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A B S T R A C T

The diffusion of renewable energy in the power system implies high supply variability. Lacking economically
viable storage options, renewable energy integration is possible thanks to the presence of modern mid-merit
fossil-based technologies, which act as back-up capacity. This paper discusses the role of modern fossil-based
power generation technologies in supporting renewable energy investments. We study the deployment of these
two technologies conditional on all other drivers in 26 OECD countries between 1990 and 2013. We show that
moving from the first to the third quartile of the distribution of modern fossil technologies is associated with an
increase in yearly renewable energy investment of between 6 and 14 kW per thousand people, on average and
ceteris paribus. This is a sizeable effect, considering that average yearly renewable capacity addition in our
sample are around 12 kW per thousand people. These findings are robust to different econometric specifications,
various definitions of modern fossil technologies and are stronger for wind, which is more intermittent and for
which the mismatch between supply and demand is more marked. Our analysis points to the substantial indirect
costs of renewable energy integration and highlights the complementarity of investments in different generation
technologies for a successful decarbonization process.

1. Introduction

Electricity generation is one of the key sectors for decarbonization.
In 2014, electricity production satisfied 18% of final energy demand,
but contributed to more than 40% of energy-related CO2 emissions.
Indeed, the IEA estimates that this sector alone could contribute to
more than two thirds the energy-related emission reductions in a “Two
Degree Scenario”, mostly through the deployment of renewable tech-
nologies (IEA, 2017).1 One of the major barriers to the large scale de-
ployment of the most renewables is that they are variable and non
dispatchable, with peaks in generation not fully coinciding with peaks
in demand.2

Historically, the variability of renewable generation has been ac-
commodated within the energy system by relying on fossil-based
technologies as back-up capacity, since cheap, large-scale storage op-
tions do not currently exist (see discussion in Section 3). Importantly,
there are different categories of fossil-based technologies. Traditional
fossil generation, which comprises coal-based and low efficiency gen-
eration technologies, cannot easily compensate for renewable varia-
bility due to slow reacting times, high capital costs and little modularity
(meaning that the efficiency of smaller units is significantly lower than
that of larger units). Modern fossil technologies, which include most gas
generation technologies, Combined Heat and Power and Integrated
Gasification Combined Cycle to name a few, are characterized by mid-
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1 Generally speaking, renewable energy technologies include hydro, wind, solar, geothermal, ocean and wave technologies and biomass. See Section 4.1 for the specific definition of
renewable energy technologies in the context of our analysis.

2 Additional important barriers to the large scale deployment of renewable energy sources are that (1) renewables are not yet fully cost-competitive with fossil-based power generation,
even though they recently witnessed significant decreases in costs and that (2) the energy sector is sticky and modifying the paradigm of electricity production implies multiple
challenges: the need to upgrade infrastructure (i.e. the electricity grid) and the considerable sunk costs in existing, less efficient and more polluting power plants.
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merit order,3 quick(er) ramp-up times, lower capital costs and mod-
ularity. These latter technologies are particularly suitable to meet peak
demand and mitigate the variability of renewables.

We contribute to the debate on the determinants of renewable
generation capacity by extending the analysis of Popp et al. (2011) and
discussing the role of traditional and modern fossil-based technologies
as back-up capacity to compensate renewable energy variability. We
focus on a sample of 26 OECD countries, which account for the majority
of renewable capacity additions between 1990 and 2013.

Controlling for country-level fixed effects and a host of factors af-
fecting renewable energy investments, we show that the deployment of
renewable energy sources did not decouple from that of fossil-based
technologies in our sample, and specifically from a modern sub-set of
these technologies using gas as primary input. Moving from the first to
the third quartile of the distribution of modern fossil technologies ca-
pacity is associated with an increase in yearly renewable energy in-
vestments of roughly 6–14 kW per thousand people, on average and
ceteris paribus. This is a sizeable effect, given that the average yearly
renewable capacity addition in our sample is just below 12 kW per
thousand people. These findings are robust to different econometric
specifications, and two definitions of modern fossil technologies.
Moreover, they are stronger for wind, which is more intermittent and
for which the mismatch between supply and demand is more marked.

Our contribution suggests that overlooking the complementarity
between renewable and modern fossil technologies leads to an under-
estimation of the costs of the energy transition. Given the large un-
certainty regarding the availability of cost-competitive storage options
in the immediate future, increasing the penetration of renewable energy
as implied by global targets will most likely result in significantly
higher system costs because it will require a parallel expansion of back-
up resources, which are capital-intensive and will be largely under-
utilized. This gives rise to important policy implications related to (1)
the need to account for such complementarity when making investment
decisions; (2) the fact that system costs of renewables may be under-
estimated, especially as renewable penetration increase and (3) that
investment in other non-fossil back-up technologies (i.e. storage) is a
crucial component of the effort to decarbonize the energy system.

The rest of the paper is organized as follows. Section 2 discusses the
related literature and highlights our contribution to the debate, while
Section 3 details some of the challenges of the integration of renewable
energy generation in the power system. Section 4 presents our data
sources, the definition of our variables and provides descriptive statis-
tics. Section 5 details the empirical strategy. Section 6 presents our
results and quantifies them. Section 7 concludes with a discussion of the
policy implications of our analysis.

2. Related literature

This paper focuses on the relationship between renewable energy
generation and the presence of fossil-based back-up capacity. The core
of the paper is devoted to the empirical investigation of whether the
successful integration of renewable was possible partly due to the
availability of modern, fast reacting fossil-based units. This topic has
received little attention in the literature on the development and dif-
fusion of renewable energy technologies.

A first set of contributions focuses on the role of energy and en-
vironmental policies in promoting renewable investment and deploy-
ment, which is proxied using information on installed capacity.
Shrimali and Jenner (2013) explore the impact of different policy in-
struments on solar photovoltaics (PV) development in the US com-
mercial and residential sectors over the years 1998–2009, but their
analysis does not touch upon the possible role of other generation
technologies. Jenner et al. (2013) extend the analysis to the EU and
show that solar PV deployment has been driven by feed-in tariffs (FITs).
They partially recognize the role of other generation technologies in
affecting renewable investments (i.e. yearly capacity additions) by
conditioning their empirical analysis on the share of power generation
from traditional energy sources (nuclear, coal and gas), but they do not
distinguish between the roles of different fossil-based technologies
(modern vs. traditional) nor do they discuss the implication of their
findings in this respect. Popp et al. (2011) show that technological
improvements have a small positive impact on investments in renew-
able generation in OECD countries, but find that the effect of renewable
energy policies is often not significant. Also in this case, the empirical
analysis does not account for the possible complementarity between
investments in renewable energy and (modern) fossil generation tech-
nologies. Generally speaking, the role of fossil-based generation is
overlooked in these studies under the implicit assumption of high
substitutability between clean and dirty technologies. This assumption
is shared by the theoretical contributions on directed technical change,
which assume a relatively high degree of substitutability between the
two technologies (Acemoglu et al., 2012). We contribute to this strand
of literature by providing the first macro-level empirical analysis of the
diffusion of renewable generation while accounting for the interaction
with investments in other generation capacity, and specifically modern
and traditional fossil.

A second set of analyses uses data on power production (rather than
capacity) as a proxy for renewable energy deployment. Aguirre and
Ibikunle (2014) investigate the drivers of country-level renewable
growth in a broad sample of countries, including Brazil, Russia, India,
China and South Africa. They show that coal, oil and gas contribution to
electricity generation is negatively associated with renewable growth
(see also Pfeiffer and Mulder, 2013). Narbel (2013) finds that fossil-fuel
reserves (proxied by the quantity of electricity generated per capita
from domestic fossil fuel reserves) are a barrier to the diffusion of re-
newable technologies in a sample of 107 countries over the years
2007–2009. Overall, these contributions seem to suggest that renew-
able and fossil electricity generation technologies are substitutes.
However, this conclusion is reached by focusing on electricity genera-
tion rather than on the amount of installed capacity. This is a relevant
distinction, because, as argued in Jenner et al. (2013) “generation de-
termines the actual return on investment while capacity reflects the
expected return on investment.” Moreover, for a given unobservable
distribution of capacities in different technologies, it is purely me-
chanical to observe a negative correlation between the share of re-
newable and fossil electricity generation, as demand is met with either
one or the other input. However, it may be indeed the case that to
support a given level of renewable energy generation, a country needs
to install back-up capacity in other (fossil) technologies on top of the
capacity installed in renewable generation. This is due to the high
variability of the most promising renewable energy sources (see dis-
cussion in the next Section). By choosing to focus on the amount of
electricity produced one cannot provide any insights on the sunk costs
associated with back-up capacity.4 Our analysis contributes to this
strand of literature by exploring the relationship between renewable
and fossil generation technologies using capacity rather than produc-
tion data. In this way, we are able to capture the investment decision as

3 The merit order is a ranking criterion whereby, in a centralized system generation,
capacity should be brought online in increasing order of marginal costs (considerations
are also given to the amount of energy that can be generated and the speed at which each
system can be brought online). Implementing the merit order ensures that electricity
dispatch is done minimizing the cost of production. Generally speaking and focusing on
fossil-fuel generation, coal power plants are characterized by high-merit order, as they
have low marginal costs of production (in addition to slow reacting times). Gas-fired
power plants, on the other hand, are characterized by mid-merit order as they have higher
marginal costs than coal power plants (in addition to faster reacting times). Note that
renewable energy sources are generally characterized by high merit order since their
marginal cost of production is (close to) zero (Sensfuss and Ragwitz, 2008).

4 Note also that the contributions just discussed pay no specific attention to the role of
energy and environmental policies.

E. Verdolini et al. Energy Policy 116 (2018) 242–256

243



purely as possible, since capacity informs on the full (direct and in-
direct) cost paid to produce a given amount of electricity.

A third strand of literature uses integrated assessment models
(IAMs) to provide insights on the evolution of the electricity generation
mix over time. In these models is it of paramount importance to
properly account for the constraints imposed by variable renewable
energy sources. Carrara and Marangoni (2017) show that several stra-
tegies are adopted to this end in IAMs, depending on the granularity of
the model and the complexity with which it portrays the energy sector.
For instance, some models impose upper bounds (i.e., an exogenous
ceiling) on variable renewable sources penetration, while others rely on
implicit or explicit cost mark-up for renewables (i.e. they assume
higher-than-observed costs of renewable generation to account for
variability), or impose constraints on the flexibility or installed capacity
of the power generation fleet. Our country-level analysis provides in-
sights on the historical interaction between renewable and fossil gen-
eration technologies, and can inform the IAMs community regarding
the calibration of such constraints.

We argue that recognizing the complementarity between renewable
and fossil-based generation both in terms of system costs and of dec-
arbonization process is crucially important to assess if and at what cost
economic activities can be decoupled from fossil-fuel use (and hence,
from anthropogenic carbon emissions) to avoid severe and pervasive
impacts from climate change while sustaining economic growth (IPCC
et al., 2014). In the next section, we briefly discuss the challenges of
managing a large share of renewable energy generation in terms of
planning, operation, and reliability practices (NYISO, 2010; Baker
et al., 2013). This discussion provides insights on the importance of our
research question, as well as on how the management of variable
sources of electricity impacts the social and private costs of an energy
transition.

3. Managing renewable variability in the energy system

The issue of how to match demand and supply instantaneously, and
in particular how to meet peak demand, has always characterized en-
ergy systems, since electricity cannot be stored in an economically vi-
able way for extended periods of time or dispatched for long distances
without significant loss. This means that even power systems fully
based on dispatchable technologies (such as fossil fuels) incur into
system costs due to the necessity to hold back-up capacity, namely re-
serve generation capacity always on hold to offset variations in demand
and supply. Generally speaking, peak demand has been met mostly
thanks to gas-fired and diesel turbines, which have fast rump-up times
and are modular.5 Conversely, other technologies with higher capital
costs, lower operating costs and slower reaction times (such as coal-
based or nuclear power plants) have been used to handle base load
production (Bhattacharyya, 2011).

The problem of matching demand and supply is exacerbated in the
case of renewables because the power system needs to adapt not only to
decentralized generation but also to variable supply. Variability char-
acterizes the most promising and most used of these technologies (i.e.
wind and solar), which often reach peak supply in times not coinciding

with peak demand (Carrara and Marangoni, 2017).6 This consequently
increases the risk of shortage, and lowers reliability and security of
supply. The problem is further compiled by the lack of cheap, large-
scale storage options. Indeed, while the costs of storage for transport
applications and of small-scale storage for electricity generation have
witnessed significant decreases over the last decade,7 large-scale sto-
rage for stationary applications remains significantly costlier due to the
more challenging charge/discharge cycles, which require more ex-
pensive battery management systems and hardware (IRENA 2017).
Potentially large cost reductions could emerge as a result of improve-
ments in transport and small-scale storage, but significant uncertainty
remains around the size and speed of future costs decreases for large-
scale, stationary options (Nykvist and Nilsson, 2015).

Hence, the only currently viable and certain option available for the
integration of renewable energy sources in the energy systems is to have
a significant amount of fossil-based back-up generation capacity, which
is unused for the large majority of time, but which can be brought
online at times of need and of peak demand. For instance, E.ON Netz
(2004), one of the four grid managers in Germany as of 2004, indicated
that 8MW of back-up capacity were required for any 10MW of wind
capacity added to the system. Similar concerns are voiced in recently
commissioned studies on the feasibility of the British renewable energy
targets (e.g. Aurora Research, 2016; Strbac and Aunedi, 2016). Indeed,
it has been noted that some traditional load-following “mid-merit”
generation technologies (i.e. combined cycle, and specifically combined
cycle gas turbines) have been increasingly used to compensate for re-
newable variability in the last decade, alongside the traditional, peak-
load generation technologies, such as gas turbines.8 This problem has
also been discussed in several academic contributions, which, however,
do not empirically examine how the availability of modern fossil back-
up capacity affects the diffusion of renewable energy technologies. We
discuss here few representative papers to which the reader can refer for
a comprehensive review of this active literature. Anderson and Leach
(2004) discuss the several technological options to deal with inter-
mittency focusing on a comparison between gas and hydrogen. Their
main conclusion is that increasing the penetration of zero-emission
hydrogen-based storage requires complementary innovations in the
domains of decentralized generation and combined heat and power
production. Steinke et al. (2013) notice that dealing with intermittency
can be done with either storage technologies or grid extensions, which
reduce the risk of energy shortages. The authors develop a simple
physical model to gauge the additional requirement of back-up capacity
in a hypothetical 100% renewable scenario for Europe and the key role
played by grid extensions in reducing this requirement. Similar con-
clusions regarding the importance of grid extensions and demand-side
management are reached in another model developed by Brouwer et al.

5 Unlike steam turbines, which require a period of 1–1.5 hours for heating after start
up, cold gas turbines heat within 6–15minutes following the start-up (http://www.eolss.
net/sample-chapters/c18/e6-43–33-06.pdf). The most attractive option is to use the most
efficient types of gas-fired plants as back-up capacity. These consist of co-generation gas-
fired plants, which use gas to produce both electricity and heat for additional applica-
tions. Co-generation is an attractive option since back-up capacity is used below peak and
often at low levels of capacity. Unfortunately, our data do not allow discerning if gas
turbines are used in co-generation mode. Hydro generation has also been traditionally
used to meet peak demand, as electricity production can rump up fast. However, hydro is
very dependent on endowment and it is unlikely that it can be expanded further (espe-
cially in big plants) since most of the resource is already exploited in most of the countries
included in our sample. Biomass is also an excellent candidate, but concerns over tra-
deoffs relating to land use for biomass and biofuel production versus food are high.

6 For instance, wind turbines produce most electricity in the early hours of the day and
at night and cannot cover daytime peak demand; wind speeds vary significantly from day
to day but also between seasons. Solar power plants output is strongly affected by cloud
coverage and varies between seasons. Hence, solar can cover daytime peak load, but not
the residential sector nighttime peak load demand. Both these renewable energy options
require a significant amount of back-up capacity.

7 Nykvist and Nilsson (2015) argue that industry-wide cost estimates declined by ap-
proximately 14% annually between 2007 and 2014, from above US$1000 per kWh to
around US$410 per kWh, and that the cost of battery packs used by market-leading BEV
manufacturers are even lower, at US$300 per kWh, and has declined by 8% annually.
More recently, IRENA (2017) reports that Li-on batteries for transport applications saw a
73% cost reduction between 2010 and 2016. Small-scale Li-ion storage options for
electricity generation (i.e. options for households and small distributed generation) have
seen a 60% decrease in total installed costs in Germany between 2014 and 2017. Other
battery storage technologies (e.g. flow batteries) also offer large cost reduction potential.
Please see IRENA (2017) for a thorough discussion.

8 Such technologies can respond to changes in load much faster than conventional
steam power plants, but slower than gas turbines (see http://www.wartsila.com/energy/
learning-center/technical-comparisons/combustion-engine-vs-gas-turbine-part-load-
efficiency-and-flexibility and http://iea-etsap.org/web/Highlights%20PDF/E02-gas_
fired_power-GS-AD-gct%201.pdf).
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(2014). Finally, the ambitious paper of Gowrisankaran et al. (2016)
quantifies the social costs and benefits in terms of CO2 emissions from a
scenario of large-scale renewable generation, accounting for the costs of
intermittency in terms of back-up capacity, forecastable output and
correlation between demand and supply variability. In a scenario of
10% penetration of solar energy, on which they calibrate the model, the
increased social cost of higher renewable energy penetration is justified
by an environmental cost of a ton of CO2 as high as $275, which is
much higher than the figure provided by the US government, i.e. $39.

These findings resonate the concern that larger back-up capacity
translates into higher renewable “whole-system costs”.9 In OECD
countries, estimates of such costs for dispatchable fossil-fuel technolo-
gies are relatively modest and estimated below USD 3 per MWh. Con-
versely, the whole-system costs of renewables are significantly higher,
ranging from USD 40 per MWh for onshore wind, USD 45 per MWh for
offshore wind and USD 80 per MWh for solar (NEA, 2012).

The above discussion points to how handling variable generation is
a significant barrier to the decarbonization of the power sector (e.g.
Carrara and Marangoni, 2017; Lorenz et al., 2011; Marquez and
Coimbra, 2011; Mathiesen and Kleissl, 2011; GE Energy, 2008,). For
this reason, it is of paramount importance to analyze the interplay
between renewable energy generation and fossil-based generation.

In the remaining of the paper, we tackle to this issue studying the
determinants of investments in renewable energy capacity in cross-
country regressions.

4. Data and descriptive statistics

Our analysis is based on a sample of 26 OECD countries between
1990 and 2013.10 Our dependent variable is (1) a measure of invest-
ments in renewable energy generation capacity. Our main explanatory
variables of interest are (2) proxies for the availability of modern fossil
and traditional back-up capacity, and (3) a vector of policy indexes,
which capture the stringency of environmental policy and the level of
market regulation. We also condition our estimates on (4) a set of
control variables which likely affect the decision to invest in renewable
technologies above and beyond our explanatory variables of interest.
We now describe each of these variables in turn. Tables 1 and 2 provide
descriptive statistics for all variables on average across the sample and
by country, respectively.

4.1. Dependent variable: investment in renewables

We extract data on renewable installed capacity from the IEA
Renewable Energy Information Database (IEA, 2016a), which provides
country-level information for OECD countries on solar, wind, hydro,
geothermal, biomass and ocean/tide from the 1990s.11 In the context of
our paper, renewable energy (RE) technologies include solar, wind,
geothermal and ocean/tide/wave. We exclude hydro from the calcu-
lation of RE capacity because, as pointed out by Popp et al. (2011), it is
a mature technology for which most of the natural endowment is

already exploited. Furthermore, hydro is a dispatchable technology and
is often used to meet peak demand. As such, it does not share the same
characteristics and limitations of the other RE technologies. We exclude
biomass because this type of energy source is also dispatchable, and is
generally burned alongside fossil fuels in power plants.

As in the related paper of Popp et al. (2011), our dependent variable
is the net installed electrical capacity in RE technologies (∆Cap pc_ it

RE)
per capita in country i, time t, which, as argued in Section 2, reflects the
investment decision as purely as possible:

∆ =
−

−Cap pc
Cap Cap

Pop
_ it

RE it
RE

it
RE

it

1

As in Popp et al. (2011), we use population as a rescaling variable in
order to capture the change in capacity compared to the potential
market size for electricity. Hence, the main capacity variables are
normalized by population, and are measured in kW per thousand
people.12

In our main specification, we consider all RE technologies together.
We however test the robustness of our results separately for different
renewable energy sources. We specifically consider solar and wind on
the one hand and biomass on the other. The former are considered the
most promising RE technology options. Both have witnessed an im-
pressive decrease in costs over the past decade, and consequently ex-
perienced rapid increases in installed capacity. While both are variable
electricity sources, they differ because electricity production from solar
tends to be more aligned with the schedule of electricity demand,
whereas wind's electricity production is highest in the very early hours
of the day, when demand for electricity is low.

Table 1 shows that average RE installed capacity in the sample is
roughly 65 kW per thousand people, with a median of 12.5 kW. Yearly
capacity additions are on average 11.5 kW per thousand people, with a
median of just above 2 kW per thousand people. Both these variables
have standard deviations which are more than twice the average value,
indicating wide heterogeneity in our sample (see also Table 2). Den-
mark leads by far in terms of average per capita RE investment, fol-
lowed by Portugal, Italy, Sweden and Ireland. Countries like Hungary,
Turkey, South Korea, but also Finland lag behind in terms of per capita
investments. Overall, RE capacity has been increasing in the sample
since around the year 2000 (see Fig. A1 in the Appendix).

4.2. Fossil-based energy generation

We collect information on country-level fossil-based installed ca-
pacity from IEA Electricity Information Database (IEA, 2016b). Im-
portantly, this database allows us to distinguish between different types
of fossil generation technologies. Recall from the introduction that
fossil technologies can be separated into traditional fossil (TF hence-
forth) generation and modern fossil technologies (MF henceforth), with
the latter being the best candidates to compensate for renewable
variability. To explore the relationship between renewable investments
and fossil installed capacity, we estimate a regression model where per
capita capacity in MF and TF technology (Cap_pcit

MF and Cap_pcit
TF) are

the main explanatory variables of interest.
Specifically, we use the IEA (2016b) data to create two different

proxies for both traditional and modern fossil technologies.
The first approach we use is to focus on the input used for electricity

production, namely gas or coal. Gas is an efficient input in electricity
production than coal and gas-based technologies are more modular and
characterized by faster rump-up times than coal technologies.
Following this reasoning, a first way to proxy MF versus TF is to use

9 Whole system costs include the levelized cost of energy (LCOE) of a given technology,
but also other system integration costs, i.e. the additional cost at the system level required
to securely integrate a unit of generation of that specific technology (Strbac and Aunedi,
2016).

10 The sample is slightly unbalanced due to missing data and includes: Australia,
Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany,
Greece, Hungary, Ireland, Italy, Japan, Korea, the Netherlands, Norway, Poland,
Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom
and the United States. The missing values are concentrated at the end of the sample
period for France and Germany, while at the beginning of the sample period for the Czech
Republic and the Slovak Republic. The countries included in our sample account for the
majority of worldwide RE investment over the period considered.

11 Indeed, our time span is dictated by the fact that the IEA (2016a) detailing re-
newable energy capacity starts in 1990. Conversely, data on fossil capacity generation
from IEA (2016b) is available also for earlier years.

12 In our main specification, hydro and nuclear capacities are in percentage terms (see
discussion on control variables). However, in Appendix A, Table A1, we show that results
remain unchanged if we rescale all capacity variables using total capacity (i.e. we con-
sider variables in percentage terms), or if we rescale also the hydro and nuclear controls
using population.
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installed capacity in gas for the former, and installed capacity in coal
for the latter. We call these two proxies MF1 and TF1, respectively.13

The second approach we use is to consider the type of technology
used for production. Specifically, the IEA (2016b) distinguishes be-
tween the following generation technologies: Gas Turbines; Combined
Cycle; Internal combustion/diesel; Steam; and Other type of generation.
We define MF2 as the sum of Gas Turbines and Combined Cycle, as
these are often used to address peak load. Conversely, we define TF2 as
Internal combustion/diesel; Steam; and Other type of generation. These
are technologies which are generally characterized by lower efficiency
levels and slower ramp up times.

Note that not all countries report the information under both clas-
sifications for all years in our sample.14 This gives rise to both an un-
balanced sample and to samples which are not overlapping when using
the first rather than the second definition of fossil fuel technologies.

Descriptive statistics from Table 1 and Table 2 provide largely
consistent insights independent on whether we focus on MF1 and TF1
or MF2 and TF2. From Table 1, we observe that modern fossil installed
capacity is larger than installed capacity in renewables, with MF1 and
MF2 representing on average roughly one third and one half of TF ca-
pacity, respectively (240 and 380 kW per thousand people). The dis-
tribution of MF capacity across the countries in the sample is more
heterogeneous than that of TF, as the standard deviation is almost as
wide as the mean. In the case of TFl technologies, on the contrary, the
distribution is more tightly centered. Interesting for the purpose of this
paper, roughly two fifths in the countries in our sample have above the
median both in terms of yearly RE investments and in terms of MF
installed capacity, as shown in Table 2.15

4.3. Policy variables

To quantify the relationship between ∆Cap_pcit
RE, Cap_pcit

MF and
Cap_pcit

TF ceteris paribus we condition our estimates on several other

confounding factors affecting the level of RE investments in country i at
time t. Among the most important drivers of renewable deployment
previously identified in the literature are public policies, which pertain
to two realms: environmental policies (e.g. such as feed-in tariffs, tax
credits, emission targets and investment incentives) and market reg-
ulation (Popp et al., 2011). We discuss each of them in turn.

We use the OECD Environmental Policy Stringency (EPS) database
(OECD, 2015; Botta and Koźluk, 2014) to create several indexes mea-
suring environmental policy stringency in our sample. The database
includes information on 15 environmental policy instruments for OECD
countries starting from 1990, and rates their stringency on a scale from
1 and 6.16 Specifically, we create the following variables: “FIT” is the
average of a country's score for the solar and wind feed in tariffs;
“Certificates” is the average of the score for White, Green and CO2
certificates; “Taxes” is the average of CO2, SOx, NOx and Diesel taxes
scores and “Limits” is the average of SOx, NOx, and Particulate Matters
limits scores. In line with the findings of Johnstone et al. (2010), we
expect feed-in tariffs and certificates to play a strong role in supporting
the deployment of RE capacity and the integration of renewable in the
power system. Indeed, FITs guarantee a fixed remuneration to RE
generation and are expected to be particularly effective in supporting
new and small producers in the electricity market. Conversely, certifi-
cates promote RE deployment either directly (green certificates) by
requiring that utilities produce or purchase a certain share of renewable
power as part of their portfolio, or indirectly, by requiring permits for
CO2 emissions (CO2 certificates) or establishing energy saving obliga-
tions (White certificates). Taxes and limits are expected to be less ef-
fective, as they only provide indirect incentives for RE deployment.

Table 1
Descriptive statistics.

Variable Mean Median First Quartile Third Quartile Standard deviation Minimum Maximum

Renewable Energy Capacity (kW per thousand people)
Capacity in renewables (RE) 65.03 12.53 1.591 65.24 126.8 0 960.1
Investments in RE (ΔCap_RE) 11.56 2.031 0.145 11.01 22.11 −2.197 175.6
Fossil-based Capacity (kW per thousand people)
Capacity in modern fossil (MF1) 241.2 184.9 63.34 338.3 230.4 0 1157
Capacity in traditional fossil (TF1) 762.9 657.1 480.9 1028 460.2 18.70 1861
Capacity in modern fossil (MF2) 381.8 346.5 110.6 555.9 317.4 0 1345
Capacity in traditional fossil (TF2) 573.5 517.9 219.2 768.5 434.4 0 1702
Policy Variables
Feed in Tariffs (FIT) 1.332 0 0 2.500 1.840 0 6
Certificates 0.566 0 0 0.660 0.990 0 4.950
Limits 2.175 1.320 0.990 3.960 1.686 0 5.940
Tax 0.688 0 0 1.320 0.913 0 3.960
PMR - Entry 2.574 2 0 6 2.600 0 6
Additional Control Variables
Growth Rate of Electricity Consumption 0.0181 0.0164 −0.00276 0.0376 0.0397 −0.151 0.287
GDP per capita (constant 2005 US$) 30259 31758 18115 39726 14666 4411 69095
Share of Nuclear capacity (%) 19.02 16.12 0 33.60 20.34 0 78.94
Share of Hydro capacity (%) 19.87 8.218 1.445 25.60 25.62 0.0355 99.62
Share of energy imports (%) 0.0878 0.0589 0.0157 0.129 0.0955 0 0.585
Share of fossil fuel rents in GDP (%) .427 0.122 0.00665 0.685 0.640 0 3.101
Stock of Knowledge in RE (patents) 212.8 52.17 14.75 134.4 453.7 0 3329

13 Specifically, MF1 is constructed by summing capacity in natural gas or a combi-
nation of gas, solid and liquid fuels. Conversely, TF1 is constructed by summing capacity
in coal and coal products, peat, liquid fuels and other combustible fuels.

14 For instance, Sweden reports installed capacity for gas and coal only for one year in
our sample period. Hence, Sweden cannot be included in an analysis using this definition
of modern fossil technologies (see Section 5 for more details).

15 See Fig. A1 in the Appendix for information on how modern fossil and traditional
fossil capacity developed over time.

16 The EPS database represents the most comprehensive available indicator on en-
vironmental policy instruments in OECD countries, and is developed following a statistics
methodology that allows for comparison across countries and over time. The major
shortcoming of this database is that it considers policy instruments which are primarily
related to supporting renewable energy generation technologies. This has two implica-
tions. First, it means that the database does not reflect environmental policy stringency in
the whole economy, but rather in the energy generation sector. Second, it implies that any
indicator built using the EPS data would not include information regarding policy support
to fossil fuels. In the context of our analysis, the first implication is actually a plus, since
we specifically focus on electricity generation. On the contrary, the second implication is
relevant because fossil fuel subsidies are estimated to be very high across countries. Not
accounting for this aspect may lead to an imprecise estimation of the impact of policy
stringency in certain countries. However, it is reasonable to assume that fossil fuels
subsidies are relatively stable over time in each country, i.e. they did not significantly
change in the period under consideration.
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We use the OECD index capturing the level of entry barriers in the
electricity market (OECD, 2013) to measure the level of deregulation of
the power sector (PMR), which accounts for both freedom of access to
the grid by producers and freedom of choice by consumers (see Conway
et al., 2005 for details). The index varies on a 1–6 scale, with the
highest values indicating a higher level of entry barrier. Conditioning
our estimates on the level of market liberalization is important because
there is evidence that the liberalization of the electricity market had the
effect, among the other things, of shifting the balance of power from
centralized, large and regulated providers to smaller actors specialized
in cleaner technologies (Nicolli and Vona, 2016). It is well established
that the degree of competition in the energy market affects the in-
centives to innovate in renewable energy technologies (Nicolli and
Vona, 2016; Nesta et al., 2014). Following these insights, we expect that
the diffusion of both RE and small scale MF technologies will be favored
by the reduction of entry barriers.

Hence, the basic vector of policy controls POL in our analysis is
defined as follows:

=− − − − − −POL [FIT ; Certificates ; Tax ; Limits PMR ]it 1 it 1 it 1 it 1 it 1 it 1

where the policy proxies are lagged to capture time-to-build of new
capacity.

Table 1 and Table 2 show that the policy variables are used het-
erogeneously in our sample of countries. All policy variables except
limits have standard deviations which are higher than the sample mean.
All the countries in our sample rely on an heterogeneous mix of policy
instruments, with some scoring high in Certificates and Limits (e.g. the
UK and Sweden) while others relying more heavily on FITs and Taxes
(e.g. Denmark).17

4.4. Additional control variables

We condition our estimates on a large set of control variables, which
account for additional confounding factors likely to affect RE invest-
ments and relate to (1) demand-side factors not captured by the policy
indicators, (2) characteristics of a country's energy system and (3) a
stock of knowledge in RE technologies. We discuss each of them in turn
below.

The growth rate of electricity consumption and GDP per capita (in
constant 2005 US$ per person) capture demand-side factors related to
country or economy size. The former captures expectations about future
demand, as new generation capacity is expected to be higher in those
countries where the demand for electricity increases faster. The latter
captures overall economic well-being and, more generally, all other
demand-side factors not captured by the policy indicators or the growth
in electricity demand. We use the World Development Indicators da-
tabase (WDI, 2016) to compute both variables.

The set of controls specific to the country's energy system includes
the shares of nuclear and hydro power generation, the share of net
energy imports in total energy use and the share of rents associated
with the extraction of coal, oil and gas over GDP. All these variables are
built using data from the WDI (2016). The first variable controls for the
fact that countries which can rely on alternative carbon free source of
electricity such as hydro and nuclear may not need to invest in either
renewable or fossil-based technologies. The second variable accounts
for the fact that investments in alternative energy sources may be in-
fluenced by dependency on energy imports, and more specifically, as
shown in Narbel (2013), RE investments are lower in countries which
are less dependent on energy imports. The third variable captures in-

house resource advantages in fossil fuel endowments and profitability,
which likely affect the incentives to invest in any type of additional
generation capacity.

Finally, we add a control variable which measures the stock of
knowledge in renewable energy technologies in any given country. This
variable is build using data on patents in renewable technologies
(OECD, 2016) and using the perpetual inventory method, as in
Verdolini and Galeotti (2011). Specifically, we apply the perpetual in-
ventory method on the count of RE patents by inventors in country i at
time t which are protected in at least two countries. We follow this
approach, and consider only patents with a family equal or larger than
two because, as suggested by Migotto and Haščič (2015), these re-
present higher value patents.

5. Empirical strategy

In this Section we illustrate our empirical strategy, which is de-
signed to address, to our best, the econometric issues which char-
acterize the identification of the effect of TF and MF capacity on RE
investments. Recall from the discussion above that per capita invest-
ments in RE capacity (∆Cap_pcit

RE) are assumed to be a function of TF
and MF capacity per capita (Cap_pcit

MF and Cap_pcit
TF), of the policy

variables and of all other controls. As already mentioned, our main
specification resembles that of Popp et al. (2011), augmented by the
inclusion of the fossil capacity proxies MF and TF and the fact that the
knowledge stocks of renewable energy are country-specific. In addition
to focusing on the relationship between fossil and renewable technol-
ogies, extending the analysis of Popp et al. (2011) to 2013 allows also to
re-evaluate the effects of policies on technology diffusion after the
boom of public support to renewable in the years after 2004. Specifi-
cally, we estimate several variations of the following equation:

∆ = + + + + + +
− − − −POLCap_pc Cap_pc Cap_pc Xβ γ θ α μ μ ε ,i ti,t

RE
i,t 1
MF

i,t 1
TF

, 1 i,t 1 i t i,t

(1)

where −POLi,t 1 is the vector of policy proxies explained in the previous
Section; μi and μt are country and time effects, respectively, with the
former capturing time-invariant country characteristics and the latter
absorbing the influence of global shocks; εit is an error term and −Xit 1 is
the vector of other controls previously discussed. We estimate our
models using an OLS panel fixed effects estimator, as customary in the
literature.

According to our discussion in Section 2, we expect the coefficient
associated with

−
Cap_pci,t 1

MF to be positive, i.e. >β̂ 0, while that associated
with

−
Capi,t 1

TF , i.e. ≤γ̂ 0, to be zero or negative. Importantly, we should
also expect that the effect of policies may be biased without properly
accounting for the degree of compatibility of RE technologies and fossil
technologies. Notice that our specification also accounts for the feed-
backs from hydro and nuclear technologies included in the set of con-
trols −Xi,t 1. These two additional feedbacks are measured in terms of
effective electricity production rather than of installed capacity to rule
out a strong collinearity with our two variables of interest,

−
Capi,t 1

MF and

−
Capi,t 1

TF . Indeed, because total capacity is limited by the size of the
market that is in turn proportional to population, a greater per capita
capacity in nuclear will mechanically entail a lower fossil capacity. Our
results are however robust to the inclusion of nuclear and hydro ca-
pacities (see Table A1 in the Appendix).

The fossil capacity variables (MF and TF) capture long-term per-
sistent investments stretching over several years. These total capacities
are thus composed of cumulative investments in both traditional and
modern technologies. To be sure that our estimates truly capture the
association between newer energy investments, we should minimize the
measurement error that stems the inclusion of older vintages of both
traditional and modern fossil into the stocks

−
Capi,t 1

MF and
−

Capi,t 1
TF . We

therefore check the robustness of our results by re-computing both
variables accounting only the investments in fossil technologies carried

17 See Fig. A2 in the Appendix display the evolution of the policy indexes. Observe that
the policy proxies increased significantly after 2004, which is the last year of analysis in
Popp et al. (2011). Note also that the countries which lead in RE investments are also
those which generally have higher than average scores in the environmental policy in-
dexes and which are characterized by medium-to-low entry barriers in the electricity
markets (Table 2).
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out in the most recent years. To this end, we recalculate the MF and TF
proxies by cumulating only the installed capacity of the previous 5 or
10 years.

The estimates of β and γ can be interpreted as causal only if in-
vestments in renewable energy and the past fossil capacity are not
correlated with unobservable features of the energy system that will be
absorbed by the error term εit. While controlling for country and time
fixed effects mitigates this concern, we cannot rule out the possibility
that there may be an unobservable country-specific trend correlated
with both renewable energy and fossil fuel investments. This is due to
the fact that such investments are co-determined within a country's
energy strategy, raising endogeneity concerns. Particularly, actual in-
vestments in both MF and RE result from long-term planning of utilities
under environmental and “dispatchability” constraints.

A full test of the role played by MF technologies as back-up capacity
for intermittent RE would require convincing external instruments or
an exogenous variation in MF capacity. Unfortunately, such test is not
feasible in our context due to data constraints, and is therefore left for
future research. Nonetheless, to partially address these concerns, we
present two alternative specifications meant to at least reassure us re-
garding the fact that any potential endogeneity bias is relatively small.

First of all, we estimate an alternative specification where we ex-
plore the determinants of investments in modern fossil installed capa-
city (∆Cap_pcit

MF). In this specification, we include the stock of re-
newable energy capacity as a main explanatory variable, with the
expectation of an insignificant coefficient. This exercise, which is si-
milar to a Granger causality test, is meant to rule out extreme cases of

reverse causality by showing that the complementarity between certain
fossil technologies and renewable energy technologies is not symmetric.
This should indeed at least enable us to establish the direction of the
causality nexus between renewable and modern fossil technologies.

Second, both investments in RE and in new fossil technologies are
likely planned to structurally reduce energy dependence and carbon
emissions in the long run, and, thus, are expected to be highly persis-
tent. To tackle this issue more directly than in our main specification,
we present a robustness check which fits a dynamic model that we
estimate using the difference-GMM estimator proposed by Arellano and
Bond (1991).18 The use of GMM method also allows us to instrument
the two fossil fuel capacities. Instrumenting

−
Cap_pcit 1

MF and
−

Cap_pcit 1
TF

with the history of capacities in RE, MF and TF reduces endogeneity
concerns because the predicted levels of these variables reflect a
country's long-term investment strategies. This arguably smoothens the
influence of time varying shocks, such as unobserved changes in energy
policy or the entry of a new large player, which affect both RE and fossil
investments.

Table 3
Main empirical results, per capita investment in renewables.

(1) (2) (3) (4) (5)

MF1 Capacity, per capita 0.0207***

(0.0065)
TF1 Capacity, per capita −0.0046

(0.0107)
MF2 Capacity, per capita 0.0207* 0.0334***

(0.0119) (0.0117)
TF2 Capacity, per capita 0.0037 0.0066

(0.0117) (0.0124)
Feed-in-Tariffs 1.4197 2.2667** 1.5537 1.9579*

(1.1402) (1.0521) (1.1242) (1.0720)
Certificates 5.6872** 4.3836** 5.9584** 4.0219**

(2.5036) (2.0367) (2.3698) (1.7534)
Limits 1.4407 0.8630 1.3079 0.6603

(1.2259) (1.3678) (1.1661) (1.4587)
Taxes −2.5677 −2.6889 −2.3847 −0.9657

(2.1854) (1.8409) (2.2784) (2.0492)
PMR - Entry −1.6858*** −1.7992** −1.7519*** −1.6766**

(0.5880) (0.6886) (0.6031) (0.6774)
Growth Rate in Electricity Consumption −0.8921 8.0078 −7.3272 17.3770 9.1982

(18.9822) (20.9740) (19.6238) (21.3296) (25.1535)
GDP per capita, log −26.5846 −31.9423 −31.1167 −32.4680 −33.2130

(23.1053) (21.9293) (22.9801) (21.9445) (22.7268)
Share of Nuclear −0.3383 −0.3101 0.1328 −0.3540 −0.0629

(0.3322) (0.2651) (0.2054) (0.2939) (0.3081)
Share of Hydro 0.3487 0.3105 0.4234 0.3401 0.3538

(0.3509) (0.3456) (0.3702) (0.3489) (0.3901)
Share of Fossil Imports in GDP −24.5394 −9.9662 3.4840 1.6815 19.7965

(32.4169) (29.3420) (31.0795) (32.9693) (32.6975)
Share of fossil rents in GDP −5.3433 −3.6178 −1.4919 −2.0584 0.7172

(7.6585) (7.7889) (9.4429) (7.2145) (8.3328)
Stock of RE knowledge, log −2.8991 −0.7360 0.7906 −1.3268 1.3805

(3.7279) (3.3925) (3.4382) (3.3021) (3.6774)
Observations 552 552 494 543 485
R-squared 0.4336 0.4676 0.4760 0.4758 0.4707
Number of countries 26 26 24 26 24

Robust standard errors in parentheses.
*** p < 0.01.
** p < 0.05.
* p < 0.1.

18 The basic rationale underpinning the difference-GMM estimator is to instrument the
lagged terms of the dependent variable with its lagged differences. It is well known in the
literature that a simple within-transformation fails to provide accurate estimates in dy-
namic panels (Nickell, 1981). This bias is due to the mechanical correlation between the
within-transformed error term and the right-hand side variables, and it decreases with

T1/ , where T is the number of periods considered. In our case =T 24, hence the bias
should be small, but we prefer to resort to the standard difference-GMM methodology
(see, e.g., Bond, 2002).
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6. Estimation results

Table 3 presents the main results of our analysis using variations of
Eq. (1) presented above. Model 1 only includes the vector of controls

−Xi,t 1 and represents a benchmark model. Model 2 adds the policy
variable and is the most similar set up to that of Popp et al. (2011).
These two models suggest that the coefficients on the set of controls are
not precisely estimated. This can be accounted for by the fact that
country- and time-fixed effects capture the bulk of the variation of slow
moving variables such as fossil fuel dependence, per capita GDP or the
share of nuclear or hydro power.

Regarding the policy variables, two main considerations emerge
from Model 2. First, in line with recent studies on the effect of com-
petition on RE innovation (Nicolli and Vona, 2016; Nesta et al., 2014),
lowering entry barriers promotes the deployment of RE. Second, cer-
tificates have a positive impact on the diffusion of RE capacity, but the
impact of all other policy variables is estimated very imprecisely. This
last result is somewhat in line with the rather mixed evidence in this
respect from the available literature. For instance, Popp et al. (2011)
finds only a modest and often statistically insignificant effect of the
policy variables, while other contributions point to the effectiveness of
FITs but not of other policies (Jenner et al., 2013). Focusing on Certi-
ficates and PMR, their effect is economically relevant. An interquartile
change in the former and the latter variable, respectively, is associated
with an increase in ∆Cap_pcit

RE of roughly 4 and 10 kW per thousand
people. Notice that for PMR an interquartile change is equivalent to
going from “no freedom of access and choice for producers and con-
sumers” to “full opening up of the market”, while the interquartile

changes in Certificates entail less extreme variations (Table 1).
Models 3 and 4 presents results of the estimation which includes our

variables of interest
−

Cap_pci,t 1
MF and

−
Cap_pci,t 1

TF alongside all controls
−Xi t, 1. Model 3 uses the first definition of fossil capacity (MF1 and TF1),

while Model 4 uses the second (MF2 and TF2). Recall that the samples
used in these two models are different because some countries only
report fossil installed capacity using the MF1 and TF1 definitions,
others only the MF2 and TF2 definitions, and others both. For this
reason, Model 5 presents the result of the estimation when using the
MF2 and TF2 proxies, but considering only the subset of countries
which also report information on MF1 and TF1.

Our results indicate that the presence of MF technologies favors
investment in RE, conditional on all other covariates. An interquartile
change in per capita installed capacity of MF1 and MF2, which is equal
to approximately to 275 and 445 kW per thousand people, is associated
with an increase in RE yearly investment per capita of 6 and 14 kW per
thousand people, respectively. This is a sizeable effect, considering that
investments in RE capacity are just less than 12 kW per thousand people
on average in our sample, with a median of 2. Furthermore, our results
are particularly significant because they are conditional on the inclu-
sion of the proxy for TF capacity. Indeed, the coefficient associated with
the TF proxies is not statistically different from zero.

These results confirm the insights from technical assessments made
by practitioners and international institutions, as explained in Section
2. For instance, Baker et al. (2013) argue that new solar PV capacity
displaces only a small percentage of dispatchable capacity. Conversely,
our results indicate that a larger endowment of MF capacity makes it
easier for the system operator to integrate RE technologies, and thus
implicitly enhances the incentives to invest in RE. This interpretation
should be, however, taken with caution as we are not able to identify a
causal effect of MF capacity on the incentives to invest in RE. The
skeptical reader can interpret the coefficient associated with MF capa-
city as an interesting correlation to explore in future research using
more fine-grained data at both the regional and the utility level.

Importantly, the inclusion of the proxies for per capita fossil capa-
cities leaves the coefficients associated with the Certificates and PMR
variable roughly unchanged, but in Model 3 and Model 5 the inclusion
of the MF proxies makes the coefficient associated the FIT variable
significant. Indeed, these models suggests that an interquartile change
of the FITs variable is associated with an increase in RE investment of
roughly 6 and 5 kW per thousand people, respectively. This implies that
including MF capacity improves the precision in the estimates of the
policy variables.

In Table 4 we present the results associated with building the
proxies for MF and TF only the more recent cumulative additions in
capacity, and specifically those in the last 5 (Models 1 and 2) to 10
years (Models 3 and 4). This is done to lower the measurement error
associated with the inclusion of older vintages of both MF and TF
technologies in the proxies for fossil capacity. In the case of MF1, the
coefficients are slightly lower than those presented in Table 3, while in
the case of MF2 they are slightly higher, and more precisely estimated.
Indeed, we confirm the positive association between MF and renewable
investments when using a more restrictive definition for modern fossil
capacity.

Table 5 tests the robustness of our results to changes in the defini-
tion of the dependent variable ∆Cap_pci,t

RE. Specifically, Model 2 in-
cludes biomass in the definition of the dependent variable. Models 3, 4
and 5 define the dependent variable as investments in wind, solar and
biomass, respectively. A few interesting insights emerge from this
Table. First, when including biomass in the definition of our dependent
variable, the positive association between MF and investments in RE is
confirmed, and the coefficient is slightly higher. This is consistent with
our observation that biomass is often co-fired with fossil technologies
and particularly so for modern ones. Second, the positive impact of MF
capacity on investments is confirmed in the case of wind, but not pre-
cisely estimated for solar. This last result suggests that the availability

Table 4
Empirical results, Recent fossil capacity stock.

Model (1) (2) (3) (4)
Proxies for fossil fuel
capacity

MF1 and TF1 MF2 and TF2

Time window 5 years 10 years 5 years 10 years

MF Capacity, per capita 0.0162* 0.0153*** 0.0264** 0.0273**

(0.0079) (0.0038) (0.0115) (0.0120)
TF Capacity, per capita −0.0081 0.0103 −0.0015 0.0120

(0.0060) (0.0127) (0.0166) (0.0126)
Feed-in-Tariffs 1.9245* 1.9124* 1.6218 1.8272

(1.0778) (0.9997) (1.1935) (1.1349)
Certificates 5.6996** 5.5724** 6.7930** 6.5175**

(2.3078) (2.1400) (2.4717) (2.3535)
Limits 1.4041 1.6970 1.9980* 1.7276

(1.5089) (1.4708) (1.1515) (1.1727)
Taxes −1.3577 −1.8414 −2.8647 −3.4957

(2.2708) (2.0482) (2.3720) (2.4609)
PMR - Entry −1.8644*** −1.9250** −1.8515*** −1.6682**

(0.6089) (0.7442) (0.6484) (0.7256)
Growth Rate in Electricity

Consumption
−4.0420 −11.2845 16.9995 25.1028
(22.2627) (22.3254) (25.7526) (26.4675)

GDP per capita, log −37.3911 −46.3225* −40.8852* −40.8692
(21.9030) (25.0692) (23.1336) (24.3768)

Share of Nuclear 0.0941 0.1449 −0.3127 −0.3145
(0.1942) (0.2515) (0.2830) (0.3017)

Share of Hydro 0.3369 0.2926 0.3194 0.1844
(0.3912) (0.3501) (0.3716) (0.3221)

Share of Fossil Imports in
GDP

−4.1309 6.9103 −7.9224 4.8905
(30.5542) (31.1867) (30.6860) (35.4672)

Share of fossil rents in
GDP

−4.5380 −1.8685 −4.3443 −5.6116
(10.5002) (8.9974) (7.9801) (8.7628)

Stock of RE knowledge,
log

1.4924 1.6434 −0.6518 0.5554
(3.6656) (3.8004) (3.4696) (4.4123)

Observations 483 461 516 469
R-squared 0.4678 0.4619 0.4820 0.4940
Number of countries 24 24 26 26

Robust standard errors in parentheses.
*** p < 0.01.
** p < 0.05.
* p < 0.1.
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of MF capacity is more important for more variable RE sources, whose
peak supply is less aligned with times of peak demand (i.e. wind) than
for RE sources with stronger supply in peaks hours (i.e. sun). Finally, if
we limit the dependent to biomass, the coefficient associated with MF is
statically insignificant, and one order of magnitude smaller than that
presented in Models 1 and 2.

Table 6 presents robustness aimed at lowering concerns regarding
the endogeneity of our main explanatory variables (Cap_pcit

MF and
Cap_pcit

TF). Model 1 studies the determinants of MF diffusion. This ex-
ercise allows us to show to what extent the decisions regarding MF
investments are affected by RE capacity as well as by other common
drivers. Our main argument is based on the assumption of no effect of
RE investments on MF investments, and on the further assumption that
the drivers of MF investments are different from the ones of RE in-
vestments. Indeed, model 1 in Table 6 shows that RE capacity has no
effect on MF investments. Similarly, environmental policies have no
effect on the change in MF capacity. This highlights the fact that to date
investors in MF plants seem to have paid little attention both to the
installed capacity in RE and to environmental policies. It also provides
some evidence that there is a sort of “asymmetric” complementarity
between RE and MF investment, where the latter are key support
technologies for the former, but not vice versa.

Model 2 in Table 6 further addresses the concern that the results
presented so far do not fully resolve all the endogeneity concerns re-
garding the estimated effect of MF capacity, as discussed in Section 4,
by fitting a dynamic model using the difference-GMM estimator pro-
posed by Arellano and Bond (1991), where the two variables of interest

−
ShareCapit 1

MF and
−

ShareCapit 1
TF are instrumented with their lagged va-

lues. The important result here is that the coefficient associated with
our variable of interest

−
ShareCapit 1

MF is roughly half the size of those
presented in Table 3. While this indicates that not addressing the issues
of persistency of RE investment leads to an overestimation of the role of
MF in supporting RE generation, the higher persistency in the series of
RE makes it difficult to compute a reasonable long-term effect in this

case. Indeed, the system GMM results indicate that the combined effect
of the lagged terms in RE capacity is 0.86.19 Notice that standard tests
validate our specification: the Hansen's test does not reject the null
hypothesis of instruments’ exogeneity, while the Arellano-Bond tests
always fails to reject the alternative hypothesis of second-order auto-
correlation. This latter test is particularly important for a consistent
estimation of the coefficients of interest.20

7. Conclusions and policy implications

This paper presents an econometric analysis of the determinants of
the diffusion of renewables in a sample of 26 OECD countries over the
years 1990–2013, with a specific focus on the role of modern fossil
technologies. We contribute to the literature with one key result. We
show that countries where MF capacity was available were more likely,
ceteris paribus, to invest in renewable energy generation. This effect is
sizeable, as moving from the first to the third quartile of the distribution
of modern fossil technologies is associated with an increase in renew-
able energy capacity of roughly 6–14 kW per thousand people, on
average and ceteris paribus. This result holds in a series of robustness
checks, including different definitions of RE capacity and system GMM
estimator. Our paper thus calls attention to the fact that renewables and
modern fossil technologies appear as highly complementary and that
they have been jointly installed to meet the goals of cutting emissions
and ensuring a stable supply. To date MF technologies enabled RE

Table 5
Empirical results, changes in the definition of renewables.

Model (1) (2) (3) (4) (5)
Renewables Renewables and biomass Wind Solar Biomass

MF1 Capacity 0.0207*** 0.0228*** 0.0105*** 0.0102 0.0022
(0.0065) (0.0076) (0.0032) (0.0061) (0.0018)

TF1 Capacity −0.0046 −0.0042 −0.0077 0.0029 0.0004
(0.0107) (0.0130) (0.0075) (0.0073) (0.0063)

Feed-in-Tariffs 2.2667** 2.7350** 1.9956* 0.3007 0.4681
(1.0521) (1.0685) (1.0191) (0.3855) (0.4051)

Certificates 4.3836** 6.0742*** 3.1012** 1.3196 1.6902*

(2.0367) (1.9949) (1.2043) (1.6433) (0.8828)
Limits 0.8630 1.0991 1.6594 −0.8215 0.2362

(1.3678) (1.3682) (1.2593) (0.6624) (0.5192)
Taxes −2.6889 −2.1214 −1.8413 −0.8342 0.5676

(1.8409) (2.1563) (1.1461) (1.5837) (0.7052)
PMR - Entry −1.7992** −2.2673*** −0.7586 −1.0537* −0.4681**

(0.6886) (0.6964) (0.4919) (0.5471) (0.1868)
Growth Rate in Electricity Consumption −7.3272 0.1678 −7.6192 0.9044 7.4965

(19.6238) (22.9930) (13.0219) (19.8740) (11.0758)
GDP per capita, log −31.1167 −36.2815 1.5009 −32.9883* −5.1652

(22.9801) (24.7246) (13.9108) (18.0980) (3.6937)
Share of Nuclear 0.1328 0.0965 0.3512* −0.2123 −0.0363

(0.2054) (0.2671) (0.2040) (0.2019) (0.1422)
Share of Hydro 0.4234 0.3162 −0.0996 0.5316* −0.1072

(0.3702) (0.4071) (0.2082) (0.2943) (0.1594)
Share of Fossil Imports in GDP 3.4840 3.3923 8.4851 −5.2577 −0.0922

(31.0795) (29.7025) (26.9740) (12.6427) (8.7992)
Share of fossil rents in GDP −1.4919 0.2025 −1.5846 0.0024 1.6945

(9.4429) (10.1783) (7.1221) (5.3521) (2.7187)
Stock of RE knowledge, log 0.7906 1.8316 −0.1530 0.8299 1.0408

(3.4382) (3.8056) (1.8900) (2.7745) (0.7198)
Observations 494 494 494 494 494
R-squared 0.4760 0.4350 0.3332 0.3710 0.0939
Number of countries 24 24 24 24 24

19 Actually, the sum of the coefficients associated with the two lagged terms of RE
capacity is close to − 0.14. However, our dependent variable is the change in RE capa-
city, thus should add 1 to the sum of the coefficients of the lagged RE capacity variables.

20 Rodman (2009) shows that the Hansen test is not reliable when N is small as in our
case. In our case, given that N is particularly small (26 countries), the p-value associated
with the Hansen's test is implausibly good. We try also to obtain a reliable Hansen test
using a simplified equation, where we replace year effects with a linear and a quadratic
time trend. These results are available upon resquest and confirm our findings.
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diffusion by providing reliable and dispatchable back-up capacity to
hedge against variability of supply.

Overall, our contribution suggests that the importance of the com-
plementarity of RE and MF generation technologies has so far largely
been overlooked in the policy debate and in much of the economic
analysis focusing on the diffusion of RE generation. This suggests that
the costs of integrating RE generation in the energy system may be
underestimated. Specifically, our results give rise to three key policy
implications.

First, a policy debate centered on the juxtaposition of RE and fossil
technologies is missing the important complementarity role that MF
technologies play with respect to handling the variability of RE gen-
eration. Indeed, while not paying the external cost of pollution, MF
technologies provide an unremunerated positive externality of long-
term flexible capacity for back-up. In light of this, the need to take a
long-term perspective and to consider the future need of replacing ex-
isting mid-merit/load following capacity as they reach the end of their
lifetime becomes an important, thorny policy issue which will need to

be addressed and discussed.
Second, the relationship and the complementarity between MF and

RE technologies imply that the system costs associated with the latter
are high, and will likely increase with an increase in RE penetration. In
this respect, our analysis complements recent attempts to systematically
assess the grid-level system costs for different technologies and points
indeed to the high indirect costs of renewables. We draw attention to
the fact that the technical and pecuniary system costs are of such
magnitude that they will have to be acknowledged, and can’t be borne
in a diffuse manner. Therefore, pricing both back-up services and
greenhouse gas emissions appears as a key priority of a sound energy
policy (see also Gowrisankaran et al., 2016). Pricing back-up services
poses an additional challenge to the regulator in liberalized energy
markets. Indeed, either private utilities will need to be subsidized to
maintain the appropriate level of back-up capacity, or higher costs
should be passed directly on the bills of final consumers as part of the
contribution paid to support renewable energy generation.

Third, our results call attention to the need to develop alternative
technologies which can substitute MF capacity in handling variable
energy generation. Overstating the ability to substitute fossil generation
with renewable energy generation may lead to a poor support of al-
ternative enabling technologies. On the contrary, public support to
improve large scale storage options is crucial. While storage technolo-
gies for non-stationary sources (transport) have seen significant de-
creases in costs in the last decade, storage for stationary sources is still
not cost-competitive. In light of this, it is of paramount importance to
support research, development and demonstration in this technological
area. This would allow us to decouple RE penetration from lock-in
in (modern) fossil technologies. However, note that the large un-
certainty regarding expectations about future storage technology costs
for large scale applications indicates that progress in this specific
technological area may be rather slow and less then linear.

Overall, we conclude a policy and academic debate centered on the
juxtaposition of renewable (clean) and fossil (dirty) technologies misses
the important aspect linked with handling variable generation, leads to
an underestimation of the costs of renewable energy integration, and
does not contribute to stressing the importance of funding and devel-
oping solid alternative options such as cheap storage technologies.
Conversely, our analysis suggests the need for a systemic perspective
and the coordination of different types of investments (in storage
technologies, RE and MF) to successfully pursue sustainable develop-
ment through the integration of large shares of RE energy in the power
system.

While our results are robust to a series of modifications in the em-
pirical strategy, a fruitful avenue for future research will be a thorough
test of our conclusions based on a convincing external instruments or
exogenous variation in MF capacity. This will further lower any con-
cerns linked with the possible endogeneity of the share of MF capacity.
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Table 6
Empirical results, Additional share variables.

Model (1) (2)
Investments in MF1 Investments in REN

GMM

MF1 Capacity 0.0102*

(0.0057)
TF1 Capacity -0.0724 -0.0623*

(0.0812) (0.0319)
REN Capacity, t-1 0.0105 0.1278

(0.0970) (0.0784)
REN Capacity, t-2 -0.2637***

(0.0723)
Feed-in-Tariffs 3.5094 1.3981

(3.6418) (1.6168)
Certificates -10.9817 -0.0855

(10.5826) (2.0243)
Limits -6.8523 -1.9046

(8.3406) (1.8756)
Taxes 0.7661 4.1509*

(5.2193) (2.1068)
PMR - Entry 3.0938 -1.1092

(5.2572) (1.0209)
Growth in Electricity

Consumption
220.4517 14.3473
(169.9077) (15.8178)

GDP per capita, log 44.0008 -68.6253*

(34.3528) (35.6677)
Share of Nuclear 0.0845 -0.4942

(1.1389) (0.3536)
Share of Hydro -0.7341 0.5009

(0.4581) (0.3528)
Share of Fossil Imports in

GDP
-121.7635 44.2424
(152.6968) (33.4010)

Share of fossil rents in GDP -42.4678 -4.0384
(48.3986) (12.7332)

Stock of RE knowledge, log -0.4300 3.0780
(5.4794) (6.1409)

Stock of fossil knowledge, log 2.1754
(7.4824)

Number of countries 24 24
Observations 494 442
R-squared 0.0688
Hansen J 0.00
Hansen crit. prob. 1
AR2 1.62
AR2 crit. prob. 0.11

Standard errors in parentheses
** p < 0.05

*** p < 0.01
* p < 0.1
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Appendix A

See Fig. A1 and A2

Fig. A1. Average installed capacity.
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Fig. A 2. Indexes of policy stringency, averages - FITs, Certificates, Taxes, Limits, PMR.
(Authors’ elaboration of data from OECD, 2015 and OECD, 2013).
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See Table A1

References

Acemoglu, D., Aghion, P., Bursztyn, L., Hemous, D., 2012. The environment and directed
technical change. Am. Econ. Rev. 102 (1), 131–166.

Aguirre, M., Ibikunle, G., 2014. Determinants of renewable energy growth: a global
sample analysis. Energy Policy 69, 374–384.

Anderson, D., Leach, M., 2004. Harvesting and redistributing renewable energy: on the
role of gas and electricity grids to overcome intermittency through the generation
and storage of hydrogen. Energy Policy 32.14, 1603–1614.

Arellano, M., Bond, S., 1991. Some tests of specification for panel data: Monte Carlo
evidence and an application to employment equations. Rev. Econ. Stud. 58 (2),
277–297.

Aurora Research, 2016. Intermittency and the Cost of Integrating Solar in the GB Power
Market. . 〈http://www.solar-trade.org.uk/intermittency-cost-integrating-solar-gb-
power-market/〉.

Baker, E., Fowlie, M., Lemoine, D., Reynolds, S., 2013. The economics of solar electricity.
Annu. Rev. Resour. Econ. 5, 387–426.

Bhattacharyya, S., 2011. Energy economics. Concepts Issues, Markets and Governance.
Springer, London.

Bond, S., 2002. Dynamic panel data models: a guide to micro data methods and practice.
Port. Econ. J. 1, 141–162.

Botta, E., Koźluk, T., 2014. Measuring Environmental Policy Stringency in OECD
Countries: a Composite Index Approach, OECD Economics Department Working
Papers No. 1177. OECD Publishinghttp://dx.doi.org/10.1787/5jxrjnc45gvg-en.

Brouwer, A., et al., 2014. Impacts of large-scale Intermittent Renewable Energy Sources
on electricity systems, and how these can be modeled. Renew. Sustain. Energy Rev.

33, 443–466.
Carrara, S., Marangoni, G., 2017. Including system integration of variable renewable

energies in a constant elasticity of substitution framework: the case of the WITCH
Model. Energy Econ. 64, 612–626.

Conway, P., Janod, V., Nicoletti, G., 2005. Product Market Regulation in OECD Countries:
1998 to 2003. OECD Economics Department Working Papers 419. OECD Publishing.

E.ON NETZ, 2004. Wind Report 2004. 〈http://www.aweo.org/windEon2004.html〉.
GE Energy, 2008. Analysis of Wind Generation Impact on ERCOT Ancillary Services

Requirements. . 〈http://www.uwig.org/attcha-ercot_a-s_study_exec_sum.pdf〉.
Gowrisankaran, G., Reynolds, S., Samano, M., 2016. Intermittency and the value of re-

newable energy. J. Polit. Econ. 124 (4), 1187–1234.
IEA (2017). Energy Technology Perspectives, Paris.
IEA, 2016a. "OECD - Net capacity of renewables", IEA Renewables Information Statistics

(database). DOI: 〈http://dx.doi.org/10.1787/data-00467-en〉 (Accessed on 29
February 2016).

IEA, 2016b. "OECD - Net electrical capacity", IEA Electricity Information Statistics (da-
tabase). DOI: 〈http://dx.doi.org/10.1787/data-00460-en〉 (Accessed on 02 March
2016).

IPCC, 2014. In: Core Writing Team, Pachauri, R.K., Meyer, L.A. (Eds.), Climate Change
2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change 151 IPCC,
Geneva, Switzerland.

Jenner, F., Chan, G., Frankenberger, R., Gabel, M., 2013. What drives states to support
renewable energy? Energy J. 33 (2), 1–12.

Johnstone, N., Haščič, I., Popp, D., 2010. Renewable energy policies and technological
innovation: evidence based on Patent counts. Environ. Resour. Econ. 45 (1),
133–155.

Table A1
Additional results.

(1) (2)
Variables Investement in

renewable, in
percentage terms

Investement in
renewable, per capita

MF1 Capacity 0.0001** 0.1887***

(0.0000) (0.0591)
TF1 Capacity -0.0002** -0.3113

(0.0001) (0.1888)
PMR - Entry -0.0011** -1.6468**

(0.0004) (0.6945)
Feed-in-Tariffs 0.0013** 2.2351**

(0.0005) (1.0524)
Certificates 0.0031** 3.6353

(0.0012) (2.2551)
Limits 0.0004 0.8139

(0.0008) (1.2906)
Taxes -0.0019** -1.8989

(0.0009) (1.7922)
Fossil fuel rents -0.0052 -1.0269

(0.0051) (9.3889)
Share of Hydro 0.0002

(0.0002)
Share of Nuclear -0.0000

(0.0001)
GDP per capita, log -0.0053 -25.4140

(0.0126) (22.1008)
Energy Depedence 0.0009 −1.5858

(0.0194) (29.8423)
Growth in Electricity

Consumption
-0.0015 -11.0065
(0.0131) (20.1636)

Stock of RE knowledge,
log

0.0008 0.7830
(0.0018) (3.8060)

Share of Hydro, in per
capita terms

-0.0346*

(0.0173)
Share of Nuclear, in per

capita terms
-0.0025
(0.0275)

Observations 492 494
R-squared 0.4545 0.4716
Number of countries 24 24

Robust standard errors in parentheses
*** p < 0.01
** p < 0.05
* p < 0.1

E. Verdolini et al. Energy Policy 116 (2018) 242–256

255

http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref1
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref1
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref2
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref2
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref3
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref3
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref3
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref4
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref4
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref4
http://www.solar-trade.org.uk/intermittency-cost-integrating-solar-gb-power-market/
http://www.solar-trade.org.uk/intermittency-cost-integrating-solar-gb-power-market/
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref6
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref6
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref7
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref7
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref8
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref8
http://dx.doi.org/10.1787/5jxrjnc45gvg-en
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref10
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref10
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref10
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref11
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref11
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref11
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref12
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref12
http://www.aweo.org/windEon2004.html
http://www.uwig.org/attcha-ercot_a-s_study_exec_sum.pdf
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref14
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref14
http://dx.doi.org//10.1787/data-00467-en
http://dx.doi.org//10.1787/data-00460-en
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref15
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref15
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref15
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref15
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref16
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref16
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref17
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref17
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref17


Lorenz, E., Scheidsteger, T., Hurka, J., Heinemann, D., Kurz, C., 2011. Regional PV power
prediction for improved grid integration. Prog. Photovolt. Res. Appl. 19 (7), 757–771.

Marquez, R., Coimbra, C.F., 2011. Forecasting of global and direct solar irradiance using
stochastic learning methods, ground experiments and the NWS database. Sol. Energy
85, 746–756.

Mathiesen, P., Kleissl, J., 2011. Evaluation of numerical weather prediction for intra-day
solar forecasting in the continental United States. Sol. Energy 85 (5), 967–977.

Migotto, M., Haščič, I., 2015. Measuring Environmental Innovation Using Patent Data:
Policy Relevance. http://dx.doi.org/10.1787/5js009kf48xw-en.

Narbel, P., 2013. What is really behind the adoption of new renewable electricity gen-
erating technologies? Energy Sustain. Dev. 17 (4), 386–390.

NEA (Nuclear Energy Agency - OECD), 2012. Nuclear Energy and Renewables: System
Effects in Low-Carbon Electricity Systems, ISBN 978-92-64-18851-8. . 〈https://
www.oecd-nea.org/ndd/reports/2012/system-effects-exec-sum.pdf〉.

Nesta, L., Vona, F., Nicolli, F., 2014. Environmental policies, competition and innovation
in renewable energy. J. Environ. Econ. Manag. 67, 396–411.

Nickell, S., 1981. Biases in dynamic models with fixed effects. Econometrica 49 (6),
1417–1426.

Nicolli, F., Vona, F., 2016. Heterogeneous policies, heterogeneous technologies: the case
of renewable energy. Energy Econ. Forthcom.

Nykvist, B., Nilsson, M., 2015. Rapidly falling costs of battery packs for electric vehicles.
Nat. Clim. Change 5, 329–332. http://dx.doi.org/10.1038/nclimate2564.

NYISO, New York Independent System Operator, 2010. Growing Wind Final Report of the
NYISO 2010 Wind Generation Study. . http://www.uwig.org/growing_wind_-_final_
report_of_the_nyiso_2010_wind_generation_study.pdf.

OECD, 2016. Innovation in Environmental Technology Database: Patents - Technology
Development. OECD.stats.

OECD, 2015. Environmental Policy Stringency Index. OECD.Stats 〈https://stats.oecd.org/
Index.aspx?DataSetCode=EPS〉.

OECD, 2013. Product Market Regulation Statistics. OECD.Stats 〈https://stats.oecd.org/
index.aspx?DataSetCode=PMR〉.

Pfeiffer, B., Mulder, P., 2013. Explaining the diffusion of renewable energy technology in
developing countries. Energy Econ. 40, 285–296.

Popp, D., Haščič, I., Medhi, N., 2011. Technology and the diffusion of renewable energy.
Energy Econ. 33 (4), 648–662.

Shrimali, G., Jenner, S., 2013. The impact of state policy on deployment and cost of solar
photovoltaic technology in the U.S.: a sector-specific empirical analysis. Renew.
Energy 60, 679–690.

Sensfuss, F., Ragwitz, M., 2008. The merit-order effect: a detailed analysis of the price
effect of renewable electricity generation on spot market prices in Germany. Energy
Policy 36, 3076–3084.

Steinke, Florian, Wolfrum, Philipp, Hoffmann, Clemens, 2013. Grid vs. storage in a 100%
renewable Europe. Renew. Energy 50, 826–832.

Strbac, G., Aunedi, M., 2016. Whole-system Cost of Variable Renewables in Future GB
Electricity System. . 〈https://www.e3g.org/docs/Whole-system_cost_of_variable_
renewables_in_future_GB_electricity_system.pdf〉.

Verdolini, E., Galeotti, M., 2011. At home and abroad: an empirical analysis of innovation
and diffusion in energy technologies. J. Environ. Econ. Manag. 61 (2), 119–134.

WDI (2016). World Development Indicators Database.

E. Verdolini et al. Energy Policy 116 (2018) 242–256

256

http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref18
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref18
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref19
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref19
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref19
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref20
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref20
http://dx.doi.org/10.1787/5js009kf48xw-en
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref22
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref22
https://www.oecd-nea.org/ndd/reports/2012/system-effects-exec-sum.pdf
https://www.oecd-nea.org/ndd/reports/2012/system-effects-exec-sum.pdf
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref24
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref24
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref25
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref25
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref26
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref26
http://dx.doi.org/10.1038/nclimate2564
http://www.uwig.org/growing_wind_-_final_report_of_the_nyiso_2010_wind_generation_study.pdf
http://www.uwig.org/growing_wind_-_final_report_of_the_nyiso_2010_wind_generation_study.pdf
https://stats.oecd.org/Index.aspx?DataSetCode=EPS
https://stats.oecd.org/Index.aspx?DataSetCode=EPS
https://stats.oecd.org/index.aspx?DataSetCode=PMR
https://stats.oecd.org/index.aspx?DataSetCode=PMR
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref29
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref29
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref30
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref30
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref31
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref31
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref31
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref32
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref32
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref32
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref33
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref33
https://www.e3g.org/docs/Whole-system_cost_of_variable_renewables_in_future_GB_electricity_system.pdf
https://www.e3g.org/docs/Whole-system_cost_of_variable_renewables_in_future_GB_electricity_system.pdf
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref35
http://refhub.elsevier.com/S0301-4215(18)30068-5/sbref35

	Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?
	Introduction
	Related literature
	Managing renewable variability in the energy system
	Data and descriptive statistics
	Dependent variable: investment in renewables
	Fossil-based energy generation
	Policy variables
	Additional control variables

	Empirical strategy
	Estimation results
	Conclusions and policy implications
	Acknowledgements
	Appendix A
	References




