and 2009 tti travel cost indices, respectively, as dependent variables. The results

for the 2008 tti index are close to those of our preferred estimation. With the 2009 tti index, the

coefficient on lanes is small and insignificant. Column 6 substitutes population for vtt finds results

similar to the other specifications. In column 7, we use log interstate highway lane kilometers as

a measure of roads. Excluding smaller roads leads to a smaller coefficient. Finally in column 8

we control separately for log lane kilometers of interstate highways and major urban roads. We

find a marginally higher coefficient for interstate highways than for major urban roads which is

consistent with the more important capacities and the greater speed of interstate highway lanes

relative to lanes of major urban roads. Importantly, the sum of these two coefficients is very close

to the coefficient for both types of roads considered jointly in our preferred regression.

Table 11 further confirms our findings using alternative estimation techniques. As argued

above, vehicle travel time is expected to be determined simultaneously with travel speed. To deal
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Table 11: The determinants of speed, 100 MSAs in 2008 IV regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
TSLS TSLS TSLS TSLS TSLS TSLS TSLS TSLS TSLS LEVPET

log lane 0.075a 0.081a 0.077b 0.090c

(0.040) (0.041) (0.039) (0.048)
log lane (IH) 0.086a 0.090a 0.084a 0.082a 0.086a 0.079a

(0.024) (0.024) (0.025) (0.024) (0.023) (0.025)
log lane (MRU) 0.066b 0.057c 0.056c 0.044

(0.030) (0.032) (0.029) (0.032)
log VTT -0.12a -0.11a -0.096b -0.12a -0.18a -0.16a -0.11a -0.17a -0.14a -0.11a

(0.035) (0.036) (0.038) (0.020) (0.035) (0.039) (0.019) (0.033) (0.040) (0.025)

Instrumented
log VTT X X X X X X
log lane (IH) X X X X X X

Instruments
log pop. 2008 X X X X X X
log highways 1947 X X X X X X
log railroads 1898 X X X X X X

Controls
∆1980−2008 log pop. X
E∆1980−2000 log pop. X X X
log pop. 1950 X X
log pop. 1920 X X
Observations 100 100 100 94 94 94 94 94 94 300
Overid. p-value - - - 0.20 0.26 0.43 0.20 0.24 0.46 -
First-stage stat. 567 494 450 32.3 32.4 28.0 21.4 21.1 18.5 -

Notes: Regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c: significant
at 1%, 5%, 10%. Dependent variables is log SIV2 in all columns. The first stage statistic is a Kleibergen-Paap
F-statistic for robust estimation. They are always above the Stock-Yogo critical threshold at 10%.

with this problem, in column 1 we instrument for vtt using population. As might be expected,

population is a strong predictor of vtt. The estimated coefficient on vtt is −0.12, only marginally

smaller in magnitude than (and statistically undistinguishable from) its ols counterpart. One may

worry that the exclusion restriction associated with this regression is not satisfied since population

in 2008 may be correlated with traffic speed through variables other than roads and vtt. This worry

may not be as important as it seems. First, Duranton and Turner (2012) document that interstate

highways have only a modest effect on urban growth. Second, to explore this question further, in

column 2 we duplicate the regression of column 1 but also control for population growth between

1980 and 2008. The results remain the same. To confirm this finding, in column 3 we use a more
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exogenous proxy for urban growth, namely expected population growth between 1980 and 2000.

This proxy is computed by interacting the sectoral composition of employment in msas in 1980

and employment growth for these sectors between 1980 and 2000.31 The results are still very close

to the previous estimates.32

In column 4, we turn to the simultaneous determination of roads and travel speed. Unfor-

tunately, we do not know of any good exogenous predictor of lane kilometers of both interstate

highways and major urban roads. However, we can follow Duranton and Turner (2011, 2012) and

use the 1947 plan of interstate highways and a map of 1898 railroads to predict contemporaneous

lane kilometers of interstate highways in us msas. Appendix A provides further details about the

construction of these two instruments. As can be seen from the results, these two instruments

are good predictors of contemporaneous lane kilometers of interstate highways and pass the

appropriate overidentification test. The coefficient on lane kilometers of interstate highways is

0.086. This is slightly above its corresponding ols estimate of 0.071 in column 7 of table 10.

In column 5, we estimate the same regression but add lane kilometers of major urban roads as

control. The sum of the two lane coefficients is 0.156, slightly above the sum of the corresponding

ols estimates of 0.135 (in column 8 of table 10). Again, our instruments could be correlated with

travel speed through the error term. Cities that received more railroads during the 19th century

or cities that were allocated more roads in 1947 may be different in systematic ways. In particular,

they were bigger at the time and thus may be spatially organised in a different way and may have

a different transportation network relative to more recent cities. In turn, that might affect travel

speed. To preclude these correlations, in column 6 we introduce 1920 population (the closest year

to 1898 for which we can get population estimates), 1950 population, and expected population

growth between 1980 and 2000 as before. Introducing these controls in column 6 changes close to

nothing to the estimates of column 6. The marginally significant coefficient on major urban roads

is now marginally insignificant.

In columns 7 to 9, we repeat the same strategy as in columns 4 to 6 but now instrument for

both lane kilometers of highways and vehicle travel time. The results remain the same as before.

Finally in column 10, we use a completely different instrumenting approach which makes use

31This variable is inspired by Bartik (1991) and further details about its construction can be found in Duranton and
Turner (2011).

32Overall the finding of a slightly less negative effect of travel time on speed in tsls relative to ols after controlling
for population growth is consistent with higher travel speed having a modest positive effect on population.
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of all three cross-sections of data (and changes in the roadway prior to 1995) and implement the

estimation technique for productivity suggested by Levinsohn and Petrin (2003). It is true that,

unlike firms, cities do not invest in roads in response to positive demand shocks to maximize profit

(be it only because roads are funded mainly by the federal government). Nonetheless we expect

road provision to respond to changes in travel conditions. While suggestive, our Levinsohn-Petrin

results are very close to our ols and tsls estimates.
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