
HAL Id: hal-03461113
https://sciencespo.hal.science/hal-03461113

Preprint submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalizing the Taylor Principle: New Comment
Jean Barthélemy, Magali Marx

To cite this version:
Jean Barthélemy, Magali Marx. Generalizing the Taylor Principle: New Comment. 2012. �hal-
03461113�

https://sciencespo.hal.science/hal-03461113
https://hal.archives-ouvertes.fr


  
 

   

DOCUMENT  
 

   

DE TRAVAIL 
 

     
   N° 403 

 
 
 
 

 

     
 

 

 
  

 

 
DIRECTION GÉNÉRALE DES ÉTUDES ET DES RELATIONS INTERNATIONALES

 
 

 

 
 
 
 

 
 
 

GENERALIZING THE TAYLOR PRINCIPLE: 
 

 NEW COMMENT 
 

Jean Barthélemy and Magali Marx 
 

October 2012 
 
 
 

 



DIRECTION GÉNÉRALE DES ÉTUDES ET DES RELATIONS INTERNATIONALES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

GENERALIZING THE TAYLOR PRINCIPLE: 
 

 NEW COMMENT 
 

Jean Barthélemy and Magali Marx 
 

October 2012 
 
 

 
 
 
 
Les Documents de travail reflètent les idées personnelles de leurs auteurs et n'expriment pas 
nécessairement la position de la Banque de France. Ce document est disponible sur le site internet de la 
Banque de France « www.banque-france.fr ». 
 
Working Papers reflect the opinions of the authors and do not necessarily express the views of the Banque 
de France. This document is available on the Banque de France Website “www.banque-france.fr”. 

http://www.banque-france.fr/
http://www.banque-france.fr/


Generalizing the Taylor Principle: New Comment∗
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Résumé: Dans ce papier, nous énonçons les conditions de détermination, c’est-à-dire les

conditions assurant l’existence et l’unicité d’une solution bornée, dans les modèles linéaires,

à anticipations rationnelles, tournés vers le futur et incorporant des changements de régime.

Nous mettons ainsi un terme au débat entre Davig et Leeper (2007) et Farmer et al. (2010).

Les conditions de détermination dérivées par les premiers sont uniquement valides dans le

sous-espace des solutions bornées ne dépendant que d’un nombre fini de régimes passés, que

nous appelons markoviennes. Dans l’espace des solutions bornées, les nouvelles conditions de

détermination que nous dérivons sont plus restrictives. Néanmoins, lorsqu’elle est unique, la

solution cöıncide avec la solution markovienne de Davig et Leeper (2007). Finalement, nous

illustrons nos résultats dans un modèle néo-keynesien standard étudié dans les deux articles

sus-cités.

Classification JEL: E31, E43 et E52.

Mots-clés: changements de régime, DSGE, indétermination.

Abstract: In this paper, we provide determinacy conditions, i.e. conditions ensuring the

existence and uniqueness of a bounded solution, in a purely forward-looking linear Markov

switching rational expectations model. We thus settle the debate between Davig and Leeper

(2007) and Farmer et al. (2010). The conditions derived by the former are valid in a subset of

bounded solutions only depending on a finite number of past regimes, that we call Markovian.

However, in the complete bounded solution space, the new determinacy conditions we derive

are tighter. Nevertheless, when unique, the solution coincides with the Markovian solution

of Davig and Leeper (2007). We finally illustrate our results in the standard new-Keynesian

model studied by Davig and Leeper (2007) and Farmer et al. (2010).

JEL classification: E31, E43 and E52.

Keywords Markov switching, DSGE, indeterminacy.
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1 The controversy

In this paper, we provide determinacy conditions, i.e. conditions ensuring the existence

and uniqueness of a bounded solution, for forward-looking linear rational expectations models

with Markov switching parameters. We therefore settle the debate between Davig and Leeper

(2007) and Farmer et al. (2010).

Davig and Leeper (2007) provide determinacy conditions for the above class of models.

Their approach consists in rewriting the Markov switching model as a linear model by ex-

panding the number of state variables.

However, Farmer et al. (2010) exhibit a counter-example. For a particular set of parameters

verifying Davig and Leeper’s determinacy conditions at least two different bounded solutions

of the standard new-Keynesian model exist.

We show that the debate origin is the type of solutions the authors consider. Davig and

Leeper (2007) implicitly restrict the solution space to Markovian solutions, i.e. to solutions

which only depend on a finite number of past regimes. Under this restriction, we prove in

Proposition 1 that the transformation of the Markov switching model into a linear model with

twice as many state variables is valid and that the correct determinacy conditions are those

given by Davig and Leeper (2007).

In Proposition 2, we provide a necessary and sufficient determinacy condition for Marko-

vian and non-Markovian solutions. This condition, which is tighter than that of Davig and

Leeper (2007), depends on the stability of multiple product matrices involving the different

regimes. If a unique bounded solution among all possible bounded policy functions exists, it

is Markovian and coincides with the one Davig and Leeper construct.

In their reply, Davig and Leeper argue that the existence of Farmer et al.’s counter-

example stems from mainly two reasons. First, they study different models. Indeed, assuming

that solutions have to be Markovian allows transforming the Markov-switching problem into

a linear one which can be considered as a different model. It is, however, more natural

to recognize that the definitions of the solution space are different. Second, they dismiss

Farmer et al.’s counterexample based on a non-Markovian solution as contrived and of little

economic sense. This second argument relates to the broader issue of the solution space’s

proper definition in rational expectations models. Settling this general debate is beyond the

scope of this paper, here we rather establish the determinacy conditions for both Markovian

solution space and for bounded solution space.

From a practical point of view, checking determinacy can be highly time-consuming. This

computational cost reflects the intrinsic (numerical) complexity of determinacy conditions of
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Markov switching rational expectations models compared to linear models (Blanchard and

Kahn (1980)). We provide three cases for which we can easily check determinacy conditions.

Nevertheless, given the structure of the problem, there is little - if any - chance of being able

to check determinacy conditions in the neighborhood of the indeterminacy frontier.

By building a comprehensive methodology to solve and estimate Markov switching rational

expectations models, Farmer et al. (2009b) have greatly fostered applied research on Markov

Switching in rational expectations models (e.g. Davig and Doh, 2008; Bianchi, 2012). However,

in the absence of a consensus on determinacy conditions, uniqueness is rarely discussed. The

potential existence of multiple equilibria could nevertheless modify the policy conclusions.

The remainder of the paper is organized as follows. In Section 2, we expose the problem

and recall the counter-example put forward by Farmer et al. (2010). We show that Davig and

Leeper’s determinacy conditions are valid when considering Markovian bounded solutions

only in Section 3. Further, in Section 4, we provide necessary and sufficient conditions for all

bounded solutions. We discuss computational issues in Section 5. Finally, we illustrate these

new conditions in the New Keynesian model, subject of the debate between Davig and Leeper

(2007) and Farmer et al. (2010) and compare these determinacy conditions to those obtained

for Markovian solutions in Section 6.

2 The class of models

The new Keynesian model analyzed by Davig and Leeper (2007) and for which Farmer

et al. (2010) find two bounded solutions in the Davig and Leeper’s determinacy region can be

reduced to these three equations model:

Etyt+1 + σEtπt+1 = yt + σRt + εdt (1)

βEtπt+1 = πt − κyt + εst (2)

Rt = αstπt + εrt (3)

where yt, πt and Rt are the output-gap, inflation (in log) and the nominal interest rate (in

deviation around a certain steady state). Equation (1) is an IS curve linking the output-gap

to all the future ex-ante real interest rates and future and current demand shocks, εdt . σ is

the risk aversion. Equation (2) is a New-Keynesian Philips Curve linking inflation to all the

future marginal costs summarized by the output-gap where κ measures the degree of nominal

rigidities while β stands for the discount factor. εst denotes a cost-push shock translating the

Philips Curve. Equation (3) is a simplified Taylor rule with a potential shift in the reaction
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to inflation (α1 or α2). st ∈ {1, 2} stands for the current regime of monetary policy. Finally

εrt is a disturbance measuring the unsystematic part of monetary policy.

When there is no regime switching, i.e. α1 = α2 = α, the model admits a unique stable

solution (whatever the definition of stability considered) if and only if the so-called Taylor

principle is satisfied (α > 1).

More generally, models of this class can be rewritten in the following form by defining

zt = [πt yt Rt] and εt = [εdt εst εrt ]:

AstEtzt+1 +Bstzt + Cstεt = 0 (4)

where zt is a vector of endogenous variables, and εt is a vector of exogenous shocks. We

assume that εt is bounded, independent of st and satisfies : Etεt+1 = Λεt. In addition, we

assume that the regimes st take values {1, · · · , N} and follow a Markov-chain with constant

transition probabilities1

pij = p(st = j|st−1 = i) (5)

The vectors z and ε are respectively in Rn and Rp ; for any i ∈ {1, · · · , N}, the matrices

Ai and Bi are in Mn(R), Ci is in Mn,p(R) and Λ is in Mp(R). Even if this class of models

is quite general, it rules out models including backward-looking components. Solving such

hybrid models remains a challenge even if recent advances have been accomplished (Foerster

et al., 2011).

3 Determinacy conditions for bounded Markovian so-

lutions

Farmer et al. (2010) provide two bounded solutions of model (4) in a region of parameters

where Davig and Leeper (2007) claim that there should be a unique bounded solution. The

key of this apparent contradiction is that one of the two solutions depend on the sequence

of all past regimes while Equation 8 in Davig and Leeper (2007) is true only for solutions

depending on current but not past regimes. In this section, we amend Proposition 1 of Davig

and Leeper (2007) by restricting the solution space to bounded Markovian solutions.

Definition 1. Let us denote by φ a measurable function2 mapping {1, · · · , N}∞× (Rp)∞ into

Rn. φ is Markovian of order p if φ only depends on εt and {st, st−1, · · · , st−p}.
1See Barthélemy and Marx (2011) for state-dependent transition probabilities
2We follow the formalism developed in Woodford (1986).
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φ is Markovian if there exists p such that φ is Markovian of order p.

We denote by Mp the set of Markovian functions of order p, and by M =
⋃
p∈N
Mp the

Markovian space.

As in Davig and Leeper (2007), we introduce the matrix in MnN(R), diagonal by blocks,

diag(B−11 A1, · · · , B−1N AN) and define M = (P ⊗ 1n) × diag(B−11 A1, · · · , B−1N AN), where ⊗
denotes the standard Kronecker product. The main result of Davig and Leeper (2007) can

then be rewritten in the following way.

Proposition 1. [Davig and Leeper (2007)]

There exists a unique Markovian bounded solution φM of finite order of model (4) if and only

if ρ(M), the spectral radius of M, i.e. the largest eigenvalue in absolute value, is strictly less

than one.

Proof. The proof proceeds in two steps:

• If φ ∈M is a solution of (4), then φ ∈M0.

• If φ ∈M0, then Equation 8 of Davig and Leeper (2007) is valid and we can apply their

strategy of expanding the number of state variables. More precisely we define Φ such

that:

Φ(εt) =


φ(1st−1, εt)

...

φ(Nst−1, εt)

 . (6)

The stacked vector function, Φ, is then a solution of a linear rational expectations model

(with constant parameters) and we thus can apply Blanchard and Kahn (1980).

See section A in appendix for the detailed proof.

This Proposition proves that the determinacy condition of Davig and Leeper (2007) is valid

in the particular set of bounded Markovian solutions. Thus, if there are multiple bounded

solutions in Davig and Leeper’s determinacy region, only one of them is Markovian the others

are not.

4 Determinacy conditions for bounded solutions

In this part, we provide necessary and sufficient conditions for the model (4) in the space

of bounded solutions (Markovian or not). For a given matricial norm onMn(R), we introduce
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the following sequence of matrices, for p ≥ 2:

Sp =

 ∑
(i1,··· ,ip−1)∈{1,··· ,N}p−1

pii1 · · · pip−1j‖B−1i AiB
−1
i1
Ai1 · · ·B−1ip−1

Aip−1‖


ij

A similar matrix has already been introduced in Barthélemy and Marx (2011). For any p,

an (i, j) element of the matrix Sp corresponds to an upper bound of the expected impact (in

norm) of the future endogenous variables along trajectories starting from regime i to regime j

in p steps weighted by the probability of each trajectory. When there is only one regime this

matrix comes down to a scalar measuring the importance of expected endogenous variables p

periods ahead.

First, we prove that the spectral radius of Sp behaves as an exponential sequence asymp-

totically.

Lemma 1. The sequence
(
ρ(Sp)

1/p
)

is convergent and its limit does not depend on the chosen

norm. We denote the limit by ν:

ν = lim
p→+∞

ρ(Sp)
1/p (7)

Proof. The proof of the convergence is intensively based on the sub-multiplicativity of matri-

cial norms, and the equivalence of norms. The details are in section B of the appendix.

Second, Proposition 2 gives determinacy conditions for model 4 in the space of bounded

solutions. This result is an improvement of Proposition 1 in Barthélemy and Marx (2011) as

this result gives necessary and sufficient conditions while Barthélemy and Marx (2011) only

give sufficient conditions.

Proposition 2. There exists a unique bounded solution for model (4) if and only if ν < 1.

In this case, this solution is the Markovian solution of 0 order φM given in Proposition 1.

Furthermore, ν is smaller than ρ(M).

Proof. We base our proof on the formalism introduced by Woodford (1986) and recently used

in Barthélemy and Marx (2011). We show that the model can be reformulated as a functional

equation (1−R)φ = ψ0 where R is an operator, φ the solution and ψ0 a function depending

on shocks and regimes. Then we show that (1−R) is invertible if and only if ν < 1. All the

details are in appendix, section C.
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These determinacy conditions coincide with Blanchard and Kahn (1980) when there is no

regime switching. Indeed, in this special case, ρ(Sp)
1/p = 21/p||(B−1A)p||1/p and hence ν is

equal to the spectral radius of B−1A.

Furthermore, in all the univariate models (n = 1), the sequence Sp is a geometric sequence

of the form: Sp where S is defined as follows:

S =
(
pij‖B−1i Ai‖

)
ij
.

Indeed, when matrices Bi and Ai are scalars, they are commutative. Thus, for univariate

models, ρ(Sp)
1/p equals ρ(S) and hence ν equals ρ(S). In this case, ν is particularly easy

to compute. Elements of S are absolute values of elements of M, as shown in Farmer et al.

(2009a).

5 Computational issues

To check determinacy, the computation of ν is thus at the core. This is however a challeng-

ing issue. One way to approximate ν is to compute ρ(Sp)
1/p for p large enough. This compu-

tation is however time-consuming3. In addition, the sequence is not necessarily monotonous

and the speed of convergence is unknown.

This numerical problem is very similar to the computation of the joint spectral radius (e.g.

Theys, 2005). The joint spectral radius is costly to compute and to approximate. The question

whether a joint spectral radius is greater than 1 is undecidable (Blondel and Tsitsiklis, 1997,

2000), i.e. it cannot be algorithmically settled in a finite number of steps.

Against this backdrop, we identify three situations in which we can answer whether ν is

greater than 1 or not. The first case is when the Davig and Leeper’s determinacy condition

(see 1) fails. Then ν is larger than 1 as we already know that there exist multiple Markovian

solutions. The two other cases are summed up in the two following lemmas.

Lemma 2. If there exists p such that ρ(Sp)
1/p < 1, then ν < 1.

Lemma 2 stems from the fact that ν is the infimum of {ρ(Sp)
1/p, p ∈ N}. Indeed, if

ρ(Sp)
1/p is smaller than one for a given p it ensures that ν is smaller than one also and hence

there exists a unique stable equilibrium. This case is the only case for which one can conclude

that the equilibrium is determinate. If there exists a unique stable equilibrium, there always

exists such p. However, finding it can be impossible in a finite amount of time. When we do

not succeed in finding such a p, one may suspect indeterminacy. The following result gives a

necessary condition for indeterminacy.

3The complexity of the algorithm is of the order of factorial p.
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Lemma 3. If there exists i0 ∈ {1, 2}, p0 ∈ N, and a sequence of indexes (i1, i2, · · · , ip0) ∈
{1, 2}p0 such that

ρ(pi0i1pi1i2 · · · pip0 i0B
−1
i0
Ai0 · · ·B−1ip0

Aip0
) > 1

Then ν > 1.

Roughly speaking, when such a sequence is identified, the infinite repetition of this se-

quence is explosive. In such a case, one may construct a non-Markovian solution in addition

to the Markovian solution. In this sense, this Lemma 3 is a generalization of the counterex-

ample of Farmer et al. (2010).

We give the proofs of these results in appendix, section D.

6 Numerical illustration

In this part, we represent the determinacy region for bounded solutions in the case studied

in Davig and Leeper (2007), and Farmer et al. (2010). We calibrate the parameters consistently

with the baseline case of Davig and Leeper (2007) and the counterexample of Farmer et al.

(2010): β = 0.99, σ = 1, κ = 0.17, γ1 = γ2 = 0, p11 = 0.8 and p22 = 0.95. The spectral

radius of M, ρ(M), equals 0.98 when we fix the policy parameters α1 and α2 to 3 and 0.92

respectively as in the counter-example of Farmer et al. (2010). There thus exists a unique

bounded Markovian solution, due to Proposition 1. However, Proposition 2, and Lemma 3

show that there exists other bounded solutions.

Figure 1 displays the region of determinacy for this choice of parameters and for different

values of α1 and α2. For each set of parameters, we compute ρ(Sp)
1/p for p smaller than

15. If, for a given p, the sequence ρ(Sp)
1/p is smaller than 1, a unique stable solution ex-

ists by applying Lemma 2. This is the white area. Moreover, when a sequence of regimes

(s0, s1, · · · , sp) satisfies the condition of Lemma 3, there is a unique Markovian solution but

many bounded solutions. This is the dark grey area. The pale grey area between the two

previous areas represents parameter combinations for which we are not able to compare ν and

1 in a reasonable amount of time. Finally, the dark region displays the Davig and Leeper’s

indeterminacy region in which multiple stable Markovian solutions exist.

As we have already remarked, the determinacy region suggested by Davig and Leeper and

valid for Markovian solutions is always larger than the general determinacy region. Con-

trasting to Davig and Leeper (2007), we can neither prove nor reject that the determinacy

region is monotonously decreasing with respect to the response to inflation in one regime (the

light-shaded area is not decreasing after a certain threshold). Nonetheless, an economy with
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Figure 1: Determinacy regions: new Keynesian model with Markov switching monetary policy

Note: the white area displays the region where we are sure that there exists a unique bounded

equilibrium; the light-shaded area represents a region in which we cannot decide whether there

is a unique bounded solution or not; the dark-shaded area represents a region in which we

know that there exists a unique Markovian solution but several bounded solutions; finally,

parameter combinations in the black region imply multiple bounded Markovian equilibria. The

cross marks the parameters set for which Farmer et al. (2010) build two stable solutions.

switches among passive and active regimes may be determinate for certain parameter combi-

nations. This confirms one of the main findings of Davig and Leeper (2007) that a passive

monetary regime is not necessarily subject to indeterminacy if economic agents expect switch

toward an active monetary policy regime.

7 Conclusion

In this paper, we give determinacy conditions for purely forward-looking rational expecta-

tions models with Markov-Switching. We thus clarify the debate between Davig and Leeper

(2007, 2010) and Farmer et al. (2010). This condition depends on all possible matrix products

and probabilities in a manner very close to joint spectral radius of multiple matrices. This

condition is thus difficult to assess especially for parameters close to the determinacy frontiers.

It reflects the non commutativity of matrix products compared to power matrices that are

key in the linear rational expectations model (see Blanchard and Kahn, 1980). We propose
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three simple cases for which one can decide whether the model is determinate or not. This

complexity however raises new and challenging computational issues.

In addition, we highlight the key role of the definition of the solution space in the deter-

minacy conditions. This suggests that researchers on Markov switching rational expectations

should always be careful about the class of the solutions they consider as it can substantially

modify the number of stable equilibria.
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APPENDIX

A Proof of Proposition 1

In this part, we prove Proposition 1. The proof is undertaken in two steps:

• If φ ∈M is solution of Equation (4), then φ ∈M0

• Furthermore if φ ∈M, then defining Φ by:

Φ(εt) =


φ(1st−1, εt)

...

φ(Nst−1, εt)


Φ is solution of a linear rational expectations model with regime-independent parame-

ters. We thus can apply Blanchard and Kahn (1980).

Assume that there exists a p-order Markovian solution of (4), φ, we define P(q) the

statement that the solution only depends on the last q regimes:

P(q) : φ(is1 · · · sqw, εt) = φ(is1 · · · sqw′, εt)

∀(s1, · · · , sq) ∈ {1, · · · , N}q, ∀w ∈ {1, · · · , N}∞, ∀w′ ∈ {1, · · · , N}∞, ∀εt ∈ V ∞

P(p) is satisfied by assumption. Let us assume that P(q) is satisfied for q ∈ {1, · · · , p}. Since

φ is a solution of (4), for any w, we compute:

φ(sts1 · · · sq−1w, εt) = −B−1st Ast(
∑
i

psti

∫
φ(ists1 · · · sq−1w, εεt)dε−B−1st Astεt

Due to P(q), we know that:

−B−1st Ast(
∑
i

psti

∫
φ(ists1 · · · sq−1w, εεt)dε = −B−1st Ast(

∑
i

psti

∫
φ(ists1 · · · sq−1w′, εεt)dε

for any w′, and hence φ does not depend on w. P(q − 1) is thus satisfied. By decreasing

induction we eventually show that φ is Markovian of order 0.

More generally if the solution is Markovian, its order is the same than ψ0. Here, ψ0 is

Markovian of order 0, thus φ is also Markovian of order 0.

If φ ∈M0 is a solution of 4, φ is a solution of:

∀i ∈ {1, · · · , N} φ(i, εt) +B−1i Ai

(
pi1

∫
φ(1, εεt)dε+ pi2

∫
φ(2, εεt)dε

)
= −B−1i Ciεt
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Thus by introducing Ψ0(εt) = −


B−11 C1

...

B−1N CN

 εt = Cεt, this system can be rewritten as:

Φ(εt) + M

∫
Φ(εεt)dε = Ψ0(εt) (8)

where Φ is defined in Equation (6). Model (8) is a standard linear rational expectations model

with constant parameters. We hence easily prove Proposition 1 by applying Blanchard and

Kahn (1980).

We denote by B0 the set of bounded functions on V ∞, and by F the bounded operator

acting in B0:
F : Φ 7→

(
(εt) 7→

∫
Φ(εεt)dε

)
We rewrite equation (8) as: [1+MF ]Φ = Ψ0. The solution Φ is then: Φ =

∑∞
k=0 [−MF ]k Ψ0.

Knowing that:

(FkΨ0)(εt) = CΛkεt

We get that Φ(εt) = Rεt with Vect(R) = [1 + Λ′ ⊗M]−1Vect(C).

Splitting R =


R1

...

RN

, the solution φ is given by: φ(st, εt) = Rstεt

B Proof of Lemma 1

In this part, we prove Lemma 1.

We introduce the real sequence (uk) defined for k ≥ 2 by:

uk =

 ∑
(i1,··· ,ik)∈{1,··· ,N}k

pi1i2 · · · pik−1ik‖B−1i1
Ai1 · · ·B−1ik

Aik‖

1/k

(9)

We will show that:

• The sequence (uk)k is sub-multiplicative ((um+n)m+n ≤ ummu
n
n), and thus convergent.

• The sequence
(
ρ(Sp)

1/p
)

is equivalent to (up) when p tends to ∞.

• Their limit, ν, does not depend on the chosen norm.

We first show that (ukk) is sub-multiplicative. By sub-multiplicativity of a matricial norm,

um+n
m+n satisfies: ∑

(i1,··· ,im,im+1,··· ,im+n)∈{1,··· ,N}m+n

pi1i2 · · · pim−1im×

13



pimim+1 · · · pim+n−1im+n‖B−1i1
Ai1 · · ·B−1im

AimB
−1
im+1

Aim+1 · · ·B−1im+n
Aim+n‖

≤
∑

(i1,··· ,im,im+1)∈{1,··· ,N}m+1

pi1i2 · · · pim−1impimim+1‖B−1i1
Ai1 · · ·B−1im

Aim‖

×

 ∑
(im+2,··· ,im+n)∈{1,··· ,N}n−1

pim+1im+2 · · · pim+n−1im+n‖B−1im+1
Aim+1 · · ·B−1im+n

Aim+n‖


We find an upper bound for the second term by summing on im+1, as all the terms are positive:∑

(im+2,··· ,im+n)∈{1,··· ,N}n−1

pim+1im+2 · · · pim+n−1im+n‖B−1im+1
Aim+1 · · ·B−1im+n

Aim+n‖

≤
∑

(im+1,im+2,··· ,im+n)∈{1,··· ,N}n−1

pim+1im+2 · · · pim+n−1im+n‖B−1im+1
Aim+1 · · ·B−1im+n

Aim+n‖ = (un)n

Thus,

(un+m)n+m ≤ unn
∑

(i1,··· ,im,im+1)∈{1,··· ,N}m+1

pi1i2 · · · pim−1impimim+1‖B−1i1
Ai1 · · ·B−1im

Aim‖ = unn× umm

since
∑

im+1∈{1,··· ,N}
pimim+1 = 1.

This shows that (ukk) is sub-multiplicative.

Besides, if a sequence of non-negative real numbers (vk) is sub-multiplicative, then v
1/k
k is

converging and lim
k→+∞

v
1/k
k = inf

k
v
1/k
k , see for instance Lemma 21 p.8 in Müller (2003). Thus

(uk) is convergent.

Now, we consider the norm | · |∞ onM2(R) defined by |M |∞ =
∑
i,j

|mij|. One can observe

that:

|Sp|∞ =
∑

i,i1,··· ,ip−1,j

pii1 · · · pip−1j‖B−1i AiB
−1
i1
Ai1 · · ·B−1ip−1

Aip−1‖ = up−1p−1 (10)

As the spectral radius is the infimum of matricial norms, Equation 10 leads to:

ρ(Sp) ≤ up−1p−1 (11)

Furthermore,

(
Sq
p

)
ij

=
∑

i1,··· ,ip−1,ip,ip+1,··· ,i2p,··· ,ip(q−1)+1,··· ,ipq−1

pii1 · · · pip−1ippi(q−1)pi(q−1)p+1
· · · piqp−1j×

‖B−1i Ai · · ·B−1ip−1
Aip−1‖ · · · ‖B−1i(q−1)p

Ai(q−1)p
· · ·B−1iqp−1

Aiqp−1‖

And by sub-multiplicativity of matricial norms:

(
Sq
p

)
ij
≥

∑
i1,··· ,ip−1,ip,ip+1,··· ,i2p,··· ,ip(q−1)+1,··· ,ipq−1

pii1 · · · pip−1ippi(q−1)pi(q−1)p+1
· · · piqp−1j×
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‖B−1i Ai · · ·B−1ip−1
Aip−1 · · ·B−1i(q−1)p

Ai(q−1)p
· · ·B−1iqp−1

Aiqp−1‖

and hence,

|Sq
p |∞ ≥ upq−1pq−1 (12)

Equation 11 can be rewritten as follows:

|Sq
p |(1/q)∞ ≥ (upq−1)

p−1/q

As for any norm, Gelfand’s Theorem shows that limq→∞ ||Xq||(1/q)∞ = ρ(X), thus when q

tends to infinity, 11 leads to:

lim
k→∞

upk ≤ ρ(Sp)

Thus, as p > 1,

lim
k→∞

uk ≤ ρ(Sp)
1/p (13)

Combining Equations (11) and (13), we find the following upper and lower bounds:

lim
k→∞

uk ≤ ρ(Sp)
1/p ≤ u

1−1/p
p−1

and thus,
(
ρ(Sp)

1/p
)

is convergent and has the same limit as (uk).

Finally, by equivalence of the norms in Mn(R), it is immediate that ν does not depend

on the chosen norm. This ends the proof of Lemma 1.

C Proof of Proposition 2

C.1 Prolegomenon

Assuming that Bi is invertible for any i ∈ {1, · · · , N}, we rewrite (4) as:

zt +B−1st AstEtzt+1 = −B−1st Cstεt (14)

Then, considering zt = z(st, εt) as a function of all the past shocks {εt, · · · , ε−∞} and

regimes {st, · · · , s−∞}, introducing ψ0 such that ψ0(s
t, εt) = −B−1st Cstεt and defining the

operator R as

R : z 7→ ((st, εt) 7→ −B−1st AstEtz(st+1, εt+1)) (15)

Equation (14) is equivalent to the functional equation:

(1−R)z = ψ0 (16)
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This equation admits a unique solution if the operator 1 − R is invertible, and thus if

1 /∈ σ(R). As a consequence, conditions of existence and uniqueness of a solution of (4) rely

on the spectrum of R, this spectrum depending on the space of solutions we consider.

C.2 Characterization of the spectral radius of R

We will prove the following lemma, describing the spectrum of R in B.

Lemma 4. The operator R is bounded in B and its spectrum is given by:

σ(R) = [−ν, ν]

First, R is bounded as the expectation operator is a bounded operator. The rest of the

proof is based on two main arguments:

• The spectrum of R is symmetric convex.

•

lim
k→+∞

‖Rk‖1/k = ν

The second point ensures that ρ(R) = ν by applying the Gelfand characterization of the

spectral radius for an operator, see for instance Theorem 22 p.8 in Müller (2003), while the

first point leads to the equality σ(R) = [−ν, ν].

First, we introduce the operators Fi, for i ∈ {1, · · ·N}, F and L on B defined by:

Fi : φ 7→ ((st, εt) 7→
∫
V

φ(ist, εεt)dε

L : φ 7→ ((st, εt) 7→ φ(st−1, εt−1)

F(φ)(st, εt) = (pst1F1 + pst2F2)(φ)(st, εt)

The operators Fi and L have the following straightforward properties.

1. FiL = 1, and FL = 1

2. ‖|Fi‖| = 1 and ‖|L‖| = 1

where ‖| · ‖| is the triple norm associated with the infinite norm ‖ · ‖∞ on B. Then R can be

rewritten as:

R(φ)(st, εt) = B−1st Ast(pst1F1 + pst2F2)(φ)(st, εt)

16



We define R̃ by

R̃ : φ 7→ A−1st−1
Bst−1L(φ)(st, εt)

We have that:

R̃R = LF , RR̃ = 1

We mimic techniques used to study the spectrum of isometries in Banach spaces as for instance

in Conway (1990). We refer to this book and to Müller (2003) for the different type of

spectrum. We know that the spectrum of R is a closed subset of [−‖R‖, ‖R‖], and that the

boundary ∂σ(R) of σ(R) is included in the point approximate spectrum, i.e. the set of values

λ such that R − λ1 is not injective or not bounded below. We assume that σ(R) is not

convex, and that there exists λ0 ∈ (0, ν) such that λ ∈ ∂σ(R). Then, we prove that λ0 is an

eigenvalue. Actually, R− λ1 is bounded below for any λ < ‖R‖. R is the composition of an

invertible operator and an isometry, and thus is bounded below. Moreover, we notice that:

‖R‖ = sup
v∈Im(R̃)

‖Rv‖
‖v‖

=

(
inf
u

‖R̃u‖
‖u‖

)−1
which implies that:

‖u− λR̃u‖ ≤ (1− λ

‖R‖
)‖u‖

We show now that for any α such that |α| < 1, then λα belongs to σ(R). We know that λ is

an eigenvalue of R, let φ0 ∈ B an eigenvector of R associated with λ,

Rφ0 = λφ0

We define f by:

f = φ0 − λR̃φ0

We notice that R(f) = o, and that ‖(λR̃)k(f)‖ ≤ ‖φ0‖. Fix α such that |α| < 1. We define

φ̃0 by :

φ̃0 =
∞∑
k=0

αk(λR̃)k(f)

We compute:

R(φ̃0) =
∞∑
k=0

αkR(λR̃)k(f)

R(φ̃0) = αλ

∞∑
k=0

αk(λR̃)k(f) = αλφ̃0

Thus αλ is an eigenvalue of R, which contradicts λ ∈ ∂σ(R), and ∂σ(R) = ν.
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Concerning the second point, we first prove that lim
k→+∞

‖Rk‖1/k ≤ ν. Then we construct,

for any k, a function φk, such that:

‖Rk(φk)‖1/k ≥ ρ(Sk)1/k

This construction is a generalization to the multivariate cases of Farmer et al. (2009a) and

Farmer et al. (2010).

We compute

Rk(φ)(st) =
∑

i1,··· ,ik

psti1pi1i2 · · · pik−1ikB
−1
st AstB

−1
i1
Ai1 · · ·B−1ik−1

Aik−1
Fi1 · · · Fik(φ)(st)

We will find an upper bound and a lower bound for ‖Rk‖, in terms of a sequence (uk)

associated to well-chosen norms on Mn(R). First, we consider the triple norm associated to

the infinite norm on Mn(R) and the associated sequence uk. For any φ such that ‖φ‖∞ = 1,

we obtain by sub-additivity of the norm,

‖Rk(φ)‖∞ ≤
∑

i1,··· ,ik

psti1pi1i2 · · · pik−1ik‖|B−1st AstB
−1
i1
Ai1 · · ·B−1ik−1

Aik−1
‖| = ukk

which leads to lim
k→+∞

‖Rk‖1/k ≤ ν.

Reciprocally, we consider on Mr,s(R) the norm | · | defined by:

|M | =
∑
i,j

|mi,j|, where M = [mi,j](i,j)∈{1,··· ,r}×{1,··· ,s}

This norm satisfies:

• |M | ≤ r‖|M‖|∞

• If we write M = [M1,M2, · · · ,Ml] by blocks, we notice the following useful property:

|M | =
l∑

i=1

|Mi|

Fix st ∈ {1, · · · , N} and let us denote by {wi1···ik+1
,∀(i1 · · · ik+1 ∈ {1, · · · , N})} a family

of n× 1 vectors and rewrite the following sum as a product of matrices by blocks:∑
(i1,··· ,ik)∈{1,··· ,N}k

psti1pi1i2 · · · pik−1ikAstAi1 · · ·Aik−1
wsti1···ik−1

=
[
pst1 · · · p11[B−1st Ast · · ·B−11 A1] · · · |pstN · · · pNN [B−1st Ast · · ·B−1N AN ]

]
×


wst1···1

...

wstN ···N


18



Thus,

sup
‖wi1···ip‖∞≤1

‖
∑

i1,··· ,ik

psti1pi1i2 · · · pik−1ikAstAi1 · · ·Aik−1
wi1···ip‖∞

= sup
‖wi1···ip‖∞≤1

‖
[
pst1 · · · p11[B−1st Ast · · ·B−11 A1] · · · |pstN · · · pNN [B−1st Ast · · ·B−1N AN ]

]
×


wst1···1

...

wstN ···N

 ‖∞

= |‖
[
pst1 · · · p11[B−1st Ast · · ·B−11 A1] · · · |pstN · · · pNN [B−1st Ast · · ·B−1N AN ]

]
|‖∞

≥ 1

Nn
|
[
pst1 · · · p11[B−1st Ast · · ·B−11 A1] · · · |pstN · · · pNN [B−1st Ast · · ·B−1N AN ]

]
|

≥ 1

Nn

∑
i1,··· ,ik

psti1pi1i2 · · · pik−1ik |AstAi1 · · ·Aik−1
|

Furthermore, as the considered space is a bounded subset of finite-dimensional vectorial

space, the supremum is reached and there exist Nk vectors (wsti1···ik−1
) for (i1, · · · , ik−1) ∈

{1, · · · , N}k−1 such that:

‖
∑

i1,··· ,ik

psti1pi1i2 · · · pik−1ikB
−1
st AstB

−1
i1
Ai1 · · ·B−1ik−1

Aik−1
wi1···ip‖

≥ 1

Nn

∑
i1,··· ,ik

psti1pi1i2 · · · pik−1ik |B−1st AstB
−1
i1
Ai1 · · ·B−1ik−1

Aik−1
|

We define the function φ0 by:φ0(s
t) = wstst−1st−2···st−k

. This function is bounded and of

norm 1. Moreover, φ0 satisfies:∑
st

‖Rk(φ0)(s
t)‖ ≥ 1

Nn

∑
st,i1,··· ,ik

psti1pi1i2 · · · pik−1ik |B−1st AstB
−1
i1
Ai1 · · ·B−1ik−1

Aik−1
| = 1

Nn
(ũk)k

which leads to:

‖Rk(φ0)‖∞ ≥
1

N2n
(ũk)k

Finally, this implies that:

‖Rk‖1/k ≥ (N2n)−1/kũk

Taking the limit, we get that lim
k→+∞

‖Rk‖1/k ≥ ν. This ends the proof of Lemma 4.

19



C.3 Proof of Proposition 2

A consequence of Lemma 4 is that 1 ∈ σ(R) if and only if ν ≥ 1, and thus (1 − R) is

invertible if and only if ν < 1, which proves Proposition 2.

D Proofs of Lemmas 2 and 3

Lemma 2 follows directly from Equation (13).

To prove Lemma 3, we notice that

ukk =
∑

(i1,··· ,ik,ik+1)∈{1,··· ,N}k
pi1i2 · · · pik−1ikpikik+1

‖B−1i1
Ai1 · · ·B−1ik

Aik‖

Then by considering the multiples of p (k = np) and by only keeping the diverging trajectory

(the hypothesis of the Lemma), we can rewrite the above equation as follows:

unpnp ≥ [pi0i1pi1i2 · · · pip0 i0‖B
−1
i0
Ai0 · · ·B−1ip0

Aip0
‖]n

and hence,

unp ≥ [pi0i1pi1i2 · · · pip0 i0‖B
−1
i0
Ai0 · · ·B−1ip0

Aip0
‖]1/p

Besides,

[pi0i1pi1i2 · · · pip0 i0‖B
−1
i0
Ai0 · · ·B−1ip0

Aip0
‖]1/p ≥ ρ(pi0i1pi1i2 · · · pip0 i0B

−1
i0
Ai0 · · ·B−1ip0

Aip0
)

Thus,

lim
n→∞

unp ≥ ρ(pi0i1pi1i2 · · · pip0 i0B
−1
i0
Ai0 · · ·B−1ip0

Aip0
)

The right-hand-side of the inequality is larger than one by hypothesis which implies that

ν > 1.
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