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From Knothe’s transport to Brenier’s map and

a continuation method for optimal transport

G. Carlier∗, A. Galichon†, F. Santambrogio‡

October 22, 2008

Abstract

A simple procedure to map two probability measures in R
d is

the so-called Knothe-Rosenblatt rearrangement, which consists in re-

arranging monotonically the marginal distributions of the last coordi-

nate, and then the conditional distributions, iteratively. We show that

this mapping is the limit of solutions to a class of Monge-Kantorovich

mass transportation problems with quadratic costs, with the weights

of the coordinates asymptotically dominating one another. This en-

ables us to design a continuation method for numerically solving the

optimal transport problem.

Keywords: optimal transport, rearrangement of vector-valued maps,
Knothe-Rosenblatt transport, continuation methods.

1 Introduction

Given two Borel probability measures µ and ν on R
d, a Borel map S :

R
d → R

d is said to be a transport map between µ and ν if S♯µ = ν
where S♯µ denotes the push-forward (or image measure) of µ through ν
(i.e. S♯µ(B) = µ(S−1(B)) for every Borel B). In the present article, we will
focus on two particular transport maps: the Knothe-Rosenblatt transport
and the Brenier’s map.
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†Département d’Economie, Ecole Polytechnique, alfred.galichon@polytechnique.edu
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The Knothe-Rosenblatt transport. The Knothe-Rosenblatt rear-
rangement was independently proposed by Rosenblatt [6] for statistical pur-
poses and by Knothe [4] in order to extend the Brunn-Minkowski inequal-
ities. The principle is the following, as explained in Villani [8]. Let µ
and ν be two Borel probability measures on R

d and assume for simplic-
ity for the moment that µ is absolutely continuous with respect to the
Lebesgue measure. Let us denote by µd (respectively νd) the d-th marginal
of µ (respectively ν) and µd−1

xd
, µd−2

(xd,xd−1)
,. . . , µ1

(xd,...,x2)
(respectively νd−1

yd
,

νd−2
(yd,yd−1)

,. . . , ν1
(yd,...,y2)

) the successive disintegrations (or conditional mea-

sures) of µ (respectively ν) given xd, (xd, xd−1),..., (xd, ..., x2) (respectively
given yd, (yd, yd−1), ..., (yd, ..., y2)). Now let Td = Td(xd) be the monotone
nondecreasing map transporting µd to νd, such a map is well-defined and
unique as soon as µd has no atoms and in this case, it is explicitly given
by Td = G−1

d ◦ Fd (with Fd(α) := µ((−∞, α]) and Gd(α) := ν((−∞, α])).
Then let Td−1 = Td−1(xd−1, xd) be such that Td(., xd) is monotone and maps
µd−1

xd
to νd−1

Td(xd). One repeats the construction (well-known by statisticians

under the name of conditional quantile transforms) iteratively until we de-
fine T1(x1, x2, ..., xd), which is monotone in x1 and transports µ1

(xd,...,x2)
onto

ν1
T2(x2,...,xd). Finally, the Knothe-Rosenblatt rearrangement T is defined by

T (x) = (T1(x1, x2, ..., xd), ..., Td−1(xd−1, xd), Td(xd)). Obviously, T is a trans-
port map from µ to ν, i.e. T♯µ = ν. By construction, the Knothe transport
T has a triangular Jacobian matrix with nonnegative entries on its diago-
nal. Note also that the computation of the Knothe transport only involves
one-dimensional monotone rearrangements and that it is well defined as soon
the measures one transports have no atoms. The precise assumption is the
following.

Assumption (H-source): the measure µd, as well as µd−almost all the
measures µd−1

xd
, and the measures µd−2

xd,xd−1
for µd−a.e. xd and µd−1

xd
−a.e.

xd−1. . . up to almost all the measures µ1
xd,...,x2

, which are all measures on
the real line, must have no atoms.

Notice that (H-source) is satisfied as soon as µ is absolutely continuous
with respect to the Lebesgue measure.

The Monge-Kantorovich problem and the Brenier’s map. Op-
timal transportation theory provides an alternative way to transport µ to
ν. We recall that in the case of the quadratic cost, the Monge-Kantorovich
problem reads as

inf
π∈Γ(µ,ν)

∫

Rd×Rd

|x− y|2dπ(x, y) (1.1)

where Γ(µ, ν) denotes the set of transport plans between µ and ν i.e. the
set of probability measure on R

d × R
d with marginals µ and ν. We refer to
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the books of Villani [7], [8] for a modern account of optimal transportation
theory. The linear problem (1.1) is a relaxation of the Monge problem

inf
S : S♯µ=ν

∫

Rd

|x− S(x)|2dµ(x) (1.2)

When µ is absolutely continuous with respect to the Lebesgue measure, Bre-
nier [2] proved that (1.2) has a unique solution which is characterized by the
fact that it is the gradient of some convex function. More precisely, there
exists a unique (up to constants and µ-a.e. equivalence) convex function
V : R

d → R such that ∇V ♯µ = ν. Also (id ×∇V )♯µ is the only solution of
(1.1) and ∇V is called the Brenier’s map between µ and ν.

The Knothe-Rosenblatt as a limit of optimal transportation
plans. Let us slightly modify the quadratic cost in (1.1) and replace it
with the weighted quadratic cost

cε(x, y) :=

d
∑

i=1

λi(ε)(xi − yi)
2

where the λi(ε)’s are positive scalars depending on a parameter ε > 0. If µ is
absolutely continuous with respect to the Lebesgue measure, the correspond-
ing optimal transportation problem admits a unique solution Tε. When in
addition, for all k ∈ {1, ..., d− 1}, λk(ε)/λk+1(ε) → 0 as ε → 0, it is natural
to expect the convergence of Tε to the Knothe transport T . We will show
that this convergence holds provided ν satisfies some additional condition,
and namely

Assumption (H-target): the measure νd, as well as νd−almost all the
measures νd−1

yd
, and the measures νd−2

yd,yd−1
for νd−a.e. yd and νd−1

yd
−a.e.

yd−1. . . up to almost all the measures ν2
yd,...,y3

, which are all measures on the
real line, must have no atoms.

Notice that (H-target) is not natural as (H-source) is. Yet, we will show
a counter-example to the convergence result when it is not satisfied. (H-
target) as well is satisfied should ν be absolutely continuous (actually, this
assumption is slightly weaker then (H-source), since the last disintegration
measures are not concerned).

This convergence result was conjectured by Y. Brenier as a very natural
one, and actually its proof is not hard. Yet, it was not known before that
extra assumptions on ν were needed. This makes one of the point of interest
of this paper.

The other point is what we investigate later in the paper, i.e. the other
direction: from Knothe to Brenier. We will study the dependence ε 7→ Tε by
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means of the evolution with respect to ε of the dual variables. This will enable
us, to design a numericaly strategy to approximate all the optimal transports
Tε taking as initial condition the (cheap to compute) Knothe transport T .

An example. To illustrate the problem in a particular case where ex-
plicit solutions are available, take d = 2, and µ and ν two Gaussian measures

where µ = N (0, I2) and ν = N

(

0,

(

a b
b c

))

. Take λ1 (ε) = ε and λ2 (ε) = 1.

Then it can be verified that Tε is linear, and that its matrix in the canonical
basis of R

2 is

Tε =
1

√

aε2 + c+ 2ε
√
ac− b2

(

aε+
√
ac− b2 b

bε c+ ε
√
ac− b2

)

which converges as ε → 0 to T =

(√

a− b2/c b/
√
c

0
√
c

)

, which is precisely

the matrix of the Knothe transport from µ to ν.

Organization of the paper. In section 2, we show, under suitable
assumptions, that the optimal transportation maps for the cost cε converge to
Knothe’s transport map as the parameter ε goes to 0, we will also emphasize
that some conditions are to be imposed on ν for the convergence to hold. In
section 3, we show that the evolution of the dual variables in the optimal
transportation problem for cost the cε is given by a well-posed ordinary
differential equation. Finally in section 4, we discretize this equation and
give several numerical results.

2 Knothe transport as a limit of quadratic

optimal transports

We directly state our first result, whose proof, in the spirit of Γ−convergence
developments (see [1]), will require several steps.

Theorem 2.1. Let µ and ν be two probability measures on R
d satisfying (H-

source) and (H-target), respectively, with finite second moments, and γε be an
optimal transport plan for the costs cε(x, y) =

∑d
i=1 λi(ε)(xi − yi)

2, for some
weights λk(ε) > 0. Suppose that for all k ∈ {1, ..., d− 1}, λk(ε)/λk+1(ε) → 0
as ε → 0. Let T be the Knothe-Rosenblatt map between µ and ν and γK ∈
P(Rd × R

d) the associated transport plan (i.e. γK := (id × T )♯µ). Then
γε ⇀ γK as ε→ 0.

Moreover, should the plans γε be induced by transport maps Tε, then these
maps would converge to T in L2(µ) as ε→ 0.
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Proof. Take the plans γε that are optimal for the Brenier-like cost cε given
by

cε(x, y) =

d
∑

i=1

λi(ε)(xi − yi)
2

(we suppose for simplicity λd(ε) = 1 and λi(ε)/λi+1(ε) → 0). Suppose (which
is possible, up to subsequences) γε ⇀ γ. We want to prove γ = γK .

By comparing γε to γK and using optimality we first get
∫

cε dγε ≤
∫

cε dγK (2.1)

and, passing to the limit as ε → 0, since cε converges locally uniformly to
c(d)(x, y) = (xd − yd)

2, we get
∫

c(d)dγ ≤
∫

c(d)dγK .

Yet, the function c(d) only depends on the variables xd and yd and this shows
that the measure (πd)♯γ gets a better result than (πd)♯γK with respect to
the quadratic cost (πd being the projection onto the last coordinates, i.e.
πd(x, y) = (xd, yd)). Yet, the measure γK has been chosen on purpose to
get optimality from µd to νd with respect to this cost, and the two measures
share the same marginals. Moreover, thanks to the assumptions on µd, this
optimal transport plan (which is actually induced by a transport map) is
unique. This implies (πd)♯γ = (πd)♯γK . Let us call γd this common measure.

We go back to (2.1) and go on by noticing that all the measures γε have
the same marginals as γK and hence their (separate) projection onto xd and
yd are µd and νd, respectively. This implies that (πd)♯γε must realize a result
which is worse than (πd)♯γK as far as the quadratic cost is concerned and
consequently we have

∫

|xd − yd|2d(πd)♯γK(xd, yd) +

d−1
∑

i=1

λi(ε)

∫

(xi − yi)
2dγε

≤
∫

cε dγε ≤
∫

cε dγK

=

∫

|xd − yd|2d(πd)♯γK(xd, yd) +
d−1
∑

i=1

λi(ε)

∫

(xi − yi)
2dγK ,

which implies, by simplifying the common term in d(πd)♯γK , dividing by
λd−1(ε) and passing to the limit,

∫

c(d−1)dγ ≤
∫

c(d−1)dγK
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(we use the general notation ck(x, y) = |xk − yk|2). We can notice that both
integrals depend on the variables xd−1 and yd−1 only. Anyway, we can project
onto the variables (xd−1, xd) and (yd−1, yd) (obtaining measures (πd−1)♯γ and
(πd−1)♯γK) so that we disintegrate with respect to the measure γd. We have

∫

dγd(xd, yd)

∫

|xd−1 − yd−1|2dγd−1
(xd,yd)(xd−1, yd−1)

≤
∫

dγd(xd, yd)

∫

|xd−1 − yd−1|2dγd−1
(xd,yd),K(xd−1, yd−1). (2.2)

It is is sufficient to prove that the measures γd−1
(xd,yd) share the same marginals

on xd−1 and yd−1 as the corresponding γd−1
(xd,yd),K to get that their quadratic

performance should be worse than the corresponding performance of γd−1
(xd,yd),K

(this is because the Knothe measure has been chosen exactly with the inten-
tion of being quadratically optimal on (xd−1, yd−1) once xd and yd are fixed).
Yet, (2.2) shows that, on average, the result given by the those measures is
not worse than the results of the optimal ones. Thus, the two results coincide
for almost any pair (xd, yd) and, by uniqueness of the optimal transports (this
relies on the assumptions on the measures µd−1

xd
), we get γd−1

(xd,yd) = γd−1
(xd,yd),K .

To let this proof work it is sufficient to prove that the projections of the two
measures coincide for γd−a.e. pair (xd, yd). For fixed (xd, yd) we would like
to prove, for any φ

∫

φ(xd−1)dγ
d−1
(xd,yd) =

∫

φ(xd−1)dγ
d−1
(xd,yd),K

(and to prove an analogous equality for functions of yd−1). Since we accept
to prove it for a.e. pair (xd, yd), it is sufficient to prove this equality:

∫

dγd(xd, yd)ψ(xd, yd)

∫

φ(xd−1)dγ
d−1
(xd,yd)

=

∫

dγd(xd, yd)ψ(xd, yd)

∫

φ(xd−1)dγ
d−1
(xd,yd),K

for any φ and any ψ. This means proving
∫

ψ(xd, yd)φ(xd−1)dγ
d−1 =

∫

ψ(xd, yd)φ(xd−1)dγ
d−1
K ,

which is not trivial since we only know that the two measures γd−1 and γd−1
K

have the same marginals with respect to the pairs (xd−1, xd), (yd−1, yd) (since
they have the same projections onto x and onto y) and (xd, yd) (since we just
proved it). But here there is a function of the three variables (xd−1, xd, yd).
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Yet, we know that the measure γd is concentrated on the set yd = Td(xd) for
a certain map Td, and this allows to replace the expression of yd, thus getting
rid of one variable. This proves that the function ψ(xd, yd)φ(xd−1) is actually
a function of (xd−1, xd) only, and that equality holds when passing from γ
to γK .The same can be performed on functions ψ(xd, yd)φ(yd−1) but we have
in this case to ensure that we can replace xd with a function of yd, i.e. that
we can invert Td. This is possible thanks to the assumption on νd, since Td

is the optimal transport from µd to νd, but an optimal transport exists in
the other direction as well and it gives the same optimal plan (thanks to
uniqueness). These facts prove that the measures γd−1

(xd,yd) and γd−1
(xd,yd),K have

the same marginals and hence, since they are both optimal, they coincide for
a.e. pair (xd, yd). This implies γd−1 = γd−1

K .

Now, it is possible to go on by steps: once we have proven that γh = γh
K ,

let us take (2.1) and estimate all the terms with |xi − yi|2 and i ≥ h thanks
to the optimality of γK , thus getting

∑

i≥h

λi(ε)

∫

|xi − yi|2dγK +

h−1
∑

i=1

λi(ε)

∫

(xi − yi)
2dγε

≤
∫

cε dγε ≤
∫

cε dγK

=
∑

i≥h

λi(ε)

∫

|xi − yi|2dγK +

h−1
∑

i=1

λi(ε)

∫

(xi − yi)
2dγK ,

and consequently, by dividing by λh−1(ε) and passing to the limit,

∫

c(h−1)dγ ≤
∫

c(h−1)dγK.

We disintegrate with respect to γh and we act exacly as before: proving that
the marginals of the disintegrations coincide is sufficient to prove equality of
the measures. Here we will use test-functions fo the form

ψ(xh, xh+1, . . . , xd, yh, yh+1, . . . , yd)φ(xh−1)

and
ψ(xh, xh+1, . . . , xd, yh, yh+1, . . . , yd)φ(yh−1).

The same trick as before, i.e. replacing the variables y with functions of
the variables x is again possible. To invert the trick and replace x with y
one needs to invert part of Knothe’s transport. This is possible since our
assumptions imply that all the monotone transports we get are invertible.
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In the end we get, as before, γh−1 = γh−1
K . This procedure may go on up to

h = 2, thus arriving at γ = γK .

We have now proven γε ⇀ γK . Yet, if all these transport plans come
from transport maps, it is well known that (Tε × id)♯µ ⇀ (T × id)♯µ implies
Tε → T in Lp(µ), for any p > 1, as far as Tε is bounded in Lp(µ). Actually,
weak convergence is a simple consequence of boundedness: to go on, we can
look at Young’s measures. The assumption (the limit is a transport map
as well) exactly means that all the Young measures are dirac masses, which
implies strong convergence. In particular we get L2(µ) convergence and µ-a.e.
convergence on a subsequence.

Let us remark here that if instead of considering the quadratic cost cε,
one considers the more general separable cost

cε(x, y) :=

d
∑

i=1

λi(ε)ci(xi − yi)

where each ci is a smooth strictly convex function (with suitable growth),
then the previous convergence proof carries over.

A counterexample when the measures have atoms We now show
that interestingly, and perhaps counterintuitively, the hypothesis of absence
of atoms in theorem 2.1 is necessary not only for µ, but also for ν. We propose
a very simple example in R

2 where µ is absolutely continuous with respect to
the Lebesgue measure but ν does not satisfy (H-target), and we show that the
conclusion of theorem 2.1 fails to hold. On the square Ω := [−1, 1]× [−1, 1],
define µ such that µ(dx) = 1{x1x2<0}dx/2 so that the measure µ is uniformly
spread on the upper left and the lower right quadrants, and ν = H1

|S/2, being

S the segment [−1, 1] × {0}.
The Knothe-Rosenblatt map is easily computed as (y1, y2) = T (x) :=

(2(x1 + sgn(x2)), 0). The solution of any symmetric transportation problem
with λε = (ε, 1) is (y1, y2) = T 0(x) := (x1, 0) (no transport may do better
than this one, which projects on the support of ν). Therefore, in this example
the optimal transportation maps fail to tend to the Knothe-Rosenblatt map.
The reason is the atom in the measure ν2 = δ0.

Convergence even with atoms The convergence result of theorem 2.1
requires the absence of atoms in the projections of ν. This is obviously not
the case if ν itself is purely atomic! Yet, this will precisely be the case we
will consider in the algorithm we propose in the sequel. The same proof may
be extended to this case under the following assumption. Keep the same
assumptions on µ but suppose that ν is concentrated on a set S with the
property

y, z ∈ S, y 6= z ⇒ yd 6= zd.
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This means that, if we restrict ourselves to S, then all the variables yi for
i < d are actually a function of the last variable yd. This is particularly
useful when ν is purely atomic, concentrated on a finite (or countable) set of
points with different yd components.

Just come back to the proof. The equality
∫

dγd(xd, yd)ψ(xd, yd)

∫

φ(xd−1)dγ
d−1
(xd,yd)

=

∫

dγd(xd, yd)ψ(xd, yd)

∫

φ(xd−1)dγ
d−1
(xd,yd),K

only relied on yd being a function of xd, which is still true. The other equality,
namely

∫

dγd(xd, yd)ψ(xd, yd)

∫

φ(yd−1)dγ
d−1
(xd,yd)

=

∫

dγd(xd, yd)ψ(xd, yd)

∫

φ(yd−1)dγ
d−1
(xd,yd),K

gives some extra troubles. It is not any more true that xd is a function of
yd. Yet, it is true that yd−1 is a function of yd and this allows us to reduce
the expression to functions of (xd, yd) only, which is sufficient to get equality.
The same procedure may be performed at subsequent steps as well.

3 An ODE for the dual variables

In this section, we consider for simplicity the case d = 2 (although our method
extends to higher dimensions), µ uniform on some convex polyhedron Ω (for
the sake of simplicity we will assume |Ω| = 1) and ν = 1

N

∑N

i=1 δyi
where all

the points yi ∈ Ω have a different second coordinate y
(2)
i . For every ε ≥ 0,

let Aε be the diagonal 2× 2 matrix with diagonal entries (ε, 1) and let cε be
the quadratic cost defined by cε(x, y) = Aε(x− y)(x− y). We are interested
in solving the family of optimal transportation problems

inf
π∈Γ(µ,ν)

∫

Rd×Rd

cε(x, y)dπ(x, y) (3.1)

for all values of the parameter ε ∈ [0, 1]. It is well-known, that (3.1) can be
conveniently solved by the dual problem formulated in terms of prices:

sup
p

Φ(p, ε) :=
1

N

N
∑

i=1

pi +

∫

Ω

p∗ε(x)dx, (3.2)
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where p∗ε(x) = mini{cε(x, yi)− pi} and we impose as a normalization p1 = 0.
For each ε, there is a unique maximizer p(ε). For each (p, ε) we define
C(p, ε)i = {x ∈ Ω : infj cε(x, yj) − pj = cε(x, yi) − pi}. It is easy to check
that Φε := Φ(., ε) is concave differentiable and that the gradient of Φε is
given by

∂Φε

∂pi

(p) =
1

N
− |C(p, ε)i|.

By concavity of Φε, the solution p(ε) of (3.2) is characterized by the equation
∇Φε(p(ε)) = 0. The optimal transportation between µ and ν for the cost cε
is then the piecewise map taking value yi in the cell C(p(ε), ε))i. Our aim
is to charcacterize the evolution of p(ε) as ε varies. Formally, differentiating
the optimality condition ∇Φ(p(ε), ε) = 0, we obtain a differential equation
for the evolution of p(ε):

∂

∂ε
∇pΦ(p(ε), ε) +D2

p,pΦ(p(ε), ε) · dp
dε

(ε) = 0. (3.3)

Our aim now is to show that the equation (3.3) is well-posed starting with the
initial condition p(0) (corresponding to horizontal cells of area 1/N); this will
involve computing the second derivatives of Φ in (3.3), proving their Lipschitz
behavior as well as obtaining a negative bound on the larger eigenvalue of
the negative semidefinite matrix D2

p,pΦ .

The price vector p(ε), along the evolution, will always be such that all
the areas |C(p, ε)i| are equal (and are equal to 1/N). Yet, we need to prove
that the differential equation is well posed and we will set it in an open set,

O =

{

(p, ε) :
1

2N
< |C(p, ε)i| <

2

N
for every i

}

. (3.4)

The initial datum of the equation will be such that |C(p(0), 0)i| = 1/N and
we will look at the solution only up to the first moment where it exits O.
Yet inside the set it will be well-posed and it will imply conservation of the
areas. Hence we will never exit O.

All the quantities we are interested in depend on the position of the
vertices of the cells C(p, ε)i, which are all polygons. Let us call x(p, ε)±i,j the
two extremal points of the common boundary between C(p, ε)i and C(p, ε)j,
that we callD(ε, p)i,j (if such a common boundary exists; should it be a single
point we consider the two points as coinciding). Each one of this points is
obtained as the intersection of at least this common boundary with another
one, or with the boundary of Ω (which is supposed to be a polygon as well,
so that in the neighbourhood of almost any point locally the boundary is a
line). We want to investigate the dependence of these points with respect
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to (p, ε) and prove that this dependence is Lipschitz. Notice that each point
x(p, ε)±i,j is not defined for any value of (p, ε) but only on a certain (closed)
subset of the space R

N × (0, 1).

Lemma 3.1. The positions of the vertices x(p, ε)±i,j depend in a Lipschitz
way on p and ε.

Proof. Locally it is true that the same point x(p, ε)±i,j is defined either by a
system of equations

{

Aε(x− yi)(x− yi) − pi = Aε(x− yj)(x− yj) − pj ,

Aε(x− yi)(x− yi) − pi = Aε(x− yh)(x− yh) − ph

(3.5)

in the case of a point on the intersection of two common boundaries, or by a
system

{

Aε(x− yi)(x− yi) − pi = Aε(x− yj)(x− yj) − pj ,

Lx = l0
(3.6)

in the case of intersection with the boundary ∂Ω (locally being given by the
equation Lx = l0) . The first system, after simplifying, reads as

{

2Aε(yj − yi)(x) = Aε(yj)(yj) − Aε(yi)(yi) − pj + pi,

2Aε(yh − yi)(x) = Aε(yh)(yh) − Aε(yi)(yi) − ph + pi,
(3.7)

and the second as well may be simplified the same way. This means that
they are of the form

M(ε)x = V (ε, p)

for a matrix M(ε) which reads, in usual coordinates,

M(ε) =

(

ε(y
(1)
j − y

(1)
i ) y

(2)
j − y

(2)
i

ε(y
(1)
h − y

(1)
i ) y

(2)
h − y

(2)
i

)

in the first case and

M(ε) =

(

ε(y
(1)
j − y

(1)
i ) y

(2)
j − y

(2)
i

l1 l2

)

in the second.

The vector V (ε, p) is obtained regarding the right hand sides of the system,
as in (3.7). Both M and V depend Lipschitzly on (ε, p), with uniformly
bounded Lipschitz constants. Hence, to check that the dependence of x on
(ε, p) is Lipschitz, we only need to bound (away from zero) detM(ε). The
determinant of a 2 × 2 matrix is given by the product of the modulus of the
two vector composing its lines, times the sinus of the angle between them.
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In the first case the vectors are Aε(yj − yi) and Aε(yh − yi), while in the
second they are Aε(yj −yi) and l = (l1, l2). In both cases they are the normal
vectors to the sides of the cell we are considering. This implies, thanks to
the lower bound on the areas of the cells, that the angles between these
vectors may not be too small. Actually, since Ω is bounded and the cells
are convex, the area of each cell is smaller than (diamΩ)2 sinα/2, α being
any angle between two neighbour sides. This implies a lower bound on sinα.
The lower bound on the moduli comes from the fact that the vectors l are
chosen with modulus one and the modulus of Aε(yj − yi) is always greater

than its vertical component, which is y
(2)
j − y

(2)
i , which is supposed different

from zero for any pair (i, j). Notice that in the first case the matrix has ε
in the determinant, even if we proved a lower bound on such a determinant,
independent on ε: this agrees with the fact that actually, this kind of crossing
(between two common boundaries of two cells) will only happen for ε ≥ ε0

(for ε < ε0 we only have almost horizontal strips crossing non-horizontal
sides of Ω).

Lemma 3.2. The function Φ admits pure second derivatives with respect to
p and mixed second derivatives with respect to p and ε, and these second
derivatives are Lipschitz continuous.

Proof. We have proven that the positions of the points x(p, ε)±i,j depend Lip-
schitzly, with uniformly bounded Lipschitz constants, on p and ε. Since the
volumes of the cells C(p, ε)i are Lipschitz functions of these points, this im-
plies that ∇pΦ is C0,1. Hence it admits derivatives almost everywhere and
we can compute them in the following way.

The derivative of a volume of a polygonal cell is given, side by side, by
the length of the side times the average of the components which are normal
to such a side of the two derivatives ẋ(p, ε)+

i,j and ẋ(p, ε)−i,j (the other terms
- which are mainly the terms at the corners - are of higher order). The
equation of the side D(ε, p)i,j is, as we know,

2Aε(yj − yi)(x) = Aε(yj)(yj) − Aε(yi)(yi) − pj + pi (3.8)

and the normal unit vector to the side is

n =
Aε(yj − yi)

|Aε(yj − yi)|
.

Let us start from the derivatives of the cell C(p, ε)i with respect to a variable
pj with j 6= i. We differentiate (3.8) with respect to pj and we get

2Aε(yj − yi)(ẋ) = −1.

12



This formula only works for x = x(p, ε)+
i,j and x = x(p, ε)−i,j. Obviously it

ony works where they are differentiable, i.e. almost everywhere. Hence the
derivative, by summing up and rescaling the normal vector, is given by

∂|C(p, ε)i|
∂pj

= − li,j
2|Aε(yj − yi)|

, (3.9)

where li,j is the length of D(ε, p)i,j.
As far as the derivative with respect to pi is concerned, it is not difficult

to check that we have (by summing up the results on every side)

∂|C(p, ε)i|
∂pi

=
∑

j

li,j
2|Aε(yj − yi)|

, (3.10)

where the sum is performed on all the indices j such that the cell C(p, ε)j is
in contact with the cell C(p, ε)i.

Automatically, since these derivatives only depend on the values of li,j,
which depend in a Lipschitz manner on the positions of x = x(p, ε)±i,j, they
are Lipschitz as well. This proves that Φε is actually C2,1 and that these
derivatives are well defined and admit the previous expressions (3.9)-(3.10)
everywhere.

The computation of the derivatives with respect to ε is a bit trickier. We
derive again (3.8), but with respect to ε. Since dAε/dε = B, we get

2Aε(yj − yi)(ẋ) = −2B(yj − yi)(x) +B(yj)(yj) − B(yi)(yi)

= 2B(yj − yi)

(

yj + yi

2
− x

)

.

Then we renormalize the normal vector, sum up the results for x = x(p, ε)+
i,j

and x = x(p, ε)−i,j, multiply by the lengths and sum up the results for all the
sides, and get

∂|C(p, ε)i|
∂ε

=
∑

j

li,j
B(yj − yi)(yj + yi − x(p, ε)+

i,j − x(p, ε)−i,j)

2|Aε(yj − yi)|
. (3.11)

In this case as well the result is Lipschitz in (p, ε) and hence ∇pΦ is differ-
entiable everywhere with respect to ε, with Lipschitz derivative.

We can come now back to the evolution of p = p(ε) and consider again
the differential equation (3.3). To solve this equation we need to prove that
the matrix D2

p,pΦ is actually invertible (for numerical purpose, we will also

13



need to bound its eigenvalues away from zero). It is important to recall that
we look at the evolution of the vector p = (p2, . . . , pN), since we may assume
p1(ε) = 0 for all ε. Hence, we will not look at the entries 1 in the vectors
or the matrices. The matrix we consider is M := −(D2

p,pΦ)i,j=2,...,N has the
following properties:

• on each line, outside the diagonal we have negative terms Mi,j =

− li,j
2|Aε(yj−yi)|

;

• each element on the diagonal is the sum of minus all the others on the
same line (hence it is positive), and possibly of the term which should
be in the same line at the first column;

• an entry (i, j) of the matrix is non-zero if and only if the cells C(p, ε)i

and C(p, ε)j share a common boundary with positive length;

• in particular, for any pair (i, j), even if the entry at place (i, j) is zero,
it is possible to find a path i = i0, i1, i2, . . . , ik = j so that the matrix
has non-zero values at all the positions (ih, ih+1);

• the total of the entries of the first column (the one which is not present
in the matrix) is strictly positive.

The invertibility of M is ensured by the following:

Lemma 3.3. Let the matrix M satisfy the following properties

(H1) for all i, Mi,i ≥
∑

j 6=i

|Mi,j|,

(H2) there exists i such that Mi,i >
∑

j 6=i

|Mi,j|,

(H3) for any pair (i, j) there is a sequence i0, i1, i2, . . . , ik

with i1 = i, ik = j, and Mih,ih+1
6= 0.

then M is invertible.

Proof. Let x ∈ Ker(M) and let i be an index such that |xi| is maximal. We
may suppose for simplicity that xi is positive. Then we have

0 = Mi,ixi −
∑

j

Mi,jxj ≥Mi,ixi −
∑

j

Mi,jxi = xi

(

Mi,i −
∑

j

Mi,j

)

≥ 0.
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This implies that all inequalities are equalities and in particular xj = xi

whenever Mi,j 6= 0. Hence, the entries of x on all the indices which are

“neighbours” of i equal xi (and they are maximal as well). This allows to
repeat the argument replacing i with another maximizing index j and so on...
since any index is connected by a chain of neighbours to i, we get that all the
entries are equal. But this implies that the vector in the kernel we selected
must be a multiple of the vector (1, 1, . . . , 1). Yet, this vector is not in the
kernel since the sum of the elements on each line is not zero for all lines, by
assumption (H2). This proves that M is invertible.

Finding a lower bound for the modulus of the eigenvalues of M , i.e.
quantifying its inversibility is not straightforward. Indeed, the properties
(H1), (H2), (H3) are not sufficient to get this bound, even if we fix the
norm of the remainding column as the following counter-example shows. The
determinant of the matrices

Mε =





1 −ε 0
−ε 1 −(1 − ε)
0 −(1 − ε) 1





is 2ε(1 − ε) → 0, which implies that some eigenvalue as well goes to 0.

We will obtain a positive lower bound by a compactness argument, but we
will use something stronger than simply assumptions (H1), (H2), (H3). The
idea is that assumption (H3) is not closed, but it stays closed when we replace
it with the stronger condition of the matrix being associated to a partition
(as is the case for M = −D2

p,pΦ). In this case if one connection degenerates
(i.e. a common boundary reduces to a point), some other connections will
play the role.

Lemma 3.4. There is a positive uniform lower bound on the least eigen-
value of any matrix M associated to the cell partition corresponding to a pair
(p, ε) ∈ O.

Proof. The proof will be obtained by contradiction. To this aim, take a
sequence of partitions of Ω into sets (Ωn

i )i=1,...,N . We assume these sets to be
convex polygons with a bounded number of sides. This is the case for the cells
associated to pairs (p, ε). We also know that their areas are always bounded
between 1/2N and 2/N). These partitions give rise to a certain topology
of connections between the cells. Up to subsequences, we may suppose that
this topology is always the same on all the partitions of the sequence (since
the number of possible topologies is finite). Up to subsequences, we also
have convergence in the Hausdorff distance. This means that for any i we
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have Ωn
i → Ωi, and this convergence, which is the same as the convergence

of all the vertices, preserves the areas, the convexity, the upper bound on
the number of sides, the fact of being a partition... The matrices associated
to these partitions depend continuously on these sets (with respect to this
convergence, since they actually depend on the positions of the vertices).
Notice that it is possible that a side reduces its length along the sequence up
to becoming a single point in the limit. Yet, two cells which share a boundary
along the sequence will do it along the whole sequence (thanks to our choice
of not changing the topology) and at the limit, either they share a side as
well, or they share a point only, but in this case the terms li,j converged to
zero. Hence we can associate to all the partitions their matrices and this
correspondence is continuous. We have a sequence of matrices Mn →M and
let us suppose that some eigenvalue λ

(n)
1 goes to zero. This would imply that

the matrix M is associated to a partition but has a zero eigenvalue. This
is not possible, thanks to the proof of lemma 3.3 above. M is associated to
a partition and hence satisfies assumptions (H1) and (H3). To check (H2)
we observe that the column that we remove, the first one, is associated to
the first cell and, up to some rescaling but bounded factor |Aε(y1 − yj)|, its
entries are the lengths of its sides. Yet, this cell conserves the area bounds
we had on the sequence and its entry cannot be all zero.

From the previous results on the form and the regularity of the deriva-
tives of ∇pΦ, we deduce from the Cauchy-Lipschitz Theorem that the ODE
(3.3) governing the evolution of the dual variables is well posed and actually
characterizes the optimal prices:

Theorem 3.5. Let p(ε) be the solution of the dual problem (3.2) (recall the
normalization p1(ε) = 0), then it is the only solution of the ODE:

dp

dε
(ε) = −D2

p,pΦ(p(ε), ε)−1

(

∂

∂ε
∇pΦ(p(ε), ε)

)

(3.12)

with initial condition p(0) such that all the horizontal strips C(p(0), 0)i have
area 1/N .

4 Numerical results

4.1 Algorithm

The algorithm we propose consists simply in discretizing (3.12) (together
with the initial condition p(0) determined as in Theorem 3.5) by an explicit
Euler scheme. Let n be some positive integer and h := n−1 be the step size.
Let us set p0 = p(0) and define prices inductively as follows.
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• While (pk, kh) belongs to the open set O defined by (3.4), compute:

Ak := −D2
p,pΦ(pk; kh), δk :=

∂

∂ε
∇pΦ(pk, kh).

Note that computing Ak and δk by formulas (3.9)-(3.10) and (3.11),
requires to construct the cells C(kh, pk)i.

• Solve the linear system Akz = δk; by taking advantage of Ak being pos-
itive definite, we use the conjugate gradient algorithm for minimizing
Jk(z) = Ak(z)(z) − 2δk · z to solve this system exactly in N − 1 steps.
We denote by zk the solution.

• Update the prices by setting

pk+1 = pk + hzk.

Thanks to the Lipschitz properties established in section 3, it is easy to
check that for h small enough, (pk, kh) always remain in O and then pk is
well-defined for every k up to n. For such an h and since (3.12) is generated
by a Lipschitz function on O, it is well-known that the convergence of the
Euler scheme is linear (see for instance [3]). Denoting by ph the piecewise
constant function having values pk on intervals [kh, (k + 1)h), we thus get
the following convergence:

Theorem 4.1. For h small enough, the algorithm above is well-defined and
the uniform error between ph and the optimal price p is O(h).

4.2 Numerical experiments

The construction of the cells at each step is achieved efficiently by an imple-
mentation in Matlab. In the setting described above where d = 2, Ω = [0, 1]2,
µ is the uniform distribution on Ω, ν = 1

N

∑N
k=1 δyk

, our algorithm computes
the cells Ωε

k = {x ∈ Ω : Tε (x) = yk} as well as the prices pε
k of the cell yk for

ε = 0 to ε = 1. For ε = 0 which is the case where the transportation plan
is the Knothe one, the computational task amounts to sorting the second
component of the yk’s. Appropriate discretization steps are then chosen for
the transition ε = 0 to ε = 1. At each step, the tesselation of Ω into the poly-
hedral cells Ωε

k is computed based on the prices pε
k. Adjacency information

on these cells is computed, as well as the length of the facet between two cells
and the coordinates of its extreme points. This information allows one to
formulate a discretized version of ODE (3.12) using an Euler discretization
scheme.
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For geometric computations we use the Multi-Parametric Toolbox library,
available online at http://control.ee.ethz.ch/ mpt. In particular, polytope
computes the tesselation of Ω into the polyhedral cells Ωε

k. (A slighlty modi-
fied version of) mpt buildAdjacency extracts adjacency information on this
tesselation, from which the vertices and the lengths of the sides between
two cells can be deduced. The library also incorporates convenient graphical
routines.

Error analysis Some numerical examples are presented below, for which
relative errors in cell areas (i.e. deviation from the optimality conditions)
are given as well as a comparison between the tesselations obtained with our
method and the true solution. Another way to test our method is as follows.
Let us consider the set

C :=

{

z(γ) :=

(
∫

R2×R2

x1y1dγ,

∫

R2×R2

x2y2dγ

)

, γ ∈ Γ(µ, ν)

}

.

C is a closed convex subset of R
2 and it is strictly convex in the sense that

its boundary contains no line segment. Denoting by γε the solution of (3.1),
it is easy to check that z(ε) := z(γε) is an extreme point of C and that
εz1 + z2 = εz1(ε)+ z2(ε) is the equation of a supporting line of C at z(ε) and
this supporting line intersects C only at z(ε). If we consider the correlation
curve ε ∈ (0, 1) 7→ z(ε) it can be represented as the graph of a concave
decreasing function whose slope (when it exists) at point z(ε) is −ε. In
our numerical test, we will also present graphs comparing the true concave
correlation curve to the one computed by our method.

We give three instances of executions of our algorithm, with samples
of respectively 5, 10, and 15 points. Taking weights (ε, ε−1) with ε ∈
(0,+∞) (rather than (ε, 1) with ε ∈ (0, 1)) we get the full evolution of the
optimal transports from one Knothe’s transport (horizontal strips) to the
other (vertical strips). Further examples as well as videos can be found at
http://alfred.galichon.googlepages.com/anisotropic. It should also
be pointed that our method does not approximate the solution of a single
optimal transportation problem but a whole family of such problems (which
actually explains relatively high running times).

Five sample points. We take as our sample set a sample of five points.
We get the following errors:

# steps Relative errors in cell areas Time
100 -4.41% 2.66% 3.41% -2.46% 0.80% 66 s
500 -0.88% 0.54% 0.68% -0.49% 0.16% 349 s
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for which we draw in Figure 1 the partition obtained for ε = 1 using an exact
method, as well as the true evolutions of the componentwise correlations of
the x’s and the y’s from ε = 0 until ε = 1.

Running the continuation algorithm with 100 and 500 discretization steps
we obtained partition sketched below, where the relative error on the cells
area is inferior to 5%. The evolution of the componentwise correlations from
ε = 0 until ε = 1 are also sketched and compared with their exact conterparts
(the above curve). Running the algorithm with 500 discretization steps on
a standard laptop took 349 seconds, and yields to the results below, where
the maximal relative error on the cells area is 1%. The evolution of the
componentwise correlations from ε = 0 until ε = 1 are also sketched and
compared with their exact counterparts.

Ten sample points. Taking a sample of ten points, we obtain the
following errors:

# steps Relative errors in cell areas Time
2,000 -1.37% -12% -2.44% -0.09% 2.27% ≤ 1 h
3,000 -0.92% -8.23% 1.63% 0.06% 1.52% ≤ 1,5 h

(continued)
2,000 0.27% 5.71% 2.12% 7.36% -1.58% ≤ 1 h
3,000 0.18% 3.84% 1.42% 4.94% -1.05% ≤ 1,5 h

We draw in Figure 3 the partition obtained for ε = 1 using an exact
method, as well as the true evolutions of the componentwise correlations of
the x’s and the y’s from ε = 0 until ε = 1.

Fifteen sample points. With a sample of 15 points, we get the following
errors:

# steps Relative errors in cell areas Time
3,000 -2.24% -0.12% -0.58% 0.20% -3.20% ≃ 2 h
10,000 -0.67% -0.04% -0.17% 0.06% -0.97% ≤ 4 h

(continued)
3,000 0.17% -2.66% 4.25% -2.43% 28.85% ≃ 2 h
10,000 0.05% -0.82% 1.28% -0.74% 9.42% ≤ 4 h

(continued)
3,000 -30.11% 2.51% 1.82% 2.92% 0.63% ≃ 2 h
10,000 -9.79% 0.76% 0.55% 0.89% 0.19% ≤ 4 h
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and of Chaire Société Générale “Risques Financiers”. The authors wish to
warmly thank Yann Brenier and Alessio Figalli for stimulating discussions.

References

[1] A. Braides, Γ-convergence for beginners, Oxford University Press, Oxford,
2002.

[2] Brenier, Y., Polar factorization and monotone rearrangement of vector-
valued functions, Communications on Pure and Applied Mathematics 44,
375-417, 1991.

[3] Crouzeix M., Mignot A.L, Analyse numérique des équations
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Figure 1: Five sample points. Top row: exact algorithm (gradient method).
Middle row: continuation algorithm, 100 steps. Bottom row: continuation
algorithm, 500 steps.
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Figure 2: Five sample points: evolution of the tesselation for ε = 0 to
ε = +∞ (from top left to bottom right).
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Figure 3: Ten sample points. Top row: exact algorithm (gradient method).
Middle row: continuation algorithm, 2000 steps. Bottom row: continuation
algorithm, 3000 steps.
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Figure 4: Ten sample points: evolution of the tesselation for ε = 0 to ε = +∞
(from top left to bottom right).
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Figure 5: Fifteen sample points. Top row: exact algorithm (gradient
method). Middle row: continuation algorithm, 3000 steps. Bottom row:
continuation algorithm, 10,000 steps.
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Figure 6: Fifteen sample points: evolution of the tesselation for ε = 0 to
ε = +∞ (from top left to bottom right).
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