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This paper reconsiders the determination of asset returns in a model with Kreps-Porteus
generalized isoelastic preferences where returns appear governed, on the basis of Euler equations,
by a combination of the two most common measures of risk -- covariance with the market return and
covariance with consumption. To go beyond Euler equations and to take into account the links that
the consumers’ optimal behavior establishes, through a budget constraint, between market returns
and consumption, we derive an approximate consumption function (obtained, as in Campbell (1994),
by log-linear approximation). Arguing that total consumer wealth is unobservable, we use this
consumption function to reconstruct from observed consumption data i) the wealth that supports the
agents” consumption as an optimal income, and ii) the rate of return on the consumers’ wealth
portfolio. This procedure enables us to derive formulas that (approximately) price, in the tradition
of Lucas (1978), all assets as a function of their payoffs and of consumption. The generalized
consumption CAPM that we obtain is derived for both homoskedastic and heteroskedastic

consumption processes. We also use our approximate pricing kernel to highlight the crucial role of

temporal risk aversion in the determination of the equilibrium term structure of real interest rates.
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I. INTRODUCTION

This paper is motivated by two observations.

The first one is empirical. According to Kendrick (1976), non-human
wealth represented only 47% of total wealth in the United States in 1969,
Moreover, total business wealth amounted at the same date, at market value,
to only 21% of total domestic wealth. Moreover, in 1990, the market value
of corporate stocks was $b4,165 billions of dollars, while residential mort-
gages represented $b2,924, corporate bonds $b987, US Federal, state and
local securities $b2,705. Even if one excludes human capital, there is there-
fore much more to consumer wealth than stocks, and much more to the rate
of return on wealth than the rate of return on the stock market. The rate
of return on the stock market—the measure of the rate of return on wealth
used by most of the capital asset pricing literature—is in all likelihood a
very poor proxy for the rate of return on wealth.

The second observation pertains to theory. Many authors seem to have for-
gotten that two of the main contenders in the search for the explanation of
excess returns—the static (or market) capital asset pricing model (SCAPM)
and the consumption capital asset pricing model (CCAPM)—are not inde-
pendent and unrelated models. Regardless of the view one takes on the exact
degree of rationality of consumers, the length of their economic lifetime, or
the completeness of markets, there must be some link between consumption
and asset returns, between quantities and prices. In the simplest case that
we will explore in this paper—the complete markets, representative agent
framework—this link has a name: the consumption function. The reason
for the neglect of the consumption function is obvious: it is difficult to
solve for it in interesting problems. But technical difficulties are no valid
reason for sticking with Fuler equations when their sole consideration leads
one to mistakenly believe that there is no theoretical link between the two
measures of risk represented by covariance of asset returns with the wealth
return and consumption.

In this paper, we attempt to take these two remarks seriously. We de-
velop an equilibrium capital asset pricing model based on Kreps-Porteus
preferences—as exposed in Epstein and Zin (1989), Giovannini and Weil
(1989) and Weil (1990)—in which the marginal rate of substitution depends
both on the rate of growth of consumption but also on the rate of return
on wealth. But, contrary to previous authors with the glaring exception
of Campbell (1994), we make explicit (albeit through log-linear approxi-
mations) the links between consumption and wealth returns to characterize
equilibrium excess returns.
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Although our paper conforms to Campbell’s philosophy—we go beyond
Euler equations by also using the information contained in the consump-
tion function— it takes a radically different perspective on the goals to be
achieved. Campbell’s objective is to use the consumption function to elim-
inate consumption from his asset pricing expressions, or, as he puls it, to
compute asset prices “without consumption data”. His rationale is that ag-
gregate per capita consumption of non-durables and services i) is a poor
measure for the consumption of market participants, and ii) 1s subject to
measurement and time-aggregation errors. As a result, he derives expres-
sions for excess returns that look like a generalized version of the market
CAPM.

Our view, suggested at the outset, is that, from a data perspective, the diffi-
culties involved with measuring the rate of return on wealth are as large as,
if not larger than, those involved with measuring the consumption of market
participants:! the rate of return on total wealth is not simply mismeasured,
it is not measured at all. Reversing Campbell’s method, we observe that
consumer’s total wealth can be reconstructed from consumption data alone
under the maintained assumption that the consumption data that we observe
were generated by (Kreps-Porteus) utility maximizing agents. From these
reconstructed total wealth data, we can compute an implied series of rates
of return on total consumer wealth—which again is solely a function of
consumption data. These reconstructed wealth returns can then be used to
calculate an (approximate) pricing kernel which, because it is in turn also
solely a function of consumption data, yields a generalized consumption
CAPM.

From an equilibrium perspective, what we are doing is simply apply the
equilibrium asset pricing methods of Lucas (1978) or Mehra and Prescott
(1985) but without the “fruit tree” imagery: we take consumption as given,
and we infer back from budget constraints and first-order conditions the
wealth and the asset prices that support observed consumption as a utility-
maximizing outcome. The (approximate) asset pricing kernel that we com-
pute enables us to price any asset (including wealth) and determine its equi-
librium returns solely as a function its payoff and of observed consumption.
This procedure allows us to price the stock market as a subser of wealth, and
to accurately characterize the implications of this class of models for the eq-
uity premium (as distinct from the “wealth premium” implicitly computed

'In another paper, Campbell (1993) attempts to circumvent the absence of data on the
rate of return on human wealth by assuming that human wealth is constant fraction of total
wealth, and that its return can be approximated by a linear function of labor income growth.
Since human wealth is not the only component of wealth for which no data are available,
this is only a partial salution to the data difficulties which motivate us.
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by the authors who identify wealth to stocks). Tt is enables us to highlight, in
the spirit of Dréze and Modigliani (1972), the crucial role of temporal risk
aversion in the determination of the equilibrium term structure of interest
rates.

The paper is organized as follows. We present the model, and the basics
of our reconstruction of wealth from observed consumption data, in sec-
tion 2. We then turn, in section 3, to the determination of asset prices in
a world with a homoskedastic consumption process, postponing to section
4 the analysis of equilibrium with heteroskedastic consumption. In section
5, we examine the implications of our model for the term structure of real
interest rates. The conclusion offers directions for future research.

2. THE MODEL

The economy consists of many identical infinitely-lived consumers. All
wealth is assumed to be tradeable. Let W, denote wealth at time ¢, and R, ;
the rate of return on the “wealth portfolio” between dates t — 1 and . Wealth
can be accumulated in many forms, among which money, stocks, bonds,
real estate, physical and human capital. The rate of return on wealth will
be, in equilibrium, the rate of return on this exhaustive “market portfolio.”

A representative consumer faces the following budget constraint:
WH—J = Rw.tH(Wt - Cr)- (2.1)

In addition, cur consumer’s initial wealth is given, and she faces a solvency
constraint to rule out Ponzi games.

Following Epstein and Zin (1989) and Weil (1990), we assume that con-
sumers have Kreps-Porteus generalized isoelastic preferences (GIP) with a
constant elasticity of substitution, 1/p, and a constant (but in general unre-
lated) coefficient of relative risk aversion, y, for timeless gambles. These
preferences can be represented recursively as

V, = {(1- B)C " + B(E Ver)'*}’ (2.2)

where 0 < B < 1, V, is the agent’s utility at time ¢, C, denotes consumption,
the operator E, denotes mathematical expectation conditional on informa-
tion available at 7, and the parameter

0=01-y)/1-p)

measures the departure of the agents’ preferences away from the time-
additive isoelastic expected utility framework. Thus, when # = 1, the
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preferences in (2.2) reduce to the standard time-additive isoelastic expected
utility representation.

2.1. The Euler equation. Epstein and Zin (1989) have shown that for any
asset with gross rate of return R; ;. between dates 7 and r + 1 the following
Euler equation must be satisfied:

C. 17"
E, 59[ g‘] RGLR it =1 (2.3)
t

Assume that consumption and asset returns have a joint conditional lognor-
mal distribution.? Then, taking logs on both sides of (2.3) and subtracting
the version of (2.3) that holds for a safe one-period bond with gross rate
of return Ry, 1, we obtain the familiar® expression for the excess return on
any asset:

Oiit

Eiricer — Free1 = _T + p00ic, + (1 —0)oiu s, (2.4)

where lowercase letters denote the logarithm of their uppercase counter-
part, and where o, denotes the conditional covariance at time ¢ between
random variables p,;+, and g 4+1.

This equation is often interpreted® as implying that, for GIP preferences,
excess returns are determined by a combination of the CCAPM and of the
SCAPM. This is misleading, since consumption and the return on wealth
(or 0., and a;,,) in general depend on each other, through the behavior of
forward-looking, optimizing consumers who must satisfy the budget con-
straint (2.1).

2.2. The (approximate) relation between consumption and asset re-
turns. To make explicit the link between consumption and the rate of re-
turn on wealth, and to obtain as a consequence more meaningful asset pric-
ing formulas, one must go beyond the necessary, but not sufficient, Euler
equation and use the information provided by the budget constraint the link
between consumption and the rate of return on wealth. This objective unfor-
tunately requires that we get around the difficulty that budget constraints are
multiplicative in consumption and wealth returns—a fact which in general
precludes under uncertainty the analytical derivation of the consumption
function.

This assumption will, again, be validated in equilibrium.
3See, for instance, Giovannini and Weil (1989).
“See, for instance, Epstein and Zin (1989) or Giovannini and Weil (1989).
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To circumvent this difficulty, we proceed as in Campbell (1994), and log
linearize the budget constraint. Let

A =C/W,
denote the consumption-wealth ratio, and
X =Cn/G

represent the rate of growth of consumption. The budget constraint (2.1)
can then be rewritten as:

X
Rygo1 = —— (2.5)
At+l(Az - 1)
or, in logarithms,
Fwe4l = Xeel — Qe — log(e™ —1). (2.6)

Taking a first-order Taylor expansion of log(e™® —1) around the uncondi-
tional mean of the logarithm of the consumption-wealth ratio,” we obtain
the following approximate log-linear budget constraint:

Fwitl & Xep1 — Qryy + Eaf —k (2.7)
where kand § (0 < § < 1) are two easily computed linearization constants.’
Equation (2.7) implies that

Sttt 7wt = Sep1(Xesr — @) (2.8)
where, for any random variable g, |, the surprise operator S is defined as

Stsi1grrnn =Eia g —Egri =1 — E Gy

An implication of (2.8) is that, if the budget constraint is satisfied, the con-
ditional covariance of any asset return with the rate of return on wealth is
just the difference between, one the one hand, the conditional covariance
of this asset’s return with consumption and, on the other hand, the condi-
tional covariance of this asset’s return with the (log) propensity to consume.
Namely,

Giwt = Oier — Tiag- (29)

While this equation is not operational (we have not yet said anything about
Gia,), it has the merit of pointing out that the covariance between individual
returns and the return on the wealth portfolio is endogenous, through its

SThroughout, we assume staticnarity. The assumption that log consumption-wealth
ratio is stationary is validated in equilibrium.
5The constant § is equal to 1 —exp[ £(a)], and the constant k is equal to log(8/1 — &) +

(1/8)E(a).
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dependence on the covariance o;; , between individual returns and the still
to be computed endogenous propensity to consume.

2.3, Eliminating the rate of return on wealth. Since our goal in this pa-
per is to derive asset pricing expressions that do not involve the unobserv-
able rate of return on the wealth portfolio, we can use equation (2.9) to
eliminate the terms involving the rate of return on wealth from the excess
returns expression (2.4);7
Gii,

Bifins = rppt = ===+ Y0 + (0 = Do (210)
Equation (2.10) highlights two important special cases that are explored
systematically in Giovannini and Weil (1989):

e inthe expected uiility case (6 = 1), equation (2.10) is the excess return
equation characteristic of the CCAPM.,

e when the consumption-wealth ratio is constant (a, = a for all t),
equation (2.10) implies that asset returns must also conform to the
CCAPM, but that model should then be equivalent to the SCAPM,
since consumption growth and the rate of return on wealth are then
perfectly correlated.®

2.4. The consumption-wealth ratio. The expression for excess returns
in (2.10) is still non-operational, for the extra-term introduced by GIP
preferences, o, depends on the propensity to consume that we have not
yet calculated. We now take up the task of characterizing the optimal
consumption-wealth ratio.

From the version of the Euler equation (2.3) that holds for the wealth return,
it follows that, when 8 # 0,

e
Eiryi1 = —logB -+ pEix;iy — 5 Var, (Fip 41 — PXi1) (2.1DH

Now, from (2.7),

1
Eirwir =Eixi — E a;1 + ga: —k (2.12)
Var, (ry, 1 — pXxe1) = Var(a,.; — (1 — P)Xe1)- (2.13)

"It is at this point that we part ways from Campbell (1994).
8See, for instance, the budget constraint (2.6).
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Substituting (2.12) and (2.13) into (2.11) yields

6
a, ~ 6 (k —log B + Efa 1 — (1 — p)xia] — Evarr[arﬂ — (I - p)x:+1]>
(2.14)

Consistent with our approach that seeks to express all variables in terms of
consumption, we interpret (2.14) as a difference equation in the a’s driven
by the x’s. Under the transversality condition lim, o 8°a; s = 07 (2.14)
implies that

8k >N 8 N
a, — 1__—8_ - (l - p) El ;81x1+1 - EEI ;Bj Varf+j71 Z[+j, (215)

where
Zi=a — (1 — p)x,. (2.16)

Two remarks are in order. First, (2.15) still does not provide the solution
for the consumption wealth ratio g, as a function of consumption and pref-
erences, since conditional first moments of future conditional second mo-
ments appear on the right-hand side. But as we shall see below, (2.15) does
provide a clue as to the functional form of the solution. Second, uniqueness
of the solution (when the solution exists) is guaranteed by the fact that the
transversality condition, the Euler equation and the budget constraint (all
of which are imbedded in (2.15)) are jointly necessary and sufficient for a
unique solution to the optimal consumption problem we are approximalting.

2.5. The equilibrium concept. To proceed beyond (2.15) and to solve for
the consumption-wealth ratio, we need to make distributional assumptions
on the consumption growth process, and more specifically on its conditional
second moments. There are two ways to view these distributional assump-
tions, and two associated interpretations of the results of the model.

One can either take a general equilibrium perspective, and imagine as in Lu-
cas (1978) that output is non storable manna falling from a tree. In Lucas’
economy, consumption is equal to output, and the stochastic process we as-
sume for consumption is just given by the exogenous stochastic process fol-
lowed by output. In this perspective, our model provides approximate, but
explicit, formulas for general equilibrium asset prices in a Kreps-Porteus
version of the Lucas model, and an analytical method to understand the
numerical results in Weil (1989).

9This condition is also used by Campbcll (1994).
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Or, alternatively, one can take a partial equilibrium perspective, and note
that, for any given consumption process, one can always compute the to-
tal wealth and the asset prices that are consistent with the hypothesis that
consumers behave optimally, and satisfy their budget constraints, their sol-
vency constraint and their Euler equations. In this perspective, our model
has obviously nothing to say about the determination of consumption: it
just takes the consumption process from the data, and focuses instead on
the computation of the wealth process and on determination of prices that
support it.!®

While we prefer the second, partial equilibrium interpretation (it has the
merit of not implying that consumption should be equal to output, and of be-
ing more forthright as to its conceptual limitations), the reader may choose
to adopt instead the first, general equilibrium interpretation. Nothing in our
analysis hinges on the view one takes. As a matter of fact, we will refer
from now on to “equilibrium” returns: the reader is free to think of them
as general or partial equilibrium returns. What matters, however, is that we
take consumption as given, and not the equilibrium rate of return on wealth
as in Campbell (1594).

With these methodological caveats in mind, we are now ready to turn to
the determination of equilibrium returns. We examine two cases in the next
two sections. First, a case in which log consumption growth is conditionally
homoskedastic. Second, a case in which consumption is conditionally het-
eroskedastic and follows an AR(1) process with GARCH(1,1) disturbances.

3. EQUILIBRIUM RETURNS: HOMOSKEDASTIC CONSUMPTION

Suppose the log consumption growth and the conditional mean of future
log consumption growth are jointly conditionally homoskedastic, so that
the conditional variance of consumption growth, its conditional covariance
with future expected consumption growth and the conditional variance of
future expected consumption growth are constant over time.

3.1. The propensity to consume. When conditional second-order mo-
ments are constant, it is straightforward to check that the solution to (2.15)
is simply

oo

a=g—(1-p)E Y ¥x (3.1)

j=1

190ne can of course reinterpret the models of Lucas (1978) or Mehra and Prescott
(1985) in that way.
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where the constant g is given by

6(1 - p)?
2

)
=13 [k ~log B — (Oce + Opn + 200/1)] ,

and where oy, and o, respectively denote, under the notation

o0
heri = By E ijl+j+lv

i=1

the conditional variance of expected discounted future consumption growth,
and the conditional covariance between consumption growth and expected
discounted future consumption growth.

The interpretation of (3.1) is straightforward and intuitive. High expected
future consumption stems, given current wealth, from high expected future
returns on wealth. If the elasticity of intertemporal substitution is large
(p < 1)-—i.e., if substitution effects are stronger than income effects—our
consumer reacts to high expected future returns by consuming less, so that
the consumption-wealth ratio declines. If, on the other hand, the elasticity
of intertemporal substitution is small (o > 1), high expected future con-
sumption is associated with an increase in the propensity to consume.

Note that, as a result of (3.1), homoskedasticity of consumption growth
and future expected consumption growth implies homoskedasticity of the
consumption wealth ratio.

3.2. The rate of return on wealth. From (2.7) and (3.1), we can recon-
struct the equilibrium rate of return on the (unobservable) wealth portfolio:

Fuier =+ pxiss + (L= 0) Sert ) & xeepn, (3.2)
j=0
where
A(1 - p)?
U= —IHB - _iz—p)(o'cc + Oy + 2Uch)- (33)

This equation (3.2) enables us to compute, date by date and state by state,
the return on the wealth portfolio from observable consumption data alone.
This equilibrium rate of return on wealth has to be understood as the return
on wealth which supports, under the assumption that the model is true, the
consumption process as an equilibrium consumption path. In other terms,
equation (3.2} allows us to reconstruct the unobserved return on wealth from
observed consumption data.



10 F. RESTOY AND P. WEIL
An implication of equation (3.2) is that:
Eirwpn =u+ pEixa. (3.4)

As a consequence, in this homoskedastic world, the conditional expected
return on wealth must be higher, for a given (positive) conditional expected
rate of growth of consumption, the lower the elasticity of intertemporal
substitution—i.e, the higher p. As under certainty, this is required to con-
vince consumers to overcome in equilibrium their distaste for intertemporal
substitution.

3.3. The approximate pricing kernel. The expression (3.2) for the im-
plied rate of return of the wealth portfolio enables us to compute the (ap-
proximate) equilibrium pricing kernel for this economy as a function of the
consumption process. From the Euler equation (2.3), it follows that the log
marginal rate of substitution between periods r and  + 1 is

myg=6Ing —p6x,00+ (8 — Dryes.

Substituting (3.2) into this expression and rearranging, we find that

o0

Mt =V — pxe + (0 — ¥)Set Y 8 xiegin,

j=0

where v = 0 In 8 + (6 — 1)u. In the standard time and state-additive case
(y = p) and/or in an iid. world (8,412 7248 %1 j+1 = 0), the (log)
pricing kernel is, up to a constant, simply a linear function of the (log)
consumption growth rate, In all other cases, it depends on in addition on
the news received at time ¢ + | about consumption growth rates in periods
t + 1 and beyond.

3.4. Excess returns. It follows from equation (3.1) that surprises in the
propensity to consume are given by

Siv1a = —(1 - p) Sy Zajxr+j+1, (3.5)

i=1

so that the conditional covariance between the return on any asset and the
marginal propensity to consume is

Oia = —(1 — ploy (3.0)

where o;;, denotes the conditional covariance between the return on asset i
and expectations of future (discounted) consumption growth.
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Therefore, substituting (3.6) into (2.4), the equilibrium excess return on any
asset satisfies

O
Eities1 —Ffep1 = 5 + ¥0ic T (¥ — 0)0in. (3.7)

According to this expression, the excess return on any asset depends on
its own variance (a Jensen’s inequality term), on its conditional covariance
with contemporaneous consumption, and on its conditional covariance with
future consumption. To understand (3.7), it is best to think of time as con-
sisting of three dates: today, tomorrow, and the day after tomorrow (or fu-
ture), and to examine separately the three terms y oy, yois, and —poyy, that
govern excess returns.

An asset with o;, > 0 is an asset whose return between today and tomorrow
tends to be high (low) when consumption tomorrow is high (low). Holding
such an asset in one’s portfolio makes it difficult to smooth consumption
over states of nature. Therefore, risk averse investors require a premium
over the riskless return to hold this asset. This premium is larger the larger
the consumers’ aversion to substitution over states of nature, 1.e., the larger
their coefficient of relative risk aversion y. The presence of the term y o,
on the right hand-side of (3.7) thus reflects our consumer’s aversion to sub-
stitution over states of nature.

An asset with o;;, > 01s an asset whose return between today and tomorrow
tends to be high (low) when there are good (bad) news about consumption
the day after tomorrow. Such an asset is not attractive, as it provides, say,
more wealth tomorrow when good news about future consumption make it
less desirable to be able to save for precautionary motives.!! As a result, our
consumers require a premium to hold this asset, and the term y oy, reflects
the desire of our consumers’ precautionary saving motive.

However, an asset with ¢;, > 0 is desirable for consumers who dislike fluc-
tuations of consumption across dates, as holding such an asset smoothes
the intertemporal consumption profile. Therefore, the more consumers are
averse to intertemporal substitution (the larger p), the more willing they
are to hold an asset with o;, > 0, and the smaller the excess return re-
quired in equilibrium to induce consumers to hold this asset. This explains
the presence of the —po;;, term, which reflects our consumers’ aversion to
intertemporal substitution.

Two special cases of (3.7) are worth noting:

"0ur consumers, because they have risk preferences with constant relative risk aver-
sion, do save for precautionary motives and have decreasing absolute prudence.



12 F. RESTOY AND P. WEIL

e When y = p, the precautionary saving and intertemporal substitu-
tion effects cancel out. It is thus an unfortunate feature of standard
isoelastic preferences that they hide two fundamental determinants of
equilibrium excess returns.

e When y = 0 and p > 0, i.e., when consumers have no desire to
smooth consumption over states and do not engage in precautionary
saving,'? excess returns can well be negative when oy, < 0. There
is nothing pathological about this: Dréze and Modigliani (1972) have
taught us about the temporal dimension of risk aversion. A zero aver-
sion to atemporal risk (y = 0) does not imply a zero risk premium
as long as one is not indifferent to intertemporal substitution (o > 0).
It is, therefore, another unfortunate feature of standard isoelastic pref-
erences that they associate zero risk aversion to atemporal gambles
with zero aversion to intertemporal substitution and thus to zero risk
premia: this is simply not a general result.

Finally, one should also note that, in contrast with the excess return equa-
tion derived by Campbell (1994), (3.7) does assign a role to the intertem-
poral elasticity of substitution in the determination of equilibrium excess
returns. This is because the covariances that appear in (3.7) are covariances
with consumption. Loosely speaking, expressing excess returns, as Camp-
bell does, as a function of covariances with market returns “hides” the p
coefficient into the covariance terms since an implication of (3.2) is that,
for j > 1,

S Twisj = 0 Sz+1xz+j- (3.8)

Thus, it is misleading to say that aversion to intertemporal substitution plays
no role in the determination of excess returns. When one takes an equi-
librium perspective, excess returns are not independent of the elasticity of
intertemporal substitution because this parameter affects both equilibrium
consumption and the equilibrium portfolio return. Furthermore, when one
takes consumption and not the return on wealth as given, p does appear
directly in the excess return expression.

3.5. The excess return on wealth. We now turn to the computation of the
equilibrium excess return on wealth. From (3.2),

Sevt st = Sz + (1= p) et 3 8%y (39)

j=1

12Both the second and third derivatives of the risk utility function are zero when y = 0.
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As a consequence,

Owe = Occ + (1 — p)oen (3.10)
Owh = Ock + (1 — p)ons (3.11)
(3.12)

Substituting into (3.7), we obtain the following formula for the equilibrium
excess return on wealth (up to a Jensen’s inequality term brought for clarity
to the left-hand side):

Erci ruest —rpee1 + wa/z
=y[0cc + (1 — p)oer] + (¥ — @)oen + (1 — p)ow]. (3.13)

When returns are i.i.d., all the terms involving & are zero, and the rate of
return on wealth is equal to y o, regardless of whether the expected utility
restriction is satisfied: the excess return on the wealth portfolio is then deter-
mined solely by risk aversion and the variance of consumption growth. This
is not surprising, as time—and thus the coefficient aversion to intertemporal
substitution, p—is essentially irrelevant in an i.i.d. world. As soon as we
depart from the i.i.d. world, however, the “wealth premium” depends on
both aversion to risk and aversion to intertemporal substitution.'?

Note that the rate of return on wealth is simply, from (2.1), the rate of return
on a claim to aggregate consumption—a concept that has, in general, little
to do empirically with the rate of return on the equity traded in the stock
market.!*

3.6. Prices. One should note that the expression in (2.10) does not provide
us with a formula to compute the equilibrium excess return on an asset as
a function of its payoff structure, the consumption process and preferences.
The reason is, of course, that the endogenous return r; appears in the condi-
tional second order moments on the right-hand side of (2.10). To find such
a bona fide asset pricing formula, we first need to consider how the return
on an asset depends on its price and the dividends (payoffs) it distributes.

Let p;, denote the log of the (cum dividend) price-dividend ratio of asset
at time ¢,'* and d; , the log rate of growth of the dividends paid off by asset
i between dates ¢ and ¢ -+ 1. Then, by definition, the log return on asset i

13Similar results are noted in Weil {1989).

14The two returns are however identical by construction in the Lucas (1978) or Mehra
and Prescott (1985) models.

I5That is, the log of the cum dividend price minus the log of the dividend.
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satisfies the identity:
Tiirl = it + Pier1 — log(e? —1). (3.14)

Following Campbell and Shiller (1988), we assume that the log dividend
growth process is stationary and use a Taylor expansion similar to the one
applied above to the budget constraint to find that
l

Fiprl = dipy1 + Piepl — 3P~ ki, (3.15)
where k; and 8; (0 < §; < 1) are two linearization constants. Since wealth
is simply an asset that distributes a dividend equal to per capita aggregate
consumption, the approximate budget constraint (2.7) is but a special case
of (3.15) with &;; = x,, pis = —a,, 8; = 8, and k; = k.

Now, it follows from (3.7) that, because of homoskedasticity, the expected
rate of return on asset i differs from the expected rate of return on wealth
only by a constant, call it 7;,:

Tiw =E, Fies1 —E, Ywe+l- (316)

Therefore, applying conditional expectations to both sides of (3.15), sub-

stituting (3.16) into the resulting expression, and iterating (3.15) forward

using the property that bubbles are infeasible in this economy, we find that
8 =

pir =~ i) pg B )8l = sl (3.17)

s=1
The only term on the right-hand side of this expression that we do not yet
know how to compute from consumption data alone is 77;,,. Now notice that
we can rewrite

Tiw = Eirigp1 — Eiry i = (B 7iie — ?’f.z+1} — [E; Ywarl — rf,H—l]'

We have already computed the equilibrium excess return of the wealth port-
folio in (3.13), so that the only task left is to characterize the excess return
on individual assets.

Notice that (3.17) implies

Sext Piat = Sep1 Y B ldicrssr = Fusesi1], (3.18)

s=1

so that, using (3.8),

St Pit+1 = S Zaf[di,tﬂﬂ - pxw,t+j+1]- (3.19)

s=1
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Now, from (3.14),
Ses1 71 = Ses1 diprt + Set Piar-
Therefore, from (3.19), we find that

oo o0
Sii1Fige1 = S di,r-H + Si Z dei,t+f+l - PSrH Z éfxl+s+1- (3.20)
s=1 s=1
The interpretation of (3.20) is straightforward. Good news about the rate
of return on asset i can come from good news about tomorrow’s dividends
or future dividends (the first two terms on the right-hand side). Or they can
come from news that future consumption growth will be low (the third term
on the right-hand side), since, by (3.8), bad news about future consump-
tion growth translate, in equilibrium, into news that future returns will be
low, and, therefore, into news that the present discounted value of future
dividends is high. The more averse the consumers are to intertemporal sub-
stitution (the larger p), the more sensitive equilibrium returns are to changes
in consumption growth, and the more bad news about future consumption
means good news for current returns.

Equation (3.20) immediately implies that

Oic = OdeTOfic— POhics (3.21)
Oih = Odh+ OTph — POkh, (3.22)
with the notation
o0 o0
firr1 = Eon Z3fdf,z+j+1 and A =Ep Z 8/ x, 110
j=1 j=1

Thus, for instance, o4, measures the conditional covariance between ex-
pected discounted future dividend growth of asset i and tomorrow’s con-
sumption, while oy, measures the conditional covariance between two dif-
ferently discounted expectations of future consumption.

Substituting (3.21) and (3.22) into (3.7), and collecting terms, we find that
the equilibrium excess return on any asset i is given by

Eiriger — Fris1 = VYOdc + (y — p)oan
+ ¥Ope (¥ —p)Ogsa
— plyone + (¥ — p)onal. (3.23)

Equation (3.23) computes the equilibrium excess return on asset ¢ solely as
a function of the moments of this asset’s dividend growth process and of the
consumption growth process. The interpretation of (3.23) runs, of course,
very much along the lines of the interpretation of (3.7). We showed in (3.7)
that there are three behavioral determinants of excess returns: aversion to
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risk, prudence, and aversion to intertemporal substitution. The excess return
equation (3.23) simply shows that each of these behavioral determinants
applies to the each of the events, described in (3.20), associated with good
news about the return on asset {: news that tomorrow’s dividends will be
high, that future dividends will be high, or that future consumption growth
will be low.

To complete the computation of equilibrium prices, all that remains to be
done is to subtract from (3.23) the equilibrium excess return on wealth com-
puted in (3.13). This will yield the constant difference, ., between the rate
of return on asset ; and the rate of return on wealth. Using the expression in
(3.2) for the rate of return on wealth, and substituting the just computed 7;,,
into (3.17), would yield the (approximate) equilibrium price of any asset i
as a function of consumption and dividend data alone.

4. EQUILIBRIUM RETURNS: HETEROSKEDASTIC CONSUMPTION

In this section, we extend the results of the previous section by showing
how the main result derived in the homoskedastic case—the generalized
CCAPM of (3.7)—generalizes to the case where the log of consumption
growth is heteroskedastic.

Since solving equation (2.15) when consumption follows an arbitrary het-
eroskedastic process is a formidable task (it requires computing conditional
moments of conditional moments of conditional moments etc.), and rather
than attempting the impossible,'® we parameterize the heteroskedasticity by
assuming that log consumption growth follows a simple AR(1) process with
GARCH(1,1) disturbances:

X1 = a+bx,+u (4.1)
uer ~ e N, 0cc) (4.2)
Oeen = Qo+ i) + 000001 (4.3)

We will use three properties of GARCH processes that are proved in Restoy
(1991).17 If two random variables have a joint normal conditional distribu-
tion whose second order moments follow GARCH processes analogous to
(4.3), then:

L8 At least impossible to us.
UThe straightforward proofs can be found there in Lemmas 1, 2, and 3.
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Property 1 : Today’s conditional expectation of products of powers of
tomorrow’s conditional second order moments is a polynomial in to-
day’s conditional second order moments.

Property 2 : Today’s conditional covariance between products of pow-
ers of tomorrow’s conditional second order moments is a polynomial
in today’s conditional second order moments.

Property 3 : Today’s conditional covariance between one of these ran-
dom variables tomorrow and product of powers of tomorrow’s condi-
tional second order moments is zero.

4.1. The consumption-wealth ratio. Properties I and 2 immediately im-
ply that the solution to (2.15) (i.e., the equilibrium consumption wealth ra-
tio) can be written as

8b > ;
G =n— (1= p)r—spts + ) {0 (4.4)
j=1

where the constant n and the {; coefficients—which are, as we shall see
below, uninstructive and irrelevant for excess returns—can be computed as
in Restoy (1991).

To understand this equation, it is best to compare it with (2.15). The term in
x, on the right-hand side of (4.4) represents the expected present discounted
value of future consumption, which is just a linear function of current con-
sumption growth because of the AR(1) process followed by consumption
growth. The polynomial in the current conditional variance of consumption
is present by virtue of Properties 1 and 2, which guarantee that the last term
in (2.15) can be expressed in the form, given in (4.4), of a weighted sum of
powers of the current conditional variance of consumption.

4.2. Excess returns. Property 3 implies

00
E : i _
COV, Vit gjgcc,r+l) = 0.

j=1
As a consequence, from (4.4) and (4.2),
8b
1-6b
This is an important result because it embodies the fundamental insight that,
for our AR(1)-GARCH(1,1) process, returns are only able to predict future
conditional means of consumption growth but carry no information about

the future conditional variances. Therefore, the ¢; parameters are irrelevant
when it comes to computing excess returns, and the parameters of GARCH

Ticit- (4.5)

Ciax —
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process do not matter for excess returns! Indeed, substituting (4.5) into
equation (2.10), one obtains

Oy N 8b

Eirige1 — Fpps1 = 5 + [V -(y — 10)-1—:—5‘6} Tic,t+ (4.6)
Because of Properties 1 to 3, this expression is almost identical formally to
the one we would have obtained, in (3.7), for an AR(1) process with ho-
moskedastic errors. Because of the autoregressive nature of consumption
growth, the only conditional moment that matters for excess returns is the
current conditional covariance between asset returns and consumption. But
the one crucial distinction is that excess returns now vary over time, re-
flecting the time variation of the conditional variance of log consumption
growth.

While one might be tempted to conclude from (4.6) that this model is ob-
servationally equivalent to a standard CCAPM model with coefficient of
relative risk aversion (or inverse of the elasticity of intertemporal substitu-
tion)

y'=v+(y—p)8b/(1—-38b),

this would be mistaken. If y is small relative to p and consumption growth
is highly persistent, the implied y’ might well be negative, and the excess
return on an asset might be negative when the conditional covariance be-
tween that asset’s return and consumption is positive.

A particular case is when the consumption growth rate is not persistent
(b = 0), but exhibits conditional heteroskedasticity of the GARCH form.
From (4.6), that assumption implies that the CCAPM’s excess returns ex-
pression holds. Similarly, equations (2.9), (4.4) and Property 3 imply that
the SCAPM also holds. This result shows how i.i.d. consumption growth
(as in Kocherlakota (1990)) is a sufficient but not necessary distributional
assumption to get observational equivalence between SCAPM, CCAPM
and the excess return expression associated to the model with GIP pref-
erences. Notice however that, even in this case, it is not true that elasticity
of intertemporal substitution is irrelevant to determine asset prices as long
as it affects the equilibrium rate of return on wealth.

5. TEMPORAL RISK AVERSION AND THE TERM STRUCTURE OF REAL
INTEREST RATES

The previous sections have highlighted in several instances the fact that risk
neutrality towards timeless gambles does not imply, as is widely believed,
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that excess premia should be zero for all assets regardless of their matu-
rity. As we emphasized above, the latter presumption is valid only in the
time- and state-additive expected utility case—for, in that case, neutrality
towards timeless risks coincides with indifference to the date at which one
consumes, and thus to the irrelevance of the time dimension of risk. How-
ever, this coincidental result does not carry over to more general setups,
and there is no blanket presumption that equilibrium risk premia should be
zero at all maturities when consumers are neutral towards timeless risks—
which confirms in equilibrium the partial equilibrium analysis of Dréze and
Modigliani (1972).

To highlight the role of temporal risk aversion, we now return to the ho-
moskedastic case'® and characterize the equilibrium term structure of real
bond returns under the assumption that the log consumption growth process
follows an homoskedastic, AR(1) process:

Xpp1 = a+bx,+ e 4, (5.1)
€errt ~ 0 N0, 00). (5.2)

We consider pure discount bonds maturing j > 1 periods from now, i.e.,
riskfree claims that promise to pay one unit of the consumption good in
every state of nature j periods from now. Let R;(j) denote the gross one-
period return at time  on a bond of maturity j.'° It is straightforward to
show that R,(j) must satisfy the following Euler equation:

J i
EAB [ X TR A IRGDY = 1. (5.3)
k=1 k=1
Similarly, the return on a j-period rolling over short strategy must satisfy
N N -1
EAR X A TR R =1 (5.4)
k=1 k=1 k=0

In the appendix we show that, under the same joint lognormality assumption
we used above, the Euler quation corresponding to the j-period bond can be

18Computations are more tedious, but the results not more instructive, in the het-

eroskedastic case.
12The one-period rate of return at ¢ on a bond maturing at ¢ + 1, R,(1), 1s simply what

we called earlier R4,
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written as.
r(j) = —logB+pS(a, b, j) + pT (b, j)x

_ 1 — —p7
+%[(p ¥)( V)_A(b,j)[p+y p”% (5.5)

(1 —8b)?

where

1 1—-5/
Sab, j) = ~—2 [j—b b]

i1-b 1—b
b1—bi
T, )) =2
(b, ) T
I da1— b2 | — pik
A, ) = - 1 42— |
©. 1) 121b2[+ l—b]

Equation (5.5) allows us to draw (approximate) yield curves for pure dis-
count bonds. In this homoskedastic world, those yield curves would be flat
if consumption is i.i.d. (b = () and/or agents have an infinite elasticity of
intertemporal substitution (p = 0).

In the appendix we also show that the rolling over short strategy yields a
return which can be written as the return on a j- period bond plus a term
premium. This term premium has the form:

. 1 — , :
TP(j)=pb [—pr+pw~——r 5b]A(b,J—1)(1—l)
1 2
y—o015% V=0
b b . (56
+p [p+1u8b}; = 56

The term premium is a complex function of the persistence parameter b
and the preference parameters y and p. Under the standard time-additive
expected utility preferences, the term premium is zero if agents are risk
neutral—because zero risk aversion is then associated with zero aversion
to intertemporal substitution (y = p = 0). In general, however, a zero
coefficient of relative risk aversion for timeless gambles does nor imply a
zero term premium. By contrast, if agents have an infinite elasticity of in-
tertemporal substitution (p = 0), the term premium is zero in equilibrium
regardless of the value of the coefficient y: when consumers do not care
when they consume, the rate of return on a long bond and on the corre-
sponding rolling over short strategy must be identical. Finally, note that the
term premium is, of course, always zero if consumption is i.i.d.
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6. CONCLUSION

We have shown in this paper that the equilibrium capital asset pricing
model that emerges from Kreps-Porteus GIP preferences can be written—
both in the case of homoskedastic and in the case of AR(1)-GARCH(1,1)
consumption—as a generalized CCAPM in which both aversion to risk and
to intertemporal substitution matter for excess returns. This generalized
CCAPM features, relative to the standard CCAPM, an extra term that cap-
tures the effects on excess returns of a possible correlation between an asset
return and news about future consumption, and that reflects the interaction
between precautionary saving and consumption smoothing. Because of the
presence of this extra term, the predictions of this generalized CCAPM can
be quite different from and richer than those of the standard CCAPM. For
instance, the equilibrium excess return on an asset whose return is positively
correlated with consumption might well be negative . .. .

A second contribution is that we have derived approximate equilibrium as-
set pricing formulas that can be used to price explicitly any asset solely as
a function of the conditional moments of its dividend process and of con-
sumption. In particular, these formulas make it possible to compute, albeit
approximately, the predicted excess on equity—as distinct from the rate of
return of a claim to aggregate consumption that is computed in most of
the asset pricing literature. This should help shed new light on the long-
standing debate on the equity premium and riskless rate puzzles. These
formulas also show how to compute the otherwise unobservable rate of re-
turn on wealth from consumption data alone. This method could be applied
empirically to characterize the true implications of the SCAPM when the
rate of return on wealth is inferred from consumption data instead of being
measured as the rate of return on the stock market.

Third, our paper clarifies the often forgotten role of temporal risk aversion
for equilibrium asset prices: excess returns are in general not zero, and the
yield curve for real bond returns is not flat, when the consumers are neutral
towards timeless risks.

Finally, this paper should be viewed as our contribution to a budding branch
of literature®® that attempts, through approximations, to provide an analytic
understanding of the workings of models that usually must be solved nu-
merically. This approach makes it possible to unify theoretical results and
numerical insights.

208ee Kimball [1992], Campbell [1992].
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APPENDIX: COMPUTING THE RETURN ON A j-PERIOD BOND AND THE
J-PERIOD TERM PREMIUM

Using the lognormality assumption, we can write
J J
jn() = —jOlogB+p0E Y xik— (0 —DE Y ruca

k=1 k=1

1 J J
- 3 [p@z\/arr (Zx,+k) + (6 — 1)? Var, (Z Tw,:+k)
k=1 k=1
j J
+ 2000 = DCoVe [ Y Xerier 3 Fwesic ) |- (A1)
k=1 k=1

Similarly, under the lognormality assumption, equations (A.1) and (5.4)
yields

j-1

Y Era(l) = jn() +TP3), (A2)
k=0
where
1 j-1 J-1 J
TPG) = sVar | 3 rie(D) [ +p0Covi | 3 ree(1), ) X
k=0 k=0 k=1

j-1 J
— (@~ 1D Cov, [Z rese(1), Y rw,,ﬂ} (A3)
k=0 k=1

is the j-period term premium.

For the homoskedastic AR(1) process given in (5.1), (3.2) and (3.3) special-
ize to

0
Sei1Xes1s (A.4)

w =i X +_;__
Fuerl + PXep1 T35

where

O(1 — p)* 1

2 (1—sby (A=)

u=-—logh—

Equation (A.4) implies that

l—p
1—8b

Fupvj — Birwiny = (10 + ) (Xevj — E xj). (A.6)
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Therefore,
i b
E Y Tuesk =Uj +pEe Y Xep, (A7)
k=1 k=1
i 1 0 ]
Var, ?;{ Fuw,t+k (,0 + m) Var, ;xwk ) (A.8)
J J
Cov, (Z Xitks Z Twivk | = (P + ——'—') Var, ZX:HC (A.9)
k=1 k=1
Now,
J J
E Y X = By [a(l+b+-+b7") + 5]
= k=1
= Jj[S(a, b, j) + T (b, jx], (A.10)
where

1 a 1 -4/ bl —b
) =~ | — d T, j)=~
S{a, b, j) jl—b|:1 bl—b] an b, ) = T s

When consumption growth is i.i.d. (b = 0), $(a,0, j) = aand T(0, j) =
0, while for one-period bonds (j = 1), S(a,b,1) =aand T(b,1) = b.

Moreover,

ar, (im) ZVar,(mezZ Z Covi (erpr, xer). (A1D)
k=1

k=1 I=k+1

But

k-1 2k
1-5
Var, (x,,4) = Var, (b"x, + E b‘ec,,%_s) = ———=0cc (A.12)

s=0

and, for! > k,

I—k—1
I—k 5
Cov: (X144, X)) = Cov, (xu-k,b Xtk E b €c,r+!s)

s=0
= b'"*Var,(x, 1)
1 — b

— bl—k
1 -5

e (A.13)
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Therefore,
k=1 k=1 =1 {=k+1
J 1— j- b2k J
= 7 Z W
k=1 k=1 T
= (b,])o“, (A.14)

where

11— p% 1 — b~k
A, j) = —Z |:1+2b1-b]'

When consumption growth is i.i.d. (b = 0), A(D, j) = 1, while for one-
period bonds (j = 1), A(b, 1) = 1.

Substituting (A.7), (A.8), (A.9), (A.10) and (A.14) into the Euler equation
for j-period bonds (A.1), using (A.5) and rearranging, one obtains

rn(j) = —logB+pSa,b,j) + pT(b, j)x;
L|(e—y)1-y) y—0

which is the expression for the return on a j-period bond given in (5.5).

Now, from equation (5.5) the return on a 1-period bond is
re(l)y = —logB + pa + pbx, + M, (A.16)

where

1] e=v)1-v) y—p\
M“E{ (1 — 8b)2 _(p+1~5b)]6“' (AID)

Then, from equations (A.3), (A.9), and (A.16) the j-period term premium
can be written as

. 1 1—p &
TP(j) = pb{—59b+p9—(9—1) (p+ I_Bb)}Var; (wak)

1 -
+ pb {pé) - —-1) (P 5b)]covr (-xt+_f7 Z-xl+k(} 18)
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Then, using equations (A.13) and (A.14) and rearranging,

. 1 —-p . .
TP(j) = Pb[—ipb‘i"P'f';/_Bb:'A(b,J—l)(J—l)
j—1 2
Yy —0 X '_kl_b
b b’ . A.19
+ P [p+1—3b]?;1 - (A.19)

which coincides with expression (5.6) in the text.
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