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1 Introduction

Why are similar workers paid differently? In his 2003 book of this title, Dale Mortensen

takes stock of a few decades of investigation of this question, that he had jumpstarted and

then developed. His answer is simple: imperfect competition in labor markets. Information

and other frictions, which make the outcome of job search time-consuming and random,

endows firms with monopsony power that they exploit, in the spirit of Coase (1972), by

committing to wage offers. This force depresses all wages towards the opportunity cost of

work. But workers cannot commit to their current wage offer, and, while employed, search

for better outside offers. In this environment, firms choose a wage policy that balances unit

labor costs with hiring and retention. As a result, in equilibrium wages must differ among

identical firms and workers. In the presence of heterogeneity in productivity and in demand

conditions among workers and firms, equilibrium wages still fall short of marginal products,

and contain a non-fundamental component of “frictional” inequality.

Burdett and Mortensen (1998, thereafter BM) formalized this powerful insight. Their

working paper, first circulated in the 1980s, spurred the vast theoretical and empirical liter-

ature culminating in Dale Mortensen’s 2003 book. The BM “wage posting” model quickly

emerged as the canonical framework for the analysis of wage inequality, labor turnover, and

unemployment. Each of the three exists in conjunction with the other two. Naturally, the

scope of this line of research eventually transcended wage inequality alone.

In a series of articles (Moscarini and Postel-Vinay 2009, 2011, 2012, 2013, 2014, thereafter

MPV09-MPV14, resp.) we explored both theoretically and empirically the business cycle

implications of the wage posting paradigm. Progress in this direction had been stunted by

technical difficulties in finding equilibrium in an economy where the law of one price fails.

The other canonical model of the labor market now known as “DMP” (Diamond, 1982;

Pissarides, 1985; Mortensen and Pissarides, 1994) bypassed this hurdle by assuming that

trading partners bargain over their match surplus, hence wages are not allocative. This

search-and-matching model still encodes the leading theory of equilibrium unemployment,

but runs into difficulties when applied to business cycles. As Shimer (2005) demonstrated,

this model cannot reconcile the large cyclical swings in job finding and unemployment rates

with the tiny ones in Average Labor Productivity (ALP), or in other plausible sources of

aggregate shocks, that we observe in the US economy. The perfectly competitive labor

market model failed this test because it requires an implausibly elastic aggregate labor

supply; the same issue came back to haunt the search-cum-bargaining model (Hagedorn

and Manovskii, 2008). The attention then turned to other sources of wage rigidity. We

add to this range of new hypotheses. The simple Coasian assumption of commitment to
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wage offers to exploit market power, here conferred by frictions and tempered by on-the-job

search, is a natural source of wage rigidity, in an environment that can also explain wage

inequality and reallocation and that is very well understood in steady state since BM.

In our past theoretical work, we outlined the scope and limitations of wage posting

models with random search in the presence of aggregate shocks to labor productivity. Our

main empirical focus was on the cyclical reallocation of employment among heterogenous

firms (MPV12). Our contribution here is to evaluate the quantitative performance of our

MPV13 business cycle wage-posting model against empirical evidence on unemployment and

wage fluctuations, as well as on wage inequality and the pace of reallocation as is standard

in this approach. To that end, we propose a tractable, stochastic equilibrium version of the

BM model — we will refer to is as the “Stochastic BM” (SBM) model — and an operational

algorithm to simulate it.

Unlike in bargaining models, in wage- (or, more generally, contract-) posting models

such as (S)BM, equilibrium wages are allocative, so they can be unambiguously related

to empirical evidence on earnings inequality, dynamics, and cyclicality. Different varieties

of wage-posting models with on-the-job search successfully introduced aggregate shocks,

by making one key change to the environment. Menzio and Shi (2011) assume perfect

information about posted wages, in the tradition of directed or competitive search, and study

business cycle movements in labor market quantities, but not in wages. Closer to our exercise,

Robin (2011) maintains random search, but relaxes the full commitment assumption, to

introduce Postel-Vinay and Robin (2002)’s sequential auctions. Firms can respond to outside

offers to their employees, which critically changes the ex ante incentives of forward-looking

firms and workers to post and to accept wage offers. This assumption also greatly simplifies

the analysis of business cycles. Robin addresses empirical evidence on both labor market

flows and wages. Relative to these two alternatives, computation of equilibrium wages in our

SBM model is less straightforward. Yet, as we show, it is still feasible and reasonably fast

using an algorithm that we offer here. We build on the simple structure of equilibrium, which

is Rank-Preserving (MPV09): more productive and larger firms always offer higher values

to all workers, independently of the history of aggregate shocks. Thus, workers always move

in the same direction between jobs, equilibrium turnover is trivial to simulate, and generates

empirically accurate predictions about job ladder movements over business cycles (MPV14).

Our harder task now is to compute the equilibrium contracts, or state-contingent wages,

that implement this equilibrium allocation.

The broader goal of this project is to provide a unified explanation, based on a stochastic

job ladder, for both unemployment fluctuations and wages, individual dynamics and cyclical-

ity of earnings and turnover. This is a very ambitious goal. In this first quantitative step, to
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give our model a reasonable chance, we introduce a seemingly minor but important change

relative to MPV13. Following Pissarides (2009)’s suggestion, we model adjustment frictions

on the firm side as a cost that depends on the volume of hires, and not of vacancies or job

adverts, as is customary. That is, the firm pays for the output of its recruiting activities,

not for the inputs into it. As such, hiring costs are best thought of as training costs. Search

for trading partners is still mediated by a matching function. Modeling recruitment costs as

hiring costs tames congestion effects, which facilitate hiring in recessions, when unemploy-

ment is abundant, thus mute the negative impact of aggregate shocks on job creation (see

Christiano et al., 2013). This change in the model requires a new argument to prove that

equilibrium remains unique and RP. We find that this property, essential for tractability,

requires a restriction on the convexity of the hiring cost function.1

We gauge our SBM model’s quantitative performance along three main dimensions.

First, we assess the model’s ability to amplify TFP shocks, based on its predictions about

the volatility and covariances of unemployment, the job finding rate and the vacancy-

unemployment (V/U) ratio, in the face of TFP shocks of a plausible magnitude. Second,

we examine wage flexibility in the model, as measured by the wage-unemployment semi-

elasticity (on which we incidentally provide new evidence from the Survey of Income and

Program Participation — SIPP), and the time-series volatility of mean log wages. Third,

we re-examine the BM model’s predictions about cross-sectional dispersion in wages, profits,

and employer sizes — all issues that have been the focus of many analyses of the steady-state

BM model. In so doing, we highlight new connections between the model’s cross-sectional

and business-cycle predictions.

Our summary assessment of the successes and failures of this SBM model is as follows.

A clear success of the SBM model is its ability to generate plausible amplification of TFP

shocks. For example, the predicted volatility ratio of the job finding rate relative to ALP,

which has been the focus of much attention in the literature, can be as high 15, well in line

with the data. Yet, wages in the SBM model are much more flexible than they appear to be

in the data: the model-based wage-unemployment semi-elasticity is up to ten times larger

than the one we estimate from SIPP data. How, then, does the model generate plausible

amplification? First, even though wages are very flexible, worker values, which are what

agents care about and what, ultimately, matters for the allocation, are much less so. Second,

and most importantly, the model generates amplification by concentrating hiring amongst

firms at the bottom of the productivity ladder. Those low-productivity firms generate a

1Coles and Mortensen (2012) adopt a hiring cost function in the same spirit as ours and impose even
more stringent conditions to extend the scope of our early work on transitional dynamics (MPV09). They
establish existence and characterization of one RP equilibrium also in the presence of idiosyncratic, firm-level
TFP shocks.
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low surplus, so that even with flexible wages, small fluctuations in productivity cause large

(proportional) variations in profitability (and consequently on hiring) for those firms (as per

the intuition put forward in a different context by Hagedorn and Manovskii, 2008).

This amplification mechanism highlights a trade-off between aggregate volatility of un-

employment and cross-sectional dispersion in employer size. We achieve concentration of

hiring at low-productivity firms by assuming a very highly convex recruitment (or train-

ing) cost function. This strong degree of diminishing returns to hiring tames the incentives

of highly-productive firms to hire much more than low-productivity firms. Dispersion in

gross hiring flows between high- and low- productivity firms is therefore very small and, as

a consequence, so is dispersion in equilibrium size between firms. The largest firm in the

simulated economy is only about four times the size of the smallest one, a number which is

obviously nowhere near what is observed in the data. This tension between size dispersion

and amplification is arguably the key link between the model’s cross-sectional and dynamic

predictions.

Next, the SBM model tends to understate cross-sectional wage dispersion. This is not

a new finding: as pointed out by Hornstein, Krusell and Violante (2011), if the residual

wage dispersion observed in US data was truly the result of search frictions, a jobless worker

searching for jobs should wait to sample a high paying job. But average unemployment

duration in the U.S., as measured in the Current Population Survey, is short.2 On-the-job

search helps to resolve this tension, at least qualitatively, because accepting quickly a low

offer does not ‘burn’ all of the option value of looking for a better wage. But estimation of

the steady-state BM model found that the opportunity cost of work must be extremely low

to reconcile empirical observations on the pace of transition and on wage inequality. Like its

steady-state relative, the SBM model is affected by those issues, which are largely orthogonal

to time-series fluctuations.

Finally, as we highlighted in previous work (MPV13), the model offers a natural expla-

nation for our observation (MPV12) that net job creation is more negatively correlated with

aggregate unemployment at large than at small firms. In the SBM model this still holds,

although, as mentioned, exactly the opposite is true of gross job creation, which is the source

of aggregate volatility in job finding rates. Intuitively, in an aggregate expansion, small em-

ployers hire proportionally more new workers than larger competitors, but lose even more

employees to their poaching, so their employment grows more slowly on net. The opposite

2Using data from the Survey of Income and Program participation (SIPP), Fujita and Moscarini (2013)
show that unemployment duration in the US is shortest for the large share of workers who end up being
recalled by their former employers, and is in fact much longer than commonly thought, even in good times,
for those unemployed workers who are hired by new employers, which is presumably what search models are
really about. The CPS does not contain information that allow to make this distinction.
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occurs in recessions, the Great Recession being a perfect example (MPV14).3 The disconnect

in the model between the cyclicality of gross and net job creation among heterogeneous firms

is critical. Bils et al. (2012) show, in a DMP-style model, that a similar tension between

aggregate volatility and cross-sectional inequality on the worker side cannot be resolved.

They observe that the importance of small surplus emphasized by Hagedorn and Manovskii

(2008) applies to the marginal, and not to the average, labor supply. Hence, they ask whether

worker ex ante skill heterogeneity can amplify the effect of aggregate shocks on the average

job finding rate, by concentrating job finding volatility among low-skill individuals, whose

surplus from work over leisure is small. They show that this is indeed the case only if the

calibrated model also delivers job finding rates for high wage workers that are far too sticky

relative to the data. Just like large, productive firms exhibit surprisingly cyclical net job

creation rates, so high-wage, productive workers face surprisingly cyclical exit rates from

unemployment.

The rest of the paper is organized as follows. Section 2 introduces the SBM model and

characterizes (conditions) for equilibrium to be RP, hence computable. Section 3 studies

steady state equilibrium and its comparative statics properties when changing aggregate

productivity. This is a warm-up towards our quantitative analysis, which is based on empiri-

cal moments presented in Section 4, and is illustrated in Section 5, calibration and simulation

results. After some concluding remarks, the Appendix contains the proofs of the formal ar-

guments and presents the structure of the computation algorithm.

2 A wage-posting model of the business cycle

2.1 The environment

Our Stochastic BM (SBM) model is a variant of MPV13’s business cycle model of a frictional

labor market with random search and wage posting. In this version, we introduce firm-level

hiring costs that depend on the output of the hiring process, namely on the flow of hires,

rather than on the input, vacancies or job ads. So hiring costs are best thought of as a

combination of search and training costs. As emphasized by Pissarides (2009), hiring costs

are independent of competition in the market, hence, unlike vacancy costs, they do not fall

in recessions, when labor demand is lower, and do not mute the effect of aggregate shocks.4

3Kahn and McEntarfer (2014) use matched employer-employee US data to order employers on the job
ladder by the average wage they pay, and find direct evidence for this cyclical poaching pattern.

4This assumption is taken up in a growing number of contributions to the topic at hand, including the
closely related paper by Coles and Mortensen (2013). In their paper, recruitment costs are specified as
Lc(h/L), where L is initial firm size and h is the inflow of new hires, so that h/L is the number of new hires
per incumbent worker in the firm.
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Time t = 0, 1, 2 . . . is discrete. The labor market is populated by a unit-mass of workers,

who can be either employed or unemployed, and by a unit measure of firms.5 Workers and

firms are risk neutral, infinitely lived, and maximize payoffs discounted with common factor

β ∈ (0, 1). Firms operate constant-return technologies with labor as the only input and with

productivity scale ωtp, where ωt ∈ Ω is an aggregate component, evolving according to a

stationary first-order Markov processQ (dωt+1 | ωt), and p is a fixed, firm-specific component,

distributed across firms p according to a c.d.f. Γ over some positive interval
[
p, p

]
.

The labor market is affected by search frictions in that unemployed workers can only

sample job offers sequentially with some probability λt ∈ (0, 1] at time t and, while searching,

enjoy a value of leisure bt. Employed workers earn a wage and also sample job offers with

probability sλt ∈ (0, 1] each period, so that s is the search intensity of employed relative

to unemployed job seekers. Workers receive at most one job offer per time period. Each

employed worker is separated from his employer and enters unemployment every period with

probability δt ∈ (0, 1]. All firms of equal productivity p start out with the same labor force

L0 (p). We denote by Lt (p) the size of a firm of type p at time t on the equilibrium path,

and Nt (p) =
∫ p

p
Lt (x) dΓ (x) the cumulated population distribution of employment across

firm types. So N0 (p) is the (given) initial measure of employment at firms of productivity

at most p, Nt (p) is employment and ut = 1−Nt (p) the unemployment (rate) at time t.

We maintain throughout the assumption that the destruction rate is exogenous and a

function of the aggregate productivity state δt = δ (ωt). Similarly for the flow value of non

production bt = b (ωt). The job-contact probability λt instead is determined in equilibrium

by a matching function. Each period, the firm can hire h workers at cost c(h), with c (·)
positive, strictly increasing and convex, continuously differentiable. To do so, before workers

have a chance to search, a firm can post a ≥ 0 job adverts (vacancies). Own job adverts

determine the firm’s sampling weight in workers’ job search, while total job adverts determine

the rate at which any one advert returns contacts with workers. Let at (p) denote the adverts

posted on the equilibrium path by a firm of productivity p, size Lt−1 (p), and define aggregate

adverts At and aggregate search effort by workers Zt as

At =

∫ p

p

at (p) dΓ (p)

Zt = 1−Nt−1 (p) + (1− δt) sNt−1 (p) .

(1)

The latter adds the previously unemployed to the previously employed who are not displaced

and draw a chance to search this period t. In each time period, employed and unemployed

5A firm can be inactive when its productivity is too low relative to the worker value of leisure. So the unit
measure of firms includes all potential producers, active and inactive. That the mass of firms and workers
both have measure one is obviously innocuous and only there to simplify the notation.

6



search simultaneously. Then:

ηtAt = λtZt = m (At, Zt) ≤ min ⟨At, Zt⟩ (2)

where ηt is the chance for any advert to contact a worker, m(·) is a linearly homogeneous

matching function, increasing and concave in each argument.

The timing within a period is as follows. Given a current state ωt of aggregate labor

productivity and distribution of employed workers Nt:

1. firms produce and sell output and pay workers in state ωt; the flow benefit bt accrues

to unemployed workers;

2. the new state ωt+1 of aggregate labor productivity is realized;

3. employed workers can quit to unemployment;

4. filled jobs are destroyed exogenously with chance δt+1;

5. firms post job adverts at+1;

6. the remaining employed workers receive an outside offer with chance sλt+1 and de-

cide whether to accept it or to stay with the current employer; simultaneously, each

previously unemployed worker receives an offer with probability λt+1;

7. firms hire workers and pay hiring costs that depend on how many workers they hire.

Finally, in order to avert unnecessary complications, and to simplify the illustration, we

assume that the state space Ω is finite, the distribution of firm types, Γ, has continuous and

everywhere strictly positive density γ = Γ′ over
[
p, p

]
, and the initial measure of employment

across firm types, N0, is continuously differentiable in p.

2.2 The firm’s contract-posting and hiring problem

Each firm of type p chooses and commits to an employment contract, namely a state-

contingent wage wt (p) depending on aggregate productivity ωt and the employment dis-

tribution Nt−1 (·), to maximize the present discounted value of profits at time 0, given other

firms’ contract offers. The dependence of the wage on the state {ωt, Nt−1 (·)} is marked as a

shorthand by the time index of the wage. The firm is further subjected to an equal treatment

constraint, whereby it must pay the same wage to all its workers. Under commitment, such

a wage function implies an equilibrium value Vt (p) for any worker to work for that firm.
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We introduce some notation. Let

Ft (W ) =
1

At

∫ p

p

I {Vt (p) ≤ W} at (p) dΓ (p) . (3)

denote the c.d.f. of values posted by all firms and offered to searching workers, with F t (·) =
1− Ft (·), i.e. Ft is the distribution of values from which job searchers draw from,

Gt (W ) =
1

Nt (p)
·
∫ p

p

I {Vt (p) ≤ W} dNt (p) (4)

denote the c.d.f. of values accruing to the currently employed workers, and let

Ut = bt + βEt

[
(1− λt+1)Ut+1 + λt+1

∫
max ⟨v, Ut+1⟩ dFt+1 (v)

]
(5)

be the value of unemployment. The unemployed worker collects a flow value bt and, next

period, when aggregate productivity becomes ωt+1, she draws with chance λt+1 a job offer

from the distribution of offered values Ft+1, that she accepts if its value exceeds that of

staying unemployed. Each firm now has a sampling weight in F equal to its (normalized)

job posting, a/A.

A firm that observes state ωt+1 and decides to post a continuation value Wt+1 < Ut+1

loses all workers, who quit to unemployment, so Lt+1 = 0. Otherwise, a firm of current

size Lt posting any value Wt+1 ≥ Ut+1 in aggregate state {ωt+1, Nt (·)} loses workers to

unemployment, with chance δt+1, and to other firms, if its workers draw offers, with chance

sλt+1, which are more valuable, with chance F t+1 (Wt+1). The firm chooses to hire ht+1

workers. Formally:

Lt+1 = Lt (1− δt+1)
(
1− sλt+1F t+1 (Wt+1)

)
+ ht+1 (6)

where hires ht+1 = at+1ηt+1Pt+1 (Wt+1) equal the measure of vacancies posted times the

contact rate of each vacancy times the probability that the offer is accepted:

Pt+1 (Wt+1) =
1−Nt (p) + s (1− δt+1)Nt (p)Gt+1 (Wt+1)

Zt+1

(7)

In (7), the denominator is the measure of workers who can make contact, and the numerator

counts only those who accept the offer, namely all the unemployed and only the fraction of

employed who will earn less than Wt+1 by staying where they are.

Two payoff-relevant state variables of the firm’s problem are aggregate productivity ωt

and the distribution of values offered in the market, Ft, which is infinitely-dimensional and

determines the retention effects of posting a contract value. These two state variables are

8



aggregate and exogenous to the firm. For notational simplicity, we again subsume in a time

index the dependence on (ωt, Ft) of firm’s and workers’ values.

The firm’s problem can be formulated recursively (Spear and Srivastava, 1987) by in-

troducing an additional, fictitious state variable, namely the continuation utility V that the

firm promised at time t− 1 to deliver to the worker from this period t on. So the firm solves

Πt

(
V , Lt

)
= sup

wt≥0
ht+1≥0

Wt+1≥Ut+1

⟨
(ωtp− wt)Lt + βEt [−c (ht+1) + Πt+1 (Wt+1, Lt+1)]

⟩
(8)

subject to the law of motion (6) of firm size and a Promise-Keeping (PK) constraint to

deliver the promised V :

V = wt + βEt

[
δt+1Ut+1 + (1− δt+1)

(
1− sλt+1F t+1 (Wt+1)

)
Wt+1

+ (1− δt+1) sλt+1

∫ +∞

Wt+1

vdFt+1 (v)

]
. (9)

Expectations are taken with respect to the future realization ωt+1 of aggregate productiv-

ity and consequent employment distribution Nt+1, conditional on the date-t state variable

(ωt, Nt).

To characterize the best response contract, we first describe an equivalent unconstrained

recursive formulation of the contract-posting problem. We define the joint value of the firm

and its existing workers:

St = Πt + V Lt.

Solving for the wage wt from (9), replacing it into the firm’s Bellman equation (8), and using

(6) to replace the expression for Lt+1 into St+1 = Πt+1 +Wt+1Lt+1 in each future state, the

joint value function St solves the unconstrained, recursive maximization of the joint value of

the firm-worker collective:

St (p, Lt) = ωtpLt + βEt

[
δt+1LtUt+1 + sup

ht+1≥0
Wt+1≥Ut+1

⟨
(1− δt) sλtLt

∫ +∞

Wt+1

vdFt+1 (v)− c (ht+1)

+ St+1 (p, Lt+1)−Wt+1ht+1

⟩]
(10)

The joint value St to the firm and its existing Lt employees equals flow output, ωtpLt, plus the

discounted expected continuation value. This includes (in order) the value of unemployment

for those employees who are displaced exogenously, the value of a new job for those who are

not displaced and find a better offer than the one extended by the current firm, minus the
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cost of hiring new workers, and, on the second line, the joint continuation value of the firm

and of its current (time t) employees. In turn, the latter equals the joint continuation value

St+1 of the firm and its future workforce — made up of stayers among the current (date-t)

workforce plus next-period (date-t+1) hires — minus the value to be paid to new hires, either

from unemployment or from other firms.6 The optimal policy solving the unconstrained DP

problem (10) also solves (8) subject to (9). We therefore focus on the analysis of the simpler

problem (10).

Definition 1 A Markov (contract-posting) equilibrium is a pair of measurable

functions (V,H) of firm-specific productivity p, firm size L, aggregate productivity ω, and

aggregate distribution of employment N such that, for every firm type p, if all other firms

of type x play (V,H) so that (3), (4) and (6) hold with Wt = Vt (x) where Vt (x) =

V (x, Lt−1 (x) , ωt, Nt−1) and ht = Ht (x) where Ht (x) = H (x, Lt−1 (x) , ωt, Nt−1), the value-

posting function Vt (p), the wage function that implements it (i.e. solves (9) with V = Vt (p))

and the hiring function Ht (p) are the optimal policies of the contracting problem (8).

An equilibrium is a fixed point, a solution (V,H) to this DP problem that coincides

with the strategy followed by the other firms. The reason why strategies depend on the

employment distribution Nt, rather than the offer distribution Ft, is simple. Given the

equilibrium value-offer strategy V and the employment distribution Nt, any firm of type

p can compute for every competitor x the probability Gt (Vt (x)) from (4) and thus the

acceptance probability Pt (Vt (x)) from (7). Given the equilibrium hiring strategy H, firm p

can then derive the required vacancy posting at (x) = Ht (x) /ηtPt (Vt (x)) of any other firms

x. Finally, Ft derives from (3). So knowledge of equilibrium strategies (a requirement of

equilibrium) and of the employment distribution Nt suffice to characterize all other infinite-

dimensional state variables.

2.3 Rank-Preserving Equilibrium (RPE)

2.3.1 Definition of RPE

The main difficulty in characterizing equilibrium in BM’s environment in the presence of

aggregate uncertainty, which hampered progress of this approach to the analysis of business

cycles, is now clear. The offer distribution Ft is relevant to the firm maximization problem,

6If we did not subtract this cost of employing new hires, this Bellman equation would generate the joint
value of the firm and all of its workers, current and future. If this were the object maximized by the firm,
it would optimally offer its workers the maximum value, i.e. pay a wage equal to productivity (the proof,
omitted, is available upon request). As is standard, the efficient solution to a moral hazard problem is to
“sell the firm to the workers” . In our economy, however, firms do not pursue efficiency, but maximize profits.
Therefore, the optimal value-offer policy is an interior solution.
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because it determines the retention rate Ft (W ) of the firm’s employees who are offered a

contract of value W . This is a defining property of a random search, wage posting model.

Hence Ft, or alternatively the employment distribution Nt, is a state variable of the firm

problem. Even if the firm does not directly control this aggregate state variable, keeping

track of it is an infinitely complex problem.

A particularly simple class of equilibria circumvents this hurdle.

Definition 2 A Rank-Preserving Equilibrium (RPE) is a Markov equilibrium such

that, on the equilibrium path, a more productive firm always offers its workers a higher

continuation value: Vt (p) = V (p, Lt−1 (p) , ωt, Nt−1) is increasing in p, including the effect

of p on firm size Lt−1 (p).

As a direct consequence of the above definition, in a RPE, workers rank their preferences

to work for different firms according to firm productivity at all dates. The RP property

holds in the unique steady-state equilibrium characterized by BM. Definition 2 proposes to

extend it to a dynamic stochastic equilibrium with endogenous hiring.

2.3.2 A characterization result

The key contribution of MPV13 is the proof that, in BM’s original environment with exoge-

nous (but stochastic) contact rates, any Markov equilibrium must be Rank-Preserving under

the weak sufficient condition that more productive firms start weakly larger at time 0. Thus,

for any history of realizations of aggregate shocks, more productive and larger firms always

offer their workers a higher value, which is the only available tool to control both hiring

and retention. Therefore, the size ranking of firms is preserved over time: if Lt (p) ≥ Lt (p
′)

for p > p′ at date t, then Lt+1 (p) > Lt+1 (p
′). Thus, by induction, Lt+n (p) > Lt+n (p

′)

for all positive integers n: if a more productive firm is ever larger, it will remain larger for

ever no matter what happens to aggregate productivity, because it will offer a higher value

to retain its workers and hire more workers. Furthermore, the equilibrium evolution of the

employment distribution is the same in any RPE, so it is uniquely pinned down.

In this paper, we add a hiring choice h to the firm’s problem. The RP property alone

therefore no longer suffices to ensure that more productive firms also hire more and, conse-

quently, always remain larger. Offering a higher value only guarantees a better retention of

existing employees, a reduction in the outflow, but firm size also depends on the gross hiring

inflow h. Therefore, the conditions for the unique equilibrium of any kind to be RP as in

MPV13, are slightly stronger, and the argument for the preservation of size ranking is not as

straightforward. Yet we show in the following proposition that preservation of size ranking

continues to hold in that case.
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Proposition 1 (RPE with Hiring Costs) Assume firms incur hiring costs c (h) to hire

h workers, where c(·) is a C 2 function with c′(h) > 0 for all h > 0. Then any Markov

contract-posting Equilibrium such that the sampling c.d.f. Ft(·) is everywhere differentiable

at all dates is Rank-Preserving if:

1. more productive firms are weakly larger at the initial date, i.e. L0(p) is non-decreasing

2. the elasticity of c′(·), ε(c′) = hc′′(h)/c′(h), is everywhere larger than 1.

Moreover, in any such RPE, size ranking is preserved at all dates, i.e. Lt(p) is non-

decreasing at all t.

Proof. See Appendix A. □
Proposition 1 extends the characterization result of MPV13 to the case of endogenous

hiring, where firms face recruitment costs that are a function of their gross hiring inflow. It

states (a pair of) sufficient conditions for any Markov equilibrium of our model, within the

class of equilibria with differentiable sampling c.d.f.’s, to be RP.7

2.3.3 Some useful properties of RPE

Three properties thus hold true in any RPE. First, the share of firms that offer less than

Vt (p) is simply the proportion of firms that are less productive than p weighted by their

relative vacancy postings

Ft (Vt (p)) =
1

At

∫ p

p

at (x) dΓ (x) . (11)

Second, the share of employed workers who earn a value that is lower than that offered by

p equals the share of employment at firms less productive than p:

Gt (Vt (p)) =
Nt−1 (p)

Nt−1 (p)
. (12)

Third, the probability that an offer is accepted equals

Pt+1 (Vt+1 (p)) =
1−Nt (p) + s (1− δt+1)Nt (p)

1−Nt (p) + s (1− δt+1)Nt (p)
:= Yt (p) . (13)

Therefore at(p) = Ht(p)/ (ηtYt(p)), and we can write the sampling weight as a function of

the chosen hiring flow. As we will see shortly, these restrictions will drastically simplify the

computation of equilibrium in the stochastic model.

7The restriction to differentiable c.d.f.’s simplifies the proof, but we suspect it is inessential - it is not
imposed in MPV13.
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In MPV13 we further establish that on the RPE path the value Vt (p) offered to workers is

continuous in p and the joint value S (p, L, ωt, Nt) of a firm of type p and of its L employees

is differentiable in L. Our focus in this paper is on computation. Therefore, we restrict

attention to differentiable equilibria without formally extending MPV13’s differentiability

proof to the case of endogenous hiring. Exploiting the differentiability properties of the

equilibrium we are seeking to characterize, we define the costate variable

µt (p) =
∂St

∂L
(p, L (p)) =

∂S

∂L
(p, L (p) , ωt, Nt)

which is the shadow marginal value of an additional worker to the firm-employees collective.

Using the RP implications (11) and (12) in the Bellman equation (10), differentiating the

latter on both sides with respect to Lt, and invoking the Envelope theorem:

µt (p) = ωtp+ βEt

[
δt+1Ut+1 + (1− δt+1)

(
1− sλt+1

At+1

∫ p

p

at+1 (x) dΓ (x)

)
µt+1 (p)

+ (1− δt+1)
sλt+1

At+1

∫ p

p

at+1 (x)Vt+1 (x) dΓ (x)

]
(14)

where in the last integral we changed variable from value V ∼ Ft to productivity p ∼ Γ.

The equilibrium policies Vt (p) and Ht (p) solve the NFOCs for the maximization of (10):

[W ] : Ht(p) = [µt(p)− Vt(p)] (1− δt) sλtLt−1ft (Vt(p))

[h] : c′ (Ht(p)) = µt(p)− Vt(p). (15)

Next, noticing that (11) implies

ft (Vt(p)) =
dFt (Vt(p))

dVt(p)
=

dFt (Vt(p))

dp

1

V ′
t (p)

=
at(p)

At

γ(p)

V ′
t (p)

,

we can rewrite the FOC for W as

Ht(p) = [µt(p)− Vt(p)] (1− δt) sλtLt−1(p)
at(p)

At

γ(p)

V ′
t (p)

(16)

Together with the law of motion of employment, equations (14), (16) and (15) are the

backbone of an algorithm to describe the evolution of the equilibrium of this economy subject

to aggregate shocks. We provide the details of this algorithm in Appendix C

3 Steady state and comparative statics

Before moving on to the quantitative results, in order to gain some intuition on the com-

plex effects of shocks to aggregate productivity ω on average employment and wage, and
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distributions thereof, we compare steady-state equilibria with different values of ω. More

precisely, we assume that ωt is constant for ever at ω, the economy is in steady state, so

any transitional dynamics of the employment distribution Nt already played out, we describe

equilibrium, which extends BM to endogenous contact rates, and study the effects of changes

in ω on the steady state N and wages.

In our previous theoretical analysis, in equilibrium a firm of productivity ωtp may decide

to post a value Vt (p) below the value of unemployment Ut. Because any equilibrium must

be RP, i.e. Vt (·) must be increasing, if this happens then generically it will be true for all

firms with productivity type below some threshold p
t
, and a measure Γ0(pt) of firms will be

temporarily inactive. So the model allows for entry and exit “at the bottom”. As ωt evolves

stochastically, so will the entry threshold p
t
. To understand comparative statics, we need to

study this effect carefully.

So let

p (ω) = max

⟨
p,

ϕ

ω
,
wmin

ω

⟩
(17)

denote the lowest-productivity firm active in the market, where p is the lowest existing (po-

tentially active) firm type, ϕ = ϕ (ω) is the reservation wage, the minimum wage acceptable

by unemployed workers, to be found later, and wmin is a mandated minimum wage. Let Γ0

be the population distribution of firm types, and Γ (p) = Γ0 (p) /Γ0(p (ω)) its normalized cdf.

Let L (w, a) denote the steady state size when posting a constant wage w and a adverts.

The firm maximizes steady-state flow profits, which equal flow output minus wage per

worker, times firm size, minus the cost of hiring an inflow given by posted adverts a times

the stationary contact probability of each advert η times the acceptance probability P (w).8

Denote the optimal level of profit attained by a type-p firm by:

π (p) = max
a≥0

w≥max⟨ϕ,wmin⟩

L (w) (ωp− w)− c (aηP (w)) . (18)

This program gives rise to an optimal policy (a(p), w(p)). Proceeding as in Bontemps et al.

(2000), in Appendix B we show that the steady state equilibrium firm size with endogenous

sampling weights equals

L(p) =

(
1 + sλ

1− δ

δ

)
a(p)

A

[
1 + sλ

1− δ

δ

∫ p

p

a(y)

A
dΓ(y)

]−2

and the wage policy w = w (p) is the implicit function defined by

w = ω

[
p−

∫ p

p

L(x)

L(p)
dx

]
−Ψ(w, p, sλ) (19)

8Maximization of steady-state profit flows coincides with full dynamic maximization of the PDV of future
profits when firms are infinitely patient. If not, the two problems yield solutions that produce the same
steady-state allocation. See MPV13 for a detailed comparison.
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where

Ψ (w, p, sλ) =
π + c (ηa (p)P (w))

L (p)
,

and π are the total profits earned by the marginal firm in the market. Such profits are zero

unless neither the reservation wage ϕ nor the statutory minimum wage are binding, in which

case the least productive firm is active: p(ω) = p. Since Ψ is increasing in w, Equation (19)

uniquely defines w (p). Intuitively, the firm’s mark-up comprises two terms: the integral in

(19) captures market power due to frictions, as in the BM model and in Bontemps et al.

(2000), while Ψ compensates the firm for hiring costs (which are new to this wage-posting

model) and for the minimum rent it can earn in the market, π ≥ 0, per worker.

Furthermore, the reservation wage ϕ solves:

ϕ = b+ β

∫ w

ϕ

[1− (1− δ)s] λ
δ

∫ p

x
a(y)
A

dΓ(y)

1− β(1− δ)
(
1− sλ

∫ p

x
a(y)
A

dΓ(y)
)dx. (20)

The steady-state equilibrium wage function thus solves (19) with ϕ defined in (20) and p (ω)

in (17).

We are now ready to take a total derivative of the wage function (19) w.r. to ω to study

comparative statics. Note that the value of leisure b, the arrival rate of separation shocks

δ, of job offers λ and of job applications η, as well as the advertising policy a(·) and their

aggregate A, hence the acceptance probability P (·), all depend on aggregate productivity

ω. All of them, except b, influence the wage policy for a given productivity and reservation

wage. We can then decompose the response as follows:

dw(p)

dω
=

∂w(p)

∂ω︸ ︷︷ ︸
Opportunity Cost

+ω
L
(
p
)

L(p)

dp(ω)

dω︸ ︷︷ ︸
Entry/Exit

+
∑

x∈{λ,δ,η,a,A,b}

∂w(p)

∂x

dx(ω)

dω︸ ︷︷ ︸
Competition

(21)

where the minimum productivity responds as follows:

dp(ω)

dω
= −wmin

ω2
I
{
wmin > ϕ, ωp

}
+

ϕ

ω2

(
d log ϕ

d logω
− 1

)
I
{
ϕ > wmin, ωp

}
(22)

We study the three pieces of (21) in turn.

Opportunity cost. The first effect is the direct impact of the productivity scale: some

algebra yields

∂w (p)

∂ω

ω

w (p)
=

1 + Ψ(w(p),p,sλ)
w

1 + Ψ(w(p),p,sλ)
w

∂ logΨ(w(p),p,sλ)
∂ logw

This reflects the higher opportunity cost (due to a loss of output) of not hiring/retaining

workers that a firm pays when ω increases. Suppose all firms keep their wage offers fixed
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as ω rises to ω′ > ω. Then firm p will go from productivity ωp to ω′p. Given the strategy

of other firms, value of leisure, and arrival rates, this firm will optimize by mimicking firm

p′ = pω′/ω: whether the firm is more productive for idiosyncratic or aggregate reasons is

immaterial to its choice, given a wage offer distribution and arrival rates. So firm p will raise

its wage offer to w (p′) > w (p), and, in equilibrium, all firms will raise their wages.

The elasticity of the wage function with respect to aggregate productivity ω is less than

one, so wages are “rigid”, if and only if the elasticity of the mark-up term Ψ with respect

to the wage, evaluated at equilibrium wage w (p), is larger than one. In the important and

simple special case analyzed by BM, hiring is costless, contact rates are exogenous, and

either the minimum wage or the reservation wage are binding, so that a positive measure

Γ0(p (ω)) of firms is inactive and profits of the marginal firm are zero: π = 0. In this case,

the mark-up term Ψ is zero, and all wages rise proportionally to aggregate productivity.

If π = 0 but hiring is costly, the mark-up term Ψ equals hiring costs per worker, so the

wage w (p) is rigid if the wage elasticity of total hiring costs exceeds one. Since firms pay

hiring costs only if they hire (c(0) = 0, c′ > 0) and the marginal hiring cost is increasing

(which is implied by the condition for RP in Proposition 1), the elasticity of c(·) exceeds

one. Therefore, the equilibrium wage w (p) is rigid if the wage elasticity of the acceptance

probability P (w) exceeds one at w = w (p). Intuitively, if an increase in ω leads firm to offer

a higher wage, and this offer poaches many workers at the margin, the firm needs to pay for

these additional hires. So the rising marginal hiring cost moderates the incentives to raise

the wage in the first place. This is a novel effect that arises from endogenizing hiring choices

in a job ladder model.

Entry and exit. The second effect is the impact of aggregate productivity on the set

of active firms, i.e. the entry/exit effect. This effect is zero if neither minimum wage nor

reservation wage bind, and all firms make positive profits. Otherwise, an increase in ω will

pull some relatively unproductive firms into the market. The resulting negative effect on

wages depends on L(p)/L(p), which is exactly equal to one at the bottom and decreasing in

p. So the impact of aggregate productivity on wages through the entry/exit margin dissipates

as we move up and away from that margin, and top wages are fairly insulated.

Competition. The third effect is indirect impact of aggregate productivity on wage com-

petition through the pace of separations δ(ω) and the general equilibrium response of the

arrival of outside offers to employed and unemployed workers λ and of job applications η,

as well as the advertising policy a(·) and their aggregate A and the acceptance probability

P (·), given job productivities and set of active firms. Here we can make two remarks on the
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effects of λ and δ on the slope w′(p) of the equilibrium wage function, given the reservation

wage ϕ.

First, λ, which depends in equilibrium on job market tightness, only enters the wage

function as sλ, i.e. this effect is
∂w (p)

∂λ
= s

∂w (p)

∂ (sλ)
.

This implies that a change in the arrival rate λ of offers to the unemployed has no direct effect

on equilibrium wages, and will work only through the reservation wage ϕ. What matters

for wage competition above ϕ is the arrival rate of offers to employed workers, which is the

true index of competition. This is a sense in which firm’s commitment insulates wages from

a direct influence of the value of unemployment, as in (but for very different reasons than)

Hall and Milgrom (2008)’s credible bargaining.

Second, the destruction rate δ has the opposite effect to λ on the slope of the wage policy,

plus an extra negative effect through the term Ψ. Given λ(1−δ)/δ, an increase in δ raises the

minimum profits that the firm must make to match the minimum rent in the market and to

compensate the upfront hiring cost, hence reduces wages across the board. In BM’s steady

state analysis, as mentioned Ψ = 0, and λ(1 − δ)/δ is a summary index of competition. If

trading frictions are extreme sλ(1 − δ)/δ = 0, we can easily verify from the equations that

the unique solution is w(p) = ϕ = b for all p, the Diamond (1971) paradox. Since λ(1− δ)/δ

is increasing in aggregate productivity ω, so is the slope of the wage function and, given ϕ,

equilibrium wages, purely due to this competition effect.

4 Data

4.1 Labor market and productivity

Most of the aggregate time series that we exploit to either calibrate or test the model

are available at monthly frequency. Nonetheless, we sample and filter them at quarterly

frequency, because TFP and Average Labor Productivity (ALP) series are available only

quarterly. The will calibrate and simulate the model at monthly frequency, then aggregate

its output to quarterly frequency for consistency with the data.

We take logs of and HP-filter all quarterly time series. Labor market stocks and flows

are filtered with parameter 100,000, while productivity series with parameter 1,600. The

unemployment rate is the civilian unemployment rate of the US population aged 16 and up

from the BLS, starting in 1948:Q1 and currently available through 2014:Q3. We calculate

transition rates between labor market states. Employment and Unemployment using stocks

of E and U and flows EU and UE between them from the BLS. Flows are from monthly CPS
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U UE EU V/U TFP ALP
unemployment rate .204

UE rate −.973 .124

EU rate .887 −.878 .100

V/U ratio −.963 .962 −.921 .357

Total Factor Productivity (TFP) .082 .154 .054 −.188 .009

Average Labor Productivity (ALP) −.210 −.063 −.239 −.010 .197 .013

Table 1: Correlations and standard deviations of quarterly cyclical components

matched files (BLS “Research series on labor force status flows from the CPS”) beginning

in 1990. We do not use unemployment-duration based measures, nor do we correct for time

aggregation (Shimer, 2012) and we treat any short spell of unemployment that completes

within a month, and is missed by monthly CPS interviews, as a continuous employment spell.

We make this choice for two reasons: the model is calibrated monthly, so workers there have

no chance to make more than one transition per month, and in the data a majority of very

short unemployment spells end in recall by the same employer (Fujita and Moscarini, 2013).

The V/U ratio is the ratio between the JOLTS vacancy rate (currently available for

2010:Q4-2014:Q1) for the US private nonfarm sector and the civilian unemployment rate.9

For TFP we use quarterly estimates of the Solow residual corrected for capacity utilization

by Fernald (2012), which are updated by the author and currently cover the period 1947:Q1-

2014:Q2. For ALP, we take Output per job in the Nonfarm business sector from the BLS

(series PRS85006163), currently available for 1947:Q1-2014:Q3.

We report in Table 1 standard deviations (last number on each row) and correlation

coefficients of the filtered components of each series. Because the series are available for

different time spans, the second moments in the table refer to different time periods. We

prefer to take this approach rather than to shorten our sample to the longest common period

when they are all available. We remark that TFP and ALP have similar volatilities, much

smaller than that of (log) unemployment, but TFP has a stronger negative correlation than

ALP with the unemployment rate. This reflects in part the fact that our filtered ALP

measure turned slightly countercyclical since the 1980s.

9This ratio is routinely referred to as labor market tightness in the context of the DMP model. However,
the relevant concept of market tightness in our model, which features on-the-job search, is not the V/U ratio:
rather, it is the ratio of vacancies to total worker search effort, U + s(1− δ)(1− U). Because the V/U ratio
has been the focus of much attention in the literature, we report statistics pertaining to that variable, even
though it doesn’t have a straightforward interpretation within the context of our model.
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log earnings monthly quarterly

(1) (2) (3) (4)

unemployment rate −.60
(.11)

−.50
(.11)

−.58
(.11)

−.49
(.11)

25-99 employees .065
(.004)

.062
(.004)

100+ employees .078
(.005)

.075
(.005)

observations (i, t) 2, 910, 524 986, 149

# workers (i) 82, 036 81, 457

Varit(errors) .18 .18 .16 .16

Et[Vari(errors)] .18 .18 .16 .16

R2 .22 .23 .23 .24

Notes: Source: SIPP. Monthly unemployment rate is HP-filtered with parameter 10E5. Quarterly
log earnings and unemployment rate are averages of monthly series. Et[Vari(errors)] is time average
of the cross-sectional variance of errors in each period. Robust standard errors in parentheses. All
specifications include quartic time trend and demographic controls.

Table 2: Fixed-effect regression of individual real log earnings

4.2 Wages

We use the 1996, 2000, 2004 and 2008 panels of the Survey of Income and Program Partic-

ipation (SIPP). This is a collection of panels of workers, on average about 40,000 workers

per panel. Each worker is surveyed every four months about events that occurred over the

past four months (‘wave’). Workers are divided in rotation groups, so each calendar month

roughly one quarter of the panel completes a wave and is re-interviewed. The SIPP has

significant longitudinal and time dimensions, provides information about a large number of

individual outcomes, and is nationally representative.

As the model has no intensive margin of labor supply, for our measure of wages we

take monthly earnings (TPMSUM), which are also less contaminated by measurement error

than hourly pay rates, especially those constructed as the ratio of earnings to usual hours

worked per month. We deflate with monthly CPI and take logs. A “seam bias” arises from

a tendency of SIPP respondents to bunch reported changes in earnings and labor market

status around interview times. Rotation groups are staggered, however, so seams are evenly

distributed over time. The only exceptions are the first four and last three months of each

panel, when no rotation group has a seam, but excluding those months has little impact on

the results.

We aim to extract information about the cyclical component of earnings for compara-

ble workers, as our model has homogeneous workers. To this purpose, we run, with both
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monthly and quarterly data, a fixed effect regression of individual log earnings, constructed

as described above, on the detrended unemployment rate, a common linear trend, a cubic in

age, and dummies for the four available worker characteristics that may change over time:

class of worker (private, government, no profit etc.), education (17 categories), marital sta-

tus and union coverage. In columns 2 and 4 of Table 2 we also control for a coarse measure

of employed size available in the SIPP data.10 Race, gender and any other time-invariant

worker characteristics are absorbed by the individual fixed effect. The regression uses the

SIPP longitudinal weights to maintain the representative character of the sample.

The results in Table 2 indicate a negative semi-elasticity, significant at conventional levels.

Looking at column 2 and 4, we see that employer size comes out positive and significant,

as predicted by the theory. The addition of employer size in the set of regressors reduces

(the point estimate of) the unemployment semi-elasticity of wages a bit, likely owing to a

composition effect, also consistent with the theory: periods of low (high) unemployment are

periods in which the workforce is more concentrated among higher-paying and larger (lower-

paying and smaller) employers (we return to this point in the next section). The first row

of Table 2, specifically column 3, provides our empirical target for the cyclicality of wages

produced by the model.

5 Calibration and simulation

5.1 Calibration

We specify the aggregate shock process as a discrete 20-state first-order Markov chain that

approximates a monthly AR(1) process for lnω. The AR coefficient (0.94) and the variance

of innovations (0.006) are set such that the model replicates the observed variance and first-

order autocorrelation of HP-detrended output per worker.11

The job destruction rate is allowed to fluctuate deterministically with ω as follows:

δ(ω) = 0.0114 + 1.894× (lnωmax − lnω)2.5

where the intercept, slope and exponents in this definition are chosen to approximate the

mean, standard deviation, (positive) skewness and kurtosis of the observed EU rate.

All other parameter values and functional form assumptions are summarized in Table

3. The discount factor is the monthly equivalent of a 5% discount rate per annum. The

10This measure is an indicator of whether the worker’s current firm employs up to 24, between 25 and 99,
or more than 100 people at the time of interview.

11Output per worker does not exactly coincide with ω in the model because of the gradual selection of
workers up the job ladder, but it turns out to be very close.
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monthly discount factor: β = 0.951/12

employed search intensity: s = 0.13

matching function: m(A,Z) = 0.059× A

hiring cost: c(h) = (43.47× h)100 /100

unemployment flow income: b = 0

firm type distribution: Γ(p) = 1−p−2.6

1−p−2.6 , with [p, p] = [1, 100]

Table 3: Calibration

employed search intensity s is set to match an average monthly EE transition rate of 1.2%,

in line with SIPP data.12 The matching function is simply a linear function of the aggregate

number of job adverts. This differs from the more commonly used Cobb-Douglas specification

with a vacancy elasticity of 0.5, and as such calls for some comments. First, there is some

evidence that the estimated vacancy elasticity of the matching function is substantially

higher than 0.5 when employed job seekers are counted as inputs into the matching process

(Petrongolo and Pissarides, 2001).13. Second, taking simulated series from our model, and

running an OLS regression of the log of the job finding rate on the log of the V/U ratio

(the standard procedure in the empirical literature on matching functions that produced

this “standard value” of 0.5 for the matching function elasticity), we obtain a “matching

function elasticity” of 0.47, well within the range of standard estimates. Finally, results are

not very sensitive to variations of the matching function elasticity within the range [0.7, 1].

The hiring cost function is iso-elastic, and highly convex. The need for a highly convex

hiring cost function is suggested by the sufficient condition stated in Proposition 1. In the

simulation, more convex hiring costs tend to (moderately) increase the volatility of the job

finding rate, for reasons discussed in Section 5.3.2. The scaling factor in the hiring cost

function is set so that the aggregate measure of job adverts, A, equals one on average over

the ergodic distribution of ω — a mere normalization.

The unemployment flow income is set equal to 0. Low estimates of b are common in

empirical applications of BM-type models, for the reasons discussed in Hornstein et al.

(2011), and are sometimes justified by appealing to a disutility, or “stigma”, attached to the

12There are many different ways to define EE transitions in the SIPP (or any other) data. Here we allow
for up to seven days of non-employment between jobs, and up to a month for “voluntary” EE transitions,
i.e. when respondents stated that they quit their past job to take another one. Adding “involuntary” EE
transitions (in the form of forced job-to-job reallocations, as for instance in Jolivet et al., 2006) would be a
straightforward extension.

13Even when on-the-job search is ignored, recent estimates by Borowczyk-Martins et al. (2013) that
account for the endogeneity of vacancies in the presence of reallocation shocks suggest that the matching
function elasticity may be higher than commonly assumed, in the region of 0.8.
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state of unemployment which has to be subtracted from what is literally income in the flow

value of unemployment. However the main reason why we adopt this low value is tractability:

a higher value of b would induce some low-productivity firms to shut down in bad aggregate

states. Working the possibility of firm exit into the simulation is not an easy task, and we

leave it for future research.14

Finally, the underlying distribution of firm types is a truncated Pareto distribution, the

most productive firm being 100 times more productive than the worst one in the economy.

5.2 Main quantitative results and model fit

We simulate the model over a window of 70 years (a length comparable to the times series

described in Section 4) using the algorithm described in Appendix C. We now discuss various

aspects of the fit and some predictions of the model.

5.2.1 Labor market variables and ALP

Table 4 replicates the data moments displayed in Table 1, together with their model coun-

terparts.15

Although the model tends to understate slightly the volatility of unemployment and

the V/U ratio, it still captures the fact that those labor market indicators are an order of

magnitude more volatile than ALP. This demonstrates the model’s potential to generate a

plausible level of amplification of TFP shocks. The model also replicates the correlations

between the various labor market indicators well enough, despite a tendency to overstate the

correlations between the V/U ratio and the job finding and unemployment rates. Overall,

though, the model comes close enough to replicating the moments relating to labor market

variables, including the volatility of the job finding rate, which has been the focus of attention

in much of the recent literature.

Where the model does the least well is in predicting the correlations between ALP and

the various labor market indicators: the magnitudes of all correlations are grossly overstated,

and the model even gets the sign wrong for the correlations of ALP with the job finding rate

and the V/U ratio. This, however, is hardly surprising in a model where the only impulse

driving aggregate fluctuations is a TFP shock. Allowing for additional uncorrelated shocks

is like to help with increasing the predicted volatility of the job finding rate, decoupling labor

14We further argue in MPV13 that ignoring entry and exit of firms is not such a big oversight when
analyzing the cyclicality of employment, as the contribution of entry and exit to the cyclical volatility of
employment is modest.

15The quarterly autocorrelation of detrended ALP, not shown in the tables, is 0.77, both in the data and
in the simulation.
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U UE EU V/U ALP
unempl. rate (M) .196

(D) .204

UE rate (M) −.991 .126

(D) −.973 .124

EU rate (M) .828 −.751 .111

(D) .887 −.878 .100

V/U ratio (M) −.999 .996 −.806 .270

(D) −.963 .962 −.921 .357

ALP (M) −.726 .659 −.865 .709 .013

(D) −.210 −.063 −.239 −.01 .013

Table 4: Fit to correlations and standard deviations of quarterly cyclical components

market indicators from ALP.16

5.2.2 Wages

We construct a model-predicted semi-elasticity of wages to the unemployment rate by run-

ning a weighted OLS regression of firm-level log wages on a constant and on the detrended

unemployment rate, with weights equal to Lt(p)γ(p). This is the closest we can get, using

the model, to the worker-level regressions reported in Table 2. The predicted semi-elasticity

thus computed (at quarterly frequency) is −6.35. Comparison of this number with the value

of −0.6 reported in the last column of Table 2 suggests that wages are much more procyclical

in the model than in the data (where they are fairly sticky). The predicted semi-elasticity

drops a little to −5.72 when firm size is included among the covariates in the aforementioned

regression. While this drop parallels the drop seen between columns 3 and 4 of Table 2, the

predicted semi-elasticity is still far too large.

As another point of comparison, the quarterly unit labor cost series produced by the BLS

over the period 1947-2013 has a cyclical volatility of 0.016 (after taking logs and HP-filtering

with parameter 1,600). The model counterpart of this number is 0.062, further corroborating

the conclusion that predicted mean wages are too cyclical. Excess wage volatility is a feature

that this model shares with Nash bargaining models, although, as discussed in Section 3, it

arises from very different causes in the two models. And contrary to the Nash bargaining

model, the contract posting model does generate plausible amplification of TFP shocks

despite flexible wages. Perhaps more informative than wages in this regard, posted worker

16Shocks to the matching technology or to the job destruction rate come to mind as natural candidates.
A recent papers by Hall (2014) makes a case for a countercyclical discount factor.
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values are substantially less volatile than wages, their standard deviation being 0.038 at

quarterly frequency, and their semi-elasticity to unemployment being −1.82. This partly

explains the degree of amplification generated by the model: although wages in the model

are allocative, they merely serve to implement values that drive the allocation of employment

in the model.

As discussed in the Introduction, one of the key contributions of our SBM model is that

it generates endogenous cross-sectional wage dispersion and as such makes predictions on

second- and higher-order moments of the wage distribution. Focusing on cross-sectional

wage dispersion, the pooled cross-section wage variance predicted by the model is 0.03. This

falls far short of the residual variance of 0.18 found in the SIPP data and reported in Table

2. While some of that 0.18 variance is arguably attributable to measurement error, it can

safely be concluded that the model understate wage dispersion.17 The failure to replicate the

observed amount of residual wage dispersion — at least under “standard” parameterizations

— is a well-known and recurring problem of wage posting models (see Hornstein et al., 2011,

and the discussion in the Introduction of this paper), from which the dynamic contract

posting model of this paper is not immune. Just as in the class of steady-state models

discussed by Hornstein et al. (2011), this model could be made to predict levels cross-

section wage dispersion more in line with the data under some extreme parameterizations

involving a large negative flow value of unemployment, or a very high discount rate.18

Without entering the debate about whether such unconventional parameterizations make

sense or not, we take note of the fact that our model under-predicts the level of wage disper-

sion, and move on to its cyclical behavior. A number of recent papers have documented the

fact that idiosyncratic wage risk, broadly defined as the cross-sectional standard deviation

of wage growth, is countercyclical (Storesletten, Tamer and Yaron, 2004). The predicted

correlation between the cross-section standard deviation of log wage growth and the (de-

trended) unemployment rate is 0.21.19 The model thus replicates, at least qualitatively, the

counter-cyclicality of wage risk found in the data.

17Attributing the entire discrepancy between the model-based variance of 0.032 and the data-based
residual variance of 0.18 to classical measurement error would imply a measurement error variance of
0.18 − 0.03 = 0.15, roughly 83% of the total residual wage variance. This seems high: Lemieux (2006)
reports a corresponding share of around a third based on CPS data.

18For example, assuming b = −93 (which amounts to about −100% of the mean wage) and leaving the
rest of the calibration unchanged, the model predicts a cross-section wage variance of 0.105, which is much
closer to the data, at least if one allows for a reasonable amount of measurement error. Its predictions about
amplification and volatility are virtually unaffected by b.

19The model-predicted standard deviation of wage growth is constructed by taking the standard deviation
of firm-level wages weighted by initial employment at each firm. Thus, by design, it measures the wage risk
faced by job stayers.
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Fig. 1: Marginal profits and worker values over time

5.3 Additional quantitative results

5.3.1 Profits and worker values

Figure 1a plots the profile of (log) values posted by each firm, lnVt(p), as a function of the

quantiles of p in the distribution Γ, over time. Figure 1b does the same for the (log) prof-

itability of the marginal job in any given firm type, ln [µt(p)− Vt(p)]. As per the properties

of RPE, Vt(p) is increasing in p at all dates. Figure 1b suggests that this is also the case for

marginal profitability, although this result is not guaranteed in theory.

Perhaps the most striking aspect of Figure 1 is the relative range of lnVt(p) vs. ln [µt(p)− Vt(p)].

Figure 1b indicates that the marginal job at the most productive firm is over 1,000 times

more profitable than the marginal job at the least productive firm. By contrast, the high-

est posted value is a mere 11.9% higher than the lowest posted value (which equals U , the

value of unemployment). This is another rendition of the model’s failure to generate enough

cross-sectional dispersion in wages (or, in this case, job values): firms at the top of the pro-

ductivity ladder face very little competition, as there are only very few firms that can poach

their workers. As a result, they enjoy a very large amount of market power.

A closer look at Figure 1b further reveals that job profitability is much more cyclically

sensitive at low-productivity firms than at the top end of the productivity distribution.

This is because jobs at low-productivity firms generate smaller surplus than jobs at high-

productivity firms, and their value is therefore more elastic to TFP shocks. Interestingly, 1a

suggests that this difference in cyclicality across firm types is not passed on to worker values.
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Fig. 2: Firm-level job adverts and hiring flows over time

5.3.2 Job adverts, hiring flows, and firm size

Proposition 1 states that in RPE, a firm that is more productive and initially larger than

another stays larger period after period. But its says nothing about whether more productive

firms actually hire more, or if they merely retain a larger fraction of their initial workforce by

posting more attractive job values. Figure 2 provides an answer, under the parameterization

discussed in the previous subsection. Figure 2a plots the profile of firm-level hiring flows,

Ht(p) (still as functions of the quantiles of p in the distribution Γ) over time, while Figure 2b

plots the profile of firm-level job adverts, at(p). It appears that Ht(p) is mostly, although not

always increasing in p, while at(p) is frankly decreasing: more productive firms tend to hire a

larger inflow of workers at most dates, but manage to do so by spending less effort on hiring,

simply through the fact that they offer more attractive job values, thus enjoying a higher

job-ad yield. Figure 2 further shows that job adverts, and therefore hires, are much more

cyclically sensitive at low-productivity than at high-productivity firms, echoing the similar

remark made above about profitability of the marginal job. The firm’s hiring decision is

indeed governed by the FOC (15), which imposes equality between the cost of the marginal

hire (c′(h), an increasing function of h), and its profitability, µ(p)− V (p).

Another remarkable feature of Figure 2a is the lack of dispersion in the level of gross

hiring inflows across firm types. On average over the simulated sample, the most productive

firm in the market only hires 8.35% more workers per quarter than the least productive

one. This is in spite of a 100-fold difference in productivity and a 1,000-fold difference

in profitability between the highest- and lowest-productivity employer in this economy (see

previous paragraph). As a further consequence, the model vastly under-predicts dispersion in

firm sizes: the predicted size ratio between the smallest and largest employer in the economy
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is 3.9 on average, nowhere near the levels observed in the data.

The reason for this lack of dispersion in employer size and hiring inflow is the very high

degree of convexity of the hiring cost function c(·). As mentioned Sub-section 5.1, this high

degree of convexity is needed for the model to amplify TFP shocks to the extent observed

in the data. In that sense, the model carries a tradeoff between amplification and size

dispersion, the terms of which are as follows. As seen on Figures 1 and 2, profitability and

(consequently) hiring and job-ad posting are much more volatile at low-productivity than at

high-productivity firms, as the former generate a much smaller surplus than the latter. In

order to inflate the volatility of aggregate job adverts, the model needs to concentrate hiring

among low-productivity firms. The highly convex training cost does exactly that: it curtails

hiring at high-p firms, which are much more profitable than low-p firms but face prohibitive

marginal training costs beyond a modest level of hiring.

5.3.3 The Beveridge curve

Figure 3 shows two different versions of the Beveridge curve produced by the model. The blue

plot is the “empirical Beveridge curve”, or V U -curve, i.e. a plot of the unemployment rate

against aggregate job adverts. While this V U -curve makes no particular sense in a model

with on-the-job search, it is interesting for being the object of keen empirical investigation,

and the basis for most of the existing inference on matching functions. The red plot on

Figure 3 is the Beveridge curve that is consistent with our model, i.e. a plot of aggregate

worker search effort, 1−Nt(p) + s (1− δt)Nt(p), against aggregate job adverts.20

Both versions of the Beveridge curve look as a Beveridge curve should, i.e. are downward

sloping and convex, despite a perfectly countercyclical job destruction rate. Interestingly,

however, the “empirical” Beveridge curve is slightly flatter than the “consistent” one. In

other words, if one were to use any of these plots for prediction, one might conclude that a

decrease in labor market tightness by a given amount will cause a larger increase in the mass

of job seekers, hence a larger drop in the job finding rate, under the empirical Beveridge

curve than under the consistent one, which takes employed job seekers into account. This

tallies with the remark made earlier, when discussing calibration: although the true matching

function has a unit elasticity in the model, estimating a misspecified job finding rate based

on the empirical version of the Beveridge curve — i.e. regressing this rate on the V/U ratio

— will understate the sensitivity of the job finding rate to changes in market tightness. The

magnitude of the bias suggested by the model (estimated elasticity of 0.46 instead of 1) is

quite remarkable. Where does the bias come from? The job finding rate is a function not of

20Aggregate worker search effort has been rescaled to produce Figure 3, in such a way that both series on
the x-axis of the figure have equal means.
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the V/U ratio, but of labor market tightness which equals the ratio of aggregate job adverts

(or vacancies) to aggregate job search effort, 1 − N(p) + s (1− δ)N(p), which accounts for

the competition that unemployed workers face from employed job seekers. Because employed

job seekers are fewer in recessions and more in expansions, actual tightness varies relatively

less than the V/U ratio over the cycle, which explains the lower estimated elasticity of the

job finding rate to the V/U ratio than to tightness.

5.3.4 The cyclicality of net job creation

As pointed out earlier, gross job creation is muchmore cyclical among small, low-productivity

employers than at the top end of the productivity distribution. Yet in MPV12 we highlight

that, in US data, exactly the opposite is true of net job creation: as a group, small employ-

ers fare relatively better in bad times of high unemployment, and worse in good times of

low unemployment. As we propose in other work (MPV09, MPV14), this empirical pattern

is qualitatively consistent with job ladder models, of which the model in this paper is an

example: in a tight labor market, high-paying, large employers overcome the scarcity of

unemployed job applicants by poaching employees from smaller, less productive and lower-

paying competitors, whose employment share then shrinks in relative terms. When the

expansion ends, large employers, that were less constrained, have more employment to shed

than small ones. In addition, the resulting high unemployment relaxes hiring constraints on

all employers, particularly the small ones that are less capable of poaching from other firms.
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As a result, small employers downsize less in the recession and grow (relatively) faster in the

recovery.

This mechanism is at work here. To put a number on its magnitude, we construct

series of total net job creation among two groups of firms, one at the top and one at the

bottom of the productivity ladder, both classes being re-designed at each date so that they

each have an employment share of 25%. We then subtract net job creation in the group

of low-p firms from net job creation in the group of high-p firms, and HP-detrend this

difference to obtain a measure of relative net job creation similar to the series we analyzed

in MPV13. The correlation of this simulated series of relative net job creation with the

simulated unemployment rate is −0.87: as expected, the relative net job creation of large vs.

small employers is procyclical. How plausible the magnitude of that predicted correlation is

hard to assess, for lack of immediately comparable data. In MPV13 we report numbers for

U.S. data that vary between −0.25 and −0.6, depending on the data set, period, sector, etc.

Again, the correlation produced by the model is on the high side of that range, something

that is to be expected as the outcome of a one-shock model.

6 Concluding remarks

The wage-posting model of the labor market with random search is one of the most influential

and enduring contributions of Dale Mortensen and his students. The main goal of this paper

is to show that this canonical model of the labor market naturally belongs in the toolbox

of business cycle theorists. We study its quantitative performance and confront it with

empirical evidence from the US. This is our first step in this direction and, as such, is truly

exploratory in nature.

Our exercise reveals dimensions on which the model performs well, and also a fundamental

tension between its predictions for cross-sectional inequality in wages and firm size, and

aggregate volatility. We emphasize that this tension emerges precisely because the model is

unusually equipped to address both sides of this trade-off, inequality and cyclical volatility.

In this regard, the model generates business cycles of the correct magnitude by exploiting

firm heterogeneity, in particular, the concentration of gross hires among unproductive, small,

cyclically sensitive firms. This is more than offset by a strong cyclical response of job to

job quits, so that net job creation is more volatile among large firms, a prediction that in

previous work we argued to be shared by many job ladder models, and that we validated

empirically. We also find promise in the model’s ability to generate cyclical comovement of

the empirically correct sign between unemployment and wage levels, wage inequality, worker

turnover. Much work lies ahead to identify suitable specifications and parameterizations of
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hiring costs, state-contingent contracts, search effort that may further improve the model’s

quantitative performance along these dimensions.

We believe that additional insights from this stochastic job ladder model lie ahead. An

especially promising direction is understanding individual earnings dynamics, the focus of

the incomplete market literature, their relationship to labor market transitions, up and down

the job ladder, and their cyclicality.
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Appendix

A Proof of Proposition 1

This proof is adapted from the proof of Proposition 2 presented in Appendix A of MPV13,

and follows the same general strategy. For clarity, we amend the notation slightly in this

proof by restoring the explicit dependence of various variables on the aggregate state of the

economy (ω,N), rather than subsuming it into a time index as we do in the main text.

We begin with the following preliminary remark. The firms’ maximization problem (10)

is couched in terms of a joint choice of posted worker values W and hires h. This joint choice

yields a next-period, state-contingent size:

L (L,W, h, ω′, N) := L
(
1− δω

′
)(

1− sλω′
F (W | ω′, N)

)
+ h,

so that the hire flow h = L−L
(
1− δω

′) (
1− sλω′

F (W | ω′, N)
)
. Problem (10) can therefore

be recast as an equivalent choice of posted value W and future size L . We shall work with

this alternate formulation of the problem in this proof.

We now introduce some more notation. First, we define the retention rate of a firm

posting value W in state ω:

R(W | ω,N) :=
(
1− δω

′
)(

1− sλω′
F (W | ω′, N)

)
.

For any choice of (W,L ), the firm makes corresponding hires h = L −R(W )L. We further

let:

φ (p, L, ω,N) := ωpL+ β

∫
Ω

δω
′
U (ω′,N (ω′, N))LQ (dω′ | ω) ,

with:

N (ω′, N) :=

∫ p

p

L (x, L (x) , ω′, N) dΓ (x) .

and:

Φ (L,W (ω′) ,L (ω′), ω′, N) := −c [L (ω′)− LR (W (ω′) |ω′)]

+ L

∫ +∞

W (ω′)

vdR (v | ω′, N)−W (ω′) [L (ω′)− LR (W (ω′) |ω′)] .

Fix N to be some given c.d.f. over
[
p, p

]
. Then, for any function S (p, L, ω), we define the

following operator MN:

MNS (p, L, ω) := φ (p, L, ω,N) + β

∫
Ω

max
W (ω′),L (ω′)

⟨
S [p,L (ω′) , ω′]

+ Φ (L,W (ω′) ,L (ω′), ω′, N)
⟩
Q (dω′ | ω) . (23)
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Importantly, as stated in the proposition, we make the following two assumptions: first,

the sampling c.d.f. F (W ) is everywhere differentiable. This implies differentiability of R(W ).

Second, the hiring cost function is such that ε(c′) := hc′′(h)/c′(h) ≥ 1 for all h ≥ 0.

We then start the proof with the following lemma:

Lemma 1 Let S (p, L, ω) be bounded, continuous in p and L, increasing and convex in L,

and with increasing differences in (p, L) over
(
p, p

)
× (0, 1). Then:

1. MNS is bounded and continuous in p and L;

2. There exists a measurable selection (V (p, L, ω,N) ,L (p, L, ω,N)) from the maximiz-

ing correspondence associated with MNS ;

3. Any such measurable selection is such that V and L are both increasing in p and L;

4. MNS is increasing and convex in L, and has increasing differences in (p, L) over(
p, p

)
× (0, 1).

Proof. In this proof, wherever possible without causing confusion, we will make

the dependence of all functions on aggregate state variables ω and N implicit to

streamline the notation.

Points 1 and 2 of this proposition follow immediately from the same arguments

as in the proof of Lemma 1 in MPV13, Appendix A. We now turn to the proof

of point 3. In each future state ω′, the firm solves:

max
W,L

⟨S (p,L ) + Φ (L,W,L )⟩ , (24)

where the dependence on ω′ and N of the various functions involved was kept

implicit to lighten notation. The FOC for W is:

0 = c′ [L − LR(W )]× LR′(W )− [L − LR(W )] (25)

and that for L is:

SL,r(p,L )−W−c′ [L − LR(W )] ≤ 0 ≤ SL,ℓ(p,L )−W−c′ [L − LR(W )] (26)

where SL,r and SL,ℓ denote the right- and left-derivatives of S w.r.t. L, which

exist everywhere by convexity of S .

Equation (26) implies that, at an optimal choice of L , SL,r(p,L ) ≤ SL,ℓ(p,L ).

But convexity of S implies that the converse inequality also holds, which proves
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that S is differentiable w.r.t. L at any optimal choice of (W,L ). The FOC for

L thus simply writes as:

0 = SL(p,L )−W − c′ [L − LR(W )] .

Next, from the properties of S assumed in the statement of the lemma and

from the convexity of c(·), the maximand has increasing differences in (L , p)

and (L , L), and “flat” differences in (W, p) as it is additively separable in (W, p).

Moreover, it has increasing differences in (L ,W ) if:

c′′ [L − LR(W )]× LR′(W )− 1 ≥ 0

which, substituting the FOC for W (25), holds around a selection from the opti-

mal correspondence if:

[L − LR(W )] c′′ [L − LR(W )]

c′ [L − LR(W )]
≥ 1,

which is true by the assumption ε(c′) ≥ 1.

Let p2 > p1, and denote corresponding selections from the optimal correspon-

dence by (W1,L1) and (W2,L2). Then, by revealed preferences:

[S (p2,L2) + Φ (L,W2,L2)]− [S (p2,L1) + Φ (L,W1,L1)] ≥ 0

≥ [S (p1,L2) + Φ (L,W2,L2)]− [S (p1,L1) + Φ (L,W1,L1)]

⇔ S (p2,L2)− S (p1,L2) ≥ S (p2,L1)− S (p1,L1)

which implies that L2 ≥ L1 as S has increasing differences in (p, L). Similarly,

by revealed preferences:

[S (p2,L2) + Φ (L,W2,L2)]− [S (p2,L2) + Φ (L,W1,L2)] ≥ 0

≥ [S (p1,L1) + Φ (L,W2,L1)]− [S (p1,L1) + Φ (L,W1,L1)]

⇔ Φ (L,W2,L2)− Φ (L,W2,L1) ≥ Φ (L,W1,L2)− Φ (L,W1,L1)

which, together with the facts that L2 ≥ L1 and that Φ has increasing differences

so long as ε(c′) ≥ 1, shows W2 > W1.

This establishes that any selection (V (p, L) ,L (p, L)) from the optimal cor-

respondence is such that V and L are both increasing in p. We still need to

show that they are also increasing in L. To this end, fix W and consider the

optimal choice of L given W and L (call it L ⋆(W,L). The corresponding FOC
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writes as:

SL,r (p,L
⋆(W,L))−W − c′ [L ⋆(W,L)− LR(W )]

≤ 0 ≤ SL,ℓ (p,L
⋆(W,L))−W − c′ [L ⋆(W,L)− LR(W )] .

As before, convexity of S combined with the FOC above establishes differentia-

bility of S at L ⋆(W,L), implying that the FOC indeed holds with equality:

0 = SL (p,L
⋆(W,L))−W − c′ [L ⋆(W,L)− LR(W )] . (27)

Next define the maximand:

M (W,L) = S (p,L ⋆(W,L)) + Φ (L,W,L ⋆(W,L)) .

This maximand is differentiable w.r.t. L with:

ML(W,L) = c′ [L ⋆(W,L)− LR(W )]R(W ) +WR(W ) +

∫ +∞

W

vdR(v)

Next consider two posted values W2 > W1. Taking differences of ML(W,L):

ML(W2, L)− ML(W1, L)

= c′ [L ⋆(W2, L)− LR(W2)]R(W2)− c′ [L ⋆(W1, L)− LR(W1)]R(W1)

+W2R(W2)−W1R(W1)−
∫ W2

W1

vdR(v)

= {c′ [L ⋆(W2, L)− LR(W2)]− c′ [L ⋆(W1, L)− LR(W1)]}R(W1)

+ c′ [L ⋆(W2, L)− LR(W2)]× [R(W2)−R(W1)] +

∫ W2

W1

R(v)dv,

where the second equality uses integration by parts. Substituting the FOC (27):

ML(W2, L)− ML(W1, L) = {SL [p,L
⋆(W2, L)]− SL [p,L

⋆(W1, L)]}R(W1)

+ c′ [L ⋆(W2, L)− LR(W2)]× [R(W2)−R(W1)] +

∫ W2

W1

[R(v)−R(W1)] dv.

All terms in the r.h.s. of the above equation are positive: the first one by con-

vexity of S w.r.t. L, and the other two from the fact that R(·) is an increasing

function. Now, a solution (V (p, L),L (p, L)) to the initial problem (24) also

solves V = argmaxWM (L,W ) and L = L ⋆(V, L). Because the maximand in

the latter problem has increasing differences in (W,L), it must be the case that

V (p, L) is increasing in L. And because ∂L ⋆/∂L and ∂L ⋆/∂W are both positive
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(provided that ε(c′) ≥ 1), it must be the case that L (p, L) = L ⋆ (V (p, L), L) is

also increasing in L.

Now on to point 4. Inspection of (23), in combination with the fact that

S is differentiable w.r.t. L at any optimal solution, shows that MNS is in

fact differentiable w.r.t. L (a stronger property than claimed in the lemma).

Furthermore:

∂

∂L
MNS (p, L, ω) = ωp+ β

∫
Ω

δω
′
U (ω′)Q (dω′ | ω)

+ β

∫
Ω

{
c′ [L (p, L, ω′)− LR (V (p, L, ω′)|ω′)]R (V (p, L, ω′)|ω′)

+

∫ +∞

V (p,L,ω′)

vdR (v | ω′) + V (p, L, ω′)R (V (p, L, ω′)|ω′)

}
Q (dω′ | ω) (28)

This latter equation readily shows that MNS is increasing in L.

What is left is for us to establish that MNS is convex w.r.t. L and has

increasing differences in (L, p). To this end, first note that substitution of the

FOC (26) into (28) yields an alternative expression for ∂MNS /∂L:

∂

∂L
MNS (p, L, ω) = ωp+ β

∫
Ω

δω
′
U (ω′)Q (dω′ | ω)

+β

∫
Ω

{
SL (p,L (p, L, ω′))×R (V (p, L, ω′)|ω′)+

∫ +∞

V (p,L,ω′)

vdR (v | ω′)

}
Q (dω′ | ω)

Now take L2 > L1:

∂

∂L
MNS (p, L2, ω)−

∂

∂L
MNS (p, L1, ω)

= β

∫
Ω

{
SL (p,L (p, L2, ω

′))×R (V (p, L2, ω
′)|ω′)

−SL (p,L (p, L1, ω
′))×R (V (p, L1, ω

′)|ω′)−
∫ V (p,L2,ω′)

V (p,L1,ω′)

vdR (v | ω′)

}
Q (dω′ | ω)

= β

∫
Ω

{
[SL (p,L (p, L2, ω

′))− SL (p,L (p, L1, ω
′))]×R (V (p, L1, ω

′)|ω′)

+

∫ V (p,L2,ω′)

V (p,L1,ω′)

[SL (p,L (p, L2, ω
′))− v] dR (v | ω′)

}
Q (dω′ | ω)

which is positive, by convexity of S , the fact that both V and L are increasing

in L, and the fact that SL (p,L (p, L2, ω
′)) ≥ V (p, L2, ω

′). This establishes
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convexity of MNS w.r.t. L. Increasing differences in (L, p) is follows from

similar steps (only taking differences in p of ∂MNS /∂L), so we omit the details.

□

Now consider the set of functions defined over
[
p, p

]
× [0, 1] × Ω that are continuous in

(p, L) and call it C[p,p]×[0,1]×Ω. That set is a Banach space when endowed with the sup norm.

As Lemma 1 suggests we will be interested in the properties of a subset C ′
[p,p]×[0,1]×Ω

⊂
C[p,p]×[0,1]×Ω of functions that are increasing and convex in L and have increasing differences

in (p, L). We next state two ancillary lemmas, which will establish as a corollary (Corollary

1) that C ′
[p,p]×[0,1]×Ω

is closed in C[p,p]×[0,1]×Ω under the sup norm.

Lemma 2 Let X be an interval in R and fn : X → R, N ∈ N such that {fn} converges

uniformly to f . Then:

1. if fn is nondecreasing for all n, so is f ;

2. if fn is convex for all n, so is f .

Proof. See the appendix of MPV13. □

Lemma 3 Let X ⊂ R2 be a convex set and fn : X → R, N ∈ N be functions with increasing

differences such that {fn} converges uniformly to f . Then f has increasing differences.

Proof. See the appendix of MPV13. □

Corollary 1 The set C ′
[p,p]×[0,1]×Ω

of functions defined over
[
p, p

]
×[0, 1]×Ω that are increas-

ing and convex in L and have increasing differences in (p, L) is a closed subset of C[p,p]×[0,1]×Ω

under the sup norm.

The latter corollary establishes that, given a fixed N , the functions that are relevant to

Lemma 1 live in a closed subset of a Banach space of functions under the sup norm. The

following lemma shows that the operator considered in Lemma 1 is a contraction under that

same norm.

Lemma 4 The operator MN defined in (23) maps C ′
[p,p]×[0,1]×Ω

into itself and is a contrac-

tion of modulus β under the sup norm.

Proof. That MN maps C ′
[p,p]×[0,1]×Ω

into itself flows directly from part of the

proof of Lemma 1. To prove that MN is a contraction, we can easily check using

(23) that MN satisfies Blackwell’s sufficient conditions with modulus β. □
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We are now in a position to prove the proposition. Given the initially fixed N , the

operator MN, which by Lemma 4 is a contraction from C[p,p]×[0,1]×Ω into itself, and has

a unique fixed point SN in that set (by the Contraction Mapping Theorem). Moreover,

since C ′
[p,p]×[0,1]×Ω

is a closed subset of C[p,p]×[0,1]×Ω (Lemma 2) and since MN also maps

C ′
[p,p]×[0,1]×Ω

into itself (Lemma 1), that fixed point SN belongs to C ′
[p,p]×[0,1]×Ω

.

Summing up, what we have established thus far is that for any fixed N ∈ C[p,p], the

operator MN over functions of (p, L, ω) has a unique, bounded and continuous fixed point

S ⋆
N = MNS ⋆

N ∈ C ′
[p,p]×[0,1]×Ω

⊂ C[p,p]×[0,1]×Ω.

We finally turn to the Bellman operator M which is relevant to the firm’s problem. That

operator M applies to functions S defined on
[
p, p

]
× [0, 1]×Ω×C[p,p] and is defined as the

following “extension” of MN:

MS (p, L, ω,N) := φ (p, L, ω,N) + β

∫
Ω

max
W (ω′),L (ω′)

⟨
S [p,L (ω′) , ω′]

+ Φ (L,W (ω′) ,L (ω′), ω′, N)
⟩
Q (dω′ | ω) .

If an equilibrium exists, then a firm has a best response and a value S which solves S = MS.

For every N ∈ C[p,p], by definition of M and MN this implies S = MNS. Since the fixed

point of MN is unique, if S = MS exists then for every fixed N ∈ C[p,p] we have for all

(p, L, ω) ∈
[
p, p

]
× [0, 1] × Ω: S (p, L, ω,N) = S ⋆

N (p, L, ω). Therefore, if the value function

S and an equilibrium of the contract-posting game exist, then S ∈ C ′
[p,p]×[0,1]×Ω

: the typical

firm’s value function is continuous in p and L, increasing and convex in L and has increasing

differences in (p, L). By the same standard omparative statics arguments that we invoked in

the proof of Lemma 1, the maximizing correspondence is increasing in p and L in the strong

set sense, hence all of its measurable selections are weakly increasing in p and L.

B Derivation of steady state wage policy

Let F (w) =
∫ w a(x)

A
dΓ (x) and G (w) =

∫ w
L (x) dΓ (x) denote the wage offer distribution

and the cross-section (earned) wage distributions, respectively. In steady-state equilibrium

the size of a firm offering a wage w is

L (w) =
d
∫ w

L (x) dΓ (x)

dw
=

a (w)

A

d
∫ w

L (x) dΓ (x)

d
∫ w a(x)

A
dΓ (x)

=
a (w)

A

dG (w)

dF (w)
.

To find an expression for dG/dF , we write the condition for balanced flows below any wage

w: the inflow, which is only from unemployment, equals the outflow, to unemployment and

to firms offering more than w:

λ [1−N (p)]F (w) =
[
δ + s(1− δ)λF (w)

]
N (p)G (w)
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Evaluating at the maximum wage w offered and earned we obtain λ [1−N (p)] = δN (p), so

we can solve for

G (w) =
δF (w)

δ + s(1− δ)λ [1− F (w)]
.

Taking the Radon-Nykodim derivative

L (w) =
a (w)

A

dG (w)

dF (w)
=

a (w)

A

1 + sκ[
1 + sκF (w)

]2
where κ = λ(1 − δ)/δ denotes is an inverse measure of frictions, the ratio between the

probabilities with which an unemployed worker receives job offers and an employed worker is

thrown off the ladder back to unemployment. Finally, the hiring inflow isH (a, w) = aηP (w),

where the chance that an offer is accepted equals

P (w) =
1−N (p) + s (1− δ)N (p)G (w)

Z
.

The firm maximizes steady-state flow profits, which equal flow output minus wage per

worker, times firm size, minus search costs. Denoting the optimal level of profit achieved by

a type-p firm as π(p):

π (p) = max
a≥0

w≥max⟨ϕ,wmin⟩

L (w) (ωp− w)− c (aηP (w)) .

Denoting the solution by w (p) , a (p) = a (w (p)), the Envelope theorem ensures:

π′ (p) = ωL (w (p)) =
a (p)

A

ω(1 + sκ)[
1 + sκ

∫ p

p
a(x)
A

dΓ (x)
]2

Integrating from p (ω) to p:

π (p) = π
(
p (ω)

)
+ (1 + sκ)ω

∫ p

p(ω)

a(x)
A[

1 + sκ
∫ p

x
a(y)
A

dΓ (y)
]2dx

Equating this expression to the r.h.s. of (18) we can solve for the wage function (19), where

π = π
(
p (ω) , a

(
p (ω)

)
, p (ω)

)
I
{
ωp > ϕ,wmin

}
(29)

are the profits of the marginal firm in the market, which are zero unless neither the reservation

wage ϕ nor the statutory minimum wage are binding.

To close the model, we find the reservation wage ϕ, thus the lowest productivity firm

active in the market p (ω) = max
⟨
p, ϕ

ω
, wmin

ω

⟩
. To ease notation, here we omit ω as an

argument of the endogenous variables. The value of unemployment solves

U = b+ β

[
U + λ

∫ w

ϕ

[W (x)− U ] dF (x)

]
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and the value to the worker of earning a wage w is

W (w) = w + β

[
δU + (1− δ)W (w) + (1− δ) sλ

∫ w

w

[W (x)−W (w)] dF (x)

]
so that W ′ (w) = 1/

[
1− β (1− δ)

(
1− sλF (w)

)]
. Substituting those value functions into

the definition of the reservation wage, W (ϕ) = U , and using integration by parts, one

obtains:

ϕ = b+ βλ [1− (1− δ) s]

∫ w

ϕ

[W (x)− U ] dF (x) = b+ βλ [1− (1− δ) s]

∫ w

ϕ

W ′ (x)F (x) dx

= b+ βλ [1− (1− δ) s]

∫ w

ϕ

F (x)

1− β (1− δ)
(
1− sλF (x)

)dx
= b+ βκ [1− (1− δ) s]

∫ w

ϕ

∫ p

x
a(y)
A

dΓ (y)

1− β (1− δ)
(
1− sδκ

∫ p

x
a(y)
A

dΓ (y)
)dx.

C The computation algorithm

We now describe the algorithm we implement to simulate the dynamic equilibrium of our

model. We simulate the model over an observation window t = 0, 1, · · · , T of chosen length

T and a K-point grid of firm productivity values P = {p1, · · · , pK} approximating the

continuous support of the distribution Γ0 (the grid is such that p = p1 < p2 < · · · < pK = p).

We initiate the simulation by drawing a random path of the aggregate state {ω⋆
t }

T
t=0, which

also determines the path of the job destruction rate, δt = δ(ω⋆
t ), and an initial condition for

the distribution of employment across productivity types, L⋆
0(pk).

Simulating the model involves solving for the paths of the following endogenous variables,

for all grid points pk ∈ P: L⋆
t (pk), µ

⋆
t (pk), V

⋆
t (pk), a

⋆
t (pk), and w⋆

t (pk).
21 We use a star

to denote “observed” quantities, i.e. quantities that are realized in the aggregate states

{ω⋆
t }

T
t=0 that our simulated economy does visit. Those have to be distinguished from “latent”

quantities, denoted by µt(pk|ω), Vt(pk|ω), etc., which would be observed at date t if the

economy’s aggregate state at date t were ω instead of ω⋆
t . The relationship between observed

and latent quantities for any variable X is X⋆
t (pk) = Xt(pk|ω⋆

t ).

Simulation proceeds by iteration over successive guesses about the path of firm search

effort, at(pk|ω). The typical iteration n takes an initial guess a
(n)
t (pk|ω) as input, and goes

as follows:

21Aggregate variables, such as N⋆(·), A⋆
t , F

⋆
t (pk), Z

⋆
t , etc. are then constructed from those firm-level series

by integration over the grid P.

41



1. Simulating the employment distribution. Based on the initial guess a
(n)
t (pk|ω), we

construct the aggregate firm and offer sampling distributions as per the model’s equations:

A
(n)
t (ω) =

∫ p

p

a
(n)
t (x|ω)dΓ(x) and F

(n)
t (ω) =

1

A
(n)
t (ω)

∫ p

p

a
(n)
t (x|ω)dΓ(x)

We then iterate forward in time, starting at date t = 0 from our chosen initial condition

L⋆
0(·), to construct the aggregate worker search effort the that applies between periods t and

t+ 1, conditional on any given state ω:

Z
(n)
t+1(ω) = 1−N⋆(n)

t (p) + s (1− δ(ω))N⋆(n)
t (p),

the job finding and vacancy filling rates that apply between periods t and t+ 1:

λ
(n)
t+1(ω) =

m
(
Z

(n)
t+1(ω), A

(n)
t+1(ω)

)
Z

(n)
t+1(ω)

and η
(n)
t+1(ω) = λ

(n)
t+1(ω)×

Z
(n)
t+1(ω)

A
(n)
t+1(ω)

,

the advert yield using equation (13):

Y
(n)
t+1 (pk|ω) =

1−N⋆(n)
t (p) + s (1− δ(ω))N⋆(n)

t (pk)

Z
(n)
t+1(ω)

and the date-t + 1 observed employment distribution using the law of motion of firm-level

employment:

L⋆(n)
t+1(pk) = L⋆(n)

t (pk)
(
1− δ(ω⋆

t+1)
) [

1− sλ
(n)
t+1(ω

⋆
t+1)

(
1− F

(n)
t+1(pk|ω⋆

t+1)
)]

+ a
(n)
t+1(pk|ω⋆

t+1)η
(n)
t+1(ω)Y

(n)
t+1

(
pk|ω⋆

t+1

)
.

2. Simulating job values. After completion of stage 1, we simulate job values by back-

ward recursion over time, starting from the final date T . More precisely, we construct the

following objects: µ
(n)
t (pk|ω)−U

(n)
t (ω) and V

(n)
t (pk|ω)−U

(n)
t (ω) given the terminal condition

µ
(n)
T (pk|ω)− U

(n)
T (ω) = ωpk − b(ω). While obviously inaccurate, this terminal condition has

a vanishing impact on the simulated solution at earlier dates, because of discounting, as

T → +∞. We thus choose a distant final date T and discard the last T − T ⋆ periods of the

simulation (which are affected by the approximate terminal condition), thus ending up with

a “valid” observation window of length T ⋆.

The recursion then proceeds as follows. Starting from t = T − 1, we first solve the FOC

(16) for worker values:

V
(n)
t+1(pk|ω)− U

(n)
t+1(ω) =

1

Y
(n)
t+1(pk|ω)

∫ pk

p

[
µ
(n)
t+1(x|ω)− U

(n)
t+1(ω)

]
dY

(n)
t+1(x|ω).
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We then construct µ
(n)
t (pk|ω)−U

(n)
t (ω) combining the Euler equation (14) and the Bellman

equation defining the value of unemployment, (5):

µ
(n)
t (pk|ω)− U

(n)
t (ω) = ωp− b(ω)

+ βEω′|ω

{
(1− δ(ω′))

[
1− sλ

(n)
t+1(ω

′)
(
1− F

(n)
t+1(pk|ω′)

)](
µ
(n)
t+1(pk|ω)− U

(n)
t+1(ω)

)
+ (1− δ(ω′)) sλ

(n)
t+1(ω

′)

∫ p

p

[
V

(n)
t+1(x|ω′)− U

(n)
t+1(ω

′)
]
dF

(n)
t+1(x|ω′)

− λ
(n)
t+1(ω

′)

∫ p

p

[
V

(n)
t+1(x|ω′)− U

(n)
t+1(ω

′)
]
dF

(n)
t+1(x|ω′)

}

3. Updating job adverts. The final step of the nth iteration is to update the distribution

of posted job adverts. This is done using the FOC (15)

a
(updated)
t (pk|ω) = c′

−1
(
µ
(n)
t (pk|ω)− V

(n)
t (pk|ω)

)
· 1

η
(n)
t (ω)Y

(n)
t (pk|ω)

If the distance between a
(updated)
t (pk|ω) and a

(n)
t (pk|ω) is less than a convergence tolerance,

we stop iterating and use the current state of the model as our simulation output. If not,

we continue iterating using a
(n+1)
t (pk|ω) = a

(updated)
t (pk|ω) as initial guess.22

Some additional remarks about this simulation protocol are in order. First, the iterative

procedure outlined above only produces a subset of the endogenous variables of interest —

the subset of variables that are needed to update the job advert profile until convergence.

The missing variables (chiefly, wages and the value of unemployment) are constructed only

once in a final run of the loop described above, after convergence of the job advert profile.

Second, for clarity of exposition, we described the simulation protocol in the “simple”

case where there is no binding minimum wage. Our computer code can handle this extra

feature, however. The code is available from:

https://sites.google.com/site/fabienpostelvinay/working-papers

and details of the extra steps that must be taken in the simulation are available upon request.

Finally, execution time obviously depends on the fineness of the productivity grid P, the

size of the aggregate state space Ω, and the length of the simulation window T . For the values

we use (a 100-point grid for P, 20 different states for ω, and T = 720 months), execution

time ranges from a few seconds when the simulation is started with an initial guess a
(0)
t (pk|ω)

which is “close” to the solution to a few minutes when starting from a coarse approximation.

22In practice, we actually update the guess as a
(n+1)
t (pk|ω) = r × a

(updated)
t (pk|ω) + (1 − r) × a

(n)
t (pk|ω),

where r ∈ (0, 1) is a “relaxation parameter”. This helps the algorithm to converge faster and monotonically.
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