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Abstract		

In this paper, we apply two types of automatic balance mechanism 
(ABM) to the French first pillar pension system for private sector 
employees (CNAV). One is based on a tax gap ratio (TGR-ABM) 
and the other is the smooth ABM (S-ABM) developed by Gannon, 
Legros and Touzé (2013). Two long-run forecast scenarios 
over the period 2014–2063 are analysed. The first is optimistic 
(“benchmark”) and assumes a 4.5% unemployment rate and a 
1.5% productivity growth rate in the long run. The second is more 
pessimistic (“prudent”), with a 7.5% unemployment rate and a 
1% productivity growth rate in the long run. For the benchmark 
(respectively prudent) scenario, a TGR-ABM requires, now and for 
the next 50 years, a 2.8% (respectively 6.3%) decrease in pensions 
and a 2.9% (respectively 6.7%) increase in the tax rate. An S-ABM 
requires, for the benchmark (respectively prudent) scenario, an 
immediate 1.5% (respectively 3.6%) decrease in pensions and a 1.4% 
(respectively 3.5%) increase in the tax rate. In the long run (50 years), 
an S-ABM requires a 4.5% (respectively 9.1%) reduction in pensions 
and a 4.5% (respectively 9.1%) increase in the tax rate.
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1	INTRODU CTION

The French pension system for private sector employees is based on two pillars. The first pillar is a basic 
social security plan (Caisse Nationale d’Assurance Vieillesse, CNAV). It is a pay-as-you-go (PAYGO) scheme 
that provides pensions on a defined benefit rule. The pension is proportional to the average wage computed 
over 25 years (“reference wage”), based on wages bounded by a maximum, called the “social security 
ceiling” (see appendix). The second pillar includes two additional schemes: ARRCO for all workers and 
AGIRC for executives. Both pay pensions on a defined contribution rule and are also pay-as-you-go 
pension schemes. These two pillars are operated under different rules. The CNAV is managed by the social 
security administration, whereas the second pillar schemes are managed by social partners, but some 
parameter changes of the complementary pension schemes (for instance, the pensionable age) are directly 
governed by the social security system.

Significant deficits in these plans stem from the current economic crisis (lower growth combined 
with higher unemployment). However, these deficits arose well before expected as a result of the ageing of 
population.

In France, pension reform is subject to a harsh political debate (Blanchet & Legros 2002), which often 
leads governments to adopt reforms only when they no longer have a choice. These ad hoc reforms (Turner 
2009) induce inconsistency in the choice of pension funding. This blurs the planning of their future by 
different generations of workers because they do not know how their contribution rates and pension 
amounts will be changed. To tackle this problem, automatic adjustment mechanisms (AAMs) could be 
implemented, relying on rules (Turner 2009) that define how different pension calculation parameters 
must be adapted according to changes in observed variables (for example, life expectancy, consumer price 
index). When these adjustments fail to ensure financial sustainability, it may be wise to follow countries 
such as Sweden (Settergren 2001; Capretta 2006; Andrews 2008; Vidal-Melia et al 2009; Scherman 2011; 
Gannon et al. 2013; Sakamoto 2013) and to use an automatic balance mechanism (ABM).

This paper proposes to assess how the use of ABMs could guarantee the solvency of the CNAV.
Section 2 outlines CNAV’s financial forecasts up to 50 years. Two scenarios will be analysed, one, 

optimistic; the other more conservative one. These will mainly be used in order to generate the data 
required for the second part of the paper.

Section 3 is dedicated to the use of ABMs. First, we present a way to address the issue of long-
term credit through the concept of unfunded obligations, such as defined by the US Social Security 
administration, and the concept of tax gap ratio. Next, two types of ABM are used. One is based on a tax 
gap ratio (TGR-ABM), the other is an application of the smooth ABM (S-ABM) developed by Gannon 
et al (2013). Compared with using a tax gap ratio, using an S-ABM allows for a gradual adjustment in the 
contribution rates and the pension levels. However, the drawback of this implementation is that it distorts 
the principle of generational equality. In effect, the S-ABM relies on a parameter of public preference for 
present. That can be viewed as a kind of procrastination.

2	T wo scenarios for the future of the first pillar pensions 
scheme of private sector employees (CNAV)

Structurally, two main macroeconomic variables have significant impact on the solvency of CNAV 
pension scheme: the unemployment rate and the GDP growth rate. We briefly describe the mechanisms at 
stake and the forecast built on two scenarios.

Unemployment rate (Figure 1a) is usually thought to play a crucial role in financial balancing through 
the increase in contributions.

This is true in the short run, because receipts increase when the unemployment rate decreases but, in 
the long run, the net effect may be ambiguous. First, according to the Phillips curve (Phillips 1958), which 
historically shows an inverse relationship between unemployment and wage increase rates, a decrease in 
the unemployment rate implies an increase in wages. This, in turn, increases the short-run effect on overall 
contributions. Second, in the long run, pension liability depends upon careers and, therefore, lifelong 
wages. Then, pension liability increases as the unemployment rate decreases.

As far as France is concerned, the 2003 reform (see appendix for the details) puts an end to the 
independence of unemployment insurance and the pension system by stipulating that the surplus of 
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unemployment insurance (UI, hereafter) adds to the financing of the pension scheme, if required. This 
introduces a clear and positive relationship between the unemployment rate and the pension scheme balance.

When the unemployment rate falls below a 7% threshold (Hamayon & Legros 2007), the UI generates 
a surplus. It follows that a wise forecaster should be cautious in his assumption of long-run unemployment 
rate, to avoid any overestimate of the pension scheme resource resulting from a possible UI surplus.

The economic growth rate (Figure 1b) is also a crucial variable. In the case of positive economic growth 
rate, expenditures grow less than receipts. This is due to the pension rules (see appendix): both the wages 
used for the “reference wage” and pensions are indexed on inflation and not on the economic growth rate. 
This indexing rule helps improve the balance of the pension scheme as soon as the nominal economic 
growth exceeds the inflation rate. The part played by the productivity growth rate (Figure 1b) to balance the 
pension scheme would be inoperative if the pensions and reference wages were indexed on the nominal wages 
(supposed to be indexed on the economic growth rate). However, with such a rule, retirees’ purchasing power 
would be maintained. In other words, when benefits are adjusted according to changes in the consumer price 
index, retirees pay an implicit tax, thus improving the pension scheme’s financial balance.

This paper suggests two scenarios, simulations of which are based on a demo-economic model with a 
detailed description of the French pension scheme (Hamayon & Legros 2001).

The first scenario (the “benchmark”) is based upon the double assumption of a low unemployment rate 
(4.5% after 2030) and a productivity rate of 1.5% (Figure 1). This scenario is similar to the government’s, 
which is worked out by the Conseil d’orientation des retraites (COR, Pension Orientation Council, which 
reports to the Prime Minister).

The second scenario tests an alternative and more conservative approach, described hereafter as 
“prudent” (Figure 1). It assumes that the unemployment rate will progressively reach 7.5% in 2030 and 
that the productivity growth rate will remain at 1% (as forecast by Artus & Caffet 2013). These different 
assumptions appear in Figure 1 showing that the “pessimistic” alternative scenario is directly determined 
by trend observation.

Figure 1: Two 
macroeconomic 
scenarios 
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The results (Figure 2) are twofold and, of course, highly contrasted. First, the impact of the unemployment 
rate is confirmed. In the benchmark scenario (with a low unemployment rate), the sharp decrease – less 
than 7% – in the unemployment rate after 2020 leads to a large transfer from the unemployment insurance 
scheme towards the pensions: this transfer reaches 2.2 points of UI contribution, or 18 billion constant euros 
(B€).1 The overall deficit of the pension scheme is nearly nil after 2020.

Second, in the case of a lower economic growth (and higher unemployment rate), the situation is far 
more pessimistic. The higher unemployment rate prohibits any transfer from the UI towards the pension 
scheme. The deficit of the basic pension scheme reaches 14.4 B€ in 2050.

Figure 2 summarises the results. In the benchmark scenario, the decrease in the unemployment rate 
allows a significant transfer from the UI towards the pension scheme (11.5 B€ in 2030 and 18.2 B€ in 2050), 
which pushes up the balance from the continuous bold line to the dotted one. In the “prudent” scenario, 
due to a higher unemployment rate, the transfers between the UI scheme towards the first pillar pension 
scheme are nil and the balance remains highly negative throughout the considered period. 

Reading from these forecasts, our simulations provide both receipts and expenditures of the pension 
regime, to be used in the next section.

3	IMP LEMENTING AUTOMATIC BALANCE MECHANISMS

We define hereafter two central concepts to evaluate the long-run insolvency of the pension system: the 
“unfunded obligations” and the tax gap ratio. These measures are then used to build two examples of ABMs.

3.1	 Evaluating long-run solvency
3.1.1	 Notations
In this paper, for sake of simplicity, we present a non-stochastic approach to ABMs. All our computations 
are based upon given forecast values of receipts and expenditures. That means that the estimated 
adjustment variables must be considered as forecast values for the current period. That also means that 
these variables will have to be revised as the forecasts will adjust with time.

At the current period (
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introduce a tax gap elasticity parameter α  which weights the degree of adjustment by 
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In France, the reserve funds can be considered as nil (see appendix), so these formulae 

can be directly used to estimate the values of these TGR-ABM.

Figures 4 and 5 respectively depict the sensivitity of the adjustments to time horizon for 

different values of α  in the benchmark scenario and the prudent scenario. In the two 

scenarios (benchmark without UI transfers and prudent), the adjustments by receipts A  

(resprespectively by pensions, B ) describe a decreasing (respectively increasing) relation with 

respect to time horizon for 10.<T  The relation becomes increasing (resp.respectively 

decreasing) for a longer horizon. These results illustrate the fact that past reforms cause 

receipts to grow (on average) faster than expenditures during the first decade.

Figure 4: TGR-ABM with respect to the forecast horizon (in years): benchmark scenario 
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3.2.3 	S-ABM: smooth automatic balance mechanism
Using an ABM derived from a tax gap ratio can be politically and socially difficult to apply, because it 
induces an immediate and permanent adjustment. To bypass this obstacle, a solution may require devising 
a smooth, gradual adjustment in contribution rates and pension levels. To this effect, Gannon et al. (2013) 
build a model based on dynamic programming called “smooth automatic balance mechanism” (S-ABM). 
The “socio-political” sensitivity to changes in legislation is apprehended by a quadratic loss function.  
The distortion cost of the receipts (resp. of the expenditures) is given a weighting2 

this effect, Gannon et al. (2013) build a model based on dynamic programming called “smooth 

automatic balance mechanism” (S-ABM). The “socio-political” sensitivity to changes in 

legislation is apprehended by a quadratic loss function. The distortion cost of the receipts (resp. 

of the expenditures) is given a weighting2 α  (resp. )1 α− . At period ,t  the loss function ( tLF

) can be written as follows: 
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For a forecast horizon ,T  the S-ABM aims to match the sum of discounted receipts with 

the sum of discounted expenditures: 

 ( ) .=
1=1=

0
1=1= i

t
i

tt
T

ti
t
i

tt
T

t R
EXPBF

R
RECAI

Π
⋅

+
Π
⋅ ∑∑  (9)

The authors assume that the social planner has a time preference. By denoting δ  the 

public preference for present rate, the dynamic program to optimise is: 
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 The first order conditions lead to the initial optimal values 1A  and 1B , which are 

functions of the unfunded obligations: 
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 The dynamics of the adjustment factors can be inferred for 2≥t : 

2 For the sake of simplicity, we use the same notation as that used for the TGR adjustments because in the presentation of simulation results, 
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) can be written as follows: 

 ( ) ( ) ( ) .111= 22 −⋅−+−⋅ ttt BALF αα  (8)

For a forecast horizon ,T  the S-ABM aims to match the sum of discounted receipts with 
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The authors assume that the social planner has a time preference. By denoting δ  the 

public preference for present rate, the dynamic program to optimise is: 
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 The first order conditions lead to the initial optimal values 1A  and 1B , which are 

functions of the unfunded obligations: 
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 The dynamics of the adjustment factors can be inferred for 2≥t : 

2 For the sake of simplicity, we use the same notation as that used for the TGR adjustments because in the presentation of simulation results, 
the parameter values are the same for the two ABMs: TGR and S-ABM.
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 The dynamics of the adjustment factors can be inferred for 2≥t : 

2 For the sake of simplicity, we use the same notation as that used for the TGR adjustments because in the presentation of simulation results, 
the parameter values are the same for the two ABMs: TGR and S-ABM.
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We consider two successive scenarios: the benchmark scenario without UI transfer 

(Figure 6) and the prudent scenario (Figure 7). Figures 6a and 7a provide the simulations for the 

reference values of parameters: 50=0.5,= Tα  and 2.5%=δ . Assuming the benchmark 

(resp. respectively prudent) scenario, Figure 6a (resp. respectively Figure 7a) shows that 

immediate adjustments imply both a 1.5% (respectively 3.6%) reduction in pensions and a 1.4% 

(resp. respectively 3.5%) increase of tax rate. In the long run, these adjustments reach 4.8% 

(resp. respectively 9.1%) and 4.5% (resp.respectively 9.1%). In comparison, a TGR-ABM would 

induce a flat adjustment with a 2.8% (6.3%) pension reduction and 2.9% (6.7%) tax rate 

increase. This is dramatically illustrated by the dynamics of the reserve fund. For the benchmark 

scenario, it increases from zero (right vertical axis) to reach in 2026 a maximum of about 18 B€. 

Over this period, the pension scheme yields a surplus. Then it decreases – deficit period – to 

reach in 2048 a minimum of –60 B€. It finally grows again – second period of surplus – and 

cancels out in 2063. A similar dynamic over a larger range prevails in the “prudent” scenario: in 

2030 it reaches a maximum of about 93 B€ and a minimum of about –27 B€ in 2057. This 

difference is due to the fact that, in order to comply with a less optimistic forecast, [contributors 

must]  “save” larger amounts of money.

We evaluate three parametric variants:

• lower public preference for the present rate, inducing less procrastination (Figure 6b 

and Figure 7b) with 0%=δ

• lower distortion cost through receipts with 0.25=α  (Figures 6c and 7c) 

• shorter forecast horizon with 25=T  (Figures 6d and 7d).

A lower public preference for the present rate ( 0%=δ ) increases the cost of 

procrastination. It results in stronger adjustments in the short run and weaker adjustments in 
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(Figure 6) and the prudent scenario (Figure 7). Figures 6a and 7a provide the simulations for the 

reference values of parameters: 50=0.5,= Tα  and 2.5%=δ . Assuming the benchmark 

(resp. respectively prudent) scenario, Figure 6a (resp. respectively Figure 7a) shows that 

immediate adjustments imply both a 1.5% (respectively 3.6%) reduction in pensions and a 1.4% 
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scenario, it increases from zero (right vertical axis) to reach in 2026 a maximum of about 18 B€. 
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cancels out in 2063. A similar dynamic over a larger range prevails in the “prudent” scenario: in 

2030 it reaches a maximum of about 93 B€ and a minimum of about –27 B€ in 2057. This 

difference is due to the fact that, in order to comply with a less optimistic forecast, [contributors 

must]  “save” larger amounts of money.

We evaluate three parametric variants:

• lower public preference for the present rate, inducing less procrastination (Figure 6b 

and Figure 7b) with 0%=δ

• lower distortion cost through receipts with 0.25=α  (Figures 6c and 7c) 

• shorter forecast horizon with 25=T  (Figures 6d and 7d).

A lower public preference for the present rate ( 0%=δ ) increases the cost of 
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We consider two successive scenarios: the benchmark scenario without UI transfer 

(Figure 6) and the prudent scenario (Figure 7). Figures 6a and 7a provide the simulations for the 

reference values of parameters: 50=0.5,= Tα  and 2.5%=δ . Assuming the benchmark 

(resp. respectively prudent) scenario, Figure 6a (resp. respectively Figure 7a) shows that 

immediate adjustments imply both a 1.5% (respectively 3.6%) reduction in pensions and a 1.4% 

(resp. respectively 3.5%) increase of tax rate. In the long run, these adjustments reach 4.8% 

(resp. respectively 9.1%) and 4.5% (resp.respectively 9.1%). In comparison, a TGR-ABM would 

induce a flat adjustment with a 2.8% (6.3%) pension reduction and 2.9% (6.7%) tax rate 

increase. This is dramatically illustrated by the dynamics of the reserve fund. For the benchmark 

scenario, it increases from zero (right vertical axis) to reach in 2026 a maximum of about 18 B€. 

Over this period, the pension scheme yields a surplus. Then it decreases – deficit period – to 

reach in 2048 a minimum of –60 B€. It finally grows again – second period of surplus – and 

cancels out in 2063. A similar dynamic over a larger range prevails in the “prudent” scenario: in 

2030 it reaches a maximum of about 93 B€ and a minimum of about –27 B€ in 2057. This 

difference is due to the fact that, in order to comply with a less optimistic forecast, [contributors 

must]  “save” larger amounts of money.

We evaluate three parametric variants:

• lower public preference for the present rate, inducing less procrastination (Figure 6b 

and Figure 7b) with 0%=δ

• lower distortion cost through receipts with 0.25=α  (Figures 6c and 7c) 

• shorter forecast horizon with 25=T  (Figures 6d and 7d).

A lower public preference for the present rate ( 0%=δ ) increases the cost of 
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We consider two successive scenarios: the benchmark scenario without UI transfer 

(Figure 6) and the prudent scenario (Figure 7). Figures 6a and 7a provide the simulations for the 

reference values of parameters: 50=0.5,= Tα  and 2.5%=δ . Assuming the benchmark 

(resp. respectively prudent) scenario, Figure 6a (resp. respectively Figure 7a) shows that 

immediate adjustments imply both a 1.5% (respectively 3.6%) reduction in pensions and a 1.4% 

(resp. respectively 3.5%) increase of tax rate. In the long run, these adjustments reach 4.8% 

(resp. respectively 9.1%) and 4.5% (resp.respectively 9.1%). In comparison, a TGR-ABM would 

induce a flat adjustment with a 2.8% (6.3%) pension reduction and 2.9% (6.7%) tax rate 

increase. This is dramatically illustrated by the dynamics of the reserve fund. For the benchmark 

scenario, it increases from zero (right vertical axis) to reach in 2026 a maximum of about 18 B€. 

Over this period, the pension scheme yields a surplus. Then it decreases – deficit period – to 

reach in 2048 a minimum of –60 B€. It finally grows again – second period of surplus – and 

cancels out in 2063. A similar dynamic over a larger range prevails in the “prudent” scenario: in 

2030 it reaches a maximum of about 93 B€ and a minimum of about –27 B€ in 2057. This 

difference is due to the fact that, in order to comply with a less optimistic forecast, [contributors 

must]  “save” larger amounts of money.

We evaluate three parametric variants:

• lower public preference for the present rate, inducing less procrastination (Figure 6b 

and Figure 7b) with 0%=δ

• lower distortion cost through receipts with 0.25=α  (Figures 6c and 7c) 

• shorter forecast horizon with 25=T  (Figures 6d and 7d).

A lower public preference for the present rate ( 0%=δ ) increases the cost of 

procrastination. It results in stronger adjustments in the short run and weaker adjustments in 
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We consider two successive scenarios: the benchmark scenario without UI transfer 

(Figure 6) and the prudent scenario (Figure 7). Figures 6a and 7a provide the simulations for the 

reference values of parameters: 50=0.5,= Tα  and 2.5%=δ . Assuming the benchmark 

(resp. respectively prudent) scenario, Figure 6a (resp. respectively Figure 7a) shows that 

immediate adjustments imply both a 1.5% (respectively 3.6%) reduction in pensions and a 1.4% 

(resp. respectively 3.5%) increase of tax rate. In the long run, these adjustments reach 4.8% 

(resp. respectively 9.1%) and 4.5% (resp.respectively 9.1%). In comparison, a TGR-ABM would 

induce a flat adjustment with a 2.8% (6.3%) pension reduction and 2.9% (6.7%) tax rate 

increase. This is dramatically illustrated by the dynamics of the reserve fund. For the benchmark 

scenario, it increases from zero (right vertical axis) to reach in 2026 a maximum of about 18 B€. 

Over this period, the pension scheme yields a surplus. Then it decreases – deficit period – to 

reach in 2048 a minimum of –60 B€. It finally grows again – second period of surplus – and 

cancels out in 2063. A similar dynamic over a larger range prevails in the “prudent” scenario: in 

2030 it reaches a maximum of about 93 B€ and a minimum of about –27 B€ in 2057. This 

difference is due to the fact that, in order to comply with a less optimistic forecast, [contributors 

must]  “save” larger amounts of money.

We evaluate three parametric variants:

• lower public preference for the present rate, inducing less procrastination (Figure 6b 

and Figure 7b) with 0%=δ

• lower distortion cost through receipts with 0.25=α  (Figures 6c and 7c) 

• shorter forecast horizon with 25=T  (Figures 6d and 7d).

A lower public preference for the present rate ( 0%=δ ) increases the cost of 

procrastination. It results in stronger adjustments in the short run and weaker adjustments in 
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this effect, Gannon et al. (2013) build a model based on dynamic programming called “smooth 

automatic balance mechanism” (S-ABM). The “socio-political” sensitivity to changes in 

legislation is apprehended by a quadratic loss function. The distortion cost of the receipts (resp. 

of the expenditures) is given a weighting2 α  (resp. )1 α− . At period ,t  the loss function ( tLF

) can be written as follows: 
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 The dynamics of the adjustment factors can be inferred for 2≥t : 

2 For the sake of simplicity, we use the same notation as that used for the TGR adjustments because in the presentation of simulation results, 
the parameter values are the same for the two ABMs: TGR and S-ABM.
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The authors assume that the social planner has a time preference. By denoting δ  the 
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 The dynamics of the adjustment factors can be inferred for 2≥t : 

2 For the sake of simplicity, we use the same notation as that used for the TGR adjustments because in the presentation of simulation results, 
the parameter values are the same for the two ABMs: TGR and S-ABM.
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We consider two successive scenarios: the benchmark scenario without UI transfer 

(Figure 6) and the prudent scenario (Figure 7). Figures 6a and 7a provide the simulations for the 

reference values of parameters: 50=0.5,= Tα  and 2.5%=δ . Assuming the benchmark 

(resp. respectively prudent) scenario, Figure 6a (resp. respectively Figure 7a) shows that 

immediate adjustments imply both a 1.5% (respectively 3.6%) reduction in pensions and a 1.4% 

(resp. respectively 3.5%) increase of tax rate. In the long run, these adjustments reach 4.8% 

(resp. respectively 9.1%) and 4.5% (resp.respectively 9.1%). In comparison, a TGR-ABM would 

induce a flat adjustment with a 2.8% (6.3%) pension reduction and 2.9% (6.7%) tax rate 

increase. This is dramatically illustrated by the dynamics of the reserve fund. For the benchmark 

scenario, it increases from zero (right vertical axis) to reach in 2026 a maximum of about 18 B€. 

Over this period, the pension scheme yields a surplus. Then it decreases – deficit period – to 

reach in 2048 a minimum of –60 B€. It finally grows again – second period of surplus – and 

cancels out in 2063. A similar dynamic over a larger range prevails in the “prudent” scenario: in 

2030 it reaches a maximum of about 93 B€ and a minimum of about –27 B€ in 2057. This 

difference is due to the fact that, in order to comply with a less optimistic forecast, [contributors 

must]  “save” larger amounts of money.

We evaluate three parametric variants:

• lower public preference for the present rate, inducing less procrastination (Figure 6b 

and Figure 7b) with 0%=δ

• lower distortion cost through receipts with 0.25=α  (Figures 6c and 7c) 

• shorter forecast horizon with 25=T  (Figures 6d and 7d).

A lower public preference for the present rate ( 0%=δ ) increases the cost of 

procrastination. It results in stronger adjustments in the short run and weaker adjustments in 

) increases the cost of procrastination. It results 
in stronger adjustments in the short run and weaker adjustments in the long run. Figures 6b and 7b show 
a flatter profile of the the long run. Figures 6b and 7b show a flatter profile of the tA  and tB . In Figure 6b, the path 

of adjustments is very similar to those obtained under TGR-ABM. Flat profiles are obtained 

when growth rates of expenditures and receipts are very close to the interest rate , net of the 

public preference for the present rate (compare with the dynamics of adjustment factors). By 

contrast, Figure 7b shows a more pronounced decrease in factors. This property results from 

the fact that the long-run growth rates of expenditures and receipts are lower than the interest 

rate, net of the public preference for the present rate. Larger immediate adjusments result in 

more savings being accumulated over a longer period.

Figures 6c and 7c illustrate the fact that a lower distortion cost through receipts (

0.25)=α (α=0.25) implies a higher adjustment cost through expenditures. Not surprisingly, the 

adjustment factor of expenditures is reduced, while the adjustment factor of receipts is higher. 

The profile of the reserve fund is little modified because there is mainly an intratemporal 

balancing effort from expenditures over receipts.

A shorter forecast horizon ( 25=T ) means lower unfunded obligations. It results in lower levels 

of adjustment factors (Figures 6d and 7d). It follows that this shrinks the range of the reserve 

fund.  
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) means lower unfunded obligations. It results in lower levels of 
adjustment factors (Figures 6d and 7d). It follows that this shrinks the range of the reserve fund. 

4	 CONCLUSION

In this paper, we have studied how using ABMs could ensure financial stability of the French first pillar 
pension system for private sector employees (CNAV). Two scenarios are considered, respectively optimistic 
(benchmark) and pessimistic (or prudent). The use of ABMs can be particularly useful to set the pension 
scheme on “auto-pilot” (Bosworth & Weaver 2011) so as to avoid systematic and wasteful political debates 
about adopting reforms to restore solvency.

Unsurprisingly, our results stress that the governance of the CNAV may require significant reductions 
in pensions and a higher contribution rate.

In the special case of a flat adjustment obtained with TGR-ABM, this requires, for the benchmark 
(respectively prudent) scenario, a significant 2.8% (respectively 6.3%) reduction in pensions and a 2.9% 
(respectively 6.7%) rise in the contribution rate.

If the ruling authority (the government) seeks slower and smoother changes, it may set adjustment 
rules based upon a smooth ABM (S-ABM). For the benchmark (respectively prudent) scenario, such rules 
imply an immediate 1.5% (respectively 3.6%) reduction in pensions and a 1.4% (respectively 3.5%) increase 
in the tax rate. In the long run (50 years), such rules imply a 4.8% (respectively 9.1%) reduction in pensions 
and a 4.5% (respectively 9.1%) increase in the tax rate.

Obviously, the scope of our simulations is limited, since they are based only on two alternative forecasts 
(pessimistic versus optimistic). A natural extension of our analysis could consist of stochastic simulations, 
which would capture a larger distribution of possible adjustments.

Appendix: An overview of the Caisse Nationale d’Assurance Vieillesse 
(CNAV)

The pay-as-you-go public pension regimes represent 14.5% of the French GDP and around 97.8% of 
retirees’ revenues. The average direct pension (that is, excluding widows’ and orphans’ pensions) is close to 
1250 euros per month, 1600 for males and 900 for females.

In this paper, we focus on private sector (around 70% of the workers) pensions and on the basic pension 
scheme, CNAV, which provides an average pension of 641 euros per month (in 2012).

The Caisse Nationale d’Assurance Vieillesse (CNAV) was set up in 1945. In 1999, there was an attempt to 
create a reserve fund in addition to the pay-as-you-go component. It was a failure, because the accumulated 
funds are not very high and hardly compensate for past deficits. So, CNAV can be considered as a fully 
pay-as-you-go scheme.

CNAV individual pensions are computed as follows (Gannon & Touzé 2013): 
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 where:

• cnavP  is the yearly amount of CNAV pension (paid monthly);

• w  is the so-called “reference wage”:, it is a yearly wage computed as the 25 best wages 

(under the “social security ceiling”) brought up to date according to the price index;3

• λ  is called the pension ratio, less than a maximum of 50%;4

• T  is the number of years contributed by a given individual;

3 It is bound to the “social security ceiling” so that the pension is, in fact, proportional to the fraction of the wage lower than or equal to the 
social security ceiling. In 2014, the “social security ceiling” is valued at 37 548 euros per year or 3129 euros per month.
4 This means that, if an individual fulfils all the conditions laid down by the scheme’s rules, then his maximum pension provided by CNAV is 50% 
of the social security ceiling.
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the basic pension scheme, CNAV, which provides an average pension of 641 euros per month (in 

2012).

The Caisse Nationale d’Assurance Vieillesse (CNAV) was set up in 1945. In 1999, there 

was an attempt to create a reserve fund in addition to the pay-as-you-go component. It was a 

failure, because the accumulated funds are not very high and hardly compensate for past 

deficits. So, CNAV can be considered as a fully pay-as-you-go scheme.

CNAV individual pensions are computed as follows (Gannon & Touzé 2013): 
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 where:

• cnavP  is the yearly amount of CNAV pension (paid monthly);

• w  is the so-called “reference wage”:, it is a yearly wage computed as the 25 best wages 

(under the “social security ceiling”) brought up to date according to the price index;3

• λ  is called the pension ratio, less than a maximum of 50%;4

• T  is the number of years contributed by a given individual;

3 It is bound to the “social security ceiling” so that the pension is, in fact, proportional to the fraction of the wage lower than or equal to the 
social security ceiling. In 2014, the “social security ceiling” is valued at 37 548 euros per year or 3129 euros per month.
4 This means that, if an individual fulfils all the conditions laid down by the scheme’s rules, then his maximum pension provided by CNAV is 50% 
of the social security ceiling.
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 is the number of years contributed by a given individual;
•	• 'T  is the minimum number of years contributed which is required to draw a full rate 

pension (Table A1);

• FRA  is the full retirement age (Table A1), that is, the age when people must retire if 

they want to draw a full-rate pension ( 0.5=λ ) in case they have not reached the 

minimum contributive period;

• ERA  is the individual’s effective retirement age. 

The combination between T  and 'T  applies twice: first, to compute the pension ratio 

λ , (equation A2) if the individual has not contributed during the period set by the scheme’s 

rules, the pension ratio is lowered whenever the individual has not waited until he has reached 

the age “ FRA “. Second, to compute the pension per se (equation A1) because the pension is 

paid pro rata temporis. Note that individuals cannot retire before a minimum age (Table A1) 

even if they have reached 'T , unless they are very early workers (that is, those who have 

worked before 20 and have completed 'T  years of employment, and therefore contributions).

Four cases can be described:

o if the individual retires after the minimum age (see Table A1) while having 

reached the minimum contributive period (see also Table 2), then 50%=λ  and 

100%='/TT , meaning that cnavP  is 50% of the reference wage;

o if the individual retires at the automatic full rate age ( FRA ) and has reached the 

minimum contributive period, then 50%=λ  and 100%='/TT , meaning that 

cnavP  is 50% of the reference wage;

o if the individual retires at the automatic full rate age ( FRA ) and has not reached 

the minimum contributive period, then 50%=λ  and 100%<'/TT , meaning 

that cnavP  is paid pro rata temporis and less than 50% of the reference wage;

o if the individual retires when he or she has not reached these periods/ages, then, 

a 5% yearly discount is applied to λ  and the pro rata temporis is applied to the 

downgraded value of λ  so that the pension is well below 50% of the average 

wage.  
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 so 
that the pension is well below 50% of the average wage. 

In 2003, a premium was introduced in order to provide some incentives for people to work later. This 
premium amounts to 3% of the pension the first year, 4% over the following three years and 5% in the fifth 
year if the individual is aged more than 65.

The last 2012 forecasts (Conseil d’orientation des retraites, 2012) have evidenced the emergency of core 
adjustments to guarantee sustainability of the French pension system. 

Under this constraint, the Ayrault government has taken measures in 2013. A 0.6 point increase in  
the contribution rate, paid equally by workers and employers, is scheduled between 2014 and 2017, in  
order to restore the CNAV financial balance. Hence, for each of them, the contribution rate will increase  
by 0.3 points. If there are no other adjustments, the wage earners’ contribution rate will reach 6.40% of  
the wage under the ceiling, plus 0.40% of their total wage, and the employers’ contribution will be 8.45%  
of the bounded wage plus 1.90% of the total wage.

This last 2013 reform also includes a “hardship account”, the purpose of which is to compensate for 
the tediousness of certain jobs through an early retirement or a training period. Please note that our 
simulations do not take account of the costs induced by this account.

3	I t is bound to the “social security ceiling” so that the pension is, in fact, proportional to the fraction of the wage lower than or equal to the 
social security ceiling. In 2014, the “social security ceiling” is valued at 37 548 euros per year or 3129 euros per month.
4	T his means that, if an individual fulfils all the conditions laid down by the scheme’s rules, then his maximum pension provided by CNAV is 
50% of the social security ceiling.
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Table A1: Minimum ages and contributive periods for PAYGO basic pension scheme after the 2013 reform

Birth year T’ : minimum contributive
period (years) 

Application year Minimum age FRA (full retirement
age) 

before 1944 37.5 Before 2004 60 65

1944 38.0 2004 60 65

1945 38.5 2005 60 65

1946 39.0 2006 60 65

1947 39.5 2007 60 65

1948 40.0 2008 60 65

1949 40 + 1 q.* 2009 60 65

1950 40 + 2 q. 2010 60 65

1951  40 + 3 q. 2011 60 65

1951 40 + 3 q. 2011 60 + 4 m.† 65 + 4 m.

1952 41.0 2012 60 + 9 m. 65 + 9 m.

1953 41 + 1 q. 2014 61 + 2 m. 66 + 2 m.

1954 41 + 1 q. 2015  61 + 7 m. 66 + 7 m.

1955 41 + 1 q. 2017 62 67

1956 41 + 1 q. 2018 62 67

1957 41 + 1 q. 2019 62 67

1958 41 + 3 q. 2020 62 67

1961 42.0 2023 62 67

1964 42 + 1 q. 2026 62 67

1967 42.5 2029 62 67

1970 42 + 3 q. 2032 62 67

1973 43.0 2035 62 67

* 	 q. = quarter 
† 	 m. = month
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