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Abstract

We characterize solutions for two-sided matching, both in the transferable-
and in the nontransferable-utility frameworks, using a cardinal formulation.
Our approach makes the comparison of the matching models with and with-
out transfers particularly transparent. We introduce the concept of a no-trade
matching to study the role of transfers in matching. A no-trade matching is
one in which the availability of transfers do not affect the outcome.



1 Introduction

We explore the role of transfers and cardinal utility in matching markets.
Economists regularly use one- and two-sided models, with and without trans-
fers. For example auctions allow for monetary transfers among the agents,
while models of marriage, organ donation and “housing” exchanges do not.
There are two-sided matching models of the labor market without transfers,
such as the market for medical interns in the US; and traditional models of
the labor market where salaries, and therefore transfers, are allowed. We seek
to understand how and why transfers matter in markets for discrete goods.

The question is interesting to us as theorists, but it also matters greatly
for one of the most important applications of matching markets, namely
the medical interns market. In the market for medical interns in the US
(see Roth (1984a), Roth and Sotomayor (1990), and Roth (2002)), hospitals
match with applicants using a centralized clearinghouse that implements a
stable matching. We always think of this market as one without transfers,
because salaries are fixed first, before the matching is established. So at the
stage in which the parties “bargain” over who is to be matched to whom,
salaries are already fixed, and thus there are no transfers.

There is a priori no reason for things to be this way. Hospitals and interns
could instead bargain over salaries and employment at the same time. This
is arguably the normal state of affairs in most other labor markets; and it
has been specifically advocated for the medical interns market in the US
(see Crawford (2008)). It is therefore important to understand the impact of
disallowing transfers in a matching market. Our paper is a first step towards
understanding this problem.

In a two-sided matching market—for our purposes, in the Gale-Shapley
marriage market—this impact is important. We consider two canonical mod-
els: the marriage market without transfers (the NTU model) and the mar-
riage market with transfers (the TU model, also called the assignment game).

There are Pareto efficient, and even stable, matchings in the NTU model
that a utilitarian social planner would never choose, regardless of how she
weights agents’ utilities. A utilitarian social planner has implicitly access to
transfers. The gap between (utilitarian) efficiency with transfers and without
them can be arbitrarily large. From the viewpoint of the recent literature
in computer science on the “price of anarchy” (see e.g. Roughgarden (2005)),
the “price of stability” can be arbitrarily bad, and grow exponentially with
the size of the market (see our Proposition 16).
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We present results characterizing Pareto efficiency and the role of transfers
in marriage models. Ex-ante Pareto optimality in the model with transfers is
characterized by the maximization of the weighted utilitarian sum of utilities,
while Pareto optimality when there are no transfers is equivalent to a different
maximization problem, one where the weighted sum of“adjusted”utilities are
employed. Each of these problems, in turn, have a formulation as a system of
linear inequalities. The results follow (perhaps unexpectedly) from Afriat’s
theorem in the theory of revealed preference.

In order to explore the role of transfers, we study a special kind of stable
matching: A no-trade matching in a marriage market is a matching that
is not affected by the presence of transfers. Agents are happy remaining
matched as specified by the matching, even if transfers are available, and
even though they do not make use of transfers. Transfers are available, but
they are not needed to support the stable matching. There is thus a clear
sense in which transfers play no role in a no-trade matching.

The notion of no-trade matching is useful for the following reason. We
can think of transfers as making some agents better off at the expense of
others. It is then possible to modify a market by choosing a cardinal util-
ity representation of agents preferences with the property that the matching
remains stable with and without transfers (Theorem 12). Under certain cir-
cumstances, namely when the stable matchings are “isolated,” we can choose
a cardinal representation that will work in this way for every stable matching.
So under such a cardinal representation of preferences, any stable matching
remains stable regardless of the presence of transfers. Finally (Example 14),
we cannot replicate the role of transfers by re-weighting agents’ utilities. In
general, to instate a no-trade matching, we need the full freedom of choosing
alternative cardinal representations.

It is easy to generate examples of stable matchings that cannot be sus-
tained when transfers are allowed, and of stable matchings that can be sus-
tained with transfers (in the sense of being utilitarian-efficient), but where
transfers are actually used to sustain stability. We present conditions un-
der which a market has a cardinal utility representation for which stable
matchings are no trade matchings.

In sum, the notion of a no-trade matching captures both TU and NTU
stability: a no-trade stable matching is also a TU and NTU stable matching.
TU stability is, on the other hand, strictly stronger than ex-ante Pareto
efficiency, which is strictly stronger than ex-post Pareto efficiency. NTU
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stability is strictly stronger than ex-post Pareto efficiency.1

The model without transfers was introduced by Gale and Shapley (1962).
The model with transfers is due to Shapley and Shubik (1971). Kelso and
Crawford (1982) extended the models further, and in some sense Kelso and
Crawford’s is the first paper to investigate the effects of adding transfers to
the Gale-Shapley marriage model. Roth (1984b) and Hatfield and Milgrom
(2005) extended the model to allow for more complicated contracts, not only
transfers (see Hatfield and Kojima (2010) and Echenique (2012) for a dis-
cussion of the added generality of contracts). We are apparently the first
to consider the effect of transfers on a given market, with specified cardinal
utilities, and the first to study the notion of a no-trade matching.

2 The Marriage Problem

2.1 The model

Let M and W be finite and disjoint sets of, respectively, men and women;
M ∪W comprise the agents in our model. We can formalize the marriage
“market” of M and W in two ways, depending on whether we assume that
agents preferences have cardinal content, or that they are purely ordinal. For
our results, it will be crucial to keep in mind the difference between the two
frameworks.

An ordinal marriage market is a tuple (M,W,P ), where P is a profile: a
list of preferences >i for every man i and >j for every woman j. Each >i is
a linear order over W ∪ ∅, and each >j is a linear order over M ∪ ∅. Here,
∅ represents the alternative of being unmatched. The weak order associated
with >s is denoted by ≥s for any s ∈M ∪W .2

We often specify a preference profile by describing instead utility functions
for all the agents. A cardinal marriage market is a tuple (M,W,U, V ), where
U and V define the agents’ utility functions: U (i, j) (resp. V (i, j)) is the
amount utility derived by man i (resp. woman j) out of his match with
woman j (resp. man i). The utility functions U and V represent P if, for

1TU and NTU stability are not comparable in this sense. Empirically, though, they
are comparable, with TU stability having strictly more testable implications than NTU
stability (Echenique, Lee, Shum, and Yenmez, 2013).

2A linear order is a binary relation that is complete, transitive and antisymmetric. The
weak order ≥s is defined as a ≥s b if a = b or if a >s b.
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any i
U(i, j) > U(i, j′) ⇐⇒ j >i j

′

and for any j
V (i, j) > V (i′, j) ⇐⇒ i >j i

′.

We say that U and V are a cardinal representation of P . Clearly, for
any cardinal marriage market (M,W,U, V ) there is a corresponding ordinal
market.

A one-to-one function σ : M → W is called a matching. When w = σ(m)
we say that m and w are matched, or married, under σ. In our setting,
under a given matching, each man or woman is married to one and only one
partner of the opposite sex. We shall denote by A the set of matchings. We
shall assume that M and W have the same number of elements, so that A is
non-empty.

Implicit in our definition of matching is that agents are always married:
We do not allow for the possibility of singles. The assumption of no-singles
is done for economy of exposition, and we do not believe that our results
depend on it.

Under our assumptions, we can write M = {m1, . . . ,mn} and W =
{w1, . . . , wn}. For notational convenience, we often identify mi and wj with
the numbers i and j, respectively. So when we write j = σ(i) we mean that
woman wj and man mi are matched under σ.

We shall often fix an arbitrary matching, and without loss of generality
let this matching be the identity matching, denoted by σ0. That is,

σ0 (i) = i.

For a matching σ, let uσ(i) = U(i, σ(i)) and vσ(j) = V (σ(j), j). When
σ = σ0, we shall often omit it as a subscript and just use the notation u and
v.

One final concept relates to random matchings. We consider the possi-
bility that matching is chosen according to a lottery: a fractional matching
is a matrix π = (πi,j) such that πij ≥ 0 and letting πij the probability that
individuals i and j get matched, the constraints on π are

1 =
n∑
i=1

πij =
n∑
j=1

πij,

4



(i.e. π is a bistochastic matrix ). It is a celebrated result (the Birkhoff von-
Neumann Theorem) that such matrices result from a lottery over matchings.
Let B denote the set of all fractional matchings.

2.2 Solution concepts

We describe here some commonly used solution concepts. The first solutions
capture the notion of Pareto efficiency. In second place, we turn to notion
of core stability for matching markets. For simplicity of exposition, we write
these definitions for the specific matching σ0. Of course by relabeling we can
express the same definitions for an arbitrary matching.

A solution concept singles out certain matchings as immune to certain
alternative outcomes that could be better for the agents. If we view such
alternatives as arising ex-post, after any uncertainty over which matching
arises has been resolved, then we obtain a different solution concept than if
we view the alternatives in an ex-ante sense.

2.2.1 NTU Pareto efficiency

Matching σ0 (i) = i is ex-post NTU Pareto efficient if there is no matching σ
that is at least as good as σ0 for all agents, and strictly better for some agents.
That is, such that the inequalities U (i, σ (i)) ≥ U (i, i) and V (σ−1 (j) , j) ≥
V (j, j) simultaneously hold with at least one strict inequality.

In considering alternative matchings, it is easy to see that one can restrict
oneself to cycles. The resulting formulation of efficiency is very useful, as
it allows us to relate efficiency with standard notions in the literature on
revealed preference.

Hence matching σ0 (i) = i is ex-post Pareto efficient if and only if for every
cycle i1, ..., ip+1 = i1, inequalities U (ik, ik+1) ≥ U (ik, ik) and V (ik, ik+1) ≥
V (ik, ik) cannot hold simultaneously unless they all are equalities. In other
words:

Observation 1 Matching σ0 (i) = i is ex-post NTU Pareto efficient if for
every cycle i1, ..., ip+1 = i1, and for all k, inequalities

U (ik, ik+1) ≥ U (ik, ik) and V (ik, ik+1) ≥ V (ik, ik) ,

cannot hold simultaneously unless they are all equalities.
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In an ex-ante setting, we can think of probabilistic alternatives to σ0.
As a result, we obtain the notion of ex-ante Pareto efficiency. For matching
σ0 (i) = i to be ex-ante Pareto efficient, we require not only that there is no
other matching which is preferred by every individual, but also that there is
no lottery over matchings that would be preferred.

Formally: Matching σ0 (i) = i is ex-ante NTU Pareto efficient if for any
π ∈ B, and for all i and j, inequalities∑

j

πijU (i, j) ≥ U (i, i) and
∑
i

πijV (i, j) ≥ V (j, j)

cannot hold simultaneously unless they are all equalities.
Note that the problem of ex-post efficiency is purely ordinal, as ex-post

efficiency of some outcome only depends on the rank order preferences, not
on the particular cardinal representation of it. In contrast, the problem of
ex-ante efficiency is cardinal, as we are adding and comparing utility levels
across states of the world.

2.2.2 TU Pareto efficiency

We now assume that utility is transferable across individuals. In this case, a
matching is Pareto efficient if no other matching produces a higher welfare,
accounted for as the sum of individual cardinal utilities. It is a direct conse-
quence of the Birkhoff-von Neumann theorem that if a fractional matching
produces a higher welfare, then some deterministic matching also produces
a higher welfare. As a result, the notions of ex-ante and ex-post TU Pareto
efficiency coincide, and we do not need to distinguish between them.

Matching σ0 (i) = i is TU Pareto efficient if there is no matching σ for
which

n∑
i=1

U(i, σ(i)) + V (i, σ(i)) >
n∑
i=1

U(i, i) + V (i, i).

Observation 2 Matching σ0 (i) = i is TU Pareto efficient if for every cycle
i1, ..., ip+1 = i1, and for all k, inequalities

p∑
k=1

U (ik, ik+1) + V (ik, ik+1) ≥
p∑

k=1

U (ik, ik) + V (ik+1, ik+1)

cannot hold simultaneously unless they are all equalities.
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In the previous definitions, transfers are allowed across any individuals.
One may have considered the possibility of transfers only between matched
individuals. It is however well known since Shapley and Shubik (1971) that
this apparently more restrictive setting leads in fact to the same notion of
efficiency.

2.2.3 NTU Stability

We now review notions of stability. Instead of focusing on the existence of
a matching which would be an improvement for everyone (as in Pareto effi-
ciency), we focus on matchings which would be an improvement for a newly
matched pair of man and woman. Thus we obtain two solution concepts,
depending on whether we allow for transferable utility.

Our definitions are classical and trace back to Gale and Shapley (1962)
and Shapley and Shubik (1971). See Roth and Sotomayor (1990) for an
exposition of the relevant theory.

Matching σ0 (i) = i is stable in the nontransferable utility matching mar-
ket, or NTU stable if there is no “blocking pair” (i, j), i.e. a pair (i, j) such
that U (i, j) > U (i, i) and V (i, j) > V (j, j) simultaneously hold.

Hence, using our assumptions on utility, we obtain the following:

Definition 3 Matching σ0 (i) = i is NTU stable if

∀i, j : min (U (i, j)− U (i, i) , V (i, j)− V (j, j)) ≤ 0.

Of course, this notion is an ordinal notion and should not depend on
the cardinal representation of men and women’s preferences, only on the
underlying ordinal matching market.

2.2.4 TU Stability

Utility is transferable across pair (i, j) if there is the possibility of a utility
transfer t (of either sign) from j to i such that the utility of i becomes
U (i, j)+ t, and utility of j becomes V (i, j)− t. When we assume that utility
is transferable, in contrast, we must allow blocking pairs to use transfers.
Then a couple (i, j) can share, using transfers, the “surplus”U(i, j) +V (i, j).
Thus we obtain the definition:
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Definition 4 Matching σ0 (i) = i is TU stable, if there are vectors ũ (i) and
ṽ (j) such that for each i and j,

ũ (i) + ṽ (j) ≥ U (i, j) + V (i, j)

with equality for i = j.

By a celebrated result of Shapley and Shubik (1971), this notion is equiv-
alent to the notion of TU Pareto efficiency. Note that there may be multiple
vectors ũ and ṽ for the given matching σ0.

2.3 No-Trade stability

The notions of TU and NTU stability have been known and studied for a very
long time. Here, we seek to better understand the effect that the possibility
of transfers has on a matching market. We introduce a solution concept that
is meant to relate the two notions.

Note that if matching σ0 (i) = i is TU stable, then there are transfers
between the matched partners, say from woman i to man i, equal to

Ti = ũ (i)− U (i, i) = V (i, i)− ṽ (i) (2.1)

where the payoffs ũ (i) and ṽ (j) are those of Definition 4. We want to un-
derstand the situations when matching σ0 (i) = i is TU stable but when no
actual transfers are made “in equilibrium.” As a result, the matching σ0 is
NTU stable as well as it is TU stable.

We motivate the notion of a No-Trade matching with an example. We
present a matching market with a matching which is both the unique TU
stable matching and also the unique NTU stable matching. In order for
agents to accept it, however, transfers are needed.

Example 5 In this and other examples, we write the payoffs U and V in
matrix form. In the matrices, the payoff in row i and column j is the utility
U(i, j) for man i in matrix U , and utility V (i, j) for woman j in matrix V .

Consider the following utilities

U =

 0 2 1
1 2 0
1 0 2

 , V =

 2 1 0
1 2 0
0 1 2


8



Note that the matching σ0(i) = i is the unique NTU stable matching,
and is also the unique TU stable matching. To sustain it in the TU game,
however, requires transfers. Indeed, u(i1) = 0 and v(j2) = 2 cannot be TU
stable payoffs as

2 = u(i1) + v(j2) < U(i1, j2) + V (i1, j2) = 3

contradicts Definition 4. Intuitively, one needs to compensate agent i = 1
in order for him to remained matched with j = 1. Hence, even though σ0

is NTU-stable and TU-stable, transfers between the agents are required to
sustain it as TU-stable. Anticipating the definition to follow, this means this
matching is not a No-trade matching.

Matching σ0 (i) = i is no-trade stable when it is TU stable and there
are no actual transfers between partners at equilibrium. In other words,
Equation (2.1) should hold with Ti = 0. That is, U (i, i) = u (i), V (j, j) =
v (j), and so:

Definition 6 (No-Trade Matching) Matching σ0 (i) = i is no-trade sta-
ble if and only if for all i and j,

U (i, j) + V (i, j) ≤ U (i, i) + V (j, j) .

Therefore in a no-trade stable matching, two matched individuals would
have the opportunity to operate monetary transfers, but they choose not to
do so. To put this in different terms, in a no-trade stable matching, spouses
are “uncorrupted” because no monetary transfer actually takes place between
them, but they are not “incorruptible”, because the rules of the game would
allow for it.

3 Cardinal characterizations

We now present simple characterizations of the solution concepts described
in Section 2.2.

Our characterizations involve cardinal notions, even for the solutions that
are purely ordinal in nature. The point is to characterize all solutions using
similar concepts, so it is easier to understand how the solutions differ. It will
also help us understand the role of transfers in matching markets.
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We need to introduce the following notation:

Rij = U (i, i)− U (i, j)

Sij = V (j, j)− V (i, j) ,

defined for each i ∈ M and j ∈ W . Note that Rij measures how much i
prefers his current partner to j, and Sij measures how much j prefers her
current partner to i.

Theorem 7 Matching σ0 (i) = i is:
(a) No-trade stable iff

0 ≤ Rij + Sij (3.1)

(b) NTU stable iff for all i and j

0 ≤ max (Rij, Sij) (3.2)

(c) TU stable iff there exists (Ti)i∈M∪W such that for all i and j

Tj − Ti ≤ Rij + Sij (3.3)

(d) Ex-ante Pareto efficient iff there exist vi and λi, µj > 0 such that

vj − vi ≤ λiRij + µjSij (3.4)

(e) Ex-post Pareto iff there exist vi and λi > 0 such that

vj − vi ≤ λi max (Rij, Sij) . (3.5)

Observe that (3.4) and (3.5) are “Afriat inequalities,” using the termi-
nology in revealed preference theory.

As a consequence of the previous characterizations, it is straightforward
to list the chains of implications between the various solution concepts.

Theorem 8 (i) The two following chains of implications always hold:
– No-trade Stable implies TU Stable implies Ex-ante Pareto implies Ex-

post Pareto, and
– No-trade Stable implies NTU stable implies Ex-post Pareto.
(ii) Assume that there are two agents on each side of the market. Then

two additional implications hold:
– Ex-Post Pareto implies (and thus is equivalent to) Ex-Ante Pareto, and
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Figure 1: Summary of the implications in Theorem 8, part (ii) with two
agents on each side of the market.

– NTU stable implies Ex-Ante Pareto.
Any further implication which does not logically follow from those written

is false. See Figure (1).
(iii) Assume that there are at least three agents on each side of the market.

Then any implication that does not logically follow from the ones stated in
part (i) of Theorem 7 above are false. See Figure (2).

The implications in Theorem 8 are illustrated in Figures (1) and (2).
The proof of Theorem 8 is given in the Appendix. It relies on the following

counterexamples.

Example 9 Consider

U =

(
0 −2
1 0

)
and V =

(
0 −2
1 0

)
(3.6)

Then σ0 is TU stable, but not NTU stable, and not No-trade stable.

Example 10 Consider

U =

 0 2 −1
−1 0 2
2 −1 0

 , V =

 0 −1 2
2 0 −1
−1 2 0


Then σ0 is NTU stable (hence Ex-Post Pareto efficient). But it is not Ex-

Ante Pareto efficient (hence neither No-trade stable nor TU stable). Indeed
consider the fair lottery over the 6 existing pure assignments. Under this
lottery, each agent achieves a payoff of 1/3, hence this lottery is ex-ante
preferred by each agent to σ0.

11



Figure 2: Summary of the implication in Theorem 8, part (iii) with three
agents or more on each side of the market.
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Example 11 Consider now

U =

(
0 1
−2 0

)
and V =

(
0 1
3 0

)
(3.7)

Then σ0 is ex-ante Pareto efficient, and it is ex-post Pareto efficient, but
it is not TU stable, and it is not NTU stable. Ex-ante Pareto efficiency
follows from λi = 5, µj = 1 and v2 = 2, v1 = 1. Ex-post Pareto efficiency
is clear. It is easily seen that σ0 is not TU stable. It is also clear that the
matching is not NTU stable, as i = 1, j = 2 form a blocking pair.

4 NTU Stability and No-trade matchings

As we explained above, we use no-trade stability to shed light on the role of
transfers. Given a stable NTU matching, one may ask if is there a cardinal
representation of the agents’ utility such that the stable matching is no-trade
stable.

As we shall see, the answer is yes if we are allowed to tailor the cardinal
representation to the given stable matching. If we instead want a represen-
tation that works for all stable matchings in the market, we shall resort to a
regularity condition: that the matchings be isolated.

Finally, some statements in Theorem 7 involve the rescaling of utilities:
they show how optimality can be understood through the existence of weights
on the agents that satisfy certain properties. We can similarly imagine find-
ing, not an arbitrary cardinal representation of preferences, but a restricted
rescaling of utilities that captures the role of transfers. That is to say, a
rescaling of utilities that ensures that the matching is no-trade stable. We
shall present an example to the effect that such a rescaling is not possible.

4.1 Linking models with and without transfers

Our first question is whether for a given NTU stable matching, there is a
cardinal representation of preferences under which the same matching is No-
trade stable. The answer is yes.

Theorem 12 Let (M,W,P ) be an ordinal matching market. If σ is a stable
matching, then there is a cardinal representation of P such that σ is a no-
trade matching in the corresponding cardinal market.

13



It is natural to try to strengthen this result in two directions. First, we
could expect to choose the cardinal representation of preferences as a linear
rescaling of a given cardinal representation of the preferences. Given what we
know about optimality being characterized by choosing appropriate utility
weights, it makes sense to ask whether any stable matching can be obtained
as a No-Trade Matching if one only weights agents in the right way. Namely:

Problem 13 Is it the case that matching σ0 is NTU stable if and only if
there is λi, µj > 0 such that

0 ≤ λiRij + µjSij?

After all, transfers favor some agents over others, and utility weights play
a similar role. Our next example shows that this is impossible. It exhibits a
stable matching that is not No-Trade for any choice of utility weights.

Example 14 Consider a marriage market defined as follows. The sets of
men and women are: M = {m1,m2,m3,m4} and W = {w1, w2, w3, w4}.
Agents’ preferences are defined through the following utility functions:

U =


1.01 0 1/2 −1

0 1 −1 1/2
1/2 1/5 1/3 1/4
1/5 1/2 1/3 1/4

 , V =


0 1 1/2 −1
1 0 −1 1/2

1/2 1/5 1/3 1/4
1/5 1/2 1/3 1/4


The unique stable matching is underlined. Uniqueness is readily verified

by running the Gale-Shapley algorithm. So ui = vj = 1/2 for all i and j.
Yet it is shown in the appendix that there are no λi, µj > 0 such that for all
(i, j),

λi(ui − Uij) + µj(vj − Vij) ≥ 0.

Example 14 has the following implication (which also follows from Exam-
ple 5).

Corollary 1 There are cardinal matching markets that do not possess a no-
trade matchings.

Given Example 14, it is clear that No-Trade can only be achieved by
appropriate choice of agents’ utility functions. Our next question deals with
the existence of cardinal utilities such that the set of No-trade matchings and
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NTU stable matchings will coincide for all stable matchings in a market. We
show that if the stable matchings are isolated then one can choose cardinal
utilities such that all stable matchings are No-Trade.

Let S(P ) denote the set of all stable matchings. A matching σ ∈ S(P ) is
isolated if µ′(a) 6= σ(a) for all a ∈M ∪W and µ′ ∈ S(P ) \ {σ}.

Theorem 15 There is a representation (U, V ) of P such that for all σ ∈
S(P ), if µ is isolated then µ is no trade stable for (U, V ).

The question whether the conclusion holds without the assumption that
the matching is isolated remains open to investigation.

4.2 Price of Anarchy

The logic of the previous subsection can be pushed further, to obtain a“Price
of Anarchy,” in the spirit of the recent literature in computer science (Rough-
garden (2005)). We quantify the cost in social surplus (sum of agents’ utili-
ties) that results from NTU stability: we can think of this cost as an efficiency
gap inherent in the notion of stable matching. The result is that the gap can
be arbitrarily large, and that it grows “super exponentially” in the size of the
market (i.e. it grows at a faster rate than ng, for any g, where n is the size
of the market).

Let ∆ε denote the subset of the simplex in R2n in which every component
is at least ε: ∆ε = {((α(i))i∈M , (β(j))j∈W ) : ∀i ∈ Mα(i) ≥ ε,∀j ∈ W,β(j) ≥
ε}. Let S(M,W,U, V ) denote the set of stable matchings in the cardinal
matching market (M,W,U, V ). In the statement of the results below, we
write the matchings in S(M,W,U, V ) as fractional matchings π in which
every entry in π is either 0 or 1.

Proposition 16 For every ε > 0, n, g, and K > 0 There is a cardinal
marriage market (M,W,U, V ), with n men and women, and where utilities
U and V are bounded by K such that

min(α,β)∈∆ε

{
maxπ∈Π

∑n
i=1 α(i)

∑n
j′=1 πi,j′U(i, j′)

+
∑n

j=1 β(j)
∑n

i′=1 πi′,jV (i′, j)

}
max(α,β)∈∆ε

{
maxπ∈S(M,W,U,V )

∑n
i=1 α(i)

∑n
j′=1 πi,j′U(i, j′)

+
∑n

j=1 β(j)
∑n

i′=1 πi′,jV (i′, j)

} is Ω(ngK)
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Proposition 16 shows that the gap in the sum of utilities, between the
maximizing (probabilistic) matchings, and the stable matchings, is large and
grows with the size of the market at a rate that is arbitrarily large. Moreover,
the gap is large regardless of how one weighs agents’ utilities.

Of course, the interpretation of Proposition 16 is not completely straight-
forward. It does not seem right to compare the sum of utilities in a model in
which transfers are not allowed with the sum of utilities in the TU model.3

Nevertheless, we hope that Proposition 16 sheds additional light on the role
of transfers in matching markets.
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A Appendix: Proofs

A.1 Proof of Theorem 7

Proof. (i) (a) Characterization (3.2) follows directly from the definition.
(b) For characterization of TU stability in terms of (3.3), recall that

according to the definition, matching σ0 (i) = i is TU Stable if there are
vectors u (i) and v (j) such that for each i and j,

u (i) + v (j) ≥ U (i, j) + V (i, j)

with equality for i = j. Hence, there exists a monetary transfer Ti (of either
sign) from man i to woman i at equilibrium given by

Ti = u (i)− U (i, i) = V (i, i)− v (i) .

The stability condition rewrites as Tj − Ti ≤ Rij + Sij, thus, one is led to
characterization (3.3).

(c) For characterization of Ex-post Pareto efficient matchings in terms of
(3.5), assume σ0 is Ex-post Pareto efficient, and let

Qij = max (Rij, Sij) ,

so that by definition, matrix Qij satisfies “cyclical consistency”: for any
cycle i1, ..., ip+1 = i1,

∀k, Qikik+1
≤ 0 implies ∀k, Qikik+1

= 0, (A.1)

By the Linear Programming proof of Afriat’s theorem in Fostel, Scarf, and
Todd (2004)4, see implication (i) implies (ii) in Ekeland and Galichon (2012),
there are scalars λi > 0 and vi such that (3.5) holds.

(d) For characterization of Ex-ante Pareto efficient matchings in terms
of (3.4), the proof is an extension of the proof by Fostel, Scarf, and Todd
(2004), which give in full. Assume σ0 is Ex-ante efficient. Then the Linear

4The link between Afriat’s theorem and the characterization of efficiency in the housing
problem was first made in Ekeland and Galichon (2012).
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Programming problem

max
∑
i

xi +
∑
j

yj

s.t.

xi = −
∑
j

πijRij and yj = −
∑
i

πijSij∑
k

πik =
∑
k

πki and
∑
k

πik = 1

xi ≥ 0, yj ≥ 0, πij ≥ 0.

is feasible and its value is zero. Thus it coincides with the value of its dual,
which is

min−
∑
i

φi

s.t.

vj − vi ≤ λiRij + µjSij + φi
λi ≥ 1 and µj ≥ 1

where variables λi, µj, vi and φi in the dual problem are the Lagrange multi-
pliers associated to the four constraints in the primal problem, and variables
πij, xi, and yj in the primal problem are the Lagrange multipliers associated
to the three constraints in the dual problem. Hence the dual program is
feasible, and there exist vectors λ, µ, and φ, such that

vj − vi ≤ λiRij + µjSij + φi (A.2)

λi ≥ 1 and µj ≥ 1∑
i

φi = 0

but setting j = i in inequality (A.2) implies (because Rii = Sii = 0) that
φi ≥ 0, hence as

∑
i φi = 0, thus φi = 0. Therefore it exist vectors λi > 0

and µj > 0, such that
vj − vi ≤ λiRij + µjSij

QED.
(e) Characterization of No-trade stable matchings as in (3.1) follows di-

rectly from the definition.
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A.2 Proof of Theorem 8

Proof. (i) No trade stable implies TU Stable is obtained by taking with
Ti = 0 in (3.3).

TU Stable implies Ex-ante Pareto is obtained by taking vi = Ti and
λi = µj = 1 in (3.4).

To show that Ex-ante Pareto implies Ex-post Pareto, assume there exist vi
and λi, µj > 0 such that vj−vi ≤ λiRij+µjSij. Now assume max (Rij, Sij) ≤
0. Then vj − vi ≤ 0, and the same implication holds with strict inequalities.
By implication (iii) implies (ii) in Ekeland and Galichon (2012), there exist
scalars v′i and λ′i such that v′j − v′i ≤ λ′i max (Rij, Sij).

No-trade stable implies NTU stable follows fromRij+Sij ≤ 2 max (Rij, Sij).
NTU Stable implies Ex-post Pareto is obtained by taking λi = 1 and

vi = 0 in (3.5).
Part (i) of the result is proved using a series of counterexample, which for

the most part only require two agents (one can incorporate a third neutral
agents, which has zero utility regardless of the outcome).

We show point (iii) before point (ii). In order to show (iii), it is enough
to show the following claims, proved in Examples 9 to 11:

• TU Stable does not imply NTU Stable – cf. example 9

• NTU Stable does not imply Ex-Ante Pareto – cf. example 10

• Ex-Ante Pareto does not imply TU Stable – cf. example 11

• Ex-Ante Pareto does not imply NTU Stable – cf. example 11

• Ex-Post Pareto does not imply Ex-Ante Pareto – cf. example 10

• Ex-Post Pareto does not imply NTU stable – cf. example 11.

To prove part (ii), we note that in the proof of part (i), the only instance
where we needed three agents was to disprove that NTU stable implies Ex-
Ante Pareto efficient and to disprove that Ex-Post Pareto efficient implies
Ex-Ante Pareto efficient. We will show that these implications actually hold
when there are only two agents. Indeed, when there are two agents, σ0 is
Ex-Ante Pareto efficient if there are positive scalars λ1, λ2, µ1 and µ2 such
that

0 ≤ λ1R12 + λ2R21 + µ1S12 + µ2S21
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which is equivalent to

0 ≤ max (R12, R21, S12, S21) . (A.3)

Therefore, if σ0 is Ex-Post Pareto efficient, then vj−vi ≤ λi max (Rij, Sij).
But either v1 − v2 or v2 − v1 is nonnegative, thus (A.3) holds, and Ex-Post
Pareto efficient implies Ex-Ante Pareto efficient.

A.3 Proof of Theorem 12

Assume µ0 (i) = i (this is w.l.o.g. as can always relabel individuals). Take
Rij = U (i, j)−U (i, i) and Sij = V (i, j)−V (j, j). µ0 is Stable iff min (Rij, Sij) ≤
0 for all i and j, with strict inequality for j 6= i.

One has for i 6= j, as t→∞
1

t
log
(
e−tRij + e−tSij

)
→ min (Rij, Sij)

hence for t large enough and i 6= j,

−1

t
log
(
e−tRij + e−tSij

)
< 0

that is
e−tRij + e−tSij > 1.

Take

t > max
i 6=j

(∣∣∣∣ log 2

Rij

∣∣∣∣ , ∣∣∣∣ log 2

Sij

∣∣∣∣)
and consider

Ū (i, j) =
1

2
− e−tRij for i 6= j

Ū (i, i) = 0

one has:

• Ū (i, j) > 0 if and only if 1
2
> e−tRij that is − log 2 > −tRij that is

tRij > log 2 hence Rij > 0.

• Ū (i, j) < 0 if and only if tRij < log 2 hence Rij < 0.

With a similar construction for V̄ (i, j), one has

Ū (i, j) + V̄ (i, j) ≤ 0 = Ū (i, i) + V̄ (j, j) .

Thus µ0 is a No-Trade Matching associated to utilities Ū and V̄ .
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A.4 Claim in Example 14

The problem is to find x� 0 such that A · x ≥ 0. We introduce the matrix
B such that the i’th row of B is the vector ei = (0, . . . , 1, . . . , 0) with a 1
only in entry i. Then we want to find a vector x ∈ Rn such that A · x ≥ 0
and B · x � 0. By Motzkin’s Theorem of the Alternative, such a vector x
exists iff there is no (y, z), with z > 0 (meaning z ≥ 0 and z 6= 0) such that

y · A+ z ·B = 0.

i i′ i0 i1
j j′ j w′

j0 j1 j0 j0

j′ j j1 j1

j1 j0 j′ j

j j′ j0 j1

i′ i i i
′

i0 i1 i0 i0
i i′ i1 i1
i1 i0 i′ i

Utilities are:

i i′ i0 i1
1 + δ 1 1/2 1/2
1/2 1/2 1/3 1/3
0 0 1/4 1/4
−1 −1 1/5 1/5

j j′ j0 j1

1 1 1/2 1/2
1/2 1/2 1/3 1/3
0 0 1/4 1/4
−1 −1 1/5 1/5

The upper 4 rows of A are:

i i′ i0 i1 j j′ j0 j1

i, j 1/2− (1 + δ) 0 0 0 1/2 0 0 0
i, j′ 1/2 0 0 0 0 1/2− 1
i′, j 0 1/2 0 0 −1/2 0 0 0
i′, j′ 0 −1/2 0 0 0 1/2 0 0

So the sum of the first four rows of A is (−δ, 0, 0, 0, 0, 0, 0, 0).
Notice that we have other rows: for example the row corresponding to

(i, j1) is:
i i′ i0 i1 j j′ j0 j1

i, j1 1/2 + 1 0 0 0 0 0 0 1/2− 1/5,
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but these rows will get weight zero in the linear combination below.
So y = (1, 1, 1, 1, 0, . . . , 0) and z = (δ, 0, . . . , 0) exhibit a solution to the

alternative system as

y · A+ z ·B = (−δ, 0, 0, 0, 0, 0, 0, 0) + δ(1, 0, . . . , 0) = 0

A.5 Proof of Theorem 15.

Let S(P ) be the set of stable matchings in the ordinal matching market
(M,W,P ). Suppose that there are N stable matchings, and enumerate them,
so S(P ) = {µ1, . . . , µK}.

To prove the proposition we first establish some simple lemmas.

Lemma 2 For any i ∈M and j ∈ W ,∣∣{k : j >i µ
k(i)}

∣∣+
∣∣{k : i >j µ

k(j)}
∣∣ ≤ K −

∣∣{k : j = µk(i)}
∣∣

Proof. Let j >i µ
k(i); then for µk to be stable we need that µk(j) >j i. So∣∣{k : j >i µ

k(i)}
∣∣ ≤ ∣∣{k : µk(j)>j i}

∣∣.
Then,∣∣{k : i >j µ

k(j)}
∣∣ = K −

∣∣{k : µk(j)≥j i}
∣∣

≤ K −
∣∣{k : j >i µ

k(i)}
∣∣− ∣∣{k : j = µk(i)}

∣∣ ,
where the last inequality follows from the previous paragraph and the fact
that preferences >j are strict.

Let Û(i, j) =
∣∣{k : j ≥i µk(i)}

∣∣ and V̂ (i, j) =
∣∣{k : i >j µ

k(j)}
∣∣. By the

previous lemma, Û(i, j) + V̂ (i, j) ≤ K for all i and j.

Lemma 3 If µ is an isolated stable matching, and i, î ∈ M , then µ(i) >i

µ′(i) iff µ(̂i) >î µ
′(̂i).

Proof. Suppose (reasoning by contradiction) that µ(i) >i µ
′(i) while µ′(̂i) ≥î

µ(̂i). Since µ is isolated and preferences are strict, we have µ′(̂i) >î µ(̂i).
Now let µ̂ = µ∨µ′, using the join operator in the lattice of stable matchings
(see Roth and Sotomayor (1990)). Then µ̂(i) = µ(i) and µ̂(̂i) = µ′(̂i). So
µ̂ ∈ S(P ), µ̂(i) = µ(i), and µ̂ 6= µ; a contradiction of the hypothesis that µ
is isolated.
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Lemma 4 If µ is an isolated stable matching then

Û(i, µ(i)) + V̂ (µ(j), j) = K.

Proof. We prove that

{k : µ 6= µk and µ(i) ≥i µk(i)} = {k : µ 6= µk and µk(j) ≥j µ(j)}.

The lemma follows then because

Û(i, µ(i)) + V̂ (µ(j), j) =
∣∣{n : µ(i)≥i µk(i)}

∣∣+
∣∣{k : µk(j)>j µ(j)}

∣∣
= 1 +

∣∣{k : µ 6= µk and µ(i)≥i µk(i)}
∣∣

+ (K −
∣∣{k : µ 6= µk and µk(j)≥j µ(j)}

∣∣− 1).

Let µ(i) ≥i µk(i) and let i = µ(j). Since µ 6= µk is isolated and preferences
are strict, µ(i) >i µ

k(i). Then by Lemma 3, µ(i) >i µ
k(i); so j = µ(i)

implies that µk(j) >j µ(j). Similarly, if µk(j) >j µ(j) then µ(i) >i µ
k(i). So

µ(i) >i µ
k(i).

We are now in a position to prove the proposition.
Define a representation U and V of P as follows. Fix δ such that 0 < δ <

1/2. Let U(i, j) = Û(i, j) and V (i, j) = V̂ (i, j) if there is µ ∈ S(P ) such that
j = µ(i). Otherwise, if j is worse than i’s partner in any stable matching,
let U(i, j) < 0 (and chosen to respect representation of P ); and if there is
µ ∈ S(P ) such that j >i µ(i), let µ0 be the best such matching for i, and
choose U(i, j) such that U(i, j)− U(i, µ0(i)) < δ. Choose V similarly.

Let µ be an isolated matching. Fix a pair (i, j) and suppose, wlog that
uµ(i) − U(i, j) < 0 and vµ(i) − V (i, j) ≥ 0 (if uµ(i) − U(i, j) ≥ 0 and
vµ(i) − V (i, j) ≥ 0 then there is nothing to prove; and they cannot both be
< 0 or (i, j) would constitute a blocking pair).

First, if i and j are matched in some matching µ′ ∈ S(P ) then uµ(i) −
U(i, j) + vµ(i) − V (i, j) = uµ(i) − Û(i, j) + vµ(i) − V̂ (i, j) so it follows that
uµ(i) − U(i, j) + vµ(i) − V (i, j) ≥ 0 by Lemmas 2, 4, and the definition of

Û(i, j) and V̂ (i, j).
Second, let us assume that i and j are not matched in any matching in

S(P ). Since uµ(i) − U(i, j) < 0 we know that there is a matching that is
worse for i than j. Let µ0 be such that j >i µ

′(i) implies that µ0(i) ≥i µ′(i).
Thus uµ0(i) − U(i, j) > −δ by definition of U(i, j). Since j >i µ

0(i), we
also have µ0(j) >j i, or µ0 would not be stable. Then, letting µ1 be the
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best matching in S(P ) for j, out of those that are worse than i, we have
vµ0(j)−V (i, j) = vµ0(j)− vµ1(j) + vµ1(j)−V (i, j) > 1− δ, as µ0(j) >j µ

1(j)
implies that vµ0(j) − vµ1(j) ≥ 1 and the definition of V (i, j) implies that
vµ1(j)− V (i, j) > −δ.

Finally,

uµ(i)− U(i, j) + vµ(i)− V (i, j) = uµ(i)− uµ0(i) + uµ0(i)− U(i, j)

+ vµ(i)− vµ0(j) + vµ0(j)− V (i, j)

= (uµ(i)− uµ0(i) + vµ(i)− vµ0(j))
+ (uµ0(i)− U(i, j)) + (vµ0(j)− V (i, j))

≥ 0 + (−δ) + (1− δ) > 0,

where the first inequality follows from the remarks in the previous para-
graphs, and from the fact that K = uµ(i) + vµ(i) ≥ uµ0(i) + vµ0(j) by Lem-
mas 2 and 4. The second inequality follows because δ < 1/2. This proves
the proposition.

A.6 Proof of Proposition 16

Let n be an even positive number. Let (M,W,U, V ) be a marriage market
with n men and n women, defined as follows. The agents ordinal preferences
are defined in the following tables:

i1 i2 i3 · · · in−2 in−1 in
j1 j2 j3 · · · jn−2 jn−1 jn−1

j2 j3 j4 · · · jn−1 j1 j1

j3 j4 j5 · · · jn−2 j1 j2
...

jn/2 jn/2+1 jn/2+1 · · · jn/2−2 jn/2−1 jn/2−1

jn
...

jn−1 jn j1 · · ·
jn j1 j2 · · · jn−3 jn−2
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The table means that j1 is the most preferred partner for i1, followed by j2,
and so on. The women’s’ preferences are as follows.

j1 j2 j3 · · · jn−2 jn−1 jn
i2 i3 i4 · · · in−1 i1 i1
i3 i4 i5 · · · in−1 i2 i2
...
in/2 in/2+1 in/2+2 · · · in/2−2 in/2−1 in/2−1

in/2+1 in/2+2 in/2+3 · · · in/2 in/2
...

in−1 in i1 · · · in−4 in−3

in i1 i2 · · · in−3 in−1

i1 i2 i3 · · · in−2 in
i1 i2 i3 · · · in−2 in−1 in

It is a routine matter to verify that there is a unique stable matching in this
market. It has i1 matched to jn/2, i2 matched to jn/2+1, and so on, until
we obtain that in−1 is matched to jn/2−1. We have in matched to jn. (The
logic of this example is that in creates cycles in the man-proposing algorithm
which pushes the men down in their proposals until reaching the matching
in the “middle” of their preferences; jn plays the same role in the woman
proposing version of the algorithm).

Define agents’ cardinal preferences as follows. Let

U(i, j) = [n− rm(w)]
1

ng
+ max{0, n− 1− ri(j)}(K −

n− 1

ng
),

where ri(j) is the rank of woman j in i’ preferences. Similarly define V (i, j),
replacing ri(j) with rj(i). Then, given the preferences defined above, the
agents utilities at the unique stable matching satisfy:

u(il) = v(jl) =
1

2ng−1
, l = 1, . . . , n− 1 and u(in) = v(jn) = (n/2− 1)

1

ng
.

So that the sum of all agents utilities at the unique stable matching is:

2(n− 1)(
1

2ng−1
) + 2(n/2− 1)

1

ng
,
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and agents’ weighted sum of utilities is at most

max{ 1

2ng−1
, (n/2− 1)

1

ng
}.

Consider the matchings µ∗(il) = jl, l = 1, . . . , n, and µ̂(j1) = i2, . . . µ̂(jn−2) =
in−1, µ̂(jn−1) = i1, µ̂(jn) = in. Let π be the random matching that results
from choosing µ∗ and µ̂ with equal probability. Then, for all i 6= in and
j 6= jn we have that∑

j′

πi,j′U(i, j′) =
∑
i′

πj,i′V (i′, j) = K/2,

while ∑
j′

πi,j′U(in, j
′) =

∑
i′

πj,i′V (i′, jn) = (n/2− 1)
1

n3
.

Then∑
i∈M

α(i)
∑
j′∈W

πi,j′U(i, j′) +
∑
j∈W

β(j)
∑
i′∈M

πj,i′V (i′, j) ≥ εnK/2.

So, regardless of the values of α and β in ∆ε, the fraction∑
i∈M α(i)

∑
j′∈W πi,j′U(i, j′) +

∑
j∈W β(j)

∑
i′∈M πj,i′V (i′, j)∑

i∈M α(i)u(i) +
∑

j∈W β(j)v(j)

is bounded below by
εnK/2

max{ 1
2ng−1 , (n/2− 1) 1

ng
}
,

which is Ω(Kng).
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