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VARIATIONAL REPRESENTATIONS FOR N-CYCLICALLY
MONOTONE VECTOR FIELDS

ALFRED GALICHON AND NASSIF GHOUSSOUB

Given a convex bounded domain� in Rd and an integer N ≥ 2, we associate
to any jointly N-monotone (N−1)-tuplet (u1, u2, . . . , uN−1) of vector fields
from � into Rd a Hamiltonian H on Rd ×Rd × · · · ×Rd that is concave in
the first variable, jointly convex in the last N−1 variables, and such that

(u1(x), u2(x), . . . , uN−1(x))=∇2,...,N H(x, x, . . . , x)

for almost all x ∈ �. Moreover, H is N-antisymmetric in a sense made
precise later, and also N-sub-antisymmetric in the sense that for all X ∈�N

the sum
∑N−1

i=0 H(σ i (X)) ≤ 0 is nonpositive, σ being the permutation that
shifts the coordinates of X leftward one slot and places the first coordinate
last. This result can be seen as an extension of a theorem of E. Krauss,
which associates to any monotone operator a concave-convex antisymmetric
saddle function. We also give various variational characterizations of vector
fields that are almost everywhere N-monotone, showing that they are dual
to the class of measure-preserving N-involutions on �.

1. Introduction

Given a domain � in Rd , recall that a single-valued map u from � to Rd is said to
be N-cyclically monotone if for every cycle x1, . . . , xN , xN+1 = x1 of points in �,
one has

(1)
N∑

i=1

〈u(xi ), xi − xi+1〉 ≥ 0.

A classical theorem of Rockafellar [Phelps 1993] states that a map u from � to Rd
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is N-cyclically monotone for every N ≥ 2 if and only if

(2) u(x) ∈ ∂φ(x) for all x ∈�,

where φ : Rd
→ R is a convex function. On the other hand, a result of E. Krauss

[1985] yields that u is a monotone map, i.e., a 2-cyclically monotone map, if and
only if

(3) u(x) ∈ ∂2 H(x, x) for all x ∈�,

where H is a concave-convex antisymmetric Hamiltonian on Rd
×Rd , and ∂2 H is

the subdifferential of H as a convex function in the second variable.
In this paper, we extend the result of Krauss to the class of N -cyclically monotone

vector fields, where N ≥ 3. We shall give a representation for a family of N−1
vector fields, which may or may not be individually N -cyclically monotone. Here
is the needed concept.

Definition 1. Let u1, . . . , uN−1 be bounded vector fields from a domain�⊂Rd into
Rd . We shall say that the (N−1)-tuple (u1, u2, . . . , uN−1) is jointly N-monotone if
for every cycle x1, . . . , x2N−1 of points in � such that xN+i = xi for 1≤ i ≤ N −1,
one has

(4)
N∑

i=1

N−1∑
`=1

〈ul(xi ), xi − xl+i 〉 ≥ 0.

Examples of jointly N-monotone families of vector fields:

• It is clear that (u, 0, 0, . . . , 0) is jointly N -monotone if and only if u is N -
monotone.

• More generally, if each u` is N -monotone, then the family (u1, u2, . . . , uN−1)

is jointly N -monotone. Actually, one only needs that for 1≤ `≤ N − 1, the
vector field u` be (N , `)-monotone in the following sense: for every cycle
x1, . . . , xN+` of points in � such that xN+i = xi for 1≤ i ≤ `, we have

(5)
N∑

i=1

〈u`(xi ), xi − x`+i 〉 ≥ 0.

This notion is sometimes weaker than N -monotonicity since if ` divides N ,
then it suffices for u to be N/` -monotone in order to be an (N , `)-monotone
vector field. For example, if u1 and u3 are 4-monotone operators and u2 is
2-monotone, then the triplet (u1, u2, u3) is jointly 4-monotone.

• Another example is if (u1, u2, u3) are vector fields such that u2 is 2-monotone
and

〈u1(x)− u3(y), x − y〉 ≥ 0 for every x, y ∈ Rd .
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In this case, the triplet (u1, u2, u3) is jointly 4-monotone. In particular, if u1

and u2 are both 2-monotone, then the triplet (u1, u2, u1) is jointly 4-monotone.

• More generally, it is easy to show that (u, u, . . . , u) is jointly N -monotone if
and only if u is 2-cyclically monotone.

We shall always denote by σ the cyclic permutation on Rd
×· · ·×Rd defined by

σ(x1, x2, . . . , xN−1, xN )= (x2, x3, . . . , xN , x1).

We let

(6) HN (�)=

{
H ∈ C(�N ) :

N−1∑
i=0

H(σ i (x1, . . . , xN ))= 0
}

be the family of continuous Hamiltonians on �N that are N-antisymmetric, i.e.,
satisfy the condition to the right of the colon in (6). We say that H is N-sub-
antisymmetric on � if

(7)
N−1∑
i=0

H(σ i (x1, . . . , xN ))≤ 0 on �N .

We shall also say that a function F of two variables is N-cyclically sub-anti-
symmetric on � if

(8)

F(x, x)= 0 and
N∑

i=1

F(xi , xi+1)≤ 0 for all cyclic families x1, . . . , xN , xN+1 = x1 in �.

Note that if a function H(x1, . . . , xN ) N -sub-antisymmetric and if it only depends
on the first two variables, then the function F(x1, x2) := H(x1, x2, . . . , xN ) is
N -cyclically sub-antisymmetric.

We associate to any function H on �N the functional given by on �× (Rd)N−1

(9) L H (x, p1, . . . , pN−1)= sup
{N−1∑

i=1

〈pi , yi 〉− H(x, y1, . . . , yN−1) : yi ∈�

}
.

Note that if � is convex and if H is convex in the last N−1 variables, then L H is
nothing but the Legendre transform of H̃ with respect to the last N−1 variables,
where H̃ is the extension of H over (Rd)N , defined by H̃ = H on�N and H̃ =+∞
outside �N . Since H(x, . . . , x)= 0 for any H ∈HN (�), we have, for any such H ,

(10) L H (x, p1, . . . , pN−1)≥

N−1∑
i=1

〈x, pi 〉,

for x ∈ � and p1, . . . , pN−1 ∈ Rd . To formulate variational principles for such
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vector fields, we shall consider the class of σ -invariant probability measures on
�N , which are those π ∈ P(�N ) such that for all h ∈ L1(�N , dπ), we have

(11)
∫
�N

h(x1, . . . , xN ) dπ =
∫
�N

h(σ (x1, . . . , xN )) dπ.

We set

(12) Psym(�
N )= {π ∈ P(�N ) : π σ -invariant probability on �N

}.

For a given probability measure µ on �, we also consider the class

(13) Pµ
sym(�

N )= {π ∈ Psym(�
N ) : proj1π = µ},

i.e., the set of all π ∈ Psym(�
N ) with a given first marginal µ, meaning that

(14)
∫
�N

f (x1) dπ(x1, . . . , xN )=

∫
�

f (x1) dµ(x1) for every f ∈ L1(�,µ).

Now consider the set S(�,µ) of µ-measure-preserving transformations on �,
which can be identified with a closed subset of the sphere of L2(�,Rd). We shall
also consider the subset of S(�,µ) consisting of N -involutions, that is,

SN (�,µ)= {S ∈ S(�,µ) : SN
= I µ-a.e.}.

2. Monotone vector fields and N-antisymmetric Hamiltonians

In this section, we establish the following extension of a theorem of Krauss.

Theorem 2. Let N ≥ 2 be an integer, and let u1, . . . , uN−1 be bounded vector
fields from a convex domain �⊂ Rd into Rd .

1) If the (N−1)-tuple (u1, . . . , uN−1) is jointly N-monotone, then there exists
an N-sub-antisymmetric Hamiltonian H that is zero on the diagonal of �N ,
concave in the first variable, convex in the other N−1 variables, and such that

(15) (u1(x), . . . , uN−1(x))=∇2,...,N H(x, x, . . . , x) for a.e. x ∈�.

Moreover, H is N-antisymmetric in the sense that

(16) H(x1, x2, . . . , xN )+ H2,...,N (x1, x2, . . . , xN )= 0,

where H2,...,N is the concavification of the function K (x)=
N−1∑
i=1

H(σ i (x)) with
respect to the last N−1 variables.

Furthermore, there exists a continuous N-antisymmetric Hamiltonian H
on �N , such that

(17) L H (x, u1(x), u2(x), . . . , uN−1(x))=
N−1∑
i=1

〈ui (x), x〉 for all x ∈�.
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2) Conversely, if (u1, . . . , uN−1) satisfies (15) for some N-sub-antisymmetric
Hamiltonian H that is zero on the diagonal of �N , concave in the first variable,
and convex in the other variables, then the (N−1)-tuple (u1, . . . , uN−1) is
jointly N-monotone on �.

Remark 3. In the case N = 2, K (x) = H(x2, x1) is concave with respect to x2,
hence H2(x1, x2)= H(x2, x1), and (16) becomes

H (x1, x2)+ H (x2, x1)= 0;

thus H is antisymmetric, recovering well-known results [Krauss 1985; Ghoussoub
2009; Ghoussoub and Moameni 2013a; Millien 2011].

Lemma 4. Assume the (N−1)-tuple of bounded vector fields (u1, . . . , uN−1) on �
is jointly N-monotone. Define

f (x1, . . . , xN ) :=

N−1∑
l=1

〈ul(x1), x1− xl+1〉

and let f̃ be the convexification of f with respect to the first variable, given by

(18) f̃ (x1, x2, . . . , xN )

= inf
{ n∑

k=1
λk f (xk

1 , x2, . . . , xN ) : n ∈ N, λk ≥ 0,
n∑

k=1
λk = 1,

n∑
k=1
λk xk

1 = x1

}
.

1) We have f ≥ f̃ on �N .

2) f̃ is convex in the first variable and concave with respect to the other variables.

3) f̃ (x, x, . . . , x)= 0 for each x ∈�.

4) f̃ satisfies

(19)
N−1∑
i=0

f̃ (σ i (x1, . . . , xN ))≥ 0 on �N .

Proof. Since the (N−1)-tuple (u1, . . . , uN−1) is jointly N -monotone, it is easy to
see that the function

f (x1, . . . , xN ) :=

N−1∑
l=1

〈ul(x1), x1− xl+1〉

is linear in the last N−1 variables, that f (x, x, . . . , x)= 0, and that

(20)
N−1∑
i=0

f (σ i (x1, . . . , xN ))≥ 0 on �N .

It is also clear that f ≥ f̃ , that f̃ is convex with respect to the first variable x1,
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and that it is concave with respect to the other variables x2, . . . , xN , since f itself
is concave (actually linear) with respect to x2, . . . , xN . We now show that f̃
satisfies (19).

For that, we fix x1, x2, . . . , xN in � and consider (xk
1)

n
k=1 in �, and (λk)k in R

such that λk ≥ 0 such that
∑n

k=1 λk = 1 and
∑n

k=1 λk xk
1 = x1. For each k, we have

f (xk
1 , x2, . . . , xN )+ f (x2, . . . , xN , xk

1)+ · · ·+ f (xN , xk
1 , x2, . . . , xN−1)≥ 0.

Multiplying by λk , summing over k, and using that f is linear in the last N−1
variables, we have

n∑
k=1

λk f (xk
1 , x2, . . . , xN )+ f (x2, . . . , xN , x1)+· · ·+ f (xN , x1, x2, . . . , xN−1)≥ 0.

By taking the infimum, we obtain

f̃ (x1, x2, . . . , xN )+

N−1∑
i=1

f (σ i (x1, x2, . . . , xN ))≥ 0.

Let now n ∈N, λk ≥ 0, xk
N ∈� be such that

n∑
k=1
λk = 1 and

n∑
k=1
λk xk

2 = x2. For every
1≤ k ≤ n, we have

f̃ (x1, xk
2 , x3, . . . , xN )+ f (xk

2 , x3, . . . , x1)+· · ·+ f (xN , x1, xk
2 , x3, . . . , xN−1)≥ 0.

Multiplying by λk , summing over k and using that f̃ is convex in the first variable
and f is linear in the last N−1 variables, we obtain

f̃ (x1, x2, x3, . . . , xN )+

n∑
k=1

λk f (xk
2 , x3, . . . , x1)+· · ·+ f (xN , x1, x2, x3, . . . , xN−1)

≥

n∑
k=1

λk f̃ (x1, xk
2 , x3, . . . , xN )+

n∑
k=1

λk f (xk
2 , x3, . . . , x1)

+ · · ·+

n∑
k=1

λk f (xN , x1, xk
2 , x3, . . . , xN−1)

≥ 0.

By taking the infimum over all possible such choices, we get

f̃ (x1, x2, x3, . . . , xN )+ f̃ (x2, x3, . . . , x1)+· · ·+ f (xN , x1, x2, x3, . . . , xN−1)≥ 0.

By repeating this procedure with x3, . . . , xN−1, we get

N−2∑
i=0

f̃ (σ i (x1, x2, . . . , xN ))+ f (xN , x1, x2, x3, . . . , xN−1)≥ 0.
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Finally, since

f (xN , x1, x2, x3, . . . , xN−1)≥−

N−2∑
i=0

f̃ (σ i (x1, x2, . . . , xN ))

and since f̃ is concave in the last N−1 variables, the function

xN →−

N−2∑
i=0

f̃ (σ i (x1, x2, . . . , xN ))

for fixed x1, x2, . . . , xN−1 is a convex minorant of xN → f (xN , x1, x2, . . . , xN−1).
It follows that

f (xN , x1, x2, x3, . . . , xN−1)≥ f̃ (xN , x1, x2, x3, . . . , xN−1)

≥−

N−2∑
i=0

f̃ (σ i (x1, x2, . . . , xN )),

which yields
N−1∑
i=0

f̃ (σ i (x1, x2, . . . , xN ))≥ 0. This implies that f̃ (x, x, . . . , x)≥ 0
for x ∈�.

On the other hand, since f̃ (x, x, . . . , x) ≤ f (x, x, . . . , x) = 0, we get that
f̃ (x, x, . . . , x)= 0 for all x ∈�. �

Proof of Theorem 2. Assume the (N−1)-tuple of vector fields (u1, . . . , uN−1) is
jointly N -monotone on �, and consider the function

f (x1, . . . , xN ) :=

N−1∑
l=1

〈ul(x1), x1− xl+1〉

as well as its convexification with respect to the first variable f̃ (x1, . . . , xN ).
By Lemma 4, the function ψ(x1, . . . , xN ) := − f̃ (x1, . . . , xN ) satisfies the fol-

lowing properties:

(i) x1→ ψ(x1, . . . , xN ) is concave.

(ii) (x2, x3, . . . , xN )→ ψ(x1, . . . , xN ) is convex.

(iii) ψ(x1, . . . , xN )≥− f (x1, . . . , xN )=
N−1∑
l=1
〈ul(x1), xl+1− x1〉.

(iv) ψ is N -sub-antisymmetric.

Now consider the family H of functions H :�N
→ R such that

1) H(x1, x2, . . . , xN )≥
∑N−1

l=1 〈ul(x1), xl+1−x1〉 for every N -tuple (x1, . . . , xN )

in �N ,

2) H is concave in the first variable,

3) H is jointly convex in the last N−1 variables,
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4) H is N -sub-antisymmetric,

5) H is zero on the diagonal of �N .

Note that H 6= ∅ since ψ belongs to H. Note that any H satisfying condi-
tions 1 and 4 automatically satisfies 5. Indeed, by N -sub-antisymmetry, for all
x = (x1, . . . , xN ) ∈�

N we have

(21) H(x)≤−
N−1∑
i=1

H(σ i (x))≤−
N−1∑
i=1

ψ(σ i (x)).

This also yields that

(22)
N−1∑
`=1

〈u`(x1), x`+1− x1〉 ≤ H(x)≤−
N∑

i=2

N−1∑
`=1

〈u`(xi ), xi − xi+`〉,

where we denote xi+N := xi for i = 1, . . . , `. This yields that H(x, x, . . . , x)= 0
for any x ∈�.

It is also easy to see that every directed family (Hi )i in H has a supremum
H∞ ∈H, meaning that H is a Zorn family, and therefore has a maximal element H .

Now consider the function

H(x)=
1
N

(
(N − 1)H(x)−

N−1∑
i=1

H(σ i (x))
)
.

(i) H is N -antisymmetric, since H(x) = 1
N

N−1∑
i=1
[H(x)− H(σ i (x))], and each

summand is N -antisymmetric.

(ii) H ≥ H on �N , since N [H(x)− H(x)] = −
N−1∑
i=0

H(σ i (x)) ≥ 0 (because H
itself is N -sub-antisymmetric).

The maximality of H would have implied that H = H is N -antisymmetric if only
H was jointly convex in the last N−1 variables, but since this is not necessarily
the case, we consider for x = (x1, x2, . . . , xN ) the function

K (x1, x2, . . . , xN )= K (x) := −
N−1∑
i=1

H(σ i (x)),

which is already concave in the first variable x1. Its convexification in the last N−1
variables, that is,

K 2,...,N (x)

= inf
{ n∑

i=1
λi K (x1, x i

2, . . . , x i
N ) : λi ≥ 0,

n∑
i=1
λi (x i

2, . . . , x i
N , 1)= (x2, . . . , xN , 1)

}
,
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is still concave in the first variable, but is now convex in the last N−1 variables.
Moreover,

(23) H ≤ K 2,...,N
≤ K =−

N−1∑
i=1

H ◦ σ i .

Indeed, K 2,...,N
≤ K from the definition of K 2,...,N , while H ≤ K 2,...,N because

H ≤ K and H is already convex in the last N−1 variables. It follows that

H ≤
(N − 1)H + K 2,...,N

N
≤
(N − 1)H + K

N
=

1
N

(
(N−1)H−

N−1∑
i=1

H ◦σ i
)
= H .

The function H ′ = ((N −1)H +K 2,...,N )/N belongs to the family H and therefore
H = H ′ by the maximality of H .

This finally yields that H is N -sub-antisymmetric, that H(x, . . . , x)= 0 for all
x ∈� and that

H(x)+ H2,...,N (x)= 0 for every x ∈�N ,

where H2,...,N =−K 2,...,N , which for a fixed x1 is nothing but the concavification
of (x2, . . . , xN )→

∑N−1
i=1 H(σ i (x1, x2, . . . , xN )).

Note now that since for any x1, . . . , xN in �

(24) H(x1, x2, . . . xN )≥

N−1∑
`=1

〈u`(x1), x`+1− x1〉,

and

(25) H(x1, x1, . . . , x1)= 0,

we have

(26) H(x1, x2, . . . , xN )− H(x1, . . . , x1)≥

N−1∑
`=1

〈u`(x1), x`+1− x1〉.

Since H is convex in the last N−1 variables, this means that for all x ∈�, we have

(27) (u1(x), u2(x), . . . , uN−1(x)) ∈ ∂2,...,N H(x, x, . . . , x),

as claimed in (15). This also yields

L H (x, u1(x), . . . , uN−1(x))+ H(x, x, . . . , x)=
N−1∑
`=1

〈u`(x), x〉 for all x ∈�.

In other words, L H (x, u1(x), . . . , uN−1(x)) =
N−1∑̀
=1
〈u`(x), x〉 for all x ∈ �. As

above, consider
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H(x)=
1
N

(
(N − 1)H(x)−

N−1∑
i=1

H(σ i (x))
)
.

We have H ∈HN (�) and H ≥ H , and therefore L H ≤ L H . On the other hand, for
all x ∈� we have

L H (x, u1(x), . . . , uN−1(x))= L H (x, u1(x), . . . , uN−1(x))+ H(x, x, . . . , x)

≥

N−1∑
`=1

〈u`(x), x〉.

To prove (17), we use the appendix in [Ghoussoub and Moameni 2013b] to deduce
that for i = 2, . . . , N , the gradients ∇i H(x, x, . . . , x) actually exist for a.e. x in �.

The converse is straightforward since if (27) holds, then (26) does, and since
we also have (25), then the property that (u1, . . . , uN−1) is jointly N -monotone
follows from (24) and the sub-antisymmetry of H . �

In the case of a single N -monotone vector field, we can obviously apply the
above theorem to the (N−1)-tuple (u, 0, . . . , 0), which is then N -monotone, to
find an N -sub-antisymmetric Hamiltonian H , which is concave in the first variable
and convex in the last N−1 variables such that

(28) (−u(x), u(x), 0, . . . , 0)=∇H(x, x, . . . , x) for a.e. x ∈�.

However, in this case we can restrict ourselves to N -cyclically sub-antisymmetric
functions of two variables and establish the following extension of the theorem of
Krauss.

Theorem 5. If u is N-cyclically monotone on�, then there exists a concave-convex
function of two variables F that is N-cyclically sub-antisymmetric and zero on the
diagonal, such that

(29) (−u(x), u(x)) ∈ ∂F(x, x) for all x ∈�,

where ∂H is the subdifferential of H as a concave-convex function [Rockafellar
1970]. Moreover,

(30) u(x)=∇2 F(x, x) for a.e. x ∈�.

Proof. Let f (x, y)= 〈u(x), x − y〉 and let f 1(x, y) be its convexification in x for
fixed y, that is,

(31) f 1(x, y)= inf
{ n∑

k=1

λk f (xk, y) : λk ≥ 0,
n∑

k=1

λk = 1,
n∑

k=1

λk xk = x
}
.

Since f (x, x) = 0, f is linear in y, and
N∑

i=1
f (xi , xi+1) ≥ 0 for any cyclic family



N -CYCLICALLY MONOTONE VECTOR FIELDS 333

x1, . . . , xN , xN+1 = x1 in �, it is easy to show that f ≥ f 1 on �, f 1 is convex in
the first variable and concave with respect to the second, f 1(x, x) = 0 for each
x ∈�, and that f 1 is N -cyclically supersymmetric in the sense that for any cyclic
family x1, . . . , xN , xN+1 = x1 in �, we have

∑N
i=1 f 1(xi , xi+1)≥ 0.

Now consider F(x, y) = − f 1(x, y) and note that x → F(x, y) is concave,
y→ F(x, y) is convex, F(x, y)≥− f (x, y)= 〈u(x), y− x〉 and F is N -cyclically
sub-antisymmetric. By the antisymmetry, we have

(32) 〈u(x1), x2− x1〉 ≤ F(x1, x2)≤ 〈u(x2), x2− x1〉,

which yields that (−u(x), u(x)) ∈ ∂F(x, x) for all x ∈�.
Since F is antisymmetric and concave-convex, the possibly multivalued map

x→ ∂2 F(x, x) is monotone on �, and therefore single-valued and differentiable
almost everywhere [Phelps 1993]. This completes the proof. �

Remark 6. We cannot expect to have a function F such that
∑N

i=1 F(xi , xi+1)= 0
for all cyclic families x1, . . . , xN , xN+1 = x1 in �. Actually, we believe that the
only function satisfying such an N -antisymmetry for N ≥ 3 must be of the form
F(x, y)= f (x)− f (y). This is why one needs to consider functions of N variables
in order to get N -antisymmetry. In other words, the function defined by

(33) H(x1, x2, . . . , xN ) :=
1
N

(
(N − 1)F(x1, x2)−

N−1∑
i=2

F(xi , xi+1)

)
is N -antisymmetric in the sense of (6) and H(x1, x2, . . . , xN )≥ F(x1, x2) for all
(x1, x2, . . . , xN ) in �N .

3. Variational characterization of monotone vector fields

In order to simplify the exposition, we shall always assume in the sequel that dµ is
Lebesgue measure dx normalized to be a probability on �. We shall also assume
that � is convex and that its boundary has measure zero.

Theorem 7. Let u1, . . . , uN−1 :�→Rd be bounded measurable vector fields. The
following properties are then equivalent:

1) The (N−1)-tuple (u1, . . . , uN−1) is jointly N-monotone a.e., that is, there
exists a measure-zero set �0 such that (u1, . . . , uN−1) is jointly N-monotone
on � \�0.

2) The infimum of the Monge–Kantorovich problem

(34) inf
{∫

�N

N−1∑
`=1

〈u`(x1), x1− x`+1〉 dπ(x1, x2, . . . , xN )) : π ∈ Pµ
sym(�

N )

}
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is equal to zero, and is therefore attained by the push-forward of µ by the map
x→ (x, x, . . . , x).

3) (u1, . . . , uN−1) is in the polar of SN (�,µ) in the following sense:

(35) inf
{∫

�

N−1∑
`=1

〈u`(x), x − S`x〉 dµ : S ∈ SN (�,µ)

}
= 0.

4) The following holds:

(36) inf
{∫

�

N−1∑
`=1

|u`(x)− S`x |2 dµ : S ∈ SN (�,µ)

}
=

N−1∑
`=1

∫
�

|u`(x)− x |2 dµ.

5) There exists an N-sub-antisymmetric Hamiltonian H which is concave in the
first variable, convex in the last N−1 variables, and vanishing on the diagonal
such that

(37) (u1(x), . . . , uN−1(x))=∇2,...,N H(x, x, . . . , x) for a.e. x ∈�.

Moreover, H is N-symmetric in the sense of (16).

6) The following duality holds:

inf
{∫

�

L H (x, u1(x), . . . , uN−1(x)) dµ : H ∈HN (�)

}
= sup

{∫
�

N−1∑
`=1

〈u`(x), S`x〉 dµ : S ∈ SN (�,µ)

}
and the latter is attained at the identity map.

We start with the following lemma, which identifies those probabilities in
P
µ
sym(�

N ) that are carried by graphs of functions from � to �N .

Lemma 8. Let S :�→� be a µ-measurable map. The following properties are
equivalent:

1) The image of µ by the map x→ (x, Sx, . . . , SN−1x) belongs to P
µ
sym(�

N ).

2) S is µ-measure-preserving and SN (x)= x µ-a.e.

3) For any bounded Borel measurable N-antisymmetric H on �N , we have∫
�

H(x, Sx, . . . , SN−1x) dµ= 0.

Proof. Clearly 1) implies 3), since
∫
�N H(x) dπ(x)= 0 for any N -antisymmetric

Hamiltonian H and any π ∈ P
µ
sym(�

N ).
That 2) implies 1) is also straightforward since if π is the push-forward of µ by

a map of the form x→ (x, Sx, . . . , SN−1x), where S is a µ-measure-preserving S
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with SN x = x µ-a.e. on �, then for all h ∈ L1(�N , dπ), we have∫
�N

h(x1, . . . , xN ) dπ =
∫
�

h(x, Sx, . . . , SN−1x) dµ(x)

=

∫
�

h(Sx, S2x, . . . , SN−1x, SN x) dµ(x)

=

∫
�

h(Sx, S2x, . . . , SN−1x, x) dµ(x)

=

∫
�N

h(σ (x1, . . . , xN )) dπ.

We now prove that 2) and 3) are equivalent. Assuming first that S is µ-measure-
preserving such that SN

= I µ-a.e., then for every Borel bounded N -antisymmetric
H , we have∫
�

H(x, Sx, S2x, . . . , SN−1x) dµ=
∫
�

H(Sx, S2x, . . . , SN−1x, x) dµ

= · · · =

∫
�

H(SN−1x, x, Sx, . . . , SN−2x) dµ.

Since H is N -antisymmetric, we can see that

H(x, Sx, . . . , SN−1x)+ H(Sx, S2x, . . . , SN−1x, x)

+ · · ·+ H(SN−1x, x, Sx, . . . , SN−2x)= 0.

It follows that N
∫
�

H(x, Sx, S2x, . . . , SN−1x) dµ= 0.
For the reverse implication, assume

∫
�

H(x, Sx, S2x, . . . , SN−1x) dµ = 0 for
every N -antisymmetric Hamiltonian H . By testing this identity with the Hamil-
tonians

H(x1, x2, . . . , xN )= f (x1)− f (xi ),

where f is any continuous function on �, one gets that S is µ-measure-preserving.
Now take the Hamiltonian

H(x1, x2, . . . , xN )= |x1− SxN | − |Sx1− x2| − |x2− Sx1| + |Sx2− x3|.

Note that H ∈HN (�) since it is of the form

H(x1, . . . , xN )= f (x1, x2, xN )− f (x2, x3, x1).

Now test the above identity with such an H to obtain

0=
∫
�

H(x, Sx, S2x, . . . , SN−1x) dµ=
∫
�

|x − SSN−1x | dµ.

It follows that SN
= I µ-a.e. on ω, and we are done. �
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Proof of Theorem 7. To show that 1) implies 2), it suffices to notice that if π is a
σ -invariant probability measure on �N such that proj1π = µ, then∫
�N

N−1∑
`=1

〈u`(x1), x1− x`+1〉 dπ(x1, . . . , xN )

=
1
N

N∑
i=1

∫
�N

N−1∑
`=1

〈u`(xi ), xi − xi+`〉 dπ(x1, . . . , xN )

=
1
N

∫
�N

( N∑
i=1

N−1∑
`=1

〈u`(xi ), xi − xi+`〉

)
dπ(x1, . . . , xN )

≥ 0,

since (u1, . . . , uN−1) is jointly N -monotone. On the other hand, if π is the
σ -invariant measure obtained by taking the image of µ := dx by x→ (x, . . . , x),
then ∫

�N

N−1∑
`=1

〈u`(x1), x1− x`+1〉 dπ(x1, . . . , xN )= 0.

To show that 2) implies 3), let S be a µ-measure-preserving transformation on �
such that SN

= I µ-a.e. on �. Then the image πS of µ by the map

x→ (x, Sx, S2x, . . . , SN−1x)

is σ -invariant, hence∫
�N

N−1∑
`=1

〈u`(x1), x1− x`+1〉 dπS(x1, . . . , xN )=

∫
�

N−1∑
`=1

〈u`(x), x − S`x〉 dµ≥ 0.

By taking S = I , we get that the infimum is necessarily zero.
The equivalence of 3) and 4) follows immediately from developing the square.
We now show that 3) implies 1). Take N points x1, x2, . . . , xN in �, and let

R > 0 be such that B (xi , R)⊂�. Consider the transformation

SR(x)=



x − x1+ x2 for x ∈ B(x1, R),
x − x2+ x3 for x ∈ B(x2, R),

...

x − xN + x1 for x ∈ B(xN , R),
x otherwise.

It is easy to see that SR is a measure-preserving transformation and that SN
R = Id.
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We then have

0≤
∫
�

N−1∑
`=1

〈u`(x), x − S`R x〉 dµ≤
N∑

i=1

∫
B(xi ,R)

N−1∑
`=1

〈u`(x), xi − x`+i 〉 dµ.

Letting R→ 0, we get from Lebesgue’s density theorem that

1
|B(xi , R)|

∫
B(xi ,R)

〈u`(x), xi − x`+i 〉dµ→ 〈u`(xi ), xi − x`+i 〉,

from which follows that (u1, . . . , uN−1) are jointly N -monotone a.e. on �. The
fact that 1) is equivalent to 5) follows immediately from Theorem 2.

To prove that 5) implies 6), note that for all pi ∈ Rd , x ∈ �, yi ∈ �, i =
1, . . . , N − 1,

L H (x, p1, . . . , pN−1)+ H(x, y1, . . . , yN−1)≥

N−1∑
i=1

〈pi , yi 〉,

which yields that for any S ∈ SN (�,µ),∫
�

[L H (x, u1(x), . . . , uN−1(x)) dµ+ H(x, Sx, . . . , SN−1x)] dµ

≥

∫
�

N−1∑
`=1

〈u`(x), S`x〉 dµ.

If H ∈HN (�) and S ∈SN (�,µ), we then have
∫
�

H(x, Sx, . . . , SN−1x) dµ= 0,
and therefore∫

�

L H (x, u1(x), . . . , uN−1(x)) dµ≥
∫
�

N−1∑
`=1

〈u`(x), S`x〉 dµ.

If now H is the N -sub-antisymmetric Hamiltonian obtained by 5), which is concave
in the first variable and convex in the last N−1 variables, then

L H (x, u1(x), . . . , uN−1(x))+H(x, x, . . . , x)=
N−1∑
`=1

〈u`(x), x〉 for all x ∈�\�0,

and therefore
∫
�

L H (x, u1(x), . . . , uN−1(x)) dµ=
N−1∑̀
=1

∫
�
〈u`(x), x〉 dµ.

Now consider

H(x)=
1
N

(
(N − 1)H(x)−

N−1∑
i=1

H(σ i (x))
)
.
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As before, we have H ∈HN (�) and H ≥ H . Since L H ≤ L H , we have∫
�

L H (x, u1(x), . . . , uN−1(x)) dµ=
N−1∑
`=1

∫
�

〈u`(x), x〉 dµ

and 6) is proved.
Finally, note that 6) readily implies 3), which means that (u1, . . . , uN−1) is then

jointly N -monotone. �

We now consider again the case of a single N -cyclically monotone vector field.

Corollary 9. Let u :�→ Rd be a bounded measurable vector field. The following
properties are then equivalent:

1) The vector field u is N-cyclically monotone a.e., that is, there exists a measure-
zero set �0 such that u is N-cyclically monotone on � \�0.

2) The infimum of the Monge–Kantorovich problem

(38) inf
{∫

�N
〈u(x1), x1− x2〉 dπ(x) : π ∈ Pµ

sym(�
N )

}
is equal to zero, and is therefore attained by the push-forward of µ by the map
x→ (x, x, . . . , x).

3) The vector field u is in the polar of SN (�,µ), that is,

(39) inf
{∫

�

〈u(x), x − Sx〉 dµ : S ∈ SN (�,µ)

}
= 0.

4) The projection of u on SN (�,µ) is the identity map, that is,

(40) inf
{∫

�

|u(x)− Sx |2 dµ : S ∈ SN (�,µ)

}
=

∫
�

|u(x)− x |2 dµ.

5) There exists an N-cyclically sub-antisymmetric function H of two variables,
which is concave in the first variable, convex in the second variable, vanishing
on the diagonal and such that

(41) u(x)=∇2 H(x, x) for a.e. x ∈�.

6) The following duality holds:

inf
{∫

�

L H (x, u(x), 0, . . . , 0) dµ : H ∈HN (�)

}
= sup

{∫
�

〈u(x), Sx〉 dµ : S ∈ SN (�,µ)

}
and the latter is attained at the identity map.
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Proof. This is an immediate application of Theorem 7 applied to the (N−1)-tuplet
vector fields (u, 0, . . . , 0), which is clearly jointly N -monotone on�\�0, whenever
u is N -monotone on � \�0. �

Remark 10. The sets of µ-measure-preserving N -involutions (SN (�,µ))N do not
form a nested family, that is, SN (�,µ) is not necessarily included in SM(�,µ),
whenever N ≤ M , unless of course M is a multiple of N . On the other hand, the
above theorem shows that their polar sets, i.e.,

SN (�,µ)
0
=

{
u ∈ L2(�,Rd) :

∫
�

〈u(x), x − Sx〉 dµ≥ 0 for all S ∈ SN (�,µ)

}
,

which coincide with the N -cyclically monotone maps, satisfy

SN+1(�,µ)
0
⊂ SN (�,µ)

0,

for every N ≥ 1. This can also be seen directly. Indeed, it is clear that a 2-involution
is a 4-involution but not necessarily a 3-involution. On the other hand, assume that
u is a 3-cyclically monotone operator. Then for any transformation S :�→�, we
have∫
�

〈u(x), x − Sx〉 dµ+
∫
�

〈u(Sx), Sx − S2x〉 dµ+
∫
�

〈u(S2x), S2x − x〉 dµ≥ 0.

Now if S is measure-preserving, we have∫
�

〈u(x), x − Sx〉 dµ+
∫
�

〈u(x), x − Sx〉 dµ+
∫
�

〈u(S2x), S2x − x〉 dµ≥ 0,

and if S2
= I , then

∫
�
〈u(x), x − Sx〉 dµ ≥ 0, which means that u ∈ S2(�,µ)

0.
Similarly, one can show that any (N+1)-cyclically monotone operator belongs to
SN (�,µ)

0. In other words, SN+1(�,µ)
0
⊂ SN (�,µ)

0 for all N ≥ 2. Note that
S1(�,µ)

0
= {I }0 = L2(�,Rd), while

S(�,µ)0 =
⋂

N SN (�,µ)
0

= {u ∈ L2(�,Rd), u =∇φ for some convex function φ in W 1,2(Rd)},

in view of classical results of Rockafellar [1970] and Brenier [1991].

Remark 11. In [Ghoussoub and Moameni 2013b], the preceding result is extended
to give a similar decomposition for any family of bounded measurable vector fields
u1, u2, . . . , uN−1 on �. It is shown there that there exists a measure-preserving
N -involution S on � and an N -antisymmetric Hamiltonian H on �N such that for
i = 1, . . . , N − 1, we have

ui (x)=∇i+1 H(x, Sx, S2x, . . . , SN−1x) for a.e. x ∈�.
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