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A STOCHASTIC CONTROL APPROACH TO NO-ARBITRAGE

BOUNDS GIVEN MARGINALS, WITH AN APPLICATION

TO LOOKBACK OPTIONS

By A. Galichon1, P. Henry-Labordère and N. Touzi1

Sciences Po, Société Générale and Ecole Polytechnique

We consider the problem of superhedging under volatility uncer-
tainty for an investor allowed to dynamically trade the underlying as-
set, and statically trade European call options for all possible strikes
with some given maturity. This problem is classically approached
by means of the Skorohod Embedding Problem (SEP). Instead, we
provide a dual formulation which converts the superhedging prob-
lem into a continuous martingale optimal transportation problem.
We then show that this formulation allows us to recover previously
known results about lookback options. In particular, our methodol-
ogy induces a new proof of the optimality of Azéma–Yor solution of
the SEP for a certain class of lookback options. Unlike the SEP tech-
nique, our approach applies to a large class of exotics and is suitable
for numerical approximation techniques.

1. Introduction. In a financial market allowing for the dynamic trading
of a riskless asset, normalized to unity, and some given underlying assets
without restrictions, the fundamental theorem of asset pricing essentially
states that the absence of arbitrage opportunities is equivalent to the ex-
istence of a probability measure under which the underlying asset process
is a martingale. See Kreps [24], Harrison and Pliska [18] and Delbaen and
Schachermayer [14]. Then, for the purpose of hedging, the only relevant in-
formation is the quadratic variation of the assets price process under such a
martingale measure. Without any further assumption on the quadratic vari-
ation, the robust superhedging cost reduces to an obvious bound which can
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be realized by static trading on the underlying assets; see Cvitanić, Pham
and Touzi [12] and Frey [17].

In this paper, we examine the problem of superhedging, under the condi-
tion of no-arbitrage, when the financial market allows for the static trading
of European call options in addition to the dynamic trading of the un-
derlying asset with price process {Xt, t ≥ 0}. For simplicity, we consider
the case where all available European call options have the same matu-
rity T . However, we idealize the financial market assuming that such Eu-
ropean call options are available for all possible strikes. Under the linearity
(and continuity) assumption, this means that although the joint distribu-
tion P of the process X is unknown, the modeler has access to the function
K ∈R+ 7−→ E[(XT −K)+], and therefore to the marginal distribution µ of
the random variable XT , as observed by Breeden and Litzenberger [6]. In
particular, any T -maturity vanilla derivative, with payoff g(XT ), can be per-
fectly replicated by a portfolio of European calls, and has an unambiguous
no-arbitrage price

∫

g dµ, as long as g ∈ L
1(µ), which can be expressed as a

linear combination of the given prices of the underlying calls.
This problem is classically approached in the literature by means of the

Skorohod embedding problem (SEP) which shows up naturally due to the
Dambis–Dubins–Schwarz time change result. However, only some special
cases of derivatives are eligible for this approach, namely those defined by a
payoff which is invariant under rime change. The use of the SEP techniques
to solve the robust superhedging problem can be traced back to the seminal
paper by Hobson [20]. The survey paper by Hobson [21] is very informative
and contains the relevant references on the subject. For a derivative security
g(Xs, s ≤ t) written on an underlying asset X , the idea is to search for
a function λ and a martingale M such that g(Xs, s ≤ t) ≤ λ(Xt) +Mt so
that E[g(Xs, s≤ τ)]≤

∫

λdµ for all stopping times τ such that Xτ has the
distribution µ determined from European call options, as outlined above.
The bound is then obtained by designing λ, M and τ such that g(Xs, s≤
τ) = λ(Xτ ) +Mτ .

In this paper, we develop an alternative approach which relates the robust
superhedging problem to the literature on stochastic control; see Fleming
and Soner [16]. Our approach consists of solving directly the robust super-
hedging problem whose solution provides the above function λ and martin-
gale M . As a consequence, unlike the SEP approach which requires that the
payoff of the exotic to be invariant under time change, there is no restric-
tion on the class of derivative securities as the time change step is avoided.
Moreover, our methodology is related to the optimal transportation theory,
and in fact opens the door to an original new ramification in this theory by
imposing naturally that the transportation be performed along a continuous
martingale.
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Our first main result, reported in Sections 2.3 and 2.4, provides a formu-
lation of the robust superhedging problem based on the Kantorovich duality
in the spirit of Benamou and Brenier [4]; see Villani [39]. A finite dimen-
sional version of this dual formulation was already used by Davis, Oblój and
Raval [13]. Also, this duality is implicitly proved for special cases of deriva-
tives in the previous literature based on the SEP. So the importance of our
duality result lies in its generality. Moreover, similar to the SEP approach,
the solution of the dual problem provides the corresponding optimal hedging
strategy and worst case model. Finally, the dual formulation is suitable for
numerical approximation techniques as shown by Bonnans and Tan [5] and
Tan and Touzi [38].

Our next concern is to show that this duality result is not merely a the-
oretical result, but may be applied to compute things in practice. In this
paper, this is demonstrated in the context of lookback derivatives, where
the robust superhedging problem is known to be induced by the Azéma–Yor
solution of the SEP [1, 2]. A semi-static hedging strategy corresponding to
this bound was produced by Hobson [20]. Our second main result, reported
in Section 3, reproduces this bound by means of our dual formulation. In
particular, this provides a new presentation of the fact that the Azéma–Yor
solution of the SEP realizes the upper bound for a certain class of lookback
options. We also recover in Section 4 the robust superhedging cost for the
forward lookback option which was also derived in Hobson [20].

The results of Sections 3 and 4 are not new, and are reported here in order
to show that the optimal transportation approach is suitable to recover
these known results. Beyond rediscovering the formerly derived results in
the literature, we would like to insist on the fact that the present optimal
transportation approach complements the SEP approach by putting the
emphasis on the superhedging problem whose solution provides the optimal
semi-static superhedging strategy. This feature is perfectly illustrated in the
related paper [19], where:

(i) this approach is used in order to provide the optimal semi-static su-
perhedging strategy;

(ii) by using the optimal semi-static superhedging strategy from (i), Oblój
and Spoida [31] prove an extension of the Azéma–Yor solution of the SEP
to the case of multiple intermediate marginals.

The final outcome from [19, 31] is an extension of the previous results of
Brown, Hobson and Rogers [7] and Madan and Yor [25].

We also observe that one should not expect to solve explicitly the problem
of robust superhedging, in general. Therefore, an important advantage of the
optimal transportation approach is that the corresponding dual formulation
is suitable for numerical approximation techniques; see Bonnans and Tan
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[5] for the case of variance options, and Tan and Touzi [38] for a class of
optimal transportation problems motivated by this paper.

Finally, we would like to emphasize that by expressing the robust bound
as the value function of a superhedging problem, we are implicitly addressing
the important issue of no-arbitrage under model uncertainty, as discussed
in the previous literature; see, for example, Cox and Oblój [11] and Davis,
Oblòj and Raval [13]. Indeed, if an arbitrage does exist, under some conve-
niently defined weak form, the value function would be infinite. Conversely,
whenever the value function is finite, the financial market would either ad-
mit a genuine model-free arbitrage, if existence holds for the dual problem,
or some convenient notion of weak arbitrage otherwise.

2. Model-free bounds of derivatives securities.

2.1. The probabilistic framework. Let Ω := {ω ∈C([0, T ],Rd) :ω0 = 0} be
the canonical space equipped with the uniform norm ‖ω‖∞ := sup0≤t≤T |ωt|,
B the canonical process, P0 the Wiener measure, F := {Ft}0≤t≤T the filtra-
tion generated by B and F

+ := {F+
t ,0≤ t≤ T} the right limit of F, where

F+
t :=

⋂

s>tFs.

Throughout the paper,X0 is some given initial value in R
d
+, and we denote

Xt :=X0 +Bt for t ∈ [0, T ].

For any F-progressively measurable process α with values in S>0
d (space of

definite positive symmetric matrices) and satisfying
∫ T
0 |αs|ds <∞, P0-a.s.,

we define the probability measure on (Ω,F),

P
α := P0 ◦ (X

α)−1,

where

Xα
t :=X0 +

∫ t

0
α1/2
r dBr, t ∈ [0, T ],P0-a.s.

Then X is a P
α-local martingale. Following [34], we denote by PS the col-

lection of all such probability measures on (Ω,F). The quadratic variation
process 〈X〉= 〈B〉 is universally defined under any P ∈PS , and takes values
in the set of all nondecreasing continuous functions from R+ to S>0

d . Finally,
we recall from [34] that

every P ∈ PS satisfies the Blumenthal zero–one law
(2.1)

and the martingale representation property.

In this paper, we shall focus on the subset P∞ of PS consisting of all mea-
sures P such that

X is a P-uniformly integrable martingale with values in R
d.
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The restriction of the probability measures in P∞ to those induced by uni-
formly integrable martingales X is motivated by our subsequent interpreta-
tion of the entries Xi as price processes of financial securities.

2.2. Model-free super-hedging problem. For all P ∈ P∞, we denote

H
2
loc(P) :=

{

H ∈H
0(P) :

∫ T

0
Tr[HT

t Ht d〈B〉t]<∞,P-a.s.

}

,

where Tr denotes the trace operator. We assume that

the interest rate is zero.

Under the self-financing condition, for any portfolio process H , the portfolio
value process

Y H
t := Y0 +

∫ t

0
Hs · dBs, t ∈ [0, T ],(2.2)

is well defined P-a.s. for every P ∈ P∞, whenever H ∈H
2
loc. This stochastic

integral should be rather denoted Y H
t

P
to emphasize its dependence on P;

see, however, Nutz [28].
Let ξ be an FT -measurable random variable. We introduce the subset of

martingale measures

P∞(ξ) := {P ∈ P∞ :EP[ξ−]<∞}.

The reason for restricting to this class of models is that, under the condition
that E

P[ξ+] <∞, the hedging cost of ξ under P is expected to be −∞
whenever E

P[ξ−] =∞. As usual, in order to avoid doubling strategies, we
introduce the set of admissible portfolios,

H(ξ) := {H :H ∈H
2
loc and Y

H is a P-supermartingale for all P ∈ P∞(ξ)}.

The model-free superhedging problem is defined by

U0(ξ) := inf{Y0 :∃H ∈H(ξ), Y H
1 ≥ ξ,P-a.s. for all P ∈P∞(ξ)}.(2.3)

We call U0 the model-free superhedging bound, and we recall its interpreta-
tion as the no-arbitrage upper bound on the market price of the derivative
security ξ, for an investor who has access to continuous-time trading the
underlying securities with price process X .

2.3. Dual formulation of the super-hedging bound. We denote by UC(ΩX0)
the collection of all uniformly continuous maps from ΩX0 to R, where X0 ∈
R
d is a fixed initial value, and ΩX0 := {ω ∈ C([0, T ],Rd+) :ω0 = X0}. The

following result is a direct adaptation from Soner, Touzi and Zhang [35].



6 A. GALICHON, P. HENRY-LABORDÈRE AND N. TOUZI

Theorem 2.1. Let ξ ∈ UC(ΩX0) be such that supP∈P∞
E
P[ξ+] < ∞.

Then

U0(ξ) = sup
P∈P∞

E
P[ξ].

Assume further that U0(ξ) is finite. Then there exists a process H ∈ H(ξ)
and a family of nondecreasing predictable processes {KP,P ∈ P∞(ξ)}, with
KP

0 = 0 for all P ∈P∞(ξ), s.t.

ξ = U0(ξ) +

∫ 1

0
Ht · dBt −KP

1 , P-a.s. for all P ∈P∞(ξ).(2.4)

The proof is reported in Section 5.

Remark 2.1. A similar dual representation as in Theorem 2.1 was first
obtained by Denis and Martini [15] in the bounded volatility case. Notice,
however, that the family of nondominated singular measures in [15] is not
included in our set PS , and does not allow for the existence of an optimal
super-hedging strategy.

While revising this paper, a new approach for the robust superhedging
problem, initiated by Nutz and von Handel [29] and Neufeld and Nutz [27],
allowed for an extension of Theorem 2.1 by Possamäı, Royer and Touzi [33].

2.4. Calibration adjusted no-arbitrage bound. In this section we special-
ize the discussion to the one-dimensional case. This is consistent with the
one-dimensional practical treatment of vanilla options on real financial mar-
kets.

We assume that, in addition to the continuous-time trading of the primi-
tive securities, the investor can take static positions on T -maturity European
call or put options with all possible strikes K ≥ 0. Then, from Breeden and
Litzenberger [6], the investor can identify that the T -marginal distribution of
the underlying asset under the pricing measure is some probability measure
µ ∈M(R), the set of all probability measures on R.

Remark 2.2. For the purpose of the present financial application, the
measure µ has a support in R+. We consider, however, the general case
µ ∈M(R) in order to compare our results to the Azéma–Yor solution of the
SEP.

For any scalar function λ ∈ L
1(µ), the T -maturity European derivative

defined by the payoff λ(XT ) has an un-ambiguous no-arbitrage price

µ(λ) =

∫

λdµ
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and can be perfectly replicated by buying and holding a portfolio of Euro-
pean calls and puts of all strikes, with the density λ′′(K) at strike K (with
λ′′ understood in the sense of distributions). See Carr and Chou [8]. In par-
ticular, given the spot price X0 > 0 of the underlying assets, the probability
measure µ must satisfy

∫

xµ(dx) =X0.

We now define an improvement of the no-arbitrage upper-bound by ac-
counting for the additional possibility of statically trading the European
call options. Let

Λµ :=
{

λ ∈ L
1(µ) : sup

P∈P∞

E
P[λ(XT )

−]<∞
}

and

(2.5)
ΛµUC := Λµ ∩UC(R),

where UC(R) is the collection of all uniformly continuous maps from R to
R. For all λ ∈ Λµ, we denote ξλ := ξ − λ(X1). The improved no-arbitrage
upper bound is defined by

Uµ(ξ) := inf{Y0 :∃λ∈ ΛµUC and H ∈H(ξλ),
(2.6)

Y H,λ
1 ≥ ξ,P-a.s. for all P ∈P∞(ξλ)},

where Y H,λ denotes the portfolio value of a self-financing strategy with
continuous trading H in the primitive securities, and static trading λ in the
T -maturity European calls with all strikes

Y H,λ
1 := Y H

1 − µ(λ) + λ(XT ),(2.7)

indicating that the investor has the possibility of buying at time 0 any
derivative security with payoff λ(XT ) for the price µ(λ).

The next result is a direct application of Theorem 2.1.

Proposition 2.1. Let µ ∈ M(R), and ξ ∈ UC(ΩX0) with

supP∈P∞
E
P[ξ+]<∞. Then

Uµ(ξ) = inf
λ∈Λµ

UC

sup
P∈P∞

{µ(λ) +E
P[ξ − λ(XT )]}.

Proof. Observe that

Uµ(ξ) = inf
λ∈Λµ

UC

U0(ξ + µ(λ)− λ(XT )).

For every fixed λ, if V (0) := supP∈P∞
E
P[ξ + µ(λ)− λ(XT )] <∞, then the

proof of Theorem 2.1, reported in Section 5, applies and we get U0(ξ +
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µ(λ) − λ(XT )) = V (0). On the other hand, if V (0) =∞, then notice from
the proof of Theorem 2.1 that the inequality U0(ξ + µ(λ)− λ(XT ))≥ V (0)
is still valid in this case, and therefore U0(ξ + µ(λ)− λ(XT )) = V (0). �

Remark 2.3. As a sanity check, let us consider the case ξ = g(XT ),
for some uniformly continuous function g with µ(|g|) < ∞ and
supP∈P∞

E
P[|g(XT )|]<∞, and let us verify that Uµ(ξ) = µ(g).

First, since g ∈ ΛµUC, we may take λ = g, and it follows from the dual
formulation of Proposition 2.1 that Uµ(ξ) ≤ µ(g). On the other hand, it is
easily seen that

sup
P∈P∞

E
P[g(XT )] = gconc(X0),

where gconc is the smallest concave majorant of g. Then, it follows from
the dual formulation of Proposition 2.1 that Uµ(ξ) = infλ∈Λµ

UC
µ(λ) + (g −

λ)conc(X0)≥ infλ∈Λµ
UC
µ(λ) + µ(g − λ) = µ(g) as expected.

Remark 2.4. Similar to the SEP approach, the dual formulation of
Proposition 2.1 gives access to the optimal hedging strategy and the worst
case model. This requires that we prove an additional existence result of a
solution to the inf-sup problem (λ∗,P∗). Then λ∗ is the optimal T -maturity
vanilla profile, and P

∗ is the worst case model corresponding to the upper
bound. The optimal dynamic hedging strategy in the underlying asset is, as
usual, obtained by representation of the residual security ξ − λ∗(XT ); see
the proof of Theorem 2.1 in Section 5.

Remark 2.5. The dual formulation of Proposition 2.1 is suitable for nu-
merical approximation. Indeed, for each fixed multiplier λ, the maximization
problem is a (singular) stochastic control problem which may be approxi-
mated by finite differences or Monte Carlo methods. Then optimization stage
with respect to λ requires an additional iteration. This issue is addressed in
Tan and Bonnans [5] and Tan and Touzi [38].

2.5. Connection with optimal transportation theory. As an alternative
point of view, one may directly imbed in the no-arbitrage bounds the cali-
bration constraint that the risk neutral marginal distribution of BT is given
by µ.

For convenience of comparison with the optimal transportation theory,
the discussion of this subsection will be focused on the no-arbitrage lower
bound. A natural formulation of the calibration adjusted no-arbitrage lower
bound is

ℓ(ξ,µ) := inf{EP[ξ] :P ∈ P∞,X0 ∼P δX0 and XT ∼P µ},(2.8)
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where δX0 denotes the Dirac mass at the point X0. We observe that a direct
proof that ℓ(ξ,µ) coincides with the corresponding sub-hedging cost is not
obvious in the present context.

Under this form, the problem appears as minimizing the coupling crite-
rion EP[ξ] which involves the law of the process X under P, over all those
probability measures P ∈ P∞ such that the marginal distributions of X at
times 0 and T are fixed. This is the general scope of optimal transportation
problems as introduced by Monge and Kantorovich; see, for example, Villani
[39] and Mikami and Thieulen [26]. Motivated by the present financial ap-
plication, Tan and Touzi [38] extended the Kantorovich duality as described
below. However, the above problem ℓ(ξ,µ) does not satisfy the assumptions
in [38] so that none of the results contained in this literature apply to our
context.

The classical approach in optimal transportation consists of deriving a
dual formulation for problem (2.8) by means of the classical convex duality
theory. Recall thatM(R+) denotes the collection of all probability measures
on R+. Then, the Legendre dual with respect to µ is defined by

ℓ∗(ξ, λ) := sup
µ∈M(R+)

{µ(λ)− ℓ(ξ,µ)} for all λ ∈C0
b (R+)

the set of all bounded continuous functions from R+ to R. Direct calculation
shows that

ℓ∗(ξ, λ) = sup{EP[λ(XT )− ξ] :µ ∈M(R+),P ∈P∞,X0 ∼P δX0 and XT ∼P µ}

= sup{EP[λ(XT )− ξ] :P ∈ P∞,X0 ∼P δX0}.

Observe that the latter problem is a standard (singular) diffusion control
problem.

It is easily checked that ℓ is convex in µ. However, due to the absence of
a uniform bound on the quadratic variation of X under P ∈ P∞, it is not
obvious whether it is lower semicontinuous with respect to µ. If the latter
property were true, then the equality ℓ∗∗ = ℓ provides

ℓ(ξ,µ) = sup
λ∈C0

b

{µ(λ)− ℓ∗(ξ, λ)},

which is formally (up to the spaces choices) the lower bound analogue of the
dual formulation of Proposition 2.1. A discrete-time analysis of this duality
is contained in the parallel work to the present one by Beiglböck, Henry-
Labordère and Penkner [3]. We also observe that, for special cases of payoffs
ξ, this duality was implicitly proved in the previous literature based on the
SEP approach; see, for example, Cox, Hobson and Oblój [10].
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3. Application to lookback derivatives. Throughout this section, we con-
sider the one dimensional case d = 1. The derivative security is defined by
the lookback payoff

ξ = g(X∗
T ) where X∗

T := max
t≤T

Xt(3.1)

and

g :R−→ R+ is a C1 nondecreasing function.(3.2)

Our main interest is to show that the optimal upper bound given by Propo-
sition 2.1,

Uµ(ξ) = inf
λ∈Λµ

UC

{µ(λ) + uλ(0,X0,X0)}

reproduces the already known bound corresponding to the Azéma–Yor so-
lution to the Skorohod embedding problem. Here, uλ is the value function
of the dynamic version of stochastic control problem

uλ(t, x,m) := sup
P∈P∞

E
P[g(M t,x,m

T )− λ(Xt,x
T )], t≤ T, (x,m) ∈∆,(3.3)

where ∆ := {(x,m) ∈R
2 :x≤m}, and

Xt,x
u := x+ (Bu −Bt), M t,x,m

u :=m∨ max
t≤r≤u

Xt,x
r , 0≤ t≤ u≤ T.

When the time origin is zero, we shall simply write Xx
u :=X0,x

u andMx,m
u :=

M0,x,m
u .
For the subsequent analysis, we also claim that

Uµ(ξ) = inf
λ∈Λµ

{µ(λ) + uλ(0,X0,X0)},(3.4)

where Λµ is defined in (2.5). This follows from the recent extension by [33],
which appeared during the revision of this paper (see Remark 2.1), and
avoids placing further conditions on µ to ensure that the function λ∗ defined
in (3.14) below is uniformly continuous.

3.1. Formulation in terms of optimal stopping. We first convert the op-
timization problem uλ into an infinite horizon optimal stopping problem.

Proposition 3.1. For any λ ∈ Λµ, the functions uλ is independent of

t and

uλ(x,m) = sup
τ∈T∞

E
P0 [g(Mx,m

τ )− λ(Xx
τ )] for all (x,m) ∈∆,(3.5)

where T∞ is the collection of all stopping times τ such that the stopped

process {Xt∧τ , t≥ 0} is a P0-uniformly integrable martingale.

Proof. The present argument is classical, but we could not find a clear
reference. We therefore report it for completeness.
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By the definition of P∞, we may write the stochastic control problem
(3.3) in its strong formulation

uλ(t, x,m) := sup
σ∈Σ+

E
P0 [g(Mσ,t,x,m

T )− λ(Xσ,t,x
T ) | (Xσ,t,x

t ,Mσ,t,x,m
t ) = (x,m)],

where

Xσ,t,x
s = x+

∫ s

t
σr dBr, Mσ,t,x,m

s :=m∨ max
t≤r≤s

Xσ,t,x
r , 0≤ t≤ s≤ T

and Σ+ is the set of all nonnegative progressively measurable processes, with
∫ T
0 σ2s ds <∞, and such that the process {Xσ,t,x

s , t≤ s ≤ T} is a uniformly
integrable martingale.

We shall denote φ(x,m) := g(m)− λ(x).

(1) For a stopping time τ ∈ T∞, we define the processes στt := 1{τ∧(t/(T−t))}

and Xστ
t :=

∫ t
0 σ

τ
s dBs, t ∈ [t, T ]. Then the corresponding measure P

στ :=

P0 ◦ (X
στ )−1 ∈ P∞, and

sup
τ∈T∞

E
P0 [φ(Xτ ,Mτ )]≤ sup

P∈P∞

E
P[φ(Xτ ,Mτ )].(3.6)

(2) To obtain the reverse inequality, we observe by the Dambis–Dubins–
Schwarz theorem (see, e.g., Karatzas and Shreve [23], Theorem 3.4.6) that
the law of (X,M) under P = P

σ ∈ P∞ is the same as the law of (Xτ ,Mτ )

under P0 where τ :=
∫ T
0 σ2t dt is a stopping time with respected to the time-

changed filtration {FB
Tt
, t≥ 0}, Tt := inf{s : 〈B〉s > t}. In order to convert to

the context of the canonical filtration of B, we use the result of Szpirglas
and Mazziotto [37]. This allows us to conclude that equality holds in (3.6).
�

In view of the previous results, we are reduced to the problem

Uµ(ξ) := inf
λ∈Λµ

0

{µ(λ) + uλ(X0,X0)},(3.7)

where

uλ(X0,X0) := sup
τ∈T∞

J(λ, τ), J(λ, τ) := E
P0 [g(X∗

τ )− λ(Xτ )]

and the set Λµ of (2.5) translates in the present context to

Λµ0 =
{

λ ∈ L
1(µ) : sup

τ∈T∞

E[λ(Xτ )
−]<∞

}

.(3.8)

3.2. The main result. The endpoints of the support of the distribution
µ are denoted by

ℓµ := sup{x :µ([x,∞)) = 1} and rµ := inf{x :µ((x,∞)) = 0}.
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The Azéma–Yor solution of the Skorohod embedding problem is defined by
means of the so-called barycenter function,

b(x) :=

∫

[x,∞) yµ(dy)

µ([x,∞))
1{x<rµ} + x1{x≥rµ}, x≥ 0.(3.9)

Remark 3.1. Hobson [20] observed that the barycenter function can
be alternatively defined as the left-continuous inverse to the following func-
tion β. Given the European calls prices c(x) :=

∫

(y − x)+µ(dy) and X0 =
∫

yµ(dy), define the function

β(x) := max

{

argmin
y<x

c(y)

x− y

}

for x ∈ [X0, r
µ),(3.10)

β(x) = ℓµ for x ∈ [0,X0) and β(x) = x for x ∈ [rµ,∞).(3.11)

On [X0, r
µ), β(x) is the largest minimizer of the function y 7−→ c(y)/(x− y)

on (−∞, x). Then, β is nondecreasing, right-continuous, and β(x) < x for
all x ∈ [X0, r

µ). Notice that β(X0) = ℓµ := sup{x :µ((0, x])> 0}.

Finally, we introduce the Hardy–Littlewood transform µHL of µ,

µHL([y,∞)) := inf
ξ<y

c(y)

y − ξ
=

c(β(y))

y − β(y)
for all y ≥ 0,(3.12)

where the functions c and β are defined in the previous remark; see Propo-
sition 4.10(c) in Carraro, El Karoui and Oblój [9].

The following result is a combination of [20, 32]. Our objective is to derive
it directly from the dual formulation of Proposition 2.1. Let

τ∗ := inf{t > 0 :X∗
t ≥ b(Xt)}(3.13)

and

λ∗(x) :=

∫ x

ℓµ

∫ y

ℓµ
g′(b(ξ))

b(dξ)

b(ξ)− ξ
dy; x < rµ.(3.14)

Notice that λ∗ ∈ [0,∞] as the integral of a nonnegative function. To see that
λ∗ <∞, we compute by the Fubini theorem that

λ∗(x) =

∫ x

ℓµ
g′(b(ξ))

x− ξ

b(ξ)− ξ
b(dξ)

and we observe that (x − ξ)/(b(ξ) − ξ) is bounded near ℓµ. Then λ∗(x) ≤
C(x)[g(b(x))− g(X0)]<∞ for some constant C(x) depending on x.

Theorem 3.1. Let µ ∈M(R), and ξ = g(X∗
T ) for some C1 nondecreas-

ing function g satisfying supP∈P∞
E
P[ξ+]<∞, and µHL(g)<∞. Then

Uµ(ξ) = µ(λ∗) + J(λ∗, τ∗) = µHL(g).

The proof is reported in the subsequent section.
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3.3. An upper bound for the optimal upper bound. In this section, we
prove that

Uµ(ξ)≤ µ(λ∗) + J(λ∗, τ∗).(3.15)

Our first step is to use the following construction due to Peskir [32] which
provides a guess of the value function uλ for functions λ in the subset

Λ̂µ0 := {λ ∈Λµ0 :λ is convex}.(3.16)

By classical tools from stochastic control theory, the value function uλ(x,m)
is expected to solve the dynamic programming equation

min{uλ − g + λ,−uλxx}= 0 on ∆ and
(3.17)

uλm(m,m) = 0 for m ∈R.

The first part of the above DPE is an ODE for which m appears only as a
parameter involved in the domain on which the ODE must hold. Since we
are restricting to convex λ, one can guess a solution of the form

vψ(x,m) := g(m)− λ(x∧ψ(m))− λ′(ψ(m))(x− x∧ ψ(m)),(3.18)

that is, vψ(x,m) = g(m) − λ(x) for x ≤ ψ(m) and is given by the tangent
at the point ψ(m) for x ∈ [ψ(m),m]. For later use, we observe that for
x ∈ [ψ(m),m],

vψ(x,m) = g(m)− λ(ψ(m)) +

∫ x

ψ(m)

∂

∂y
{λ′(y)(x− y)}dy

(3.19)

= g(m)− λ(x) +

∫ x

ψ(m)
(x− y)λ′′(dy) for x ∈ [ψ(m),m],

where λ′′ is the second derivative measure of the convex function λ.
We next choose the function ψ in order to satisfy the Neumann condition

in (3.17). Assuming that λ is smooth, we obtain by direct calculation that
the free boundary ψ must verify the ordinary differential equation (ODE)

λ′′(ψ(m))ψ′(m) =
g′(m)

m−ψ(m)
for all m ∈R.(3.20)

For technical reasons, we need to consider this ODE in the relaxed sense.
This contrasts our analysis with that of Peskir [32] and Oblój [30]. Since λ is
convex, its second derivative λ′′ is well defined as measure on R+. We then
introduce the weak formulation of the ODE (3.20),

∫

ψ(B)
λ′′(dy) =

∫

B

g′(m)

m−ψ(m)
dm for all B ∈ B(R)(3.21)
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and we introduce the collection of all relaxed solutions of (3.20),

Ψλ := {ψ right-continuous: (3.21) holds and
(3.22)

ψ(m)<m for all m ∈R}.

Remark 3.2. For later use, we observe that (3.21) implies that all func-
tions ψ ∈Ψλ are nondecreasing. Indeed, for y1 ≤ y2, it follows from (3.21),
together with the nondecrease of g in (3.2) and the convexity of λ, that

ψ(y2) = (λ′)−1

(

λ′(ψ(y1)+) +

∫ y2

y1

g′(m)

m−ψ(m)
dm

)

≥ (λ′)−1(λ′(ψ(y1)+))≥ ψ(y1),

where (λ′)−1 is the right-continuous inverse of the nondecreasing function
λ′. Then, by direct integration that

the function x 7−→ λ(x)−

∫ x

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξ dy is affine,

where ψ−1 is the right-continuous inverse of ψ. This follows from direct
differentiation of the above function in the sense of generalized derivatives.

A remarkable feature of the present problem is that there is no natural
boundary condition for the ODE (3.20) or its relaxation (3.21). The follow-
ing result extends the easy part of the elegant maximality principle proved
in Peskir [32] by allowing for possibly nonsmooth functions λ. We empha-
size the fact that our approach does not need the full strength of Peskir’s
maximality principle.

Lemma 3.1. Let λ ∈ Λ̂µ0 and ψ ∈Ψλ be arbitrary. Then uλ ≤ vψ.

Proof. We organize the proof in three steps:

(1) We first prove that vψ is differentiable in m on the diagonal with

vψm(m,m) = 0 for all m ∈R.(3.23)

Indeed, since ψ ∈Ψλ, it follows from Remark 3.2 that

λ(x) = c0 + c1x+

∫ x

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξ dy

for some scalar constants c0, c1. Plugging this expression into (3.18), we see
that

vψ(x,m) = g(m)−

(

c0 + c1ψ(m) +

∫ ψ(m)

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ −ψ(ξ)
dξ dy

)
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−

(

c1 +

∫ m

X0

g′(ξ)

ξ − ψ(ξ)
dξ

)

(x−ψ(m))

= g(m)− c0 − c1x+

∫ m

X0

g′(ξ)

ξ − ψ(ξ)
(ψ(ξ)− x)dξ,

where the last equality follows from the Fubini theorem together with the
fact that g is nondecreasing and ψ(ξ) < ξ. Since g is differentiable, (3.23)
follows by direct differentiation with respect to m.

(2) For an arbitrary stopping time τ ∈ T∞, we introduce the stopping
times τn := τ ∧ inf{t > 0 : |Xt − x|> n}. Since vψ is concave in x, as a con-
sequence of the convexity of λ, it follows from the Itô–Tanaka formula that

vψ(x,m)≥ vψ(Xτn ,Mτn)−

∫ τn

0
vψx (Xt,Mt)dBt −

∫ τn

0
vψm(Xt,Mt)dMt

≥ g(Mτn)− λ(Xτn)−

∫ τn

0
vψx (Xt,Mt)dBt −

∫ τn

0
vψm(Xt,Mt)dMt

by the fact that vψ ≥ g − λ. Notice that (Mt −Xt)dMt = 0. Then by the

Neumann condition (3.23), we have vψm(Xt,Mt)dMt = vψm(Mt,Mt)dMt = 0.
Taking expectations in the last inequality, we see that

vψ(x,m)≥ Ex,m[g(Mτn)− λ(Xτn)].(3.24)

(3) We finally take the limit as n→∞ in the last inequality. First, recall
that (Xt∧τ )t≥0 is a uniformly integrable martingale. Then, by the Jensen in-
equality, λ(Xτn)≤ E[λ(Xτ ) | Fτn ]. Since λ(Xτ )

− ∈ L
1(P0), this implies that

E[λ(Xτn)]≤ E[λ(Xτ )] where we also used the tower property of conditional
expectations. We then deduce from (3.24) that

vψ(x,m)≥ lim
n→∞

Ex,m[g(Mτn)− λ(Xτ )] = Ex,m[g(Mτ )− λ(Xτ )]

by the nondecrease of the process M and the function g together with the
monotone convergence theorem. By the arbitrariness of τ ∈ T∞, the last
inequality shows that vψ ≥ uλ. �

Our next result involves the function

ϕ(x,m) :=
c(x)− c0(x)1m<X0

m− x
(3.25)

with c0(x) := (X0 − x)+, (x,m) ∈∆

and we recall that c(x) :=
∫

(ξ−x)+µ(dξ) is the (given) European call price
with strike x.

Lemma 3.2. For λ ∈ Λ̂µ0 and ψ ∈Ψλ, we have

µ(λ) + uλ(X0,X0)≤ g(X0) +

∫

ϕ(ψ(m),m)g′(m)dm.
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Proof. (1) Let α ∈ R+ be an arbitrary point of differentiability of λ.
Then

λ(x) = λ(α) + λ′(α)(x− α) +

∫ x

α
(x− y)λ′′(dy).

Integrating with respect to µ− δX0 and taking α<X0, this provides

µ(λ)− λ(X0)

= λ′(α)

(
∫

xµ(dx)−X0

)

+

∫
(
∫ x

α
(x− y)λ′′(dy)

)

(µ− δX0)(dx)

=−

∫ X0

α
(X0 − y)λ′′(dy) +

∫

1{x≥α}

∫ x

α
(x− y)+λ′′(dy)µ(dx)

+

∫

1{x<α}

∫ α

x
(y − x)λ′′(dy)µ(dx).

Then sending α to ℓµ, it follows from the convexity of λ together with the
monotone convergence theorem that

µ(λ)− λ(X0) =

∫

(c− c0)(y)λ
′′(dy).

(2) By the inequality in Lemma 3.1, together with (3.19), we now compute
that

µ(λ) + uλ(X0,X0)

≤ g(X0) +

∫

(c(y)− c0(y)(1{y<X0} − 1{ψ(X0)<y<X0}))λ
′′(dy)

= g(X0) +

∫

(c(y)− c0(y)1{y<ψ(X0)})λ
′′(dy).

We next use the ODE (3.20) satisfied by ψ in the distribution sense. This
provides

µ(λ) + uλ(X0,X0)≤ g(X0) +

∫

c(ψ(m))− c0(ψ(m))1{m<X0}

m− ψ(m)
g′(m)dm.

Here, we observe that the endpoints in the last integral can be taken to 0
and ∞ by the nonnegativity of the integrand. �

We now have all ingredients to express the upper bound (3.15) explicitly
in terms of the barycenter function b of (3.9).

Lemma 3.3. For a nondecreasing C1 payoff function g, we have

inf
λ∈Λµ

0

{µ(λ) + uλ(X0,X0)} ≤ µHL(g).
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Proof. Since Λ̂µ0 ⊂ Λµ0 , we compute from Lemma 3.2 that

inf
λ∈Λµ

0

{µ(λ) + uλ(X0,X0)}

≤ inf
λ∈Λ̂µ

0

{µ(λ) + uλ(X0,X0)}(3.26)

≤ g(X0) + inf
λ∈Λ̂µ

0

inf
ψ∈Ψλ

∫

ϕ(ψ(m),m)g′(m)dm.

In the next two steps, we prove that the last minimization problem on the
right-hand side of (3.26) can be solved by pointwise minimization inside the
integral. Then, in step (3), we compute the induced upper bound.

(1) For all λ ∈ Λ̂µ0 and ψ ∈Ψλ,
∫

ϕ(ψ(m),m)g′(m)dm≥

∫

inf
ξ<m

ϕ(ξ,m)g′(m)dm.

Observe that c(x)≥ c0(x) for all x≥ 0, and limx→0 c(x)− c0(x) = 0. Then

inf
ξ<m

ϕ(ξ,m) = ϕ(0,m) = 0 for m<X0.(3.27)

On the other hand, it follows from Remark 3.1 that

inf
ξ<m

ϕ(ξ,m) = inf
ξ<m

c(ξ)

m− ξ
=

c(β(m))

m− β(m)
for m≥X0.(3.28)

By (3.27) and (3.28), we obtain the lower bound
∫

ϕ(ψ(m),m)g′(m)dm≥

∫

ϕ(β(m),m)g′(m)dm.

(2) We now observe that the function β, obtained by pointwise mini-
mization in the previous step, solves the ODE (3.21). Therefore, in order

to complete the proof, it remains to verify that λ∗ ∈ Λ̂µ0 . The convexity of
λ∗ is obvious. Also, since λ∗ ≥ 0, we only need to prove that λ∗ ∈ L

1(µ).
By step (1) of the proof of Lemma 3.2, we are reduced to verifying that
∫

c(x)(λ∗)′′(dx)<∞. Since, by definition, λ∗ satisfies the ODE (3.21) with
ψ = b−1, we directly compute that

∫

c(x)(λ∗)′′(dx) =

∫

c(b−1(m))

m− b−1(m)
g′(m)dm

=

∫

g′(m)µHL([m,∞))dm <∞

by our assumption that µHL(g)<∞.
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(3) From (3.26) and the previous two steps, we have

inf
λ∈Λµ

0

{µ(λ) + uλ(X0,X0)} ≤ g(X0) +

∫

c(β(x))

x− β(x)
g′(x)dx

= g(X0) +

∫

µHL([y,∞))g′(x)dx= µHL(g)

by a direct integration by parts. �

3.4. Completing the proof of Theorem 3.1. To complete the proof of the
theorem, it remains to prove that

inf
λ∈Λµ

0

{µ(λ) + uλ(X0,X0)} ≥ µHL(g).

To see this, we use the fact that the stopping time τ∗ defined in (3.13)
is a solution of the Skorohod embedding problem, that is, Xτ∗ ∼ µ and
(Xt∧τ∗)t≥0 is a uniformly integrable martingale; see Azéma and Yor [1, 2].
Moreover X∗

τ∗ ∼ µHL. Then, for all λ ∈ Λµ0 , it follows from the definition of
uλ that uλ(X0,X0)≥ J(λ, τ∗), and therefore

µ(λ) + uλ(X0,X0)≥ µ(λ) +EX0,X0 [g(X
∗
τ∗)− λ(Xτ∗)]

= EX0,X0 [g(X
∗
τ∗)] = µHL(g).

4. Forward start lookback options. In this section, we provide a second
application to the case where the derivative security is defined by the payoff

ξ = g(B∗
t1,t2) where B∗

t1,t2 := max
t1≤t≤t2

Bt

and g satisfies the same conditions as in the previous section. We assume
that the prices of call options c1(k) and c2(k) for the maturities t1 and t2
are given for all strikes,

c1(k) =

∫

(x− k)+µ1(dx) and c2(k) =

∫

(x− k)+µ2(dx), k ≥ 0.

We also assume that µ1 � µ2 are in convex order:

c1(0) = c2(0) and c1(k)≤ c2(k) for all k ≥ 0.

The model-free superhedging cost is defined as the minimal initial capital
which allows to superhedge the payoff ξ, quasi-surely, by means of some
dynamic trading strategy in the underlying stock, and a static strategy in
the calls (c1(k))k≥0 and (c2(k))k≥0.

This problem was solved in Hobson [20] in the case g(x) = x. Our objective
here is to recover his results by means of our stochastic control approach.
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A direct adaptation of Proposition 2.1 provides the dual formulation of
this problem as

Uµ1,µ2(ξ) = sup
(λ1,λ2)∈Λµ1×Λµ2

µ1(λ1) + µ2(λ2) + uλ1,λ2(X0,X0),

where

uλ1,λ2(x,m) := sup
P∈P∞

E
P

x,m[g(B
∗
t1,t2)− λ1(Bt1)− λ2(Bt2)].

We next observe that the dynamic value function corresponding to the
stochastic control problem uλ1,λ2 reduces to our previously studied problem
uλ2 at time t1. Then, it follows from the dynamic programming principle
that

Uµ1,µ2(ξ) = inf
(λ1,λ2)∈Λµ1×Λµ2

µ1(λ1) + µ2(λ2)

+ sup
P∈P∞

E
P[uλ2(Bt1 ,Bt1)− λ1(Bt1)].

Since the expression to be maximized only involves the distribution of Bt1 ,
it follows from Remark 2.3 together with the Dambis–Dubins–Schwarz time
change formula that

Uµ1,µ2(ξ) = inf
λ2∈Λ

µ2
0

µ2(λ2) +

∫

uλ2(x,x)µ1(dx).

We next obtain an upper bound by restricting attention to the subset Λ̂µ20
of convex multipliers of Λµ20 . For such multipliers, we use the inequality
uλ2 ≤ vψ2 for all ψ2 ∈Ψλ2 as derived in Lemma 3.1. This provides

Uµ1,µ2(ξ)

≤ inf
λ2∈Λ̂

µ2
0

µ2(λ2) +

∫

vψ2(x,x)µ1(dx)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

µ2(λ2)− µ1(λ2) +

∫ ∫ x

ψ2(x)
(x− y)λ′′2(dy)µ1(dx)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫
(

c2(y)− c1(y)

+

∫

(x− y)1{ψ2(x)<y<x}µ1(dx)

)

λ′′2(dy)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫
(

c2(y)−

∫

(x− y)1{y≤ψ2(x)}µ1(dx)

)

λ′′2(dy)
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= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫
(

c2(ψ2(m))−

∫

(x− ψ2(m))1{m≤x}µ1(dx)

)

×
g′(m)dm

m−ψ2(m)

= µ1(g) + inf
λ2∈Λ̂

µ2
0

inf
ψ2∈Ψλ

∫
(

c2(ψ2(m))− c1(m)

m−ψ2(m)
− µ1([m,∞))

)

g′(m)dm,

where the last equalities follow from similar manipulations as in Lemma 3.2,
and in particular make use of the ODE (3.21). Since g′ ≥ 0, we may prove,
as in the case of lookback options, that the above minimization problem
reduces to the pointwise minimization of the integrand, so that the optimal
obstacle is given by

ψ∗
2(x) =max

{

argmin
ξ<x

h(ξ)
}

where h(ξ) :=
c2(ξ)− c1(m)

m− ξ
, ξ <m.

Notice that h has left and right derivative at every ξ <m, with

h′(ξ) =
c2(ξ) + (x− ξ)c′2(ξ)− c1(x)

(x− ξ)2
, a.e.,

where the numerator is a nondecreasing function of ξ, takes the positive
value c2(x)− c1(x) at ξ = x, and takes the negative value X0 − x− c1(x) at
ξ = 0. Then ψ∗

2(x) is the largest root of the equation

c2(ψ
∗
2(x)) + (x−ψ∗

2(x))c
′
2(ψ

∗
2(x)) = c1(x), a.e.(4.1)

so that h is nonincreasing to the left of ψ∗
2(m) and nondecreasing to its right.

At this point, we recognize exactly the solution derived by Hobson [20].
In particular, ψ∗

2 induces a solution τ∗2 to the Skorohod embedding problem,
and we may use the expression of uλ2 as the value function of an optimal
stopping problem. Then, we may conclude the proof that the upper bound
derived above is the optimal upper bound by arguing as in Section 3.4 that

uλ2(x,x)≥ Ex,x[g(X
∗
τ∗2
)− λ2(Xτ∗2

)].

We get that the upper bound is given by

Uµ1,µ2(ξ) = µ1(g)−

∫

g′(m)µ1([m,∞))dm

+

∫
(

c2(ψ
∗
2(m))− c1(m)

m−ψ∗
2(m)

)

g′(x)dx

(4.2)

= µ1(g)−

∫

(c′2(ψ
∗
2(m))− c′1(m))g′(m)dm

= g(ℓµ)−

∫

c′2(ψ
∗
2(m))g′(m)dm

by (4.1).
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5. Proof of the duality result. Let ξ :Ω−→R be a measurable map with
supP∈P∞

E
P[ξ+]<∞. If P∞(ξ) = ∅, the result is trivial. We then continue

assuming that P∞(ξ) 6= ∅ and therefore U0(ξ) > −∞. Let X0 ∈ R be such
that

XH
T ≥ ξ for some H ∈H.(5.1)

By definition of the admissibility set H(ξ), it follows that the process XH is
a P-local martingale and a P-supermartingale for any P ∈ P∞(ξ). Then, it
follows from (5.1) that X0 ≥ E

P[ξ] for all P ∈ P∞(ξ). From the arbitrariness
of X0 and P, this shows that

U0(ξ)≥ sup
P∈P∞(ξ)

E
P[ξ] = sup

P∈P∞

E
P[ξ].(5.2)

In the subsequent sections, we prove that the converse inequality holds under
the additional requirement that ξ ∈ UC(ΩX0). Following [35], this result is
obtained by introducing a dynamic version of the problem which is then
proved to have a decomposition leading to the required result. Due to the fact
that family of probability measures P∞ is nondominated, we need to define
conditional distributions on all of the probability space without excepting
any zero measure set.

5.1. Regular conditional probability distribution. Let P be an arbitrary
probability measure on Ω, and τ be an F-stopping time. The regular condi-
tional probability distribution (r.c.p.d.) Pωτ is defined by:

– for all ω ∈Ω, Pωτ is a probability measure on FT ;
– for all E ∈ FT , the mapping ω 7−→ P

ω
τ (E) is Fτ -measurable;

– for every bounded FT -measurable random variable ξ, we have E
P[ξ |

Fτ ](ω) = E
P
ω
τ [ξ], P-a.s.;

– for all ω ∈Ω, Pωτ [ω
′ ∈Ω:ω′(s) = ω(s),0≤ s≤ τ(ω)] = 1.

The existence of the r.c.p.d. is justified in Stroock and Varadhan [36]. For
a better understanding of this notion, we introduce the shifted canonical
space

Ωt := {ω ∈C([t, T ],Rd) :ω(t) = 0} for all t ∈ [0, T ],

we denote by Bt the shifted canonical process on Ωt, Pt0 the shifted Wiener
measure and F

t the shifted filtration generated by Bt. For 0≤ s≤ t≤ T and
ω ∈Ωs:

– the shifted path ωt ∈Ωt is defined by

ωtr := ωr − ωt for all r ∈ [t, T ];
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– the concatenation path ω ⊗t ω̃ ∈Ωs, for some ω̃ ∈Ωt, is defined by

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r)1[t,T ](r) for all r ∈ [s,T ];

– the shifted F t
T -measurable r.v. ξt,ω of some Fs

T -measurable r.v. ξ on Ωs

is defined by

ξt,ω(ω̃) := ξ(ω⊗t ω̃) for all ω̃ ∈Ωt.

Similarly, for an F
s-progressively measurable process X on [s,T ], the

shifted process {Xt,ω
r , r ∈ [t, T ]} is Ft-progressively measurable.

For notational simplicity, we set

ω⊗τ ω̃ := ω ⊗τ(ω) ω̃, ξτ,ω := ξτ(ω),ω, Xτ,ω :=Xτ(ω),ω .

The r.c.p.d. Pωτ induces a probability measure P
τ,ω on F

τ(ω)
T such that the

P
τ,ω-distribution of Bτ(ω) is equal to the P

ω
τ -distribution of {Bt −Bτ(ω), t ∈

[τ(ω), T ]}. Then, the r.c.p.d. can be understood by the identity

E
P
ω
τ [ξ] = E

P
τ,ω

[ξτ,ω] for all FT -measurable r.v. ξ.

We shall also call Pτ,ω the r.c.p.d. of P.
For 0 ≤ t ≤ T , we follow the same construction as in Section 2.1 to de-

fine the martingale measures Pt,α for each F
t-progressively measurable S>0

d -

valued process α such that
∫ T
t |αr|dr <∞, Pt0-a.s. The collection of all such

measures is denoted P t
S . The subset Pt

∞ and the density process ât of the
quadratic variation process 〈Bt〉 are also defined similarly.

5.2. The duality result for uniformly continuous payoffs. Since ξ ∈
UC(ΩX0), there exists a modulus of continuity function ρ such that for
all t ∈ [0, T ] and ω,ω′ ∈Ω, ω̃ ∈Ωt,

|ξt,ω(ω̃)− ξt,ω
′

(ω̃)| ≤ ρ(‖ω − ω′‖t),

where ‖ω‖t := sup0≤s≤t |ωs|, 0≤ t≤ T . The main object in the present proof
is the following dynamic value process:

Vt(ω) := sup
P∈Pt

∞

E
P
ω
t [ξ] for all (t,ω) ∈ [0, T ]×Ω.(5.3)

It follows from the uniform continuity property of ξ that

{Vt, t ∈ [0, T ]} is a right-continuous F-adapted process.(5.4)

Moreover, since supP∈P∞
E
P[ξ+]<∞, it follows that for all P ∈ P∞(ξ) that

Vt ∈ L
1(P), and by following exactly the proof of Proposition 4.7 in [35],

we see that {Vt, t ∈ [0, T ]} is a P-supermartingale. We may then apply the
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Doob–Meyer decomposition, and deduce the existence of a pair of processes
(HP,KP), with HP ∈H

2
loc(P) and K

P
P-integrable nondecreasing, such that

Vt = V0 +

∫ t

0
HP

s dBs −KP

t , t ∈ [0, T ],P-a.s.

Since V is a right-continuous semimartingale under each P ∈ P∞(ξ), it fol-
lows from Karandikar [22] that the family of processes {HP,P ∈ P∞(ξ)}

(defined P-a.s.) can be aggregated into a process Ĥ defined on [0, T ]×Ω by

d〈V,B〉t = Ĥt d〈B〉t, in the sense that Ĥ =HP, dt×dP-a.s. for all P ∈P∞(ξ).
Thus we have

Vt = V0 +

∫ t

0
Ĥs dBs −KP

t , t ∈ [0, T ],P-a.s. for all P ∈P∞(ξ).

With X0 := V0, we see that:

– the process XĤ :=X0 +
∫ .
0 Ĥs dBs is bounded from below by V which

is in turn bounded from below by MP
t := E

P
t [ξ], t ∈ [0, T ]; since ξ ∈ L

1(P),

the latter is a P-martingale; consequently, XĤ is a P-supermartingale for all
P ∈P∞(ξ),

– and XĤ
T = VT +KP

T = ξ +KP

T ≥ ξ, P-a.s. for every P ∈ P∞(ξ).

Then V0 ≥U0(ξ) by the definition of U0.

Notice that, as a consequence of the supermartingale property of XĤ

under every P ∈P∞(ξ), we have

V0 + sup
P∈P∞(ξ)

E
P[−KP

T ]≥ sup
P∈P∞(ξ)

E
P[XĤ

T −KP

T ] = sup
P∈P∞(ξ)

E
P[ξ] = V0.

Since KP
0 = 0 and KP is nondecreasing, this implies that

XĤ is a P-martingale for all P ∈ P∞(ξ)

and the nondecreasing process KP satisfies the minimality condition

inf
P∈P∞(ξ)

E
P[KP

T ] = 0.

Remark 5.1. A possible extension of Theorem 2.1 can be obtained for
a larger class of payoff functions ξ. Indeed, notice that the uniform continu-
ity assumption on ξ is essentially used to obtain the measurability (5.4) of
dynamic value process V defined in (5.3). In the context of the application
of Section 3, such an extension is needed in order to avoid restricting our
framework to those measures µ which induce a uniformly continuous opti-
mal static hedging λ∗. A convenient extension of Theorem 2.1, relaxing the
uniform integrability condition, is obtained in Possamäı, Royer and Touzi
[33], building on the recent results of Nutz and van Handel [29] and Neufeld
and Nutz [27].
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[33] Possamäı, D., Royer, G. and Touzi, N. (2013). On the robust superhedging of

measurable claims. Preprint.

[34] Soner, H. M., Touzi, N. and Zhang, J. (2011). Quasi-sure stochastic analysis
through aggregation. Electron. J. Probab. 16 1844–1879. MR2842089

[35] Soner, H. M., Touzi, N. and Zhang, J. (2013). Dual formulation of second order

target problems. Ann. Appl. Probab. 23 308–347. MR3059237

[36] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Pro-
cesses. Grundlehren der Mathematischen Wissenschaften [Fundamental Princi-

ples of Mathematical Sciences] 233. Springer, Berlin. MR0532498

[37] Szpirglas, J. and Mazziotto, G. (1979). Théorème de séparation dans le problème
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