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We propose new concepts of statistical depth, multivariate quantiles, ranks and signs, based on canonical transportation maps between a distribution of interest on IR d and a reference distribution on the d-dimensional unit ball. The new depth concept, called Monge-Kantorovich depth, specializes to halfspace depth in the case of elliptical distributions, but, for more general distributions, differs from the latter in the ability for its contours to account for non convex features of the distribution of interest. We propose empirical counterparts to the population versions of those Monge-Kantorovich depth contours, quantiles, ranks and signs, and show their consistency by establishing a uniform convergence property for empirical transport maps, which is of independent interest.

Introduction

The concept of statistical depth was introduced in order to overcome the lack of a canonical ordering in IR d for d > 1, hence the absence of the related notions of quantile and distribution functions, ranks, and signs. The earliest and most popular depth concept is halfspace depth, the definition of which goes back to Tukey [START_REF] Tukey | Mathematics and the Picturing of Data[END_REF]. Since then, many other concepts have been considered: simplicial depth [START_REF] Liu | On a notion of data depth based on random simplices[END_REF], majority depth ( [START_REF] Singh | Majority depth[END_REF] and [START_REF] Liu | A quality index based on data depth and multivariate rank tests[END_REF]), projection depth ( [START_REF] Liu | Data depth and multivariate rank tests[END_REF], building on [START_REF] Stahel | Robuste Schätzungen : infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen[END_REF] Date: January 28, 2015. Chernozhukov's research was supported by the NSF. Galichon and [START_REF] Donoho | Breakdown properties of multivariate location estimators[END_REF], [START_REF] Zuo | Projection-based depth functions and associated medians[END_REF]), Mahalanobis depth ( [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF], [START_REF] Liu | Data depth and multivariate rank tests[END_REF], [START_REF] Liu | A quality index based on data depth and multivariate rank tests[END_REF]), Oja depth [START_REF] Oja | Descriptive statistics for multivariate distributions[END_REF], zonoid depth ( [START_REF] Koshevoy | Zonoid trimming for multivariate distributions[END_REF] and [START_REF] Koshevoy | The Tukey depth characterizes the atomic measure[END_REF]), spatial depth ( [START_REF] Koltchinskii | On spatial quantiles[END_REF], [START_REF] Möttönen | Multivariate sign and rank methods[END_REF], [START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF], [START_REF] Vardi | The multivariate L 1 -median and associated data depth[END_REF]), L p depth [START_REF] Zuo | General Notions of Statistical Depth Function[END_REF], among many others. An axiomatic approach, aiming at unifying all those concepts, was initiated by Liu [START_REF] Liu | On a notion of data depth based on random simplices[END_REF] and Zuo and Serfling [START_REF] Zuo | General Notions of Statistical Depth Function[END_REF], who list four properties that are generally considered desirable for any statistical depth function, namely affine invariance, maximality at the center, linear monotonicity relative to the deepest points, and vanishing at infinity (see Section 2.2 for details). Halfspace depth D Tukey is the prototype of a depth concept satisfying the Liu-Zuo-Serfling axioms for the family P of all absolutely continuous distributions on IR d .

An important feature of halfspace depth is the convexity of its contours, which thus satisfy the star-convexity requirement embodied in the linear monotonicity axiom. That feature is shared by most existing depth concepts and might be considered undesirable for distributions with non convex supports or level contours, and multimodal ones. Proposals have been made, under the name of local depths, to deal with this, while retaining the spirit of the Liu-Zuo-Serfling axioms: see [START_REF] Chen | Outlier detection with the kernelized spatial depth function[END_REF], [START_REF] Hlubinka | Weighted halfspace depth[END_REF], [START_REF] Agostinelli | Local depth[END_REF], and [START_REF] Paindaveine | From depth to local depth[END_REF] who provide an in-depth discussion of those various attempts. In this paper, we take a totally different and more agnostic approach, on the model of the discussion by Serfling in [START_REF] Serfling | Quantile functions for multivariate analysis: approaches and applications[END_REF]: if the ultimate purpose of statistical depth is to provide, for each distribution P , a P -related ordering of IR d producing adequate concepts of quantile and distribution functions, ranks and signs, the relevance of a given depth function should be evaluated in terms of the relevance of the resulting ordering, and the quantiles, ranks and signs it produces. Now, the concepts of quantiles, ranks and signs are well understood in two particular cases, essentially, that should serve as benchmarks. The first case is that of the family P 1 of all distributions with nonvanishing Lebesgue densities over the real line. Here, the concepts of quantile and distribution functions, ranks, and signs are related to the "classical" univariate ones. The second case is that of the family P d ell of all full-rank elliptical distributions over IR d (d > 1) with nonvanishing radial densities. There, elliptical contours with P -probability contents τ provide a natural definition of τ -quantile contours, while the ranks and unit vectors associated with sphericized observations have proven to be adequate concepts of multivariate ranks and signs, as shown in [START_REF] Hallin | Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks[END_REF], [START_REF] Hallin | Rank-based optimal tests of the adequacy of an elliptic VARMA model[END_REF], [START_REF] Hallin | Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity[END_REF] and [START_REF] Hallin | Optimal rank-based tests for homogeneity of scatter[END_REF]: call them elliptical quantiles, ranks and signs. In both cases, the relevance of ranks and signs, whether traditional or elliptical, is related to their role as maximal invariants under a group of transformations minimally generating P, of which distribution-freeness is just a by-product, as explained in [START_REF] Hallin | Semiparametric efficiency, distribution-freeness, and invariance[END_REF]. We argue that an adequate depth function, when restricted to those two particular cases, should lead to the same well-established concepts: classical quantiles, ranks and signs for P 1 , elliptical ones for P d ell .

A closer look at halfspace depth in those two particular cases reveals that the halfspace depth contours are the images of the hyperspheres with radii τ ∈ [0, 1] centered at the origin, by a map Q that is the gradient of a convex function. That mapping Q actually is the essentially unique gradient of a convex function that transports the spherical uniform distribution U d on the unit ball S d of IR d , (i.e., the distribution of a random vector rϕ, where r is uniform on [0, 1], ϕ is uniform on the unit sphere S d-1 , and r and ϕ are mutually independent) into the univariate or elliptical distribution of interest P . By McCann's [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] extension of Brenier's celebrated Polar Factorization Theorem [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF], such gradient of a convex function Q P transporting U d into P exists, and is an essentially unique, for any distribution P on IR d -not just the elliptical ones. Moreover, when P has finite moments of order two, that mapping Q P coincides with the L 2 -optimal transport map, in the sense of measure transportation, of the spherical distribution U d to P . This suggests a new concept of statistical depth, which we call the Monge-Kantorovich depth D MK , the contours and signs of which are obtained as the images by Q P of the hyperspheres with radius τ ∈ [0, 1] centered at the origin and their unit rays. When restricted to P 1 or P d ell , Monge-Kantorovich and halfspace depths coincide, and affine-invariance is preserved. For P ∈ P d \ P d ell with d > 1, the two concepts are distinct, and Monge-Kantorovich depth is no longer affine-invariant.

Under suitable regularity conditions due to Caffarelli (see [START_REF] Villani | Topics in Optimal Transportation[END_REF], Section 4.2.2), Q P is a homeomorphism, and its inverse R P := Q -1 P is also the gradient of a convex function; the Monge-Kantorovich depth contours are continuous and the corresponding depth regions are nested, so that Monge-Kantorovich depth indeed provides a center-outward ordering of IR d , namely,

x 2 ≥ D MK P x 1 if and only if R P (x 2 ) ≤ R P (x 1 ) .
Thus, our approach based on the theory of measure transportation allows us to define (a) a vector quantile map Q P , and the associated quantile correspondence, which maps τ ∈ [0, 1] to Q P (S(τ )), (b) a vector rank (or signed rank) function R P , which can be decomposed into a rank function from IR d to [0, 1], with r P (x) := R P (x) , and a sign function u P , mapping

x ∈ IR d to u P (x) := R P (x)/ R P (x) ∈ S d-1 .
We call them Monge-Kantorovich quantiles, ranks and signs.

To the best of our knowledge, this is the first proposal of measure transportationbased depth concept-hence the first attempt to provide a measure-driven ordering of IR d based on measure transportation theory. That ordering, namely ≥ D MK P , is canonical in the sense that it is invariant under shifts, multiplication by a non zero scalar, orthogonal transformations, and combinations thereof; so are the Monge-Kantorovitch ranks. Previous proposals have been made, however, of measure transportation-based vector quantile functions in Ekeland, Galichon and Henry [START_REF] Ekeland | Comonotonic measures of multivariate risks[END_REF] and Galichon and Henry [START_REF] Galichon | Dual theory of choice under multivariate risk[END_REF]. Carlier, Chernozhukov and Galichon [START_REF] Carlier | Vector quantile regression[END_REF] extended the notion to vector quantile regression, creating a vector analogue of Koenker and Basset's [START_REF] Koenker | Regression quantiles[END_REF] scalar quantile regression. More recently, Decurninge [START_REF] Deurninge | Multivariate quantiles and multivariate L-moments[END_REF] proposed a new concept of multivariate L p moments based upon the same notion. In these contributions, however, the focus is not statistical depth and the associated quantiles and ranks, and the leading case for the reference distribution is uniform on the unit hypercube in IR d , as opposed to the spherical uniform distribution U d we adopt here as leading case, while pointing out that other reference distributions may be entertained, such as the standard Gaussian distribution on IR d or the uniform on the hypercube [0, 1] d as mentioned above.

Empirical versions of Monge-Kantorovich vector quantiles are obtained as the essentially unique gradient Qn of a convex function from (some estimator of) the reference distribution to some estimator Pn of the distribution of interest P . In case of smooth estimators, where Pn satisfies Caffarelli regularity conditions, empirical ranks, depth and depth contours are defined identically to their theoretical counterparts, and possess the same properties. In case of discrete estimators, such as the empirical distribution of a sample drawn from P , Qn is not invertible, and empirical vector ranks and depth can be defined as multi-valued mappings or selections from the latter. In all cases, we prove uniform convergence of Monge-Kantorovich empirical depth and quantile contours, vector quantiles and vector ranks, ranks and signs to their theoretical counterparts, as a special case of a new result on uniform convergence of optimal transport maps, which is of independent interest.

Notation, conventions and preliminaries. Let (Ω, A, IP) be some probability space. Throughout, P denotes a class of probability distributions over IR d . Unless otherwise specified, it is the class of all Borel probability measures on IR d . Denote by S d := {x ∈ IR d : x ≤ 1} the unit ball, and by S d-1 := {x ∈ IR d : x = 1} the unit sphere, in IR d . For τ ∈ (0, 1], S(τ ) := {x ∈ IR d : x ≤ τ } is the ball, and S(τ ) := {x ∈ IR d : x = τ } the sphere, of radius τ . Let P X stand for the distribution of the random vector X. Following Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF], we denote by g#µ the image measure (or push-forward) of a measure µ ∈ P by a measurable map g : IR d → IR d . Explicitly, g#µ(A) := µ(g -1 (A)) for any Borel set A. For a Borel subset D of a vector space equipped with the norm • and f : D → IR, let

f BL(D) := sup x |f (x)| ∨ sup x =x ′ |f (x) -f (x ′ )| x -x ′ -1 .
For two probability distributions P and P ′ on a measurable space D, define the bounded Lipschitz metric as d BL (P, P ′ ) := P -P ′ BL := sup As such, it emulates the notion of quantile for distributions on the real line. We define it as a real-valued index on IR d as follows.

f BL(D) ≤1 f d(P -P ′ ),
Definition (Statistical depth index and ordering). A depth function is a mapping D : IR d × P -→ IR + (x, P ) -→ D P (x), and D P (x) is called the depth of x relative to P . For each P ∈ P, the depth ordering ≥ D P associated with D P is the weak order on IR d defined for each (x 1 , x 2 ) ∈ IR 2d by x 1 ≥ D P x 2 if and only if D P (x 1 ) ≥ D P (x 2 ), in which case x 1 is said to be deeper than x 2 relative to P .

The depth function thus defined allows graphical representations of the distribution P through depth contours, which are collections of points of equal depth relative to P . By construction, the depth regions relative to any distribution P are nested, i.e.,

∀(d, d ′ ) ∈ IR 2 + , d ′ ≥ d =⇒ C P (d ′ ) ⊆ C P (d).
Hence, the depth ordering qualifies as a center-outward ordering of points in IR d . 2.2. Liu-Zuo-Serfling axioms and halfspace depth. The four axioms proposed by Liu [START_REF] Liu | On a notion of data depth based on random simplices[END_REF] and Zuo and Serfling [START_REF] Zuo | General Notions of Statistical Depth Function[END_REF] to unify the diverse depth functions proposed in the literature are the following. The earliest and most popular depth function is halfspace depth proposed by Tukey [START_REF] Tukey | Mathematics and the Picturing of Data[END_REF]:

Definition (Halfspace depth). The halfspace depth D Tukey P (x) of a point x ∈ IR d with respect to the distribution P X of a random vector X on IR d is defined as

D Tukey P X (x) := min ϕ∈S d-1 IP[(X -x) ⊤ ϕ ≥ 0].
Halfspace depth relative to any distribution with nonvanishing density on IR d satisfies (A1)-(A4). The appealing properties of halfspace depth are well known and well documented: see Donoho and Gasko [START_REF] Donoho | Breakdown properties of location estimates based on halfspace depth and projected outlyingness[END_REF], Mosler [START_REF] Mosler | Multivariate dispersion, central regions and depth: the lift zonoid approach[END_REF], Koshevoy [START_REF] Koshevoy | The Tukey depth characterizes the atomic measure[END_REF], Ghosh and Chaudhuri [START_REF] Ghosh | On maximum depth and related classifiers[END_REF], Cuestas-Albertos and Nieto-Reyes [START_REF] Cuesta-Albertos | The random Tukey depth[END_REF], Hassairi and Regaieg [START_REF] Hassairi | On the Tukey depth of a continuous probability distribution[END_REF], to cite only a few. Halfspace depth takes values in [0, 1/2], and its contours are continuous and convex; the corresponding regions are closed, convex, and nested as d decreases. Under very mild conditions, halfspace depth moreover fully characterizes the distribution P . For somewhat less satisfactory features, however, see Dutta et al. [START_REF] Dutta | Some intriguing properties of Tukey's halfspace depth[END_REF]. An important feature of halfspace depth is the convexity of its contours, which implies that halfspace depth contours cannot pick non convex features in the geometry of the underlying distribution, as illustrated in Figure 1.

We shall propose below a new depth concept, the Monge-Kantorovich (MK) depth, that relinquishes the affine equivariance and star convexity of contours imposed by Axioms (A1) and (A3) and recovers non convex features of the underlying distribution. As a preview of the concept, without going through any definitions, we illustrate in Figure 2 (using the same example as in Figure 1) the ability of the MK depth to capture non-convexities. In what follows, we characterize these abilities more formally. We shall emphasize that this notion comes in a package with new, interesting notions of vector ranks and quantiles, based on optimal transport, which reduce to classical notions in univariate and multivariate elliptical cases. 

2.3.

Monge-Kantorovich depth. The principle behind the notion of depth we define here is to map the depth regions and contours relative to a well chosen reference distribution F , into depth contours and regions relative to a distribution of interest P on IR d , using a well chosen mapping. The mapping proposed here is the optimal transport plan from F to P for quadratic cost.

Definition. Let P and F be two distributions on IR d with finite variance. An optimal transport plan from F to P for quadratic cost is a map Q :

IR d -→ IR d that maximizes u ⊤ Q(u) dF (u) subject to Q#F = P. (2.1)
This definition has a classical counterpart in case of univariate distributions.

Proposition. When d = 1 and F is uniform on [0, 1], u → Q(u) is the classical quantile function for distribution P .
In order to base our notion of depth and quantiles for a distribution P on the optimal transport map from F to P , we need to ensure existence and uniqueness of the latter. We also need to extend this notion to define depth relative to distributions without finite second order moments. The following theorem, due to Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and McCann [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF] achieves both.

Theorem 2.1. Let P and F be two distributions on IR d . If F is absolutely continuous with respect to Lebesgue measure, the following hold.

(1) There exists a convex function ψ : IR d → IR∪{+∞} such that ∇ψ#F = P .

The function ∇ψ exists and is unique, F -almost everywhere. (2) In addition, if P and F have finite second moments, ∇ψ is the unique optimal transport map from F to P for quadratic cost.

By the Kantorovich Duality Theorem (see Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF], Theorem 1.3), the function ψ, called transportation potential (hereafter simply potential), also solves the dual optimization problem

ψdF + ψ * dP = inf ϕ ϕdF + ϕ * dP, (2.2)
where the infimum is over lower-semi-continuous convex functions ϕ. The pair (ψ, ψ * ) will be called conjugate pair of potentials.

On the basis of Theorem 2.1, we can define multivariate notions of quantiles and ranks, through which a depth function will be inherited from the reference distribution F . Definition 2.1 (Monge-Kantorovich depth, quantiles, ranks and signs). Let F be an absolutely continuous reference distribution on IR d . Vector quantiles, ranks, signs and depth are defined as follows.

(1) The Monge-Kantorovich (hereafter MK) vector quantile function relative to distribution P is defined for each u ∈ IR d as the F -almost surely unique gradient of a convex function Q P (u) := ∇ψ(u) such that ∇ψ#F = P .

(2) The MK vector rank of x ∈ IR d is R P (x) := ∇ψ * (x), where ψ * is the conjugate of ψ. The MK rank is R P (x) and the MK sign is R P (x)/ R P (x) . (3) The MK depth of x ∈ IR d relative to P is consequently defined as the halfspace depth of R P (x) relative to the reference distribution F .

D MK P (x) := D Tukey F (R P (x)).
The notion of depth proposed in Definition 2.1 is based on an optimal transport map from the baseline distribution F to the distribution of interest. Each reference distribution will therefore generate, through the optimal transport map, a depth weak order on IR d , relative to a distribution of interest P . This order is defined for each (x 1 , x 2 ) ∈ IR 2d by

x 1 ≥ D P ;F x 2 if and only if D Tukey F (R P ;F (x 1 )) ≥ D Tukey F (R P ;F (x 2 )),
where the dependence of the rank function R P :F and hence D P ;F on the reference distribution is emphasized here, although, as in Definition 2.1, it will be omitted in the notation when there is no ambiguity. When requiring regularity of vector quantiles and ranks and of depth contours, we shall work within the following environment for the conjugate pair of potentials (ψ, ψ * ). Sufficient conditions for condition (C) in the context of Definition 2.1 are provided by Caffarelli's regularity theory (Villani [51], Theorem 4.14). One set of sufficient conditions is as follows.

Proposition (Caffarelli). Suppose that P and F admit densities, which are of smoothness class C β for β > 0 on convex, compact support sets cl(Y 0 ) and cl(U 0 ), and the densities are bounded away from zero and above uniformly on the support sets. Then Condition (C) is satisfied for the conjugate pair (ψ, ψ * ) such that ∇ψ#F = P and ∇ψ * #P = F.

Under sufficient conditions for (C) to be satisfied for MK vector quantiles Q P and vector ranks R P relative to distribution P , Q P and R P are continuous and inverse of each other, so that the MK depth contours are continuous, MK depth regions are nested and regions and contours take the following respective forms: Definition (Spherical uniform distribution). The spherical uniform distribution U d is the distribution of a random vector rϕ, where r is uniform on [0, 1], ϕ is uniform on the unit sphere S d-1 , and r and ϕ are mutually independent.

C M K P (d) := Q P C Tukey
The spherical symmetry of distribution U d produces halfspace depth contours that are concentric spheres, the deepest point being the origin. The radius τ of the ball S(τ ) = {x ∈ IR d : x ≤ τ } is also its U d -probability contents, that is, τ = U d (S(τ )). Letting θ := arccos τ , the halfspace depth with respect to U d of a point τ u ∈ S(τ ) := {x ∈ IR d : x = τ }, where τ ∈ (0, 1] and u ∈ S d , is

(2.3) D U (τ u) = π -1 [θ -cos θ log | sec θ + tan θ|] d ≥ 2 (1 -τ )/2 d = 1.
Note that for d = 1, u takes values ±1 and that, in agreement with rotational symmetry of U d , depth does not depend on u.

The principle behind the notion of depth we investigate further here is to map the depth regions and contours relative to the spherical uniform distribution U d , namely, the concentric spheres, into depth contours and regions relative to a distribution of interest P on IR d using the chosen transport plan from U d to P . Under sufficient conditions for (C) to be satisfied for MK vector quantiles Q P and ranks R P relative to distribution P (note that the conditions on F are automatically satisfied in case F = U d ), Q P and R P are continuous and inverse of each other, so that the MK depth contours are continuous, MK depth regions are nested and regions and contours take the following respective forms, when indexed by probability content.

C M K P (τ ) := Q P (S(τ )) and C M K P (τ ) := Q P (S(τ )) , for τ ∈ (0, 1].
By construction, depth and depth contours coincide with Tukey depth and depth contours for the baseline distribution U d . We now show that MK depth of Definition 2.1 still coincides with Tukey depth in case of univariate distributions as well as in case of elliptical distributions.

MK depth is halfspace depth in dimension 1. The halfspace depth of a point x ∈ IR relative to a distribution P over IR takes the very simple form

D Tukey P (x) = min(P (x), 1 -P (x)),
where, by abuse of notation, P stands for both distribution and distribution function. The non decreasing map defined for each x ∈ IR by x → R P (x) = 2P (x) -1 is the derivative of a convex function and it transports distribution P to U 1 , which is uniform on [-1, 1], i.e., R P #P = U 1 . Hence R P coincides with the MK vector rank of Definition 2.1. Therefore, for each x ∈ IR,

D P (x) = D Tukey U d (R P (x)) = min(P (x), 1 -P (x))
and MK depth coincides with Tukey depth in case of all distributions with nonvanishing densities on the real line.

MK depth is halfspace depth for elliptical distributions. A d-dimensional random vector X has elliptical distribution P µ,Σ,f with location µ ∈ IR d , positive definite symmetric d × d scatter matrix Σ and radial distribution function f if and only if

(2.4) R(X) := Σ -1/2 (X -µ) Σ -1/2 (X -µ) 2 F Σ -1/2 (X -µ) 2 ∼ U d ,
where F , with density f , is the distribution function of Σ -1/2 (Xµ) 2 . The halfspace depth contours of P µ,Σ;F coincide with its ellipsoidal density contours, hence only depend on µ and Σ. Their indexation, however, depends on F . The location parameter µ, with depth 1/2, is the deepest point. In Proposition 2.1, we show that the mapping R is the rank function associated to P µ,Σ;f according to our Definition 2.1.

Proposition 2.1. The mapping defined for each x ∈ IR d by (2.4) is the gradient of a convex function ψ * such that ∇ψ * #P µ,Σ;f = U d .

The mapping R is therefore the MK vector rank function associated with P µ,Σ;f , and MK depth relative to the elliptical distribution P µ,Σ;f is equal to halfspace depth. MK ranks, quantiles and depth therefore share invariance and equivariance properties of halfspace depth within the class of elliptical families, see [START_REF] Hallin | Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks[END_REF], [START_REF] Hallin | Rank-based optimal tests of the adequacy of an elliptic VARMA model[END_REF], [START_REF] Hallin | Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity[END_REF] and [START_REF] Hallin | Optimal rank-based tests for homogeneity of scatter[END_REF].

Empirical depth, ranks and quantiles

Having defined Monge-Kantorovich vector quantiles, ranks and depth relative to a distribution P based on reference distribution F on IR d , we now turn to the estimation of these quantities. Hereafter, we shall work within the environment defined by (C). We define Φ 0 (U, Y) as a collection of conjugate potentials (ϕ, ϕ * ) on (U, Y) such that ϕ(u 0 ) = 0 for some fixed point u 0 ∈ U 0 . Then, the MK vector quantiles and ranks of Definition ϕdF + ϕ * dP.

Constraining the conjugate pair to lie in Φ 0 is a normalization that pins down the constant, so that (ψ, ψ * ) are uniquely determined. We propose empirical versions of MK quantiles and ranks based on estimators of P , and possibly F , if necessary for computational reasons. 

PW (A) = 1 n n t=1 1{W t,n ∈ A}, PW (A) = 1 n n t=1 1{W t,n + h n ε ∈ A ∩ W}dΦ(ε),
where Φ is the probability law of the standard d-dimensional Gaussian vector, N(0, I d ), and h n ≥ 0 is a semi-positive-definite matrix of bandwidths such that h n → 0 as n → ∞. Note that PW may not integrate to 1, since we are forcing it to have support in W.

Lemma 3.1. Suppose that P W is absolutely continuous with support contained in the compact set

W ⊂ R d . If {(W t,n ) n t=1 } ∞ n=1 is ergodic for P W on W, then d BL ( PW , P W ) → IP * 0, d BL ( PW , P W ) → IP * 0.
Thus, if P Y := P and P U := F are absolutely continuous with support sets contained in compact sets Y and U, and if

{(Y t,n ) n t=1 } ∞ n=1 is ergodic for P Y on Y and {(U t,n ) n t=1 } ∞ n=1
is ergodic for P U on U, then Pn = PW or PW and Fn = PU or PU obey condition (3.7).

Comment 3.1. Absolute continuity of P W in Lemma 3.1 is only used to show that the smoothed estimator PW is asymptotically non-defective.

3.2.

Empirical quantiles, ranks and depth. We base empirical versions of MK quantiles, ranks and depth on estimators Pn for P and Fn for F satisfying (3.7). We define empirical versions in the general case, before discussing their construction in some special cases for Pn and Fn below. Recall Assumption (C) is maintained throughout this section. Empirical depth regions are nested, and empirical depth contours are continuous, as are their theoretical counterparts. The estimators Qn and Rn can be computed with the algorithm of Benamou and Brenier [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] 1 . In the case where the reference distribution is the spherical uniform distribution, i.e., F = U d , the estimated depth region relative to P with probability content τ and the corresponding contour can be computed as Ĉn (τ ) := Qn (S(τ )) and Ĉn (τ ) := Qn (S(τ )) , where S(τ ) and S(τ ) are the ball and the sphere of radius τ , respectively.

Discrete

Pn and smooth Fn . Suppose now Pn is a discrete estimator of P and Fn is an absolutely continuous distribution with convex compact support IB ⊆ IR d . Let Pn = Kn k=1 p k,n δ y k,n , for some integer K n , some non negative weights p 1,n , . . . , p Kn,n such that Kn k=1 p k,n = 1, and y 1,n , . . . , y Kn,n ∈ IR d . The leading example is when Pn is the empirical distribution of a random sample (Y i ) n i=1 drawn from P .

The empirical quantile Qn is then equal to the Fn -almost surely unique gradient of a convex map ∇ ψn such that ∇ ψn # Fn = Pn , i.e., the Fn -almost surely unique map Qn = ∇ ψn satisfying the following:

(1) ∇ ψn (u) ∈ {y 1,n , . . . , y Kn,n }, for Lebesgue-almost all u ∈ IB,

(2) Fn {u ∈ IB : ∇ ψn (u) = y k,n } = p k,n , for each k ∈ {1, . . . , K n },
(3) ψn is a convex function.

The following characterization of ψn specializes Kantorovich duality to this discretecontinuous case (for a direct proof, see for instance [START_REF] Ekeland | Comonotonic measures of multivariate risks[END_REF]). The lemma allows efficient computation of Qn using a gradient algorithm proposed in [START_REF] Aurenhammer | Minkowski-type theorems and mean-square clustering[END_REF]. ψn is piecewise affine and Qn is piecewise constant. The correspondence Q-1

n defined for each k ≤ K n by y k,n → Q-1 n (y k,n ) := {u ∈ IB : ∇ ψn (u) = y k,n } maps {y 1,n , . . . , y Kn,n } into K n regions of a partition of IB, called a power diagram.
The estimator Rn of the rank function can be any measurable selection from the correspondence Q-1 n . Empirical depth is then Dn (x) = D Tukey F ( Rn (x)), and depth regions and contours can be computed using the depth function, according to their definition as in (3.11), or from a polyhedron supported by Qn (C Tukey 

| Un : U n -→ Y n u -→ y = Qn | Un (u) that minimizes n j=1 u ⊤ j Qn | Un (u j ),
and Rn | Yn is its inverse. The solutions Qn and Rn can be computed with any assignment algorithm. More generally, in the case of any two discrete estimators Pn and Fn , the problem of finding Qn or Rn is a linear programming problem.

In the case of the spherical uniform reference distribution F = U d , empirical depth contours Ĉn (τ ) and regions Ĉn (τ ) can be computed from a polyhedron supported by Qn (U n (τ )), where U n (τ ) = {u ∈ U n : u ≤ τ }, τ ∈ (0, 1]. Estimated depth contours are illustrated in Figure 2 for the same banana-shaped distribution as in Figure 1. The specific construction to produce Figure 2 is the following: Pn is the empirical distribution of a random sample Y n drawn from the banana distribution in IR 2 , with n = 9999; Fn is the discrete distribution with mass 1/n on each of the points in U n . The latter is a collection of 99 evenly spaced points on each of 101 circles, of evenly spaced radii in (0, 1]. The sets Y n and U n are matched optimally with the assignment algorithm of the adagio package in R. Empirical depth contours Ĉn (τ ) are α-hulls of Qn (U n (τ )) for 11 values of τ ∈ (0, 1) (see [START_REF] Edelsbrunner | On the shape of a set of points in the plane[END_REF] for a definition of α-hulls). The α-hulls are computed using the alphahull package in R, with α = 0.3. The banana-shaped distribution considered is the distribution of the vector (X + R cos Φ, X 2 + R sin Φ), where X is uniform on [-1, 1], Φ is uniform on [0, 2π], Z is uniform on [0, 1], X, Z and Φ are independent, and R = 0.2Z(1 + (1 -|X|)/2).

3.3.

Convergence of empirical quantiles, ranks and depth contours. Empirical quantiles, ranks and depth contours are now shown to converge uniformly to their theoretical counterparts. Theorem 3.1 (Uniform Convergence of Empirical Transport Maps). Suppose that the sets U and Y are compact subsets of IR d , and that probability measures P and F are absolutely continuous with respect to the Lebesgue measure with support(P ) ⊂ Y and support(F ) ⊂ U. Suppose that { Pn } and { Fn } are sequences of random measures on Y and U, with finite total mass, that are consistent for P and F in the sense of (3.7). Suppose that condition (C) holds for the solution of (3.6) for Y 0 := int(support(P )) and U 0 := int(support(F )). Then, as n → ∞, for any compact set K ⊂ U 0 and any compact set

K ′ ⊂ Y 0 , sup u∈K Qn (u) -Q P (u) → IP * 0, sup y∈K ′ Rn (y) -R P (y) → IP * 0, d H ( Qn (K), Q P (K)) → IP * 0, d H ( Rn (K ′ ), R P (K ′ )) → IP * 0.
The first result establishes the uniform consistency of empirical vector quantile and rank maps, hence also of empirical ranks and signs. The set Q(K) such that IP U d (U ∈ K) = τ is the statistical depth contour with probability content τ . The second result, therefore, establishes consistency of the approximation Qn (K) to the theoretical depth contour Q(K). The proof is given in the appendix.

Uniform convergence of empirical Monge-Kantorovitch quantiles τ → Qn (S(τ )), ranks rn := Rn and signs ûn := Rn / Rn to their theoretical counterparts r P and u P follows by an application of the Continuous Mapping Theorem. We also consider a sequence of conjugate potentials approaching (ψ, ψ * ).

(A) A sequence of conjugate potentials (ψ n , ψ * n ) over (U, Y), with n ∈ N, is such that: ψ n (u) → ψ(u) in IR ∪ {∞} pointwise in u in a dense subset of U and ψ * n (y) → ψ * (y) in IR ∪ {∞} pointwise in y in a dense subset of Y, as n → ∞.

The condition (A) is equivalent to requiring that either ψ n or ψ * n converge pointwise over dense subsets. There is no loss of generality in stating that both converge. It is useful to note that R n (y) ∈ ∂ψ * n (y) for y ∈ Y; Q n (u) ∈ ∂ψ n (u) for u ∈ U, where ∂ denotes the sub-differential of a convex function; conversely, any pair of elements of ∂ψ * n (y) and ∂ψ n (u), respectively, could be taken as solutions to the problem (A.12) (by Proposition 2.4 in Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF]). Hence, the problem of convergence of Q n and R n to Q and R is equivalent to the problem of convergence of subdifferentials. Moreover, by Rademacher's theorem, ∂ψ * n (y) = ∇ψ * n (y) and ∂ψ n (u) = ∇ψ n (u) almost everywhere with respect to the Lebesgue measure (see, e.g., [START_REF] Villani | Topics in Optimal Transportation[END_REF]), so the solutions to (A.12) are unique almost everywhere on u ∈ U and y ∈ Y.

Theorem A.1 (Local uniform convergence of subdifferentials). Suppose conditions (A) and (C) hold. Then, as n → ∞, for any compact set K ⊂ U 0 and any compact set

K ′ ⊂ Y 0 , sup u∈K Q n (u) -Q(u) → 0, sup y∈K ′ R n (y) -R(y) → 0.
Comment A.1. This result appears to be new. It complements the result stated in Lemma 5.4 in Villani [START_REF] Villani | Stability of a 4th-order curvature condition arising in optimal transport theory[END_REF] for the case U 0 = U = Y 0 = Y = IR d . This result also trivially implies convergence in L p norms, 1 ≤ p < ∞:

U Q n (u) -Q(u) p dF (u) → 0, Y 0 R n (y) -R(y) p dP (y) → 0,
for probability laws F on U and P on Y, whenever for some p > p

sup n∈N U Q n (u) p + Q(u) p dF (u) < ∞, sup n∈N Y 0 R n (y) p + R(y) p dP (y) < ∞.
Hence, the new result is stronger than available results on convergence in measure (including L p convergence results) in the optimal transport literature (see, e.g., Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal transport: Old and New. Grundlehren der Mathematischen Wissenschaften[END_REF]).

Comment A.2. The following example also shows that, in general, our result can not be strengthened to the uniform convergence over entire sets U and Y. Consider the sequence of potential maps ψ n : U = [0, 1] → IR:

ψ n (u) = u 0 Q n (t)dt, Q n (t) = t • 1(t ≤ 1 -1/n) + 10 • 1(t > 1 -1/n). Then ψ n (u) = 2 -1 u 2 1(u ≤ 1 -1/n) + 10(u -(1 -1/n)) + 2 -1 (1 -1/n) 2 1(u > 1 -1/n) converges uniformly on [0, 1] to ϕ(u) = 2 -1 u 2 .
The latter potential has the gradient map Q : [0, 1] → Y 0 = [0, 1] defined by Q(t) = t. We have that sup t∈K |Q n (t)-Q(t)| → 0 for any compact subset K of (0, 1). However, the uniform convergence over the entire region [0, 1] fails, since sup t∈[0,1] |Q n (t) -Q(t)| ≥ 9 for all n. Therefore, the theorem can not be strengthened in general.

We next consider the behavior of image sets of gradients defined as follows: Corollary A.1 (Convergence of sets of subdifferentials). Under the conditions of the previous theorem, we have that

Q n (K) := {Q n (u) : u ∈ K}, Q(K) := {Q(u) : u ∈ K}, R n (K ′ ) := {R n (y) : y ∈ K ′ }, R(K ′ ) := {R(y) : y ∈ K ′ },
d H (Q n (K), Q(K)) → 0, d H (R n (K ′ ), R(K ′ )) → 0.
equivalent to the uniform convergence of g n to g on any compact set K that does not overlap with ∂D 0 , i.e. K ∩ ∂D 0 = ∅. Hence, g n → g uniformly on B ε 0 (X 0 ). This and (B.15) imply that eventually, i.e. for all n ≥ n ε ,

g n (x 0 ) < inf x∈∂Bε(X 0 ) g n (x).
By convexity of g n , this implies that g n (x 0 ) < inf x ∈Bε(X 0 ) g n (x) for all n ≥ n ε , which is to say that, for all n ≥ n ε , arg inf g n = arg min g n ⊂ B ε (X 0 ). Since ε can be set as small as desired, it follows that any x n ∈ arg inf g n obeys d(x n , X 0 ) → 0. 

d H (Q n (K), Q(K)) ≤ sup u∈K inf u ′ ∈K Q n (u) -Q(u ′ ) ∨ sup u ′ ∈K inf u∈K Q n (u ′ ) -Q(u) ≤ sup u∈K Q n (u) -Q(u) ∨ sup u ′ ∈U Q n (u ′ ) -Q(u ′ ) ≤ sup u∈K Q n (u) -Q(u) → 0.
The proof of the second claim is identical. . B.5. Proof of Theorem A.2.

Step 1. Here we show that the set of conjugate pairs is compact in the topology of the uniform convergence. First we notice that, for any (ϕ, ϕ * ) ∈ Φ 0 (U, Y),

ϕ BL(U ) ≤ ( Y U ) ∨ Y < ∞, ϕ * BL(Y) ≤ (2 Y U ) ∨ U < ∞,
where A := sup a∈A a for A ⊂ IR d and where we have used the fact that ϕ(u 0 ) = 0 for some u 0 ∈ U as well as compactness of Y and U.

The Arzela-Ascoli theorem implies that Φ 0 (U, Y) is relatively compact in the topology of the uniform convergence. We want to show compactness, namely that this set is also closed. For this we need to show that all uniformly convergent subsequences (ϕ n , ϕ * n ) n∈N ′ (where N ′ ⊂ N) have the limit point

(ϕ, ϕ * ) = lim n∈N ′ (ϕ n , ϕ * n ) ∈ Φ 0 (U, Y).
This is true, since uniform limits of convex functions are necessarily convex ( [START_REF] Rockafellar | Variational analysis[END_REF]) and since

ϕ(u) = lim n∈N ′ sup y∈Y u ⊤ y -ϕ * n (y) ≤ lim sup n∈N ′ sup y∈Y (u ⊤ y -ϕ * (y)) + sup y∈Y |ϕ * n (y) -ϕ * (y)| = sup y∈Y u ⊤ y -ϕ * (y); ϕ(u) = lim n∈N ′ sup y∈Y u ⊤ y -ϕ * n (y) ≥ lim inf n∈N ′ sup y∈Y (u ⊤ y -ϕ * (y)) -sup y∈Y |ϕ * n (y) -ϕ * (y)| = sup y∈Y u ⊤ y -ϕ * (y);
Analogously, ϕ * (y) = sup u∈U u ⊤ yϕ(y).

Step 2. The claim here is that (B.16)

I n := ψ n dF n + ψ * n dP n → n∈N ψdF + ψ * dP =: I 0 .
Indeed,

I n ≤ ψdF n + ψ * dP n → n∈N I 0 ,
where the inequality holds by definition, and the convergence holds by

ψd(F n -F ) + ψ * d(P n -P ) d BL (F n , F ) + d BL (P n , P ) → 0.
Moreover, by definition

II n := ψ n dF + ψ * n dP ≥ I 0 , but |I n -II n | ≤ ψ n d(F n -F ) + ψ * n d(P n -P ) d BL (F n , F ) + d BL (P n , P ) → 0.
Step 3. Here we conclude.

First, we observe that the solution pair (ψ, ψ * ) to the limit Kantorovich problem is unique on U 0 × Y 0 in the sense that any other solution (ϕ, ϕ * ) agrees with (ψ, ψ * ) on U 0 × Y 0 . Indeed, suppose that ϕ(u 1 ) = ψ(u 1 ) for some u 1 ∈ U 0 . By the uniform continuity of elements of Φ 0 (U, Y) and openness of U 0 , there exists a ball B ε (u 1 ) ⊂ U 0 such that ψ(u) = ϕ(u) for all u ∈ B ε (u 1 ). By the normalization assumption ϕ(u 0 ) = ψ(u 0 ) = 0, there does not exist a constant c = 0 such that ψ(u) = ϕ(u) + c for all u ∈ U 0 , so this must mean that ∇ψ(u) = ∇ϕ(u) on a set K ⊂ U 0 of positive measure (otherwise, if they disagree only on a set of measure zero, we would have ψ

(u) -ψ(u 0 ) = 1 0 ∇ψ(u 0 + v ⊤ (u -u 0 )) ⊤ (u -u 0 )dv = 1 0 ∇ϕ(u 0 + v ⊤ (u -u 0 )
) ⊤ (uu 0 )dv = ϕ(u)ϕ(u 0 ) for almost all u ∈ B ε (u 1 ), which is a contradiction). However, the statement ∇ψ = ∇ϕ on a set K ⊂ U 0 of positive Lebesgue measure would contradict the fact that any solution ψ or ϕ of the Kantorovich problem must obey

h • ∇ϕdF = h • ∇ψdF = hdP,
for each bounded continuous h, i.e. that ∇ϕ#F = ∇ψ#F = P , established on p.72 in Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF]. Analogous argument applies to establish uniqueness of ψ * on the set Y 0 .

Second, we can split N into subsequences N = ∪ ∞ j=1 N j such that for each j: (B.17 It must be that each pair (ϕ j , ϕ * j ) is the solution to the limit Kantorovich problem, and by the uniqueness established above we have that (ϕ j , ϕ * j ) = (ψ, ψ * ) on U 0 × Y 0 . By Condition (C) we have that, for u ∈ U 0 and y ∈ Y 0 : Q(u) = ∇ψ(u) = ∇ϕ j (u), R(u) = ∇ψ * (u) = ∇ϕ * j (u). By (B.17 The theorem, specialized to our context, reads: Let D and E be normed spaces and let x ∈ D. Let D n ⊂ D be arbitrary subsets and g n : D n → E be arbitrary maps (n ≥ 0), such that for every sequence x n ∈ D n such that x n → x, along a subsequence, we have that g n (x n ) → g 0 (x), along the same subsequence. Then, for arbitrary (i.e. possibly non-measurable) maps X n : Ω → D n such that X n → IP * x, we have that g n (X n ) → IP * g 0 (x).

In our case X n = ( Pn , Fn ) is a stochastic element of D, viewed as an arbitrary map from Ω to D, and x = (P, F ) is a non-stochastic element of D, where D is the space of linear operators D acting on the space of bounded Lipschitz functions. This space can be equipped with the norm

• D : (x 1 , x 2 ) D = x 1 BL(Y) ∨ x 2 BL(U ) .
Moreover, X n → IP * x with respect to this norm, i.e. Since ε > 0 is arbitrary, conclude sup g∈G 1 gd( PW -P W ) → IP * 0.

Step 2. The same argument works for PW in place of P W , since As for the second term, we first approximate the indicator x → 1(x ∈ W c ) from above by a function x → g δ (x) = (1d(x, W c )/δ) ∨ 0, which is bounded above by 1 and obeys g δ BL(R d ) ≤ 1 ∨ δ -1 < ∞. Then the second term is bounded by g δ {w + h n ε}dΦ(ε)d PW (w), which converges in probability to g δ dP W by Step 1. By absolute continuity of P W and support(P W ) ∩ W c = ∅, holding by assumption, and by the definition of g δ , we can set g δ dP W arbitrarily small by setting δ arbitrarily small.

Definition

  (Depth regions and contours). Let D P be a depth function relative to distribution P on IR d . (1) The region of depth d (hereafter d-depth region) associated with D P is defined as C P (d) = {x ∈ IR d : D P (x) ≥ d}. (2) The contour of depth d (hereafter d-depth contour) associated with D P is defined as C P (d) = {x ∈ IR d : D P (x) = d}.

Figure 1 .

 1 Figure 1. Tukey Halfspace depth contours for a banana-shaped distribution, produced with the algorithm of Paindaveine and Šiman [43] from a sample of 9999 observations. The banana-like geometry of the data cloud is not picked by the convex contours, and the deepest point is close to the boundary of the support.

(

  A1) (Affine invariance) D P AX+b (Ax + b) = D P X (x) for any x ∈ R d , any full-rank d × d matrix A, and any b ∈ IR d . (A2) (Maximality at the center) If x 0 is a center of symmetry for P (symmetry here can be either central, angular or halfspace symmetry), it is deepest, that is, D P (x 0 ) = max x∈IR d D P (x). (A3) (Linear monotonicity relative to the deepest points) If D P (x 0 ) is equal to max x∈IR d D P (x), then D P (x) ≤ D P ((1α)x 0 + αx) for all α ∈ [0, 1] and x ∈ IR d : depth is monotonically decreasing along any straight line running through a deepest point. (A4) (Vanishing at infinity) lim x →∞ D P (x) = 0.

Figure 2 .

 2 Figure 2. The Monge-Kantorovich depth contours for the same banana-shaped distribution from a sample of 9999 observations, as in Figure 1. The banana-like geometry of the data cloud is correctly picked up by the non convex contours.

  (C) Let U and Y be closed, convex subsets of IR d , and U 0 ⊂ U and Y 0 ⊂ Y are some open, non-empty sets in IR d . Let ψ : U → IR and ψ * : Y → IR be a conjugate pair over (U, Y) that possess gradients ∇ψ(u) for all u ∈ U 0 , and ∇ψ * (y) for all y ∈ Y 0 . The gradients ∇ψ| U 0 : U 0 → Y 0 and ∇ψ * | Y 0 : Y 0 → U 0 are homeomorphisms and ∇ψ| U 0 = (∇ψ * | Y 0 ) -1 .

F 2 . 4 .

 24 (d) and C M K P (d) := Q P C Tukey F (d) , for d ∈ (0, 1/2]. Monge-Kantorovich depth with spherical uniform reference distribution. Consider now Monge-Kantorovich depth defined from a baseline distribution with spherical uniform symmetry. We define the spherical uniform distribution supported on the unit ball S d of IR d as follows.

  2.1 are (3.5) Q P (u) := ∇ψ(u), R P (y) := ∇ψ * (y) = (∇ψ) -1 (y), for each u ∈ U 0 and y ∈ Y 0 , respectively, where the potentials (ψ, ψ * ) ∈ Φ 0 (U, Y) are such that: (3.6) ψdF + ψ * dP = inf (ϕ,ϕ * )∈Φ 0 (U ,Y)

Definition 3 . 1 (

 31 Empirical quantiles and ranks). Empirical vector quantile Qn and vector rank Rn are any pair of functions satisfying, for each u ∈ U and y ∈ Y,(3.9) Qn (u) ∈ arg supy∈Y y ⊤ u -ψ * n (y), Rn (y) ∈ arg sup u∈U y ⊤ u -ψn (u), where ( ψn , ψ * n ) ∈ Φ 0 (U, Y) is such that (3.10) ψn d Fn + ψ * n d Pn = inf (ϕ,ϕ * )∈Φ 0 (U ,Y) ϕd Fn + ϕ * d Pn .Depth, depth contours and depth regions relative to P are then estimated with empirical versions inherited from Rn . For any x ∈ IR d , the depth of x relative to P is estimated withDn (x) = D TukeyF ( Rn (x)), and for any d ∈ (0, 1/2], the d-depth region relative to P and the corresponding contour are estimated with the following: Ĉn (d) := {x ∈ IR d : Dn (x) ≥ d} and Ĉn (d) := {x ∈ IR d : Dn (x) = d}. (3.11) A more direct approach to estimating the regions and contours may be computationally more appealing. Even though Qn (C Tukey F (d)) and Qn (C Tukey F (d)) may now be finite sets of points, in case Pn is discrete, they are shown to converge to the population d-depth region and corresponding contour and can therefore be used for the construction of empirical counterparts. In case of discrete Pn , the latter can be constructed from a polyhedron supported by Qn (C Tukey F (d)) or Qn (C Tukey F (d)). For precise definitions, existence and uniqueness of such polyhedra, see [10] for d = 2 and [18] for d = 3. 3.2.1. Smooth Pn and Fn . Suppose Pn and Fn satisfy Caffarelli regularity conditions, so that Qn = ∇ ψn and Rn = ∇ ψ * n , with ( ψn , ψ * n ) satisfying (C). Empirical versions are then defined identically to their theoretical counterparts. Depth, depth contours and depth regions relative to P are then estimated with empirical versions inherited from Qn and Rn . In particular, for any x ∈ IR d , the depth of x relative to P is estimated with Dn (x) = D Tukey F ( Rn (x)). Since Rn = Q-1 n , as for the theoretical counterparts, for any τ ∈ (0, 1], the estimated depth region relative to P with probability content τ and the corresponding contour can be computed as Ĉn (τ ) := Qn C Tukey F (d) and Ĉn (τ ) := Qn C Tukey F (d) .

Lemma.

  There exist unique (up to an additive constant) weights {v * 1 , . . . , v * n } such that ψn (u) = max 1≤k≤Kn {u ⊤ y k,nv * k } satisfies (1), (2) and (3). The function v * → ψn d Fn + Kn k=1 p k,n v * k is convex and minimized at v * = {v * 1 , . . . , v * n }.

F

  (d)) or Qn (C Tukey F (d)) as before.

3. 2 . 3 .

 23 Discrete Pn and Fn . Particularly amenable to computation is the case, where both distribution estimators Pn and Fn are discrete with uniformly distributed mass on sets of points of the same cardinality. Let Pn = n j=1 δ y j /n for a set Y n = {y 1 , . . . , y n } of points in IR d and Fn = n j=1 δ u j /n, for a set U n = {u 1 , . . . , u n } of points in IR d . The restriction of the quantile map Qn to U n is the bijection Qn

Corollary 3 . 1 .A. 1 .

 311 Under the assumptions of Theorem 3.1, as n → ∞, for any compact set K ⊂ U 0 and any compact set K ′ ⊂ Y 0 , sup y∈K rn (y)r P (y) → IP * 0, sup y∈K ′ ûn (y)u P (y) → IP * 0, sup τ ∈(0,1) d H ( Qn (S(τ )), Q P (S(τ ))) → IP * 0, sup τ ∈(0,1) d H ( Qn (S(τ )), Q P (S(τ ))) → IP * 0. Appendix A. Uniform Convergence of Subdifferentials and Transport Maps Uniform Convergence of Subdifferentials. Let U and Y be convex, closed subsets of IR d . A pair of convex potentials ψ : U → IR ∪ {∞} and ψ* : Y → IR ∪ {∞} is conjugate over (U, Y) if, for each u ∈ U and y ∈ Y, ψ(u) = sup y∈Y y ⊤ uψ * (y), ψ * (y) = sup u∈U y ⊤ uψ(u).Recall that we work within the following environment. (C) Let U and Y be closed, convex subsets of IR d , and U 0 ⊂ U and Y 0 ⊂ Y are some open, non-empty sets in IR d . Let ψ : U → IR and ψ * : Y → IR be a conjugate pair over (U, Y) that possess gradients ∇ψ(u) for all u ∈ U 0 , and ∇ψ * (y) for all y ∈ Y 0 . The gradients ∇ψ| U 0 : U 0 → Y 0 and ∇ψ * | Y 0 : Y 0 → U 0 are homeomorphisms and ∇ψ| U 0 = (∇ψ * | Y 0 ) -1 .

  Define the maps Q(u) := arg sup y∈Y y ⊤ uψ * (y), R(y) := arg sup u∈U y ⊤ uψ(u), for each u ∈ U 0 and y ∈ Y 0 . By the envelope theorem, R(y) = ∇ψ * (y), for y ∈ Y 0 ; Q(u) = ∇ψ(u), for u ∈ U 0 . Hence, Q is the vector quantile function and R is its inverse, the vector rank function, from Definition 2.1. Let us define, for each u ∈ U and y ∈ Y, (A.12) Q n (u) ∈ arg sup y∈Y y ⊤ uψ * n (y), R n (y) ∈ arg sup u∈U y ⊤ uψ n (u).

  where K ⊂ U 0 and K ′ ⊂ Y 0 are compact sets. Also recall the definition of the Hausdorff distance between two non-empty sets A and B in IR d : d H (A, B) := sup b∈B inf a∈A ab ∨ sup a∈A inf b∈B ab .

B. 4 .

 4 Proof of Corollary A.1. By Lemma A.1 and the definition of the Hausdorff distance,

  ) (ψ n , ψ * n ) → n∈N j (ϕ j , ϕ * j ) ∈ Φ 0 (U, Y), uniformly on U × Y.But byStep 2 this means that ϕ j dF + ϕ * j dP = ψdF + ψ * dP.

  ) and Condition (C) we can invoke Theorem A.1 to conclude that Q n → Q uniformly on compact subsets of U 0 and R n → R uniformly on compact subsets of Y 0 . B.6. Proof of Theorem 3.1. The proof is an immediate consequence of the Extended Continuous Mapping Theorem, as given in van der Vaart and Wellner [49], Theorem A.1 and Corollary A.1.

X

  nx D := Pn -P BL(Y) ∨ Fn -F BL(U ) → IP * 0.Then g n (X n ) := ( Qn , Rn ) and g(x) := (Q, R) are viewed as elements of E = ℓ ∞ (K ×K ′ , IR d ×IR d ), the space of bounded functions mapping K ×K ′ to IR d ×IR d , equipped with the supremum norm. The maps have the continuity property: ifx nx D → 0 along a subsequence, then g n (x n )g(x) E →0 along the same subsequence, as established by Theorem A.1 and Corollary A.1. Hence conclude that g n (X n ) → IP * g(x). B.7. Proof of Lemma 3.1. Step 1. The set G 1 = {g : W → IR : g BL(W) ≤ 1} is compact in the topology of the uniform convergence by the Arzela-Ascoli theorem. Consider the sup norm g ∞ = sup w∈W |g(w)|. By compactness, any cover of G 1 by balls, with the diameter ε > 0 under the sup norm, has a finite subcover with the number of balls N(ε). Let (g j,ε ) N (ε) j=1 denote some points ("centers") in these balls. Thus, by the ergodicity condition (E) and N(ε) being finite, we have that sup g∈G 1 gd( PW -P W ) ≤ max j∈{1,...,N (ε)} g j,ε d( PW -P W ) + ε |d PW | + |dP W | = max j∈{1,...,N (ε)} g j,ε d( PW -P W ) + 2ε → 2ε.

sup g∈G 1 gd( PW -PW ) ≤ sup g∈G 1 {g

 11 (w)g(w + εh n )}1(w + εh n ∈ W)dΦ(ε)d PW (w) + 1{w + h n ε ∈ W c }dΦ(ε)d PW (w),where both terms converge in probability to zero. The first term is bounded by
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  ∞}, and differentiable Lebesgue almost everywhere in dom ψ. Write ∇ψ for the gradient of ψ. For any function ψ :IR d → IR ∪ {+∞}, the conjugate ψ * : IR d → IR ∪ {+∞} of ψ is defined for each y ∈ IR d by ψ * (y) = sup z∈IR d y ⊤ zψ(z).The conjugate ψ * of ψ is a convex lower-semi-continuous function. Let U and Y be convex, closed subsets of IR d . We shall call conjugate pair a pair of functions U → IR ∪ {+∞} that are conjugates of each other. The transpose of a matrix A is denoted A ⊤ . Finally, we call weak order a complete reflexive and transitive binary relation.

	which metrizes the topology of weak convergence. A convex function ψ on IR d refers
	to a function ψ : IR d → IR∪{+∞} for which ψ((1-t)x+tx ′ ) ≤ (1-t)ψ(x)+tψ(x ′ )
	for any (x, x ′ ) such that ψ(x) and ψ(x ′ ) are finite and for any t ∈ (0, 1). Such a
	function is continuous on the interior of the convex set dom ψ := {x ∈ IR d :
	ψ(x) < Outline of the paper. Section 2 introduces and motivates a new notion of sta-
	tistical depth, vector quantiles and vector ranks based on optimal transport maps.
	Section 3 describes estimators of depth contours, quantiles and ranks, and proves
	consistency of these estimators. Additional results and proofs are collected in the
	appendix.
	2. Statistical depth and vector ranks and quantiles
	2.1. Statistical depth, regions and contours. The notion of statistical depth
	serves to define a center-outward ordering of points in the support of a distribution
	on IR d , for d > 1.

  IR d for each t and n, is ergodic for the probability law P W on W if for each g : W → IR such that g BL(W) < ∞, Thus, if we observe the data sequence {(W t,n ) n t=1 } ∞ n=1 that is ergodic for P W , we can estimate P W by the empirical and smoothed empirical measures

	Other,
	much more complicated examples, including smoothed empirical measures and
	data coming from dependent processes, satisfy sufficient conditions for (3.7) that
	we now give. In order to develop some examples, we introduce the ergodicity
	condition:
	(E) Let W be a measurable subset of IR d . A data stream {(W t,n ) n t=1 } ∞ n=1 , with 1 W t,n ∈ W ⊂ (3.8) n
	The class of ergodic processes is extremely rich, including in particular the follow-
	ing.
	(E.1) W t,n = W t , where (W t ) ∞ t=1 are independent, identically distributed random
	vectors with distribution P W ; (E.2) W t,n = W t , where (W t ) ∞ t=1 is stationary strongly mixing process with mar-ginal distribution P W ; (E.3) W t,n = W t , where (W t ) ∞ t=1 is a non-stationary irreducible and aperiodic
	Markov chain with stationary distribution P W ; (E.4) W t,n = w t,n , where (w t,n ) n t=1 is a deterministic allocations of points such that (3.8) holds deterministically.

3.1. Data generating processes. Suppose that { Pn } and { Fn } are sequences of random measures on Y and U, with finite total mass, that are consistent for P and F : (3.7) d BL ( Pn , P ) → IP * 0, d BL ( Fn , F ) → IP * 0, where → IP * denotes convergence in (outer) probability under probability measure IP, see van der Vaart and Wellner [49]. A basic example is where Pn is the empirical distribution of the random sample (Y i ) n i=1 drawn from P and Fn is the empirical distribution of the random sample (U i ) n i=1 drawn from F . n t=1 g(W t,n ) → IP g(w)dP W (w).
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A guide to implementation is given at http://www.numerical-tours.com/matlab/optimaltransp
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Acknowledgments. We thank seminar participants at Oberwolfach 2012, LMPA, Paris 2013, the 2nd Conference of the International Society for Nonparametric Statistics, Cadiz 2014, the 3rd Institute of Mathematical Statistics Asia Pacific Rim Meeting, Taipei 2014, and the International Conference on Robust Statistics, Kolkata 2015, for useful discussions, and Denis Chetverikov and Yaroslav Mukhin for excellent comments. The authors also thank Mirek Šiman for sharing his code, including the data-generating process for the banana-shaped distribution.

A.2. Uniform Convergence of Transport Maps. We next consider the problem of convergence for potentials and transport (vector quantile and rank) maps arising from the Kantorovich dual optimal transport problem.

We equip Y with an absolutely continuous probability measure P and let Y 0 := int(support(P )).

We equip U with an absolutely continuous probability measure F and let

We consider a sequence of measures P n and F n that approximate P and F : (W) There are sequences of measures {P n } n∈N on Y and {F n } n∈N on U, with finite total mass, that converge to P and F , respectively, in the topology of weak convergence:

Recall that we defined Φ 0 (U, Y) as a collection of conjugate potentials (ϕ, ϕ * ) on (U, Y) such that ϕ(u 0 ) = 0 for some fixed point

Also, let (ψ, ψ * ) ∈ Φ 0 (U, Y) solve the Kantorovich problem for the pair (P, F ):

It is known that solutions to these problems exist; see, e.g., Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF]. Recall also that we imposed the normalization condition in the definition of Φ 0 (U, Y) to pin down the constants. 

In order to show that Ψ is convex, it is sufficient to check that its Hessian, that is, the Jacobian of R, is positive definite. The Jacobian of R is

Denoting by U, U 2 , . . . , U d an orthonormal basis of IR d , we obtain 

For the proof, see, e.g., Rockafellar and Wets [START_REF] Rockafellar | Variational analysis[END_REF]. The proof also relies on the following convergence result, which is a consequence of Theorem 7.17 in Rockafellar and Wets [START_REF] Rockafellar | Variational analysis[END_REF]. For a point a and a non-empty set A in R d , define d(a, A) := inf a ′ ∈A aa ′ . Lemma B.2 (Argmin convergence for convex problems). Suppose that g is a lower-semi-continuous convex function mapping IR d to IR ∪ {+∞} that attains a minimum on the set X 0 = arg inf x∈IR d g(x) ⊂ D 0 , where D 0 = {x ∈ IR d : g(x) < ∞} is a non-empty, open set in IR d . Let {g n } be a sequence of convex, lower-semicontinuous functions mapping IR d to IR ∪ {+∞} and such that g n (x) → g(x) pointwise in x ∈ IR d 0 , where IR d 0 is a countable dense subset of IR d . Then any

and, in particular, if X 0 is a singleton {x 0 }, x n → x 0 .

The proof of this lemma is given below, immediately after the conclusion of the proof of this theorem.

We define the extension maps y → g n,u (y) and u → ḡn,y (u) mapping IR d to IR ∪ {-∞}

By the convexity of ψ n and ψ * n over convex, closed sets Y and U, we have that the functions are proper upper-semi-continuous concave functions. Define the extension maps y → g u (y) and u → ḡy (u) mapping IR d to IR ∪ {-∞} analogously, by removing the index n above.

Condition (A) assumes pointwise convergence of ψ *

n to ψ * on a dense subset of Y. By Theorem 7.17 in Rockafellar and Wets [START_REF] Rockafellar | Variational analysis[END_REF], this implies the uniform convergence of ψ * n to ψ * on any compact set K ⊂ int Y that does not overlap with the boundary of the set D 1 = {y ∈ Y : ψ * (y) < +∞}. Hence, for any sequence {u n } such that u n → u ∈ K, a compact subset of U 0 , and any y ∈ (int Y) \ ∂D 1 ,

, where IR d 1 is a dense subset of IR d . We apply Lemma B.2 to conclude that arg sup

Take K as any compact subset of U 0 . The above argument applies for every point u ∈ K and every convergent sequence u n → u. Therefore, since by Assumption (C) u → Q(u) = ∇ψ(u) is continuous in u ∈ K, we conclude by the equivalence of the continuous and uniform convergence, Lemma B.1, that

By symmetry, the proof of the second claim is identical to the proof of the first claim. B.3. Proof of Lemma B.2. By assumption, X 0 = arg min g ∈ D 0 , and X 0 is convex and closed. Let x 0 be an element of X 0 . We have that, for all 0 < ε ≤ ε 0 with ε 0 such that B ε 0 (X ) ⊂ D 0 , (B. [START_REF] Ekeland | Comonotonic measures of multivariate risks[END_REF] g(x 0 ) < inf x∈∂Bε(X 0 ) g(x),

where B ε (X 0 ) := {x ∈ IR d : d(x, X 0 ) ≤ ε} is convex and closed.

Fix an ε ∈ (0, ε 0 ]. By convexity of g and g n and by Theorem 7.17 in Rockafellar and Wets [START_REF] Rockafellar | Variational analysis[END_REF], the pointwise convergence of g n to g on a dense subset of IR d is