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Chiappori, Edoardo Ciscato, Matthew Gentzkow, Yinghua He, James Heckman, Yu-Wei Hsieh, Sonia Jaffe,
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1. Introduction

In the classic model of matching with Nontransferable Utility (Gale and Shapley (1962)),

there is no possibility of compensating transfer between partners: if a man of type x marries

a woman of type y, the man receives utility αxy and the woman receives utility γxy, without

the possibility of transferring any utility across the pair. With Transferable Utility (Becker

(1973), Shapley and Shubik (1972)), by contrast, there is a numeraire good which is freely

transferable across partners. In this case, a man and woman who match may decide on a

transfer tx←y (possibly negative) from the woman to the man, so that the man’s equilibrium

utility is αxy + tx←y and the woman’s equilibrium utility is γxy − tx←y. Here, the transfer

technology is assumed frictionless, so that so that the couple’s sum of the utilities is Φxy =

αxy + γxy, independent of the transfer.

Sometimes, the transfer technology (or lack thereof) is clear from the market context:

In school choice and organ exchanges, for example, transfers are often explicitly forbidden;

hence, NTU matching seems a natural model in those settings. TU matching, meanwhile,

seems to be a good first approximation for describing labor markets, trading networks, and

demand for quality, as in all these settings there is a market-clearing price.

In many markets, however, there can be frictions that partially impede the transfer

of utility between matched partners. This possibility seems natural in marriage markets,

where the transfers between partners might take the form of favor exchange (rather than

cash), and the cost of a favor to one partner may not exactly equal the benefit to the other.

Frictions are also present in nearly every labor market—because of taxation, an employer

must pay more in wages than its employees actually receive (Jaffe and Kominers (2014)).

A market with transfer frictions has Imperfectly Transferable Utility (ITU): although some

utility can be transferred among partners, the transfer technology is imperfect.

In this paper, we develop an empirical framework for matching models with Imperfectly

Transferable Utility (ITU), using a structure of heterogeneities in preferences à-la Choo and

Siow (2006) and Galichon and Salanié (2014). Our setting encompasses (as limits) both
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the classic Transferable Utility (TU) and Nontransferable Utility (NTU) models,1 as well

as collective models and settings with taxation of transfers. In contrast with the existing

literature on ITU matching models, our setting allows for a very simple characterization of

equilibrium, as well as its computation and analysis. We prove existence and uniqueness

of the equilibrium solution in a general ITU model with logit heterogeneities. Then, we

find conditions under which the affinity parameters and the size of transfer frictions are

simultaneously identified. Finally, we present comparative statics results and illustrate how

the presence of transfer frictions can reverse classical policy intuitions from the TU model.

Our approach allows us to tackle two challenges, which have been difficult to address

using previous models: First, we can make realistic predictions of the welfare consequences

of intra-household pre-equilibrium transfers, moving beyond the Becker–Coase Theorem.

Second, we can integrate the literature on collective models into matching, providing a model

of endogenous determination of the collective sharing rule using the matching-theoretic

stability solution concept.

Beyond the Becker–Coase Theorem. In the family economics literature, the Coase

(1960) Theorem takes the following form due to Becker (1991):

“although divorce might seem more difficult when mutual consent is required

than when either alone can divorce at will, the frequency and incidence of

divorce should be similar with these or other rules if couples contemplating

divorce can easily bargain with each other [that is, if utility is transferable].”

This stark result is often called the Becker–Coase Theorem (see Becker et al. (1977)). In

essence, the Becker–Coase Theorem states that if some policy changes men’s and women’s

match affinities αxy and γxy to αxy − s and γxy + s (for instance, by affecting the legal

framework of divorce), in such a way that the joint affinity remains equal to αxy + γxy,

then the number of matches µxy between men of type x and women of type y will be

unaffected. The Becker–Coase Theorem implies that equilibrium transfers will adjust so

that the matching patterns and the welfare remain the same before and after the change

1The NTU matching arises as the limit as transfer frictions grow arbitrarily large; TU matching arises as

the frictions vanish.
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in legislation.2 More generally, it is a basic implication of TU models that equilibrium

quantities (number of matches and equilibrium payoffs) only depend on the joint surplus

αxy + γxy generated within each pair. The Becker–Coase Theorem’s conclusion, however,

depends crucially on the TU modeling assumption: when this assumption is not made,

that is, when transfers are either imperfect or impossible, even “zero-sum” policies that

just shift match affinity from one side of the market to the other can have adverse welfare

consequences, making agents on both sides of the market worse off in equilibrium. The

present paper, with the comparative static results it offers, is a far-reaching extension of

this type of question. Namely, we will investigate the effect of a change in the structural

parameters (number of individuals of each type, affinity parameters, or transfer friction

parameter) on the equilibrium outcome (matching patterns and post-transfer individual

surpluses).

Endogenous Sharing Rules. The field of family economics is mostly split between the

matching approach of Becker (1973), which focuses on matching patterns and the sharing

of the surplus in a TU model, and the collective approach of Chiappori (1991), which focus-

es on intra-household bargaining over a potentially complex feasible utility set, generally

falling under the ITU framework, and only seldom amenable to a TU model. Due to this

discrepancy in the underlying settings, the two approaches have not yet been embedded

in a single empirical framework. This is illustrated by Choo and Siow’s (2006) contention,

stated in their conclusion, that “[their] model of marriage matching should be integrated

with models of intrahousehold allocations such as those of Lundberg and Pollak (1993)

and Chiappori et al. (2002).” Merging marriage matching models with intra-household

bargaining models has been difficult in the past because the models (like that of Choo and

Siow (2006)) based on the Becker (1973) framework assume transferable utility, whereas

most models of intra-household allocation cannot be expressed as TU models because of

2These strong implications are often not verified by the data. For example, Lundberg et al. (1997),

Friedberg (1998), Wolfers (2006), Halla (2013), and Fernández and Wong (2014) exploit changes in divorce

legislation (unilateral divorce, joint custody, etc), and find significant effects on divorce rates.
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inefficiencies in the bargaining process.3 Our ITU matching framework allows us to model

marriage matching and intra-household bargaining simultaneously: under ITU matching,

while matched partners can bargain with each other, intra-household bargaining involves

costs or frictions. As a result, we are able to endogenize the “sharing rule” used in the col-

lective approach, which is the set of weights on agents’ utilities that determine the selection

of an outcome on the Pareto frontier.

Relation to the Literature. The theory of ITU matching has been studied by a number

of authors: Crawford and Knoer (1981), Kelso and Crawford (1982), and Hatfield and

Milgrom (2005) found conditions and algorithms for finding competitive equilibrium/stable

outcomes in ITU matching markets, and analyzed the structure of the set of equilibria.

Kaneko (1982), Quinzii (1984), Alkan (1988) Alkan and Gale (1988), Gale (1984), Demange

and Gale (1985) provided results on the existence of equilibrium and study properties of the

core. Jaffe and Kominers (2014) studied the problem of matching with linear and lump-sum

taxes and provided comparative statics results. Legros and Newman (2007) found conditions

under which positive assortativeness arsises in ITU models; they applied these findings to

problems of matching under uncertainty with risk aversion. Chiappori (2012) provided an

illustrative example. Chade and Eeckhout (2014) extended the Legros and Newman (2007)

analysis to the case where agents have different risky endowments. Samuelson and Nöldeke

(2014) used an ITU framework in their analysis of pre-matching investment. Azevedo and

Leshno (2014) provide existence and comparative statics in an NTU model with a continuum

of types.

However, the literature on the structural estimation of matching models has so far, to

the best of our knowledge, been restricted to the TU case and NTU cases. In the wake

of the seminal work by Choo and Siow (2006), many papers have exploited heterogeneity

in preferences for identification. In the TU case, see Fox (2010), Chiappori, Oreffice and

Quintana-Domeque (2012), Galichon and Salanié (2014), Chiappori, Salanié, Weiss (2014),

Dupuy and Galichon (2014), and Jacquemet and Robin (2014). In the NTU case, we refer

3There are exceptions—see, e.g., the work of Bowning et al. (2014, pp. 83 and 118), in which one private

good is assumed to provide the same marginal utility to both members of the household, and thus can be

used to transfer utility without friction.
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to Dagsvik (2000), Menzel (2014), Hitsch, Hortaçsu, and Ariely (2010), and Agarwal (2014).

To the best of our knowledge, our work is the first to provide an empirical framework for

general ITU models.

Organization of the Paper. The remainder of the paper is organized as follows. Section 2

lays out our empirical framework of the paper, and determines the equations characterizing

equilibrium. Section 4 deals with the empirically important case where the heterogeneity

in taste has a logit structure; in the logit case, we prove existence and uniqueness of the

equilibrium, provide a computationally efficient algorithm for finding equilibria, and discuss

identification and estimation. In Section 5, we derive comparative statics and conduct

welfare analysis in the context of the Becker–Coase Theorem. Section 6 concludes. All

proofs are presented in the Appendix.

2. Framework

2.1. Basic model. We begin by modeling a small-population, two-sided matching frame-

work with imperfect transfers (and without heterogeneity): There is a set I of men and a

set J of women; man i ∈ I receives match utility (which we call affinity) αij for matching

with woman j ∈ J , while woman j receives match utility (affinity) γij for matching with

man i. If man i and woman j match, they split the joint affinity generated by the match,

αij + γij , under the constraint that the post-bargaining utility of the man, denoted ui, and

the post-bargaining utility of the woman, denoted vj , must satisfy the feasibility constraint

Ψij

(
ui − αij , vj − γij

)
≤ 0, (2.1)

where the transfer function Ψ is assumed continuous and isotone with respect to its argu-

ments. We may think of

ti←j := ui − αij and tj←i = vj − γij (2.2)

as representing the transfers received by i and j, respectively, to bring their individual

surpluses up to ui and vj . Thus, the transfer function Ψ determines the (possibly pair-

specific) frictions in within-pair transfers. As we detail in the next section, our setting
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embeds both the standard NTU matching model (Gale and Shapley, 1962), and the standard

TU model (Koopmans and Beckman, 1957; Shapley and Shubik, 1971; Becker, 1973).

We denote by ui (resp. vj) the (equilibrium) outcome surplus of man i (resp. woman j).

Now, if Ψij

(
ui − αij , vj − γij

)
< 0, then there exist u′i and v′j so that ui < u′i, vj < v′j ,

and Ψij

(
u′i − αij , v′j − γij

)
≤ 0, so that i and j can improve their private outcomes by

matching together.

Outcome stability implies that Ψij

(
ui − αij , vj − γij

)
≥ 0, with equality if i and j are

matched. Formally, a (stable) equilibrium is a triple (µ, u, v) such that:

(1) for all i and j, Ψij

(
ui − αij , vj − γij

)
≥ 0;

(2) if µij = 1, then Ψij

(
ui − αij , vj − γij

)
= 0;

(3)
∑

j µij ≤ 1 and
∑

i µij ≤ 1; and

(4) µij ∈ 0, 1.

In the sequel we shall refer to αxy and γxy as affinity terms, and to Ψxy as the transfer

function.

2.2. Example Specifications. Now, we provide examples of specifications of the trans-

fer function Ψ that illustrate the wide array of applications that are encompassed by our

framework.4

2.2.1. Matching with Transferable Utility (TU). The classic TU matching model has been

used throughout economics—it is the cornerstone of Becker’s (1973) marriage model. TU

matching with individual-specific heterogeneity been studied by Choo and Siow (2006),

Galichon and Salanié (2014), and Chiappori, Salanié and Weiss (2014). TU matching is

often used in modeling settings like labor markets, marriage markets, and housing markets.

To recover the TU model in our framework, we take

Ψij

(
t, t′
)

= t+ t′. (2.3)

4The specifications we discuss in Sections 2.2.1–2.2.4 all satisfy our main assumption on Ψ (Assumption 1,

introduced in Section 3) directly; under weak conditions on the primitives of the model, the specifications

in Sections 2.2.5–2.2.7 do, as well.
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Hence, Ψij (ti←j , tj←i) = 0 means that ti←j = −tj←i: in algebraic terms, the amount of

transfers that i receives from j is the opposite of the amount that j gets from i. In other

words, there is no friction, and utility is perfectly transferable.

2.2.2. Matching with Non-Transferable Utility (NTU). The NTU matching model of Gale

and Shapley (1962) has a history as rich as TU matching does—NTU matching is frequently

used to model school choice markets, organ exchange matching, and centralized job assign-

ment. NTU matching with individual-specific heterogeneity is more recent—it has been

studied by Galichon and Hsieh (2014).

Like the TU model, we can embed the NTU model in our framework—in this case, by

taking

Ψij

(
t, t′
)

= max{t, t′}. (2.4)

Hence, Ψij (ti←j , tj←i) = 0 implies that ti←j ≤ 0 and tj←i ≤ 0: in other words, it is not

possible to receive a positive transfer from one’s partner in this model–utility is simply not

transferable.

2.2.3. Matching with Exponentially Transferable Utility (ETU). We introduce an Exponen-

tially Transferable Utility (ETU ) model, in which Ψij takes the form

Ψij

(
t, t′
)

= τ ij log

(
exp(t/τ ij) + exp(t′/τ ij)

2

)
. (2.5)

Here, the parameter τ ij is defined as the degree of transferability.5 Note that τ ij is allowed

to vary with i and j, so that the ease of transferring utility varies across types of couples.

Using ti←j = ui − αij and tj←i = vj − γij , we obtain that feasible utilities ui and vj are

related by

vj = γij + τ ij log

(
2− exp

(
ui − αij
τ ij

))
and ui = αij + τ ij log

(
2− exp

(
vj − γij
τ ij

))
whenever the expressions make sense.

ETU matching can be interpreted as a simple model of household consumption with

logarithmic utilities: Assume that the joint budget of a household is 2, which is shared

into ci and cj , the man and the woman’s private consumptions. Assume that the man i’s

5A particular case of this model is given in Legros and Newman (2007, p. 1086).
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utility is αij + τ ij log ci and woman j’s is vij = γij + τ ij log cj , so that agents care about

the identities of their partners and about private consumption. The model then takes the

form (2.5).

As τ ij → 0, we recover the NTU model (2.4), and when τ ij → +∞, we obtain the TU

model (Ψij (t, t′)→ t+t′

2 , which is isomorphic to (2.3)). Hence, the ETU model interpolates

between the nontransferable fully transferable utility models (see Figure 1).

u

v

τ → 0

Ψ(u,v) = 0

0 1 2

1

2

u

v

τ = 0.1

0 1 2

1

2
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v

τ = 1
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2
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2

Student Version of MATLAB
Figure 1. Transfer functions for the TU, NTU and ETU cas-

es. The plots are the set of points (t, t′) solution to the equation

τ log ((exp (t/τ) + exp (t′/τ)) /2) = 0 for a given value of τ . A small (re-

sp. large) τ provides a good approximation of the NTU case (resp. TU case).

2.2.4. Matching with a Linear Tax Schedule. Our framework can also model a labor market

with linear taxes: Assume the nominal wage wij is taxed at rate θij on the employee’s side

(income tax) and at rate sij on the firm’s side (social contributions). The taxes are allowed

to depend on both employer and employee characteristics.
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If employee i and employer j respectively have (post-transfer) utilities αij + (1− θij)wij
and γij − (1 + sij)wij , then we have ti←j = (1− θij)wij and tj←i = − (1 + sij)wij . Denot-

ing λij = (1− θij)−1, ζij = (1 + sij)
−1, this specification is a particular case of the Linearly

Transferable Utility (LTU ) model:

Ψij

(
t, t′
)

= λijt+ ζijt
′, (2.6)

where λij , ζij > 0. The LTU model (2.6) extends that of Jaffe and Kominers (2014), in

which θij could only depend on i and ζij could only depend on j.

2.2.5. Matching with a Nonlinear Tax Schedule. Our framework is general enough to extend

to a nonlinear tax schedule, well beyond linear taxes. Assume that if the nominal wage is

wij , the tax levied on the employee is θij (wij) on the employee’s side (income tax) and the

tax levied on the firm’s side is sij (wij) (social contributions). The functions θij and sij are

usually assumed convex, and they are allowed to depend on both employer and employee

characteristics.

If employee i and employer j respectively have (post-transfer) utilities αij+wij−θij (wij)

and γij − wij − sij (wij), then we have ti←j = wij − θij (wij) and tj←i = −wij − sij (wij).

Denoting λij (t) = (Id− θij)−1 (t), ζij (t′) = (Id+ sij)
−1 (t′), this specification gives rise to

the following model:

Ψij

(
t, t′
)

= λij (t) + ζij
(
t′
)
. (2.7)

This model therefore allows for a nonlinear tax schedule that depends on the types of the

employers and the employees.

2.2.6. Matching with Uncertainty. Now, we consider a model of the labor market with un-

certainty regarding match quality; such as model is considered by Legros and Newman

(2007) and Chade and Eeckhout (2014), who focus on characterizing positive assortative-

ness.

We assume that a worker of type i decides to match with a firm of type j, and decide

on a wage wij . The job amenity is ẽij , where ẽij is a stochastic term learned only after

the match is formed; the distribution of ẽij may depend on i and j. The employee is risk

averse and has an increasing and concave utility function U(·). Then the employees’ and
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employers’ systematic utilities are respectively E [Ui (ẽij + wij)] and γij − wij .This model

can be recast as a matching model with imperfectly transferable utility by noting that

ti←j = E [Ui (ẽij + wij)], tj←i = −wij , so that

Ψij

(
t, t′
)

= t− E
[
Ui
(
ẽij + γij − t′

)]
.

2.2.7. Collective Models with Spillovers and Public Goods. We consider a situation in which

a man i and a woman j have respective utilities u (c, l, g; i) and v (c′, l′, g; j) over private

consumption c and c′, private leisure l and l′, and a public good g. The wages of a man of

type i and of a woman of type j are respectively denoted wi and wj , and the price of the

public good is denoted p. The budget constraint of the household is c+c′+wil+wjl
′+pg =

Φij , where Φij is the total combined potential income of the pair.6

We define Ui (t, g) = max{u (c, l, g; i) : c + lwi = t} and Vj (t′, g) = max{v (c′, l′, g; i) :

c + lwi = t′}, the indirect utilities of the man and the woman if the private part of the

household budget Φij − pg = t + t′ is split into t for the man and t′ for the woman. The

“collective” approach initiated by Chiappori (1988) assumes that the outcome (u, v) lies on

the Pareto frontier of the feasible set of achievable utilities, given some sharing rule. Letting

θ and 1−θ be the respective Pareto weights associated to the man and the woman’s utility,

the household’s problem becomes

max
t,t′,g

{
θUi (t, g) + (1− θ)Vj

(
t′, g
)

: t+ t′ + pg = Φij

}
.

The first-order condition implies that ∂gUi/∂tUi + ∂gVj/∂t′Vj = p, which implicitly

defines g as a function of u = Ui (t, g) and v = Vj (t′, g). Letting U−1
i (., g) and V−1

j (., g) be

the inverses of Ui (., g) and Vj (., g), respectively, the collective model can be reformulated

in our framework by taking

Ψij (u, v) = U−1
i (u,G (u, v)) + V−1

j (v,G (u, v)) + pG (u, v)− Φij ;

in the case without a public good, the model takes the simpler form

Ψij (u, v) = U−1
i (u) + V−1

j (v)− Φij .

6Because of heterogeneity in spillovers, economies of scale, and similar, we do not assume that Φxy is

separatively additive.
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The classical collective approach assumes that the outcome (u, v) lies on the Pareto

frontier of the feasible set of achievable utilities, given some exogenous sharing rule. In the

present context, the sharing rule is determined endogenously through matching model. An

empirical matching framework for the collective model is given in Choo and Seitz (2013).

2.2.8. Matching with investments. Following Noldeke and Samuelson (2014), who make an

explicit link with ITU matching, one should distinguish between ex-ante equilibrium and

ex-post equilibrium in the matching problem with investments.

In an ex-post equilibrium with investments, the matching occurs after investments have

been made; investment decisions are made rationally in a first stage in anticipation of the

outcome of the matching game taking place at the second stage. The matching problem is

then a standard matching problem that takes investment as exogenous.

In contrast, in an ex-ante equilibrium with investments, investments are decided simul-

taneously with matching, and agents commit with their investments and the sharing of the

surplus. Hence, if a is the investment decision of the man and b is the investment decision of

the woman, the feasible frontier should depend on the investment decisions of the man and

the woman; hence, conditional on investments a and b, the set of utilities (u, v) attainable

are given by Ψij (u, v; a, b) ≤ 0. However, it is possible to retain only the efficient outcomes,

namely, consider

Ψi,j (u, v) = max
a,b
{Ψi,j (u, v; a, b)}

and hence, the problem can be seen as belonging to the ITU setting. Note that even if

we started with a TU model, namely if Ψij (u, v; a, b) = u+ v − Φij (a, b), then the ex-ante

equilibrium would no longer be a TU problem, as Ψi,j (u, v) = maxa,b {u+ v − Φij (a, b)},

which is genuinely an ITU matching problem. Again, we refer to Noldeke and Samuelson

(2014) for much more on these problems.

3. Unobserved Heterogeneity

We now assume that individuals may be gathered in groups of agents of similar observable

characteristics, or types, but heterogeneous tastes. We let X and Y be the sets of types of

men and women, respectively; we assume that X and Y are finite. Let xi ∈ X (resp. yj ∈ Y)



EMPIRICAL MATCHING WITH IMPERFECTLY TRANSFERABLE UTILITY 13

be the type of individual man i (resp. woman j). We let nx be the number of men of type

x, and let my be the number of women of type y. In the sequel, we denote by X0 ≡ X ∪{0}

the set of marital options available to women (either type of male partner or singlehood,

denoted 0); analogously, Y0 = Y ∪ {0} denotes the set of marital options available to men

(either type of female partner or singlehood, again denoted 0). We assume in the sequel

that Ψij (., .) depends only on agent types—that is, Ψij (., .) ≡ Ψxiyj (., .).

If man i and woman j match, then (before bargaining) they enjoy pre-transfer match

affinities αxiyj + εiy and γxiyj + ηxj respectively. If man i (resp. woman j) decides to

remain single, he (resp. she) receives εi0 (resp. η0j). Here, (εiy)y∈Y0 and (ηxj)x∈X0 are the

idiosyncratic, random parts of the agents’ affinities—which we assume are i.i.d. random

vectors respectively valued in RY0 and RX0 . We assume that εiy and ηjx are respectively

distributed according to Px and Qy.

Agents i and j who match together may decide on a transfer (ti←j , tj←i) that specifies

the amount ti←j transferred from j to i, along with the amount tj←i transferred from i to

j. Any such transfer must satisfy the feasibility condition (2.1)—that is, we must have

Ψxiyj (ti←j , tj←i) ≤ 0.

After the transfer, i’s and j’s utilities are respectively given by

ui = αxiyj + ti←j + εiy and

vj = γxiyj + tj←i + ηxj .

In other words, when man i and woman j bargain, they may reach any utility levels ui and

vj that satisfy (2.1), where Ψij = Ψxiyj , αij = αxiyj + εiy, and γij = γxiyj + ηxj .

Our principal restriction here is that the transfer function only depends on the observable

types of both partners. This restriction extends the “additive separability assumption”

highlighted by Chiappori, Salanié and Weiss (2014), building on the work of Choo and Siow

(2006). In the case of TU models (see Example 2.2.1 below), our restriction simply states

that the surplus Φij can be decomposed in the form Φij = Φxiyj + εiy + ηjx. Note that,

while the transfers ti←j and tj←i are allowed to vary idiosyncratically, it will be a property
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of the equilibrium (stated in part (iii) of Theorem 1) that they will actually only depend

on agent types, so that ti←j = txi←yj and tj←i = tyj←xi .

Assumption 1. We assume:

(a) For any x ∈ X and y ∈ Y, we have Ψxy (·, ·) continuous.

(b) For any x ∈ X , y ∈ Y, t ≤ t′ and r ≤ r′, we have Ψxy (t, r) ≤ Ψxy (t′, r′); further-

more, when t < t′ and r < r′, we have Ψxy (t, r) < Ψxy (t′, r′).

(c) For any sequence (tn, rn), if (rn) is bounded and tn → +∞, then lim inf Ψxy (tn, rn) >

0. Analogously, if (tn) is bounded and rn → +∞, then lim inf Ψxy (tn, rn) > 0.

(d) For any sequence (tn, rn) such that if (tn − rn) is bounded and tn → −∞ (or equiv-

alently, rn → +∞), we have that lim sup Ψxy (tn, rn) < 0.

All the components of Assumption 1 are extremely natural: 1 (a) and 1 (b) respectively

express continuity and monotonicity of the transfer function. Assumption 1 (c) requires

that it is not feasible to provide an arbitrarily high amount of utility to an individual while

keeping the utility of his or her partner constant. Assumption 1 (d) requires that there is

always a feasible transfer solution that offers a bounded utility difference between partners.

We also impose a simple restriction on the heterogeneity distributions Px and Qy.

Assumption 2. Px and Qy have full support and are absolutely continuous with respect to

the Lebesgue measure.

Assumption 2 implies in particular that for any pair x and y of men’s and women’s types,

there will be a man i of type x and a woman j of type y such that man i prefers type y to

any other women’s type, and such that woman j prefers type x to any other men’s type.

This introduces a relatively strong restriction on the equilibrium matching: every possible

matching of types will be observed in equilibrium.

Following Galichon and Salanié (2014), we introduce the discrete choice problem of a

man i of type x facing utility Uxy + εiy from matching with a partner of type y, and of a

woman j of type y facing utility Vxy + ηjx of matching with type x. We define the total
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indirect surplus of men and women by

G (U) =
∑
x

nxE
[
max
y
{Uxiy + εiy, εi0}

]
and H (V ) =

∑
y

myE
[
max
x

{
Vxyj + ηjx, ηj0

}]
.

(3.1)

The number of men of type x choosing a partner of type y is a number µxy = ∂G (U) /∂Uxy,

which we denote in vector notation by µ ≡ ∇G(U). In general, this vector µ is a semi-

matching (of men) in the sense that it satisfies
∑

y µxy ≤ nx for each x, but does not

necessarily satisfy the other set of constraints. (That is, each man chooses at most one

woman, but the same woman may be chosen by several different men.) Similarly, the num-

ber of women of type y choosing a partner of type x is given by ν ≡ ∇H (V ). This is a

semi-matching (of women) in the sense that it satisfies
∑

x νxy ≤ my for each y, but does

not necessarily satisfy the other set of constraints.

We need to invert µ = ∇G (U) and ν = ∇H (V ) in order to express U and V as a

function of µ and ν respectively. To do this, we introduce the Legendre-Fenchel transform

(a.k.a. convex conjugate) of G and H:

G∗ (µ) = sup
U

{∑
xy

µxyUxy −G (U)

}
and H∗ (ν) = sup

V

{∑
xy

νxyVxy −H (V )

}
. (3.2)

It is a well-known fact from convex analysis (cf. Rockafellar 1970) that µ = ∇G(U) if and

only if U = ∇G∗(µ), while ν = ∇H(V ) if and only if V = ∇H∗(ν). Galichon and Salanié

(2014) go beyond McFadden’s Generalized Extreme Value setting, discussing thoroughly

various choices for distributions Px and Qy, such as the Random Uniform Scalar Coefficient

model. The simplest example is the logit specification, as was used in the original Choo

and Siow (2003) framework.

In Section 4, we consider the particular case where Px and Qy are the distribution of

independent Gumbel random variables, in order to be in the logit framework, which will be

labeled as Assumption 2’.

Finally, we will prove uniqueness of an equilibrium in the case when Ψxy is differentiable,

that is when the marginal rate of substitution of partner’s utilities are finite.

Assumption 3. For each x ∈ X and y ∈ Y, (t, t′)→ Ψxy (t, t′) is differentiable.
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While satisfied in most of examples of interest, this assumption will not be met for the

NTU case. In this case, it can be shown that aggregate equilibrium matching is not unique

in general.7

3.1. Equilibrium Characterization. An aggregate matching (or just a matching, when

the abuse of terminology will not introduce confusion), is specified by a vector (µxy)x∈X0,y∈Y0

counting the numbers of matches between men of type x and women of type y. LetM be the

set of matchings, that is, the set of µxy ≥ 0 such that
∑

y∈Y µxy ≤ nx and
∑

x∈X µxy ≤ my.

For later purposes, we shall need to consider the strict interior ofM, denotedMint, i.e. the

set of µxy > 0 such that
∑

y∈Y µxy < nx and
∑

x∈X µxy < my. The elements of Mint are

called interior matchings.

As we noted in Section 2.1, stability implies that Ψij

(
ui − αij , vj − γij

)
≥ 0, with equality

if i and j are matched. Using Assumption 1, we can re-express this as

Ψxiyj

(
ui − αxiyj − εiy, vj − γxiyj − ηjx

)
≥ 0,

with the same equality condition. Hence, for all pairs x and y, we have the inequality

min
i:xi=x

min
j:yj=y

{
Ψxiyj

(
ui − εiy − αxy, vj − ηjx − γxy

)}
≥ 0,

with equality if µxy > 0, that is, if there is at least one marriage between a man of type x

and a woman of type y. Taking

Uxy = min
i:xi=x

{ui − εiy} and Vxy = min
j:yj=y

{
vj − ηjx

}
, (3.3)

thus, making use of the monotonicity of Ψ in Assumption 1, matching µ ∈ M is an equi-

librium matching if inequality Ψxy

(
Uxy − αxy, Vxy − γxy

)
≥ 0 holds for any x and y, with

equality if µxy > 0.

Definition 1. The triple
(
µxy, Uxy, Vxy

)
x∈X0,y∈Y0

is an Equilibrium Matching with Random

Utility (EMRU) if the following three conditions are met:

(i) µ is an interior matching, i.e. µ ∈Mint;

7We are grateful to Yu-Wei Hsieh for pointing out to us a crucial example of nonuniqueness in the NTU

case.
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(ii) (U, V ) is feasible, i.e.

Ψxy

(
Uxy − αxy, Vxy − γxy

)
= 0; (3.4)

(iii) µ, U , and V are related by market clearing condition

µ = ∇G (U) = ∇H (V ) . (3.5)

As we remarked, Assumption 2 ensures that (with probability 1) there will be a man i

of type x and a woman j of type y such that i prefers type y and j prefers type x. Thus,

under Assumption 2, at any (aggregate) equilibrium matching, we have µxy > 0 for all x

and y; that is, µ ∈Mint.

A simple count of variables shows that (µ,U, V ) is of dimension 3 × |X | × |Y|. This

number coincides with the number of equations provided by (3.4) and (3.5). However, this

observation just provides a sanity check—it does not directly imply existence or uniqueness

of equilibrium.

The following theorem shows that any equilibrium matching boils down to a simple

equation on µ, from which all other quantities of interest in the problem can be deduced.

Theorem 1. Under Assumptions 1 and 2:

(i) A matching µ ∈ Mint is an equilibrium matching if and only if it solves the funda-

mental matching equation

Ψ (∇G∗ (µ)− α,∇H∗ (µ)− γ) = 0. (3.6)

(ii) If µ ∈ Mint is an equilibrium matching, then the associated systematic utilities Uxy

and Vxy are given by

U = ∇G∗ (µ) and V = ∇H∗ (µ) . (3.7)

(iii) If (µ,U, V ) is an equilibrium outcome, then individual equilibrium utilities ui and vj

are given by

ui = max

{
max
y∈Y
{Uxiy + εiy} , εi0

}
and vj = max

{
max
x∈X

{
Vxyj + ηjx

}
, ηj0

}
. (3.8)
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(iv) The equilibrium transfers ti←j and tj←i are given by ti←j = txi←yj and tj←i = tyj←xi,

where

tx←y = Uxy − αxy and ty←x = Vxy − γxy. (3.9)

In particular, the transfers between i and j only depend on the observable types xi and yj.

As implied by part (i) of this result, the fundamental equilibrium equation is (3.6), which

is solely an equation in µ. Once this equation is solved, the systematic utilities Uxy and Vxy

are deduced in part (ii) by Equations (3.7), from which the individual utilities ui and vj are

deduced in part (iii) by (3.8). The equilibrium transfers are in turn deduced from (3.9).

3.2. Remarks. In the TU setting, Ψxy (t, t′) = t + t′; thus, the fundamental matching

equation (3.6) can be rewritten as

∇G∗ (µ) +∇H∗ (µ) = α+ γ.

For this specification of Ψ, and for fully general Px and Qy satisfying Assumption 2, Gali-

chon and Salanié (2014) have shown the existence and uniqueness of a solution to (3.6),

by showing that this equation coincides with the first-order conditions associated to the

utilitarian welfare maximization problem, namely

max
µ

{∑
xy

µxyΦxy − E (µ)

}
where Φ = α+ γ is the systematic part of the joint affinity, and E := G∗+H∗ is an entropy

penalization that trades-off against the maximization of the observable part of the joint

affinity.

Note that the equilibrium defined in Equation 3.6 belongs to the class of Nonlinear

Complementarity Problems (NCP): indeed, letting

f (µ) = Ψ (∇G∗ (µ)− α,∇H∗ (µ)− γ) ,

one looks for µ ≥ 0 such that f (µ) ≥ 0 and µ · f (µ) = 0.

In the NTU setting, i.e. when Ψxy (t, t′) = max (t, t′), (3.6) takes the form

max

(
∂G∗ (µ)

∂µxy
− αxy,

∂H∗ (µ)

∂µxy
− γxy

)
= 0 ∀x ∈ X , y ∈ Y
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For this specification of Ψ, and for fully general Px and Qy satisfying Assumption 2, Gali-

chon and Hsieh (2014) show existence and computation of a solution in full generality via an

aggregate version of the Gale–Shapley (1962) algorithm. In general, however, the problem

of existence and uniqueness of a stable matching solution to (3.6) (with general Ψ satisfying

Assumption 1 and general Px and Qy satisfying Assumption 2) remains an open prob-

lem. In Section 4, we prove existence and uniqueness of a solution to (3.6) with general Ψ

satisfying Assumption 1, but in the particular case that the heterogeneity structure is logit.

Part (ii) of Theorem 1 simply expresses that U , V and µ are related by U = ∇G∗ (µ)

and V = ∇H∗ (µ). By (3.6), U and V thus defined are automatically feasible.

Using (3.3) enables us to construct (Uxy) and (Vxy) as a function of (ui) and (vj). Part

(iii) of Theorem 1 provides a converse: (ui) and (vj) can be determined from (Uxy) and

(Vxy), by way of equation (3.8). Consequently, we see that at equilibrium, each man in the

market solves a discrete choice problem with systematic utility Uxy, and each woman solves

a discrete choice problem with systematic utility Vxy.

Finally, part (iv) of Theorem 1 implies that agents keep their entire utility shocks at

equilibrium, even when they could transfer them fully or partially. This finding, which

carries strong testable implications, was known in the TU case (see Chiappori, Salanié and

Weiss (2014)). Our theorem clarifies the deep mechanism that drives this result: the crucial

assumption is that the transfer function Ψij should only depend on i and j through the

observable types xi and yj .

4. The Imperfectly Transferable Utility Model with Logit Heterogeneity

(ITU-logit)

For the remainder of the paper, we specialize Assumption 2 to the logit case.

Assumption 2’. Px and Qy are the distributions of i.i.d. standard type I extreme value

random variables.
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4.1. Aggregate Matching Functions. In the logit case, it is well-known that G and G∗

above can be expressed in closed-form by

G (U) =
∑
x

nx log

1 +
∑
y∈Y

exp(Uxy)

 and G∗ (µ) =
∑
x∈X

∑
y∈Y0

µxy log
µxy
nx

.

where µx0 = nx −
∑

y∈Y µxy. The relations between U and µ are

Uxy = log

(
µxy
µx0

)
and µxy = µx0 exp(Uxy). (4.1)

Now, (4.1) yields Uxy = logµxy − logµx0 and Vxy = logµxy − logµ0y. Hence, the equilib-

rium equation (3.6) becomes

Ψxy

(
logµxy − logµx0 − αxy, logµxy − logµ0y − γxy

)
= 0,

which implicitly defines µxy as a function of µx0 and µ0y:

µxy = Mxy

(
µx0, µ0y

)
. (4.2)

Definition 2. Maps
(
µx0, µ0y

)
7→ Mxy

(
µx0, µ0y

)
are called aggregate matching functions

(AMF ).

The aggregate matching function concept is not new (see Petrongolo and Pissarides (2001)

and Siow (2008)), but there is an important difference between our aggregate matching

function and much of the prior work. Here, µx0 and µ0y are the number of men and women

selected into singlehood, which is endogenous, and determined by equilibrium equations

(4.7). In the demography literature (up to the important exception of Choo and Siow

(2006) and the subsequent literature), µx0 and µ0y are usually the number of available men

and women, assumed to be exogenous.

Assumption 1 implies a number of properties of Mxy (see Lemma 1 in Appendix B). In

particular, the map (a, b) 7→Mxy (a, b) is continuous and weakly isotone.

4.2. Example Specifications, Revisited.
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4.2.1. TU-logit Specification. In the logit case of the TU specification introduced in Sec-

tion 2.2.1, the matching function becomes

µxy = µ
1/2
x0 µ

1/2
0y exp

Φxy

2
, (4.3)

which is Choo and Siow’s (2006) formula.

4.2.2. NTU-logit Specification. In the logit case of the NTU specification introduced in

Section 2.2.2, the matching function becomes

µxy = min
(
µx0e

αxy , µ0ye
γxy
)
. (4.4)

When µx0e
αxy ≤ µ0ye

γxy , µxy = µx0e
αxy is constrained by the choice problem of men; we

say that, relative to pair xy, men are on the short side (of the market) and women are on

the long side (of the market), and visa versa. In Section 5, we see that whether one is on

the long or short side affects one’s welfare (and welfare comparative statics).

Note that Dagsvik (2000) and Menzel (2014) obtain µxy = µx0µ0ye
αxy+γxy—different

from our formula (4.4). The reason for this difference is that Dagsvik (2000) and Menzel

(2014) assume that the stochastic matching affinities are given by αij = αxy + εij and

γij = γxy + ηij , where the εij and ηij terms are i.i.d. type I extreme value distributions. In

contrast, in our setting, αij = αxy + εiyj and γij = γxy + ηxij .

4.2.3. ETU-logit Specification. In the logit case of the the Exponentially Transferable Utility

specification introduced in Section 2.2.3, the feasibility frontier takes the form

exp

(
Uxy − αxy

τxy

)
+ exp

(
Vxy − γxy

τxy

)
= 2,

which, when combined with identification formulae expUxy = µxy/µx0 and expVxy =

µxy/µ0y, yields the following expression for the matching function:

µxy =

(
e−αxy/τxyµ

−1/τxy
x0 + e−γxy/τxyµ

−1/τxy
0y

2

)−τxy
. (4.5)

As expected, when τxy → 0, formula (4.5) converges to the NTU-logit formula, (4.4).

Likewise, when τxy → +∞, (4.5) converges to the TU-logit formula, (4.3).
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But when τxy = 1, then (up to multiplicative constants) µxy becomes the harmonic mean

between µx0 and µ0y. We thus recover a classical matching function form—the “Harmonic

Marriage Matching Function” that has been used by demographers for decades (see, e.g.,

Qian and Preston (1993) and Schoen (1981)).

To our knowledge, our framework gives the first behavioral justification of harmonic

marriage matching function. Indeed, as Siow (2008, p. 5) argued, this choice of matching

function heretofore had “no coherent behavioral foundation.”

4.2.4. LTU-logit Specification. In the logit case of the the Linearly Transferable Utility

specification introduced in Section 2.2.4, the matching function becomes

µxy = e(λxyαxy+ζxyγxy)/(λxy+ζxy)µ
λxy/(λxy+ζxy)
x0 µ

ζxy/(λxy+ζxy)
0y . (4.6)

In particular, when λxy = 1 and ζxy = 1, we again recover the Choo and Siow (2006)

identification formula.

4.3. Equilibrium. Combining relation (4.2) with the feasibility equations expressing µ ∈

M yields the following equilibrium equations for the ITU-logit model:
(∑

yMxy

(
µx0, µ0y

))
+ µx0 = nx(∑

xMxy

(
µx0, µ0y

))
+ µ0y = my,

(4.7)

a system of |X |+ |Y| equations in the same number of unknowns.

The following result provides the existence of an equilibrium matching in the ITU-logit

case.

Theorem 2. Under Assumptions 1 and 2’:

(i) An equilibrium matching µ ∈M exists.

(ii) At the equilibrium matching µ, the surplus levels ui and vj are given by (3.8), that is

ui = max

{
max
y
{Uxiy + εiy} , εi0

}
and vj = max

{
max
x

{
Vxyj + ηjx

}
, ηj0

}
,

where

(1) • Uxy = log
(
µxy/µx0

)
,

• Vxy = log
(
µxy/µ0y

)
,



EMPIRICAL MATCHING WITH IMPERFECTLY TRANSFERABLE UTILITY 23

• µx0 = nx −
∑

y µxy, and

• and µ0y = my −
∑

x µxy.

The proof of Theorem 2 is constructive and shows that the equilibrium matching µ can

be obtained as the limit of the following iterative procedure.

Algorithm 1.

Step 0 Fix the initial value of µ0y at µ0
0y = my.

Step 2t+ 1 Keep the values µ2t
0y fixed. For each x ∈ X , solve for the value, µ2t+1

x0 , of µx0

such that equality
∑

y∈YMxy(µx0, µ
2t
0y) + µx0 = nx holds.

Step 2t+ 2 Keep the values µ2t+1
x0 fixed. For each y ∈ Y, solve for which is the value,

µ2t+2
0y , of µ0y such that equality

∑
x∈X Mxy(µ

2t+1
x0 , µ0y) + µ0y = my holds.

The algorithm terminates when supy |µ2t+2
0y − µ2t

0y| < ε.

The proof of Theorem 2 implies that Algorithm 1 converges to an equilibrium matching

as ε→ 0.

We now provide a result guaranteeing uniqueness, under a supplementary smoothness

assumption on Ψ.

Theorem 3. Under Assumptions 1, 2’, and 3, the equilibrium matching µ ∈M is unique.

4.4. Identification. In this section, we focus on the case where

Ψxy

(
t, t′
)

= ψxy

(
t

τxy
,
t′

τxy

)
(4.8)

and ψxy is a known function. The parameters to be identified are the match affinities

of men, αxy, the match affinities of women, γxy, and the transferability parameter, τxy.

This parameter space is of dimension 3× |X | × |Y|, so we have no hope of achieving point

identification on the basis of just the matching µ in a single market.

Indeed, we have three times more unknowns (αxy, γxy, and τxy) than observed out-

come parameters (µxy). Thus, we need at least three markets to achieve identification.8

Let Nmkts ∈ N be the number of markets, and let µk be the matching in market k ∈{
1, . . . , Nmkts

}
.

8Of course, we also need to assume that the parameters αxy, γxy, and τxy are fixed across markets.
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Proposition 1. The identified set is the set of vectors (α, γ, τ) such that for all k ∈{
1, . . . , Nmkts

}
, and for all x ∈ X , y ∈ Y, the following equalities hold:

ψxy

(
lnµkxy − lnµkx0 − αxy

τxy
,
lnµkxy − lnµk0y − γxy

τxy

)
= 0. (4.9)

Note that even with a single market, the identified set described in Proposition 1 can be

empty. Indeed, if µxy = 0 for some x ∈ X and y ∈ Y, then µ /∈ Mint, so that µ cannot

be a market equilibrium. On the other hand, even with a large number of markets, there

may be multiple elements in the identified set. (E.g., when ψ (t, t′) = t + t′, only the sum

αxy + γxy is identified.)

In the ETU-logit case, αxy, γxy and τxy satisfy the relation

e−αxy/τxy
(
µkx0

)−1/τxy
+ e−γxy/τxy

(
µk0y

)−1/τxy
= 2

(
µkxy

)−1/τxy
,

which provides a strategy for identifying the parameters αxy, γxy, and τxy with only three

markets.

When only a single market is observed, we need to incorporate restrictions on α, γ and

τ in order to restore point identification. One possible route is to fix τxy and impose the

restriction αxy = γxy, in which case the previous formulas provide following indentification

formulae for α in the TU, NTU, and ETU cases, respectively:

• In the TU case, exp (αxy) = µxy
(
µx0µ0y

)−1/2
,

• In the NTU case, exp (αxy) = µxy min
(
µx0, µ0y

)−1
,

• In the ETU case, exp (αxy) = µxy

(
(µ
−1/τxy
x0 + µ

−1/τxy
0y )/2

)τxy
for a fixed value of

τxy.

Last, but not least, it seems reasonable to adopt a lower-dimensional parametrization of

αxy, γxy and τxy. Let θ be a parameter of dimension dθ ≤ Nmkts × |X | × |Y|, and assume

that the functional form αθxy, γ
θ
xy and τ θxy. Then the identified set for θ is given by

Θ =

 θ ∈ Rdθ : ψxy

(
lnµkxy−lnµkx0−αθxy

τθxy
,

lnµkxy−lnµk0y−γθxy
τθxy

)
= 0

∀k ≤ dθ, x ∈ X , y ∈ Y

 . (4.10)

Estimation of θ in the point-identified case is discussed in the next section.
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5. Comparative Statics and Welfare Analysis

In this section we examine how changes in the exogenous parameters affect the matching

numbers µxy and the equilibrium utilities Uxy and Vxy.

The type of comparative statics we obtain lead to several applications of interest:

As a first application, we examine what happens under zero-sum adjustment, i.e. the

policy intervention consisting in decreasing αxy by some amount δsxy > 0 and increasing

γxy by the same amount.9 In the TU setting, the Becker–Coase theorem argues that the

equilibrium outcome (µ,U, V ) is left unchanged under this policy experiment—market wages

will decrease by exactly the market value of the new mandatory perk, so that the policy

intervention is Pareto neutral. In the more general ITU setting, we find that the welfare

of the intended beneficiary side will not necessarily increase, although this is typically the

objective of the policy intervention.

As second application, we look at how the equilibrium is affected by demographic shocks,

namely a change in the distributions of characteristics of the populations. Finally, we

examine the impact of a change in the transfer function.

5.1. General Comparative Statics. In this section, we provide the most general possible

comparative static result, which allows us to predict the vector of change in δµxy in the

number of matched pairs at equilibrium as a function of

• the changes in the affinities, δαxy and δγxy,

• the change in the number of men and women of each types, δnx and δmy, and

• the change in the transfer function δΨxy.

From the expression of δµ, we can recover the expression of the systematic utilities at

equilibrium δU and δV . In order to do this, we shall need to vectorize elements such as

αxy, meaning that we should consider αxy as a doubly-indexed vector, namely an element of

RX×Y , rather than as a matrix. That way, the partial derivatives ∂µ/δα should be thought

9In a labor economics context, an example of such policy intervention is a law which compels employers

to grant a mandatory perk, such as luncheon vouchers.
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of as doubly-indexed matrix, whose (xy) (x′y′)-th entry, which is the element at line xy and

column x′y′, is ∂µxy/δαx′y′ .

We introduce the following notations:

• ∂uΨ (resp. ∂vΨ) is the doubly-indexed matrix whose (xy) (x′y′)-th entry is ∂uΨxy if

x = x′ and y = y′, 0 otherwise:

1
(
x = x′

)
1
(
y = y′

)
∂uΨxy (resp. 1

(
x = x′

)
1
(
y = y′

)
∂vΨxy).

• D2G∗ (resp. D2H∗) is the doubly-indexed matrix whose (xy) (x′y′)-th entry is

∂2G∗ (µ) /∂µxy∂µx′y′ (resp. ∂2H∗ (µ) /∂µxy∂µx′y′).

• δµ, δU , δV , δα and δγ are the doubly-indexed vectors whose (xy)-th entry are

respectively δµxy, δUxy, δVxy, δαxy and δγxy

• δΨ is the doubly-indexed vector whose (xy)-th entry is δΨxy

• µδn
n (resp. µδm

m ) is the doubly-indexed vector whose (xy)-th term is µxyδnx/nx (re-

sp. µxyδmy/my)

Using these notations, we now state and prove our general comparative static. In the

next subsections, we clarify the economic content of this result by specializing to different

dimensions.

Theorem 4. Under Assumptions 1, 2, and 3, and assume the solution of (3.6) exists and

is unique (this is in particular the case under additional assumption 2’). In this case, let

(µ,U, V ) be the unique equilibrium outcome. Assume that α, γ, n, m, and Ψ are respectively

changed by some infinitesimal quantities δα, δγ, δn, δm, and δΨ, respectively. Then:

(i) The change in µ is given by

δµ =
(
∂uΨD2G∗ + ∂vΨD

2H∗
)−1

(5.1)

·
[
∂uΨ

(
δα+D2G∗

µδn

n

)
+ ∂vΨ

(
δγ +D2H∗

µδm

m

)
− δΨ

]
(ii) The changes in U and V are given as a function of δµ and δn by

δU =
(
D2G∗

)(
δµ− µδn

n

)
and δV =

(
D2H∗

)(
δµ− µδm

m

)
. (5.2)

In the ITU-Logit case, Theorem 4 takes the following form.
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Corollary 1. Under Assumptions 1, 2’, and 3, (5.1) becomes

δµ = A−1δz (5.3)

where:

• δzxy is the doubly-indexed vector whose (xy)-th entry is

∂uΨxy

(
δnx
µx0

− δαxy
)

+ ∂vΨxy

(
δmy

µ0y

− δγxy
)
− δΨxy

• A is the doubly-indexed matrix whose (xy) (x′y′)-th entry is

∂uΨxy + ∂vΨxy

µxy
1
(
x = x′, y = y′

)
+
∂uΨxy

µx0

1
(
x = x′

)
+
∂vΨxy

µ0y

1
(
y = y′

)
.

Meanwhile, (5.2) becomes

δUxy =
δµxy
µxy

+
∑
y′

δµxy′

µx0

− δnx
µx0

, and (5.4)

δVxy =
δµxy
µxy

+
∑
x′

δµx′y
µ0y

− δmy

µ0y

. (5.5)

To clarify the structure of our comparative statics, we look at the case where there is no

observable heterogeneity.

Example 1. Assume that there is only one type of man and one type of woman. In this

case, our notations can be simplified: the number of married individuals is denoted µ; the

number of single men is n− µ; and single women is m− µ.

If we maintain assumptions 1, 2’, and 3 and assume the solution of (3.6) exists and is

unique, then the systematic part of the equilibrium utilities of married men and women

are U = logµ/ (n− µ) and V = logµ/ (m− µ), and D2G∗ = n
µ(n−µ) and D2H∗ = m

µ(m−µ) .

Then, the equation of the model becomes Ψ (log(µ/ (n− µ))− α, log(µ/ (m− µ))− γ) = 0,

and Equation (5.1) simplifies to

δµ =
∂uΨ

(
δα+ δn

n−µ

)
+ ∂vΨ

(
δγ + δm

m−µ

)
− δΨ

∂uΨ n
µ(n−µ) + ∂vΨ

m
µ(m−µ)

(5.6)

while the changes in U and V are given as a function of δµ and δn by

δU =
nδµ− µδn
µ (n− µ)

and δV =
mδµ− µδm
µ (m− µ)

. (5.7)
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In Appendix A, we give a slightly more complex example with one type of man and two

types of women.

5.2. Change in affinities. We now focus on the effect of changes in the affinities α and

γ on the equilibrium, keeping n, m and Ψ constant. The underlying policy question is

how a change in the affinities will affect equilibrium outcomes: To what extent a policy

intervention in a matching market can be undone by the invisible hand? In the case with

Transferable Utility, this question is partially answered by the celebrated Becker–Coase

theorem, which the following corollary to Theorem 4 recovers and extends.

Corollary 2 (Principle of Unintended Consequences). Maintain assumptions 1, 2, and 3,

and assume the solution of (3.6) exists and is unique. When the population numbers n, m

and the transfer function Ψ do not vary:

(i) Formula (5.1) becomes

δµ =
(
∂uΨD2G∗ + ∂vΨD

2H∗
)−1

(∂uΨδα+ ∂vΨδγ) .

(ii) Under transferable utility, i.e when Ψ is given by (2.3), formula (5.1) becomes

δµ =
(
D2G∗ +D2H∗

)−1
(δα+ δγ) .

Corollary 3 (Becker–Coase Theorem). Under the assumptions of Corollary 2, and under

transferable utility and a zero-sum pre-equilibrium transfer, we have δαxy = −δsxy and

δγxy = δsxy, so that δµxy = 0, δUxy = 0, and δVxy = 0.

The Becker–Coase theorem can therefore be thought of as a “weak”, or “neutral” version

of the principle of unintended consequences popularized by Merton (1936): The social policy

designer intends to improve the welfare of one side of the market, say women, by imposing

an exogenous zero-sum transfer from types x to types y. But the consequence of the policy

is not felt by market participants, as efficient rebargaining occurs immediately after the

policy change, and the rebargaining process exactly offsets the welfare changes caused by

the transfer policy. This neutrality result is, however, very particular to TU matching. In

the ITU case, the effect is much more subtle, as we now show: zero-sum transfer policies can



EMPIRICAL MATCHING WITH IMPERFECTLY TRANSFERABLE UTILITY 29

have averse unintended consequences, a “failure of good intentions.” The following example

explores the simplified case when there is no observable heterogeneity.

Example 1 Continued. In the setting of Example 1, the comparative statics formula

becomes

δµ

µ
=

(
n∂uψ

n− µ
+
m∂vψ

m− µ

)−1

(∂uψδα+ ∂vψδγ) .

In particular, when δα = −δs and δγ = δs, we have

d logµ

ds
=
−∂uψ + ∂vψ
n∂uψ
n−µ + m∂vψ

m−µ
,
dU

ds
=

n

µ (n− µ)

dµ

ds
and

dV

ds
=

m

µ (m− µ)

dµ

ds
.

Note that in the TU case, ∂uψ = ∂vψ = 1, and hence in this case, dµ/ds = dU/ds =

dV/ds = 0, so we recover the Becker–Coase theorem.

In the general ITU case, we note that dU
ds and dV

ds have the same sign, which is is negative

if ∂uψ > ∂vψ. As a result, a policy intervention intended to benefit one side of the market

may end up hurting both sides of the market—an occurrence of adverse consequences.

Another interesting case is when ∂uΨ is much larger than ∂vΨ, i.e. ∂uΨ � ∂vΨ. This

corresponds to the case where one side is very inelastic.

Example 2. Maintain assumptions 1, 2, and 3, and assume the solution of (3.6) exists and

is unique, and assume ∂uΨ� ∂vΨ. Then the formulae in Theorem 4 becomes

δµ =
(
D2G

)
(δα) , δU = δα, and δV =

(
D2H∗

) (
D2G

)
(δα)

in particular, under a zero-sum pre-equilibrium transfer, δαxy = −δsxy and δγxy = δsxy, so

that δU = −δs and δV = −
(
D2H∗

) (
D2G

)
δs.

Akin to a tax incidence result, this result shows that the policy has unambiguous con-

sequences on one side of the market (here, men), but the consequences for the other side

are rather unexpected, and can go in the opposite direction as intended. The result has

an interesting interpretation. For instance, when the men’s side is completely inelastic

(∂uΨ� ∂vΨ), any change in αxy will be fully appropriated by x; the equilibrium matching

µ will adjust accordingly, and the utility change in V will adjust to the change in µ.
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5.3. Change in Populations. We now focus on the effect of a change in the population

on the equilibrium outcome, assuming that the affinity parameters α and γ, as well as the

transfer function Ψ, remain constant. As Becker (1991, pp. 120–122) puts it:

“[. . . ] An increase in the number of men of a particular quality tends to

lower the incomes of all men and raise those of all women because of the

competition in the marriage market between men and women of different

qualities.”

We formalize this Beckerian intuition in the following result.

Corollary 4 (Effects of Competition). Maintain assumptions 1, 2, and 3, and assume the

solution of (3.6) exists and is unique. Assume the affinity parameters α and γ, and the

transfer function Ψ do not vary. When the population numbers vary by δn and δm, the

variations in the numbers of matches δµ are given by

δµ =
(
∂uΨD2G∗ + ∂vΨD

2H∗
)−1

[
∂uΨ

(
D2G∗

µδn

n

)
+ ∂vΨ

(
D2H∗

µδm

m

)]
.

In particular, under transferable utility, i.e. when Ψ is given by (2.3), formula (5.1) becomes

δµ =
(
D2G∗ +D2H∗

)−1
[
D2G∗

µδn

n
+D2H∗

µδm

m

]
.

Example 1 Continued. In the setting of Example 1, the comparative statics formula

becomes

δµ = µ
∂uΨ (m− µ) δn+ ∂vΨ (n− µ) δm

∂uΨ (m− µ)n+ ∂vΨ (n− µ)m
.

We have

δµ

µ
= θ

δn

n
+ (1− θ) δm

m
,

where we take

θ ≡ ∂uΨ (m− µ)n

∂uΨ (m− µ)n+ ∂vΨ (n− µ)m
. (5.8)

Thus, we can compute that

δU =
n (1− θ)
n− µ

(
δm

m
− δn

n

)
, and δV =

mθ

m− µ

(
δn

n
− δm

m

)
,
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from which we see that if δm
m > δn

n (i.e., if the women’s relative increase in population is

larger than the men’s), then the systematic utility of men increases, and the systematic

utility of women decreases. (The converse is also true.)

Assume the affinity parameters α and γ, and the transfer function Ψ do not vary. Let

ux = Gx (U) and vy = Hy (V )

be the average welfare of a man of type x and a woman of type y.

Corollary 5 (Unexpected Symmetry). Maintain Assumptions 1, 2, and 3, and assume the

solution of (3.6) exists and is unique. Assume that the population numbers vary by δn and

δm. Then the “unexpected symmetry” result of Decker et al. (2012) holds within men and

within women, namely
∂ux
∂nx′

=
∂ux′

∂nx
and

∂vy
∂my′

=
∂vy′

∂my
;

however, symmetry does not necessarily hold across men and women, i.e.

∂ux
∂my

does not always coincide with
∂vy
∂nx

,

even though it does in the TU case.

In the logit case (i.e., under Assumption 2’), we have ux = − log µx0
nx

, so that

1

µx0

∂µx0

∂nx′
=

1

µx′0

∂µx′0
∂nx

and
1

µ0y

∂µ0y

∂my′
=

1

µ0y′

∂µ0y′

∂my
,

while
1

µx0

∂µx0

∂my
6= 1

µ0y

∂µ0y

∂nx
.

5.4. Change in Transfer Function. Finally, we investigate the effect on equilibrium

when the transfer function changes.

Corollary 6. Maintain Assumptions 1, 2, and 3, and assume the solution of (3.6) exists

and is unique. When the affinity parameters α and γ, and the population numbers n and

m are fixed, but when the transfer function varies by δΨ, the variation in the numbers of

matches δµ is given by

δµ =
(
∂uΨD2G∗ + ∂vΨD

2H∗
)−1

δΨ.
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Example 1 Continued. Once again, in the setting of Example 1, we have D2G∗ = n
µ(n−µ)

and D2H∗ = m
µ(m−µ) . Then, the formula of Corollary 6 becomes

δµ =
µ (n− µ) (m− µ) δΨ

∂uΨn (m− µ) + ∂vΨ (n− µ)m
.

This yields

δU = θ
δΨ

∂uΨ
and δV = (1− θ) δΨ

∂vΨ
,

where θ as defined in (5.8).

6. Discussion and perspectives

We have introduced an empirical framework for ITU matching with unobserved het-

erogeneity in tastes. Our framework includes as special cases the classic fully- and non-

transferable utility models, collective models, and settings with taxes on transfers, dead-

weight losses, and risk aversion. We characterized the equilibrium and identification condi-

tions, and derived comparative statics.

Our equilibrium existence result allows general transfer functions Ψ (modulo the reg-

ularity conditions in Assumption 1), but requires a specific assumption on the form of

heterogeneity (Assumption 2’). On a mathematical level, we would like to understand the

weakest conditions on the transfer function Ψ and the distributions of heterogeneity Px and

Qy under which the fundamental matching equation

Ψ (∇G∗ − α,∇H∗ − γ) = 0

has a solution µ ∈ M. Galichon and Salanié (2014) allow for a general heterogeneity

structure in the TU case, while Galichon and Hsieh (2014) do so in the NTU case.

A natural extension of our model is the model where some agents are forced to match, and

the number of men and women coincide. In this case, the marginal constraint for µ yields

a nonlinear Schrödinger system. The set of solutions (a, b) is a manifold S of dimension 1,

which has the property that there is a total order on {(a,−b) : (a, b) ∈ S} (see Carlier and

Galichon (2014)).

Another natural extension incorporates many-to-one matching problems. In this context,

a firm of type x ∈ X matches with an (ordered) set of workers C = (y1, . . . , yp), so that the
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firm gets UxC and the worker of type yk gets V k
xC , where these quantitites are related by an

extension of our transfer function

ΨxC

(
UxC , V

1
xC , . . . , V

p
xC

)
= 0. (6.1)

In current work, we are investigating an extension to Theorems 1 and 3 to this setting.

More far-reaching extensions to general network flow problems can be formulated. This

is interesting in part because of the link between matching and hedonic models (Ekeland et

al. (2006), Heckman et al. (2010)), which allows to apply some of the ideas in the present

paper to consumer demand problems. We intend to explore these extensions in the future.

Beyond the class of problems investigated in the current paper, the methods developed

here, based on fixed point theorems for isotone functions, may be more broadly applicable.

In particular, they may be a relevant tool for the investigation of matching problems with

peer effects put forward by Mourifié and Siow (2014).

On an empirical level, the present contribution will hopefully help bridge the gap be-

tween the empirical literature on matching with and without transferable utility. While

the approach presented here is purely structural in nature, one could possibly combine the

strategy here with a reduced-form approach based on shocks to matching patterns, like

changes in divorce laws. The theory we present predicts that the effect of changes in the

legal framework of divorce depends on the transferability parameter; hence, one could po-

tentially use divorce law natural experiments, along with the comparative statics derived in

Section 5, to make inference regarding the transferability parameter.
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Appendix A. Comparative Statics with One Man and Two Women

Assume that there is one type of man X = {1} and two types of women Y = {1, 2}.

Then G∗ (µ) = µ11 log µ11
n1

+ µ12 log µ12
n1

+ µ10 log µ10
n1

, thus U11 = log µ11
µ10

and U12 = log µ12
µ10

,

so that

D2G∗ =

µ11+µ10
µ11µ10

1
µ10

1
µ10

µ12+µ10
µ12µ10


, where µ10 = n1 − µ11 − µ12.

Similarly, H∗ (µ) = µ11 log µ11
m1

+ µ01 log µ01
m1

+ µ12 log µ12
m2

+ µ02 log µ02
m2

, thus V11 = log µ11
µ01

and V12 = log µ12
µ02

; thus,

D2H∗ =

µ11+µ01
µ11µ01

0

0 µ12+µ02
µ12µ02

 ,

where µ01 = m1 − µ11 and µ02 = m2 − µ12.

In this case, we have

∂uΨD2G∗+∂vΨD
2H∗ =

∂uΨ11
µ11+µ10
µ11µ10

+ ∂vΨ11
µ11+µ01
µ11µ01

∂uΨ11
1
µ10

∂uΨ12
1
µ10

∂uΨ12
µ12+µ10
µ12µ10

+ ∂vΨ12
µ12+µ02
µ12µ02

 ;

hence, we have

(
∂uΨD2G∗ + ∂vΨD

2H∗
)−1

= d−1

∂uΨ12
µ12+µ10
µ12µ10

+ ∂vΨ12
µ12+µ02
µ12µ02

−∂uΨ11
1
µ10

−∂uΨ12
1
µ10

∂uΨ11
µ11+µ10
µ11µ10

+ ∂vΨ11
µ11+µ01
µ11µ01

 ,

where d ≡ det
(
∂uΨD2G∗ + ∂vΨD

2H∗
)

is given by

d =

(
∂uΨ11

µ11 + µ10

µ11µ10

+ ∂vΨ11
µ11 + µ01

µ11µ01

)(
∂uΨ12

µ12 + µ10

µ12µ10

+ ∂vΨ12
µ12 + µ02

µ12µ02

)
− ∂uΨ12

1

µ10

∂uΨ11
1

µ10

.
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In particular, if the number of women of type 1 (i.e., m1) changes, we have:

δµ =
(
∂uΨD2G∗ + ∂vΨD

2H∗
)−1

 ∂vΨ11

(
µ11+µ01
µ11µ01

µ11δm1

m1

)
0


= d−1

 (∂uΨ12
µ12+µ10
µ12µ10

+ ∂vΨ12
µ12+µ02
µ12µ02

)
∂vΨ11

(
µ11+µ01
µ01

δm1
m1

)
−∂uΨ12∂vΨ11

(
µ11+µ01
µ10µ01

δm1
m1

)
 .

We then compute that

δµ− µδm
m

= d−1

 (∂uΨ12
µ12+µ10
µ12µ10

+ ∂vΨ12
µ12+µ02
µ12µ02

)
∂vΨ11

(
µ11+µ01
µ01

δm1
m1

)
− dµ11

δm1
m1

−∂uΨ12∂vΨ11

(
µ11+µ01
µ10µ01

δm1
m1

)


= −d−1

 (∂uΨ12
µ12+µ10
µ12µ10

+ ∂vΨ12
µ12+µ02
µ12µ02

)
∂uΨ11

(
µ11+µ10
µ10

δm1
m1

)
+ ∂uΨ11∂uΨ12

µ10µ10
µ11

δm1
m1

∂uΨ12∂vΨ11

(
µ11+µ01
µ10µ01

δm1
m1

)
 .

From (5.2), we then find that

δV = D2H∗
(
δµ− µδm

m

)

= −d−1

 µ11+µ01
µ11µ01

((
∂uΨ12

µ12+µ10
µ12µ10

+ ∂vΨ12
µ12+µ02
µ12µ02

)
∂uΨ11

(
µ11+µ10
µ10

δm1
m1

)
+ ∂uΨ11∂uΨ12

µ10µ10
µ11

δm1
m1

)
µ12+µ02
µ12µ02

(
∂uΨ12∂vΨ11

(
µ11+µ01
µ10µ01

δm1
m1

))
 .

(A.1)

From (A.1), we see that the systematic utility of each women decreases following the increase

in m1: δV11 < 0 and δV12 < 0.

Appendix B. Proofs Omitted from the Main Text

Proof of Theorem 1. Parts (i) and (ii) of this theorem follows by noticing that inverting (3.5)

yields (3.7), which, combined with (3.4), yields (3.6). The proof of (iii) follows from the

fact that if ui and vj are given by (3.8), then for all i and j such that xi = x and yj = y,

inequalities ui ≥ Uxy + εiy and vj ≥ Vxy + ηjx hold, which implies

Ψxy

(
ui − αxiyj − εiy, vj − γxiyj − ηjx

)
≥ Ψxy

(
Uxy − αxy, Vxy − γxy

)
= 0

while this inequality holds as an equality if i and j are matched.

The proof of Theorem 2 is based on the following Lemma stating the properties of Mxy.



36 A. GALICHON, S. D. KOMINERS, AND S. WEBER

Lemma 1. Under Assumption 1, and for every pair x ∈ X , y ∈ Y:

(i) For each a, b > 0, equation Ψxy (logM − log a, logM − log b) = 0 has a unique solu-

tion M > 0. This defines implicitly a map Mxy (a, b) ≡M from (0,∞)2 into (0,∞).

(ii) Map Mxy : (a, b) 7→Mxy (a, b) is continuous.

(iii) Map Mxy : (a, b) 7→ Mxy (a, b) is weakly isotone, i.e. if a ≤ a′ and b ≤ b′, then

Mxy (a, b) ≤Mxy (a′, b′).

(iv) For each a > 0, limb→0+ Mxy (a, b) = 0, and for each b > 0, lima→0+ Mxy (a, b) = 0.

Proof of Lemma 1. (i) The three assumptions in 1 imply that for any x ∈ X , y ∈ Y and

reals u and v, the map t→ Ψxy (u+ t, v + t) is continuous, strictly increasing and changes

sign when t ranges between −∞ and +∞. By the Intermediate Value theorem, there exists

a unique value Lxy (a, b) such that Ψxy (Lxy (a, b)− log a, Lxy (a, b)− log b) = 0. Setting

Mxy (a, b) := expLxy (a, b) yields the desired result.

(ii) Let (a, b) ∈ (0,+∞)2, and consider a sequence (an, bn) → (a, b), which can be as-

sumed bounded away from 0. Let L = logMxy (a, b) and Ln = logMxy (an, bn). One has

Ψxy (Ln − log an, Ln − log bn) = 0. By 1 (d), Ln cannot have a diverging subsequence; hence

it is bounded. Take a converging subsequence of Ln and call L′ its limit. By 1 (a) (conti-

nuity of Ψ), one has Ψxy (L′ − log a, L′ − log b) = 0, and by uniqueness, L′ = L. Therefore,

Ln is bounded and all its subsequences converge to L, thus Ln → L, which establishes

continuity of Mxy.

(iii) Assume a ≤ a′ and b ≤ b′. Then by Assumption 1, 1 (b), one has

Ψxy

(
logM − log a′, logM − log b′

)
≤ Ψxy (logM − log a, logM − log b) ,

thus Ψxy (logM (a, b)− log a′, logM (a, b)− log b′) ≤ 0 =, hence M (a, b) ≤M (a′, b′).

(iv) For a > 0, let bn be a decreasing sequence converging to 0, and let Ln = logMxy (a, bn).

Ln is nondecreasing; let L be its limit. Assume L > −∞. Then un = Ln − log a is bound-

ed, while vn = Ln − log bn → +∞. Then Ψxy (un, vn) = 0 comes in contradiction with

Assumption 1, 1 (c). Thus L = −∞, and thus Mxy (a, bn)→ 0+.

We may now turn to the proof of Theorem 2.
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Proof of Theorem 2. The proof of existence is essentially an application of Tarski’s fixed

point theorem; we provide an explicit proof for concreteness. We need to prove that the

construction of µ2t+1
x0 and µ2t+2

0y at each step is well defined. Consider step 2t+ 1. For each

x ∈ X , the equation to solve is∑
y∈Y

Mxy(µx0, µ0y) + µx0 = nx

but the right handside is a continuous and increasing function of µx0, tends to 0 when

µx0 → 0 and tends to +∞ when µx0 → +∞. Hence µ2t+1
x0 is well defined and belongs in

(0,+∞), and let us denote

µ2t+1
x0 = Fx(µ2t

0.)

and clearly, F is anti-isotone, meaning that µ2t
0y ≤ µ̃2t

0y for all y ∈ Y implies Fx(µ̃2t
0.) ≤ Fx(µ2t

0.)

for all x ∈ X .

By the same token, at step 2t+ 2, µ2t+2
0y is well defined in (0,+∞), and let us denote

µ2t+2
0y = Gy(µ

2t+1
.0 )

where, similarly, G is anti-isotone. Thus

µ2t+2
0. = G ◦ F

(
µ2t

0.

)
where G ◦ F is isotone. But µ2

0y ≤ my = µ0
0y implies that µ2t+2

0. ≤ G ◦ F
(
µ2t

0.

)
. Hence(

µ2t+2
0.

)
t∈N is a decreasing sequence, bounded from below by zero. As a result µ2t+2

0. con-

verges. Letting µ̄0. its limit, and letting µ̄.0 = F (µ̄0.), it is not hard to see that
(
µ̄0x, µ̄0y

)
is a solution to (4.7).

Proof of Theorem 3. Introduce map ζ defined by

ζ :
(
µx0, µ0y

)
→
(
ζx =

∑
y∈YMxy

(
µx0, µ0y

)
+ µx0

ζy =
∑

x∈X Mxy

(
µx0, µ0y

)
+ µ0y

)
One has

Dζ
(
µx0, µ0y

)
=

 A B

C D


where:

• A = (∂ζx/∂µx′0)xx′ =
∑

y′∈Y ∂µx0Mxy′
(
µx0, µ0y′

)
+ 1 if x = x′, 0 otherwise.
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• B =
(
∂ζx/∂µ0y

)
xy

= ∂µ0yMxy

(
µx0, µ0y

)
• C =

(
∂ζy/∂µx0

)
yx

= ∂µx0Mxy

(
µx0, µ0y

)
• D =

(
∂ζy/∂µ0y′

)
yy′

=
∑

x′∈X ∂µ0yMx′y

(
µx′0, µ0y

)
+ 1 if y = y′, 0 otherwise.

It is straightforward to show that the matrix Dζ is dominant diagonal. A result from

McKenzie (1960) states that a dominant diagonal matrix with positive diagonal entries is

a P-matrix. Hence Dζ
(
µx0, µ0y

)
is a P-matrix. Applying Theorem 4 in Gale and Nikaido

(1965) it follows that ζ is injective.

Proof of Proposition 1. The result is immediate as the restrictions of the model are exhaust-

ed by the set of equations (4.9).

Proof of Theorem 4. We shall first prove the second statement, and express δU as a function

of δµ and δn. One has Uxy = ∂µxyG
∗, so

δUxy =
∑
x′

∂nx′∂µxyG
∗ (µ) δnx′ +

∑
x′y′

∂µxy∂µx′y′G
∗ (µ) δµx′y′ .

From Expressions (3.1) and (3.2), it follows that G∗ (µ) =
∑

x nxG
∗
x (µ/nx), thus

∂nxG
∗ (µ) = G∗x (µ/nx)−

∑
y

µxy
nx

∂µy|xG
∗
x (µ/nx) = G∗x (µ/nx)−

∑
y

µxy
nx

Uxy

= −Gx (U)

hence

∂nx′∂µxyG
∗ (µ) = −∂µxyGx′ (U) = −

∑
z

(∂Gx′/∂Ux′z)
(
∂Ux′z/∂µxy

)
= −

∑
z

µz|x
∂2G∗

∂µxz∂µxy
if x′ = x

= 0 otherwise

Therefore,

δUxy =
∑
z

∂2G∗ (µ)

∂µxy∂µxz

(
nxδµxz − µxzδnx

nx

)
,

and the formula for δVxy is obtained by similar means. Hence (5.2) follow.
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We can now use (5.2) to obtain a linearization of (3.6). We get

∂uΨxy (δUxy − δαxy) + ∂vΨxy

(
δVxy − δγxy

)
+ δΨxy=0

thus, expressing δU and δV as a function of δµ obtains

0 = ∂uΨxy

(∑
z

∂2G∗

∂µxz∂µxy

(
nxδµxz − µxzδnx

nx

)
− δαxy

)

+∂vΨxy

(∑
t

∂2H∗

∂µty∂µxy

(
myδµty − µtyδmy

my

)
− δγxy

)
+δΨxy

hence

∂uΨxy

(∑
z

∂2G∗

∂µxz∂µxy
δµxz

)
+ ∂vΨxy

(∑
t

∂2H∗

∂µty∂µxy
δµty

)
=

∂uΨxy

(
δαxy +

∑
z

∂2G∗

∂µxz∂µxy

µxzδnx
nx

)
+ ∂vΨxy

(
δγxy +

∑
t

∂2H∗

∂µty∂µxy

µtyδmy

my

)
− δΨxy

which rewrites in a matrix way as

(
∂uΨD2G∗ + ∂vΨD

2H∗
)
δµ = (∂uΨ)

(
δα+

(
D2G∗

)(µδn
n

))
+ ∂vΨ

(
δγ +

(
D2H∗

)(µδm
m

))
−δΨ

that is (5.1).

Proof of Corollary 1. In the ITU-Logit case, one has Uxy = log µxy − log
(
nx −

∑
y′ µxy′

)
,

thus

δUxy =
δµxy
µxy

+
∑
y′

δµxy′

µx0

− δnx
µx0

,

and, similarly,

δVxy =
δµxy
µxy

+
∑
x′

δµx′y
µ0y

− δmy

µ0y
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and the linearization of Equation (3.6) yields

0 = ∂uΨxy

δµxy
µxy

+
∑
y′

δµxy′

µx0

− δnx
µx0

− δαxy


+∂vΨxy

(
δµxy
µxy

+
∑
x′

δµx′y
µ0y

− δmy

µ0y

− δγxy

)
+δΨxy

thus Aδµ = δz using the notation of the statement of the result. Expression (5.3) follows.

Proof of Corollary 5. We have

Gx (U) = −∂nx (G∗ (µ)) ,

so that

∂nx′ux = ∂nx′ (Gx (U)) = −∂nx′∂nx (G∗ (µ))

= −∂nx∂nx′ (G∗ (µ)) = ∂nxGx′ (U) = ∂nxux′ .

A similar formula holds on the other side of the market. However, ∂myux = ∂myGx (U) =

−∂my∂nxG∗ (µ) = −∂nx∂myG∗ (µ) has no reason to coincide with−∂nx∂myH∗ (µ) = ∂nxHy (V ) =

∂nxvy. The reason this is true in the TU case is that then Gx (U) = ∂nx (G (U) +H (V )),

thus

∂myux = ∂myGx (U) = ∂my∂nx (G (U) +H (V ))

= ∂nx∂my (G (U) +H (V )) = ∂nxHy (V ) = ∂nxvy.
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