N
N

N

HAL

open science

Vector Quantile Regression: An Optimal Transport
Approach
Guillaume Carlier, Victor Chernozhukov, Alfred Galichon

» To cite this version:

Guillaume Carlier, Victor Chernozhukov, Alfred Galichon. Vector Quantile Regression: An Optimal
Transport Approach. Annals of Statistics, 2016, 44 (3), pp.1165-1192.

03567920

HAL Id: hal-03567920
https://sciencespo.hal.science/hal-03567920
Submitted on 12 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1214/15-A0S1401 . hal-


https://sciencespo.hal.science/hal-03567920
https://hal.archives-ouvertes.fr

Submitted to the Annals of Statistics
arXiv: arXiv:1406.4643

VECTOR QUANTILE REGRESSION: AN OPTIMAL
TRANSPORT APPROACH*

BY GuILLAUME CARLIER!, VICTOR CHERNOZHUKOV! AND ALFRED
GALICHON®

T Université Paris IX Dauphine, * MIT, and SNYU and Sciences Po

We propose a notion of conditional vector quantile function and
a vector quantile regression. A conditional vector quantile function
(CVQF) of a random vector Y, taking values in R? given covari-
ates Z = z, taking values in R is a map u — Qv |z (u, z), which
is monotone, in the sense of being a gradient of a convex func-
tion, and such that given that vector U follows a reference non-
atomic distribution Fy, for instance uniform distribution on a unit
cube in R?, the random vector Qy|z(U, z) has the distribution of YV’
conditional on Z = z. Moreover, we have a strong representation,
Y = Qyz(U,Z) almost surely, for some version of U. The wvector
quantile regression (VQR) is a linear model for CVQF of Y given
Z. Under correct specification, the notion produces strong represen-
tation, Y = B(U)" f(Z), for f(Z) denoting a known set of trans-
formations of Z, where u — S(u)" f(Z) is a monotone map, the
gradient of a convex function, and the quantile regression coefficients
u — [(u) have the interpretations analogous to that of the stan-
dard scalar quantile regression. As f(Z) becomes a richer class of
transformations of Z, the model becomes nonparametric, as in series
modelling. A key property of VQR is the embedding of the classical
Monge-Kantorovich’s optimal transportation problem at its core as
a special case. In the classical case, where Y is scalar, VQR reduces
to a version of the classical QR, and CVQF reduces to the scalar
conditional quantile function. An application to multiple Engel curve
estimation is considered.

1. Introduction. Quantile regression provides a very convenient and
powerful tool for studying dependence between random variables. The main
object of modelling is the conditional quantile function (CQF) (u,z) —
Qy|z(u, z), which describes the u-quantile of the random scalar Y condi-
tional on a k-dimensional vector of regressors Z taking a value z. Conditional
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quantile function naturally leads to a strong representation via relation:
Y = QY|Z(U3 Z)7 U ‘ Z ~ U(07 1)7

where U is the latent unobservable variable, normalized to have a uniform
reference distribution, and is independent of regressors Z. The mapping
u +— Qy|z(u, Z) is monotone, namely non-decreasing, almost surely.

Quantile regression (QR) is a means of modelling the conditional quantile
function. A leading approach is linear in parameters, namely, it assumes that
there exists a known RP-valued vector f(Z), containing transformations of
Z,and a (p x 1 vector-valued) map of regression coefficients u — B(u) such
that

Qyz (u]z) =)' f(2),

for all z in the support of Z and for all quantile indices w in (0,1). This
representation highlights the vital ability of QR to capture differentiated
effects of the explanatory variable Z on various conditional quantiles of the
dependent variable Y (e.g., impact of prenatal smoking on infant birth-
weights). QR has found a large number of applications; see references in
Koenker ([18])’s monograph. The model is flexible in the sense that, even
if the model is not correctly specified, by using more and more suitable
terms f(Z) we can approximate the true CQF arbitrarily well. Moreover,
coefficients u — [(u) can be estimated via tractable linear programming
method ([20]).

The principal contribution of this paper is to extend these ideas to the
cases of vector-valued Y, taking values in RY. Specifically, a vector condi-
tional quantile function (CVQF) of a random vector Y, taking values in R?
given the covariates Z, taking values in R¥, is a map (u, z) — Qyz(u, 2),
which is monotone with respect to u, in the sense of being a gradient of a
convex function, which implies that

(1.1) (Qyz(u, 2) = Qyz (1w, 2) " (w—1) >0 foralluze (0,1)%z2¢ 2,
and such that the following strong representation holds with probability 1:
(1.2) Y =Qyz(U.2), U|Z~U(0,1)%,

where U is latent random vector uniformly distributed on (0,1)?. We can
also use other non-atomic reference distributions Fy on R, for example, the
standard normal distribution instead of uniform distribution (as we can in
the canonical, scalar quantile regression case). We show that this map exists
and is unique under mild conditions, as a consequence of Brenier’s polar
factorization theorem. This notion relies on a particular, yet very important,
notion of monotonicity (1.1) for maps R% — R¢, which we adopt here.
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We define vector quantile regression (VQR) as a model of CVQF, par-
ticularly a linear model. Specifically, under correct specification, our linear
model takes the form:

Qyix(u] 2) = Bu)" f(2),

where v — B(u) " f(2) is a monotone map, in the sense of being a gradient
of convex function; and u — f(u) is a map of regression coefficients from
(0,1)? to the set of p x d matrices with real entries. This model is a natural
analog of the classical QR for the scalar case. In particular, under correct
specification, we have the strong representation

(1.3) Y =5(U)"f(2), UlZ~U(0,1)

where U is uniformly distributed on (0,1)¢ conditional on Z. (Other refer-
ence distributions could also be easily permitted.)

We provide a linear program for computing v — [(u) in population
and finite samples. We shall stress that this formulation offers a number
of useful properties. In particular, the linear programming problem admits
a general formulation that embeds the optimal transportation problem of
Monge-Kantorovich-Brenier, establishing a useful conceptual link to an im-
portant area of optimization and functional analysis (see, e.g. [34], [35]).

Our paper also connects to a number of interesting proposals for per-
forming multivariate quantile regressions, which focus on inheriting certain
(though not all) features of univariate quantile regression— for example, min-
imizing an asymmetric loss, ordering ideas, monotonicity, equivariance or
other related properties, see, for example, some key proposals (including
some for the non-regression case) in [6], [23], [32], [16], [24], [2], which are
contrasted to our proposal in more details below. Note that it is not possible
to reproduce all ”desirable properties” of scalar quantile regression in higher
dimensions, so various proposals focus on achieving different sets of proper-
ties. Our proposal is quite different from all of the excellent aforementioned
proposals in that it targets to simultaneously reproduce two fundamentally
different properties of quantile regression in higher dimensions — namely
the deterministic coupling property (1.3) and the monotonicity property
(1.1). This is the reason we deliberately don’t use adjective “multivariate”
in naming our method. By using a different name we emphasize the major
differences of our method’s goals from those of the other proposals. This
also makes it clear that our work is complementary to other works in this
direction. We discuss other connections as we present our main results.

1.1. Plan of the paper. We organize the rest of the paper as follows. In
Section 2, we introduce and develop the properties of CVQF. In Section
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3, we introduce and develop the properties of VQR as well its linear pro-
gramming implementation. In Section 4, we provide computational details of
the discretized form of the linear programming formulation, which is useful
for practice and computation of VQR with finite samples. In Section 5, we
implement VQR in an empirical example, providing the testing ground for
these new concepts. We provide proofs of all formal results of the paper in
the Appendix, and in the Supplementary material [4].

2. Conditional Vector Quantile Function.

2.1. Conditional Vector Quantiles as Gradients of Convex Functions. We
consider a random vector (Y,Z) defined on a complete probability space
(1, A1,Pq). The random vector Y takes values in R?. The random vector
Z is a vector covariate, taking values in R*. Denote by Fyz the joint dis-
tribution function of (Y, Z), by Fy |z the (regular) conditional distribution
function of Y given Z, and by Fz the distribution function Z. We also con-
sider random vectors V' defined on a complete probability space (€, .Ag, Po),
which are required to have a fixed reference distribution function Fy. Let
(Q, A,P) be the a suitably enriched complete probability space that can
carry all vectors (Y, Z) and V with distributions Fyz and Fy, respectively,
as well as the independent (from all other variables) standard uniform ran-
dom variable on the unit interval. Formally, this product space takes the
form (2, A4,P) = (Q0,.40,P0) x (51, A1,P1) x ((0,1), B(0,1),Leb), where
((0,1), B(0,1), Leb) is the canonical probability space, consisting of the unit
segment of the real line equipped with Borel sets and the Lebesgue mea-
sure. The symbols YV, Z, U, YZ, UZ denote the support of Fy, Fy, Fy,
Fyz, Fyz, and Y, denotes the support of Fy|z(-|z). We denote by |[.|| the
Euclidian norm of R¢.

We assume that the following condition holds:

(N) Fy has a density fy with respect to the Lebesgue measure on R with
a convex support set U.

The distribution Fy describes a reference distribution for a vector of la-
tent variables U, taking values in R%, that we would like to link to Y via a
strong representation of the form mentioned in the introduction. This vector
will be one of many random vectors V' having a distribution function Fy,
but there will only be one V' = U, in the sense specified below, that will pro-
vide the required strong representation. The leading cases for the reference
distribution Fy include:

e the standard uniform distribution on the unit d-dimensional cube,
U(0,1)%,
e the standard normal distribution N (0, I;) over R?, or
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e any other reference distribution on R?, e.g., uniform on a ball.

Our goal here is to create a deterministic mapping that transforms a
random vector U with distribution Fy into Y such that Y conditional on
Z has the conditional distribution Fy 7. Such a map that pushes forward
a probability distribution of interest onto another one is called a transport
between these distributions. That is, we want to have a strong representation
property like (1.2) that we stated in the introduction. Moreover, we would
like this transform to have a monotonicity property, as in the scalar case.
Specifically, in the vector case we require this transform to be a gradient of a
convezr function, which is a plausible generalization of monotonicity from the
scalar case. Indeed, in the scalar case the requirement that the transform is
the gradient of a convex map reduces to the requirement that the transform
is non-decreasing. We shall refer to the resulting transform as the conditional
vector quantile function (CVQF). The following theorem shows that such
map exists and is uniquely determined by the stated requirements.

THEOREM 2.1 (CVQF as Conditional Brenier Maps). Suppose con-
dition (N) holds.

(i) There exists a measurable map (u,z) — Qy|z(u, z) from UZ to RY,
such that for each z in Z, the map u — Qy|z(u, 2) is the unique (Fy-almost
everywhere) gradient of convex function such that, whenever V. ~ Fy, the
random vector Qy|z(V, z) has the distribution function Fy4(-,2), that is,

21)  Fyiz(y.z) = /1{lez<u, 2) < yVFu(du), for all y € RY

(ii) Moreover, there exists a random variable V. = U such that P-almost
surely

(2.2) Y = Qy2(U, Z), and U | Z ~ Fy.

The theorem is our first main result that we announced in the introduc-
tion. It should be noted that the theorem does not require Y to have an
absolutely continuous distribution, it holds for discrete and mixed outcome
variables; only the reference distribution for the latent variable U is assumed
to be absolutely continuous. It is also noteworthy that in the classical case
of Y and U being scalars we recover the classical conditional quantile func-
tion as well as the strong representation formula based on this function ([29],
[18]). Regarding the proof, the first assertion of the theorem is a consequence
of fundamental results due to McCann ([25]) (as, e.g, stated in [34], Theo-
rem 2.32) who in turn refined the fundamental results of [3]. These results
were obtained in the case without conditioning. The second assertion is a
consequence of Dudley-Philipp ([12]) result on abstract couplings in Polish
spaces.
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REMARK 2.1 (Monotonicity). The transform (u, z) — (Qy|z(u, 2), 2)
has the following monotonicity property:

(2.3)  (Qyiz(w,2) = Qyz(W,2) (u—1) >0 Vu,mcUVz€ Z. N

REMARK 2.2 (Uniqueness). In part (i) of the theorem, u — Qy |z (u, 2)
is equal to a gradient of some convex function u — ¢(u, z) for Fy-almost
every value of u € U and it is unique in the sense that any other map with
the same properties will agree with it Fyr-almost everywhere. In general, the
gradient u — V,¢(u, 2) exists Fyy-almost everywhere, and the set of points
Ue where it does not is negligible. Hence the map u — Qy z(u, z) is still
definable at each u. € U, from the gradient values ¢(u, z) on u € U \ Ue, by
defining it at each u. as a smallest-norm element of {v € R? : Juy, € U \ U, :
U — Ue, Vyp(ug, z) = v} I

Let us assume further that the following condition holds:

(C) For each z € Z, the distribution Fyz(-,2) admits a density fy (-, z)
with respect to the Lebesque measure on RY.

Under this condition we can recover U uniquely in the following sense:

THEOREM 2.2 ( Conditional Inverse Vector Quantiles or Condi-
tional Vector Ranks). Suppose conditions (N) and (C) holds.

Then there exists a measurable map (y,z) — Q;,Ilz(y, z), mapping Y Z
to R?, such that for each z in Z, the map y —> Q;?Z(y, z) is the inverse of
u+— Qy|z(u,2) in the sense that:

Q;?Z(QYM(uv Z)? Z) = u,

for almost all w under Fy. Furthermore, we can construct U in (2.2) as
follows,

(2.4) U=Qy,(Y.2), and U|Z ~ Fy.

REMARK 2.3 (Conditional Vector Rank Function). The mapping y —
Q;fZ(y,z), which maps ) € R? to R?, is the conditional rank function.
When d = 1, it coincides with the conditional distribution function, but
when d > 1 it does not. The ranking interpretation stems from the fact
that when we set Fy = U(0,1)%, vector Q;iz (Y, Z) € [0,1]" measures the
centrality of observation Y for each of the dimensions, conditional on Z. §

It is also of interest to state a further implication, which occurs under
(N) and (C), on the link between the transportation map Qy|z and its
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derivatives on one side, and the densities fy and fy|z on the other side.
This link is a nonlinear second order partial differential equation called a
(conditional) Monge-Ampére equation.

COROLLARY 2.1 (Conditional Monge-Ampére Equations). Assume
that conditions (N) and (C) hold and, further, that the map u — Qy|z(u, 2)
is continuously differentiable and injective for each z € Z. Under this con-
dition, the following conditional forward Monge-Ampére equation holds for
all (u,z) eUZ :

(2.5)

fu(w) = fy1z(Qy|z(u, 2), 2)det[DuQy |z (u, 2)] = /5(U - Q;‘lz(y,z))fy|z(y7z)dy,

where § is the Dirac delta function in R and D,, = 0/0u’. Reversing the
roles of U and Y, we also have the following conditional backward Monge-
Ampére equation holds for all (y,z) € YZ:

(2.6)

fyiz(y,2) = fU(Q;_qu(y,Z))d‘ft[DyQ;\lZ(yyz)] = /6(y = Qy|z(u, 2)) fu(u)du.

The latter expression is useful for linking the conditional density function
to the conditional vector quantile function. Equations (2.5) and (2.6) are par-
tial differential equations of the Monge-Ampere type, carrying an additional
index z € Z. These equations could be used directly to solve for conditional
vector quantiles given conditional densities. We can also use them to set up
maximum likelihood method for recovering conditional vector quantiles. In
the next section we describe a variational approach to recovering conditional
vector quantiles.

2.2. Conditional Vector Quantiles as Optimal Transport. Under addi-
tional moment assumptions, the CVQF can be characterized and even de-
fined as solutions to a regression version of the Monge-Kantorovich-Brenier’s
optimal transportation problem or, equivalently, a conditional correlation
maximization problem.

We assume that the following conditions hold:

(M) The second moment of ¥ and the second moment of U are finite:

// HszFyz(dy,dz) < oo and /HuH2FU(du) < 00.

We consider the following optimal transportation problem with condi-
tional independence constraints:

(2.7) mvin{E||Y—VH2 V| Z ~ Fy)},
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where the minimum is taken over all random vectors V' defined on the prob-
ability space (2, F,P). Note that the value of objective is the Wasserstein
distance between Y and V subject to V' | Z ~ Fy. Under condition (M)
we will see that a solution exists and is given by V' = U constructed in the
previous section.

The problem (2.7) is the conditional version of the classical Monge - Kan-
torovich problem with Brenier’s quadratic costs, which was solved by Brenier
in considerable generality in the unconditional case. In the unconditional
case, the canonical Monge problem is to transport a pile of coal with mass
distributed across production locations from F; into a pile of coal with mass
distributed across consumption locations from Fy, and it can be rewritten
in terms of random variables V' and Y. We are seeking to match Y with
a version of V' that is closest in mean squared sense subject to V' having
a prescribed distribution. Our conditional version above (2.7) imposes the
additional conditional independence constraint V' | Z ~ Fy.

The problem above is equivalent to covariance maximization problem sub-
ject to the prescribed conditional independence and distribution constraints:

(2.8) mVaX{E(vTY) . V| Z~ Fy},

where the maximum is taken over all random vectors V defined on the
probability space (€2, F,P). This type of problem will be convenient for us,
as it most directly connects to convex analysis and leads to a convenient
dual program. This form also connects to unconditional multivariate quantile
maps defined in [13], who employed them for purposes of risk analysis; our
definition given in the previous section is more satisfactory, because it does
not require any moment conditions, as follows from the results of [25].
The dual program to (2.8) can be stated as:

(2.9) ming, ) E(e(V, Z2) + (Y, 2)) : o(u,2) +¢(y, 2) > u'y
: for all (z,y,u) € Z x R,

where V' is any vector such that V' | Z ~ Fy, and minimization is performed
over Borel maps (y, z) — ¥(y, z) from Z x R? to RU {4+o00} and (u, z) —
o(z,u) from Z x R? to R U {+oco}, where y — 9(y, 2) and u — o(u, 2)
are lower-semicontinuous for each value z € Z.

THEOREM 2.3 (Conditional Vector Quantiles as Optimal Trans-
port). Suppose conditions (N), (C), and (M) hold.

(i) There exists a pair of maps (u,z) — @(u, z) and (y,z) — P(y, z) =
©*(y, z), each mapping from R? x Z to R, that solve the problem (2.9). For
each z € Z, the maps u — @(u,z) and y — ¢*(y, z) are convex and are
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Legendre transforms of each other:

o(u,2) = sup{u'y — o*(y,2)}, ©*(y,2) = sup{u'y — p(u,2)},
y€ER4 ucRd

for all (u,z) e UZ and (y,z) € VZ.

(i1i) We can take the gradient (u, z) — Vy@(u, z) of (u, z) — @(u, z) as
the conditional vector quantile function, namely, for each z € Z, QY‘Z(u, z) =
Vup(u, z) for almost every value u under F;.

(iv) We can take the gradient (y,z) — Vy@*(y, 2) of (y,z) — ¢*(y, 2)
as the conditional inverse vector quantile function or conditional vector rank
function, namely, for each z € Z, Q;fz(y, z) = Vyp*(2,y) for almost every
value y under Fy|z(, 2).

(v) The vector U = Q;,|1Z(Y, Z) is a solution to the primal problem (2.8)
and is unique in the sense that any other solution U* obeys U* = U almost
surely under P. The primal (2.8) and dual (2.9) have the same value.

(vi) The maps u — Vyp(u, z) and y — Vo, (y,2) are inverses of each
other: for each z € Z, and for almost every uw under Fyy and almost every y
under Fy\z (-, z)

Vo (Vup(u, 2),2) = u, Vup(Vyp(y,2),2) =y.

REMARK 2.4. There are many maps @ : UZ — Y such that if V ~ Fy,
then Q (V, 2) ~ Fy|z—.. Any of these maps define a transport from Fy to
Fy|z—.. Our choice is to take the optimal transport, in the sense that it
minimizes the Wasserstein distance E|Q (V, Z) — V||? among such maps.
This has several benefits: (i) the optimal transport is unique as soon as Fyy
is absolutely continuous, as noted in Remark 2.2 and (ii) this object is easily
computable through a linear programming problem. Note that the classical,
scalar quantile map is the optimal transport from Fy; to Fy in this sense,
so oue notion indeed extends the classical notion of a quantile. I

REMARK 2.5.  Unlike in the scalar case, we cannot compute Qy|z (u, 2)
at a given point u without computing the whole map u — Qy |z (u, z). This
highlights the fact that CVQF is not a local concept with respect to values
of the rank w. §

Theorem 2.3 provides a number of analytical properties, formalizing the
variational interpretation of conditional vector quantiles, providing the po-
tential functions (u, z) — ¢(u, z) and (y, z) — ¢*(y, 2), which are mutual
Legendre transforms, and whose gradients are the conditional vector quantile
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functions and its inverse, the conditional vector rank function. This prob-
lem is a conditional generalization of the fundamental results by Brenier as
presented in [34], Theorem 2.12.

ExXAMPLE 2.1 (Conditional Normal Vector Quantiles). Here we
consider the normal conditional vector quantiles. Consider the case where

Y| Z~N(u(2),Q(2)).

Here z — p(z) is the conditional mean function and z — §2(2) is a condi-
tional variance function such that €(z) > 0 (in the sense of positive definite
matrices) for each 2 € Z with E||Q(Z)| + E||u(Z)||*> < co. The reference
distribution is given by U | Z ~ N(0, I). Then we have the following condi-
tional vector quantile model:

Y = u(Z2)+QY2(2)U,
U= Z)(Y - u(2)).

Here we have the following conditional potential functions

ol 2) = p(z) Tt JuT OV ),

Wy 2) = 5~ w) TV G - u(2))

and the following conditional vector quantile and rank functions:

Qvi2(,2) = Vusplu 2) = (=) + Q22 ),
Qyz(W:2) = Vyi(y, z) = Q72 (2)(y — n(2))-

It follows from Theorem 2.3 that V = U solves the covariance maximization
problem (2.8). This example is special in the sense that the conditional
vector quantile and rank functions are linear in u and y, respectively. I

2.3. Interpretations of vector rank U. We can provide the following in-
terpretations of U:

1) As multivariate rank. An interesting interpretation of U is as a
multivariate rank. In the univariate case, [18], Ch. 1.3 and 3.5, interprets U
as a continuous notion of rank in the setting of quantile regression. The rank
has a reference distribution Fyy, which is typically chosen to be uniform on
(0,1), but other reference distributions could be used as well. The concept
of vector quantile allows us to assign a continuous rank to each of the di-
mensions, and the vector quantile mapping is monotone with respect to the
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rank in the sense of being the gradient of a convex function. As a result, U
can be interpreted as a multivariate rank for Y, as we are trying to map the
distribution of U to a prescribed distribution Fy at minimal distortion, as
seen in (2.7).

2) As a reference outcome for defining quantile treatment ef-
fects. Another motivation is related to the classical definition of quantile
treatment effects introduced by [27], and further developed by [10], [18],
and others. Suppose we define U as an outcome for an untreated popula-
tion; for this we simply set the reference distribution Fy; to the distribution
of outcome in the untreated population. Suppose Z is the indicator of the
receiving a treatment (Z = 0 means no treatment). Then we can represent
outcome Y = Qy|z (U, Z) as the multivariate health outcome conditional on
Z.1f Z = 0, then the outcome is distributed as Qy|z (U,0) = U. If Z =1,
then the outcome is distributed as Qyz (U, 1). The corresponding notion of
vector quantile treatment effects is Qy|z(u, 1) — Qy |z (u,0).

3) As nonlinear latent factors. As it is apparent in the variational
formulation (2.7), the entries of U can also be thought as latent factors,
independent of each other and explanatory variables Z and having a pre-
scribed marginal distribution Fi7, and that best explain the variation in Y.
Therefore, the conditional vector quantile model (2.2) provides a non-linear
latent factor model for Y with factors U solving the matching problem (2.7).
This interpretation suggests that this model may be useful in applications
which require measurement of multidimensional unobserved factors, for ex-
ample, cognitive ability, persistence, and various other latent propensities;
see, for example, [8].

2.4. Qverview of Other Notions of Multivariate Quantile. We briefly re-
view other notions of multivariate quantiles in the statistical literature. We
highlight the main contrasts with the notion we are using, based on optimal
transport. For the sake of clarity of exposition, we discuss the unconditional
case; albeit the comparisons extend naturally to the regression case.

In [6], the following definition of multivariate quantile function is sug-
gested: for u € R, let

QF (u) = argmaxE [yTu — |y — Y|
yERd

which coincides with the classical notion when d = 1. See also [32]. More
generally, [23] offers the following definition based on M-estimators, still for
u € R?,

Q¥ (u) = argmaxE [y Tu— K (y,Y)]
yERd
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for a choice of kernel K assumed to be convex with respect to its first
argument. Like our proposal, these notions of quantile maps are gradients of
convex potentials. However, unlike our proposal, these notions do not provide
a transport from a fixed distribution over values of u to the distribution Fy
of Y as soon as d > 1.

In [36], a notion of quantile based on the Rosenblatt map is investigated.
In the case d = 2, this quantile is defined for u € [0,1] as

QFF (u1,u2) = (Qv; (w1) ,Qy,ys (u2 | Qy; (w1)))

where Qy; and Qy; |y, are the univariate and the conditional univariate quan-
tile map. This map is a transport of the distribution of (0, 1)?; however,
in this definition, Y7 and Ys play sharply assymetric roles, as the second
dimension is defined conditional on the first one. Unlike ours, this quantile
map is not a gradient of convex function.

In [16], the authors specify a vector of latent indices u € B? the unit ball
of R%. For u € B%, they define multivariate quantiles as

QS (w) = {y e R": Ty = a},

where @ € R and ¢ € R? minimize Epjjy (CTY — a) subject to constraint
c'u = |lu||. In contrast to ours, their notion of quantile is a set-valued. A
closely related construction is provided by [24] who define the directional

quantile associated to the index u € B? via:

M () = Qury g (lull) w/llull,

where @, Ty 18 the univariate quantile function of the random variable
u'Y/||ul|. We can provide a transport interpretation to this notion of quan-
tiles, but unlike our proposal this map is not a gradient of convex function.

A notion of quantile based on a partial order < on R% is proposed in [2].
For an index u € (0, 1), these authors define

PV = {ye R Pr(Y =y | CW) 21— wPr(Y 2y | C W) = u}

where C'(y) = {y/ € RY:y =y or ¢/ = y} is the set of elements that can
be ordered by > relative to the point y. Unlike our proposal, the index w is
scalar and the quantile is set-valued.

3. Vector Quantile Regression.
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3.1. Linear Formulation. Here we let X = f(Z) denote a vector of re-
gressors formed as transformations of Z, such that the first component of
X is 1 (intercept term in the model) and such that conditioning on X is
equivalent to conditioning on Z. The dimension of X is denoted by p and
we shall denote X = (1, X',)T with X_; € RP~1.

In practice, X would often consist of a constant and some polynomial or
spline transformations of Z as well as their interactions. Note that condi-
tioning on X is equivalent to conditioning on Z if, for example, a component
of X contains a one-to-one transform of Z.

Denote by Fx the distribution function of X and Fyx = FyFyx. Let X
denote the support of Fx and UX the support of Fyyx. We define linear
vector quantile regression model (VQRM) as the following linear model of
CVQF.

(L) The following linearity condition holds:
Y = Qyix(U,X) = Bo(U) X, U|X ~ Fy,

where u — fy(u) is a map from U to the set My, 4 of p X d matrices
such that v — By(u) "z is a monotone, smooth map, in the sense of
being a gradient of a convex function:

Bo(u) "z =V, @, (u), ®y(u):= Bo(u) z, for all (u,z) € UX,

where u +— By(u) is C! map from U to RY, and v — By(u) 'z is a
strictly convex map from U to R.

The parameter ((u) is indexed by the quantile index u € Y and isa d X p
matriz of quantile regression coefficients. Of course in the scalar case, when
d = 1, this matrix reduces to a vector of quantile regression coefficients. This
model is a natural analog of the classical QR for scalar Y where the similar
regression representation holds. One example where condition (L) holds is
Example 2.1, describing the conditional normal vector regression. It is of
interest to specify other examples where condition (L) holds or provides a
plausible approximation.

EXAMPLE 3.1 (Saturated Specification). The regressors X = f(Z) with
E|lf(2)||> < oo are saturated with respect to Z, if, for any g € L?(Fy) ,
we have g(Z) = X "ay. In this case the linear functional form (L) is not a
restriction. For p < oo this can occur if and only if Z takes on a finite set of
values Z = {z1,..., 2p}, in which case we can write:

Qyx(u, X) = ZQY|Z(U7 7)U(Z = zj) = Bo(u) ' X,
=1
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Qviz(u,z1)" UZ = =)
Bo(u) = ’ X =
Qviz(u, )" UZ = z)
Here the problem is equivalent to considering p unconditional vector quan-
tiles in populations corresponding to Z = z1,...,2Z = zp. 1

The rationale for using linear forms is two-fold — one is convenience of
estimation and representation of functions and another one is approximation
property. We can approximate a smooth convex potential by a smooth linear
potential, as the following example illustrates for a particular approximation
method.

EXAMPLE 3.2 (Linear Approximation). Let (u, z) — ¢(u, 2) be of class
C® with a > 1 on the support (u,z) € UZ = [0,1]4T*. Consider a trigono-
metric tensor product basis of functions {(u, z) — ¢;(u) fi(2),5 € N,l € N}
in L?[0,1]%**. Then there exists a JL vector (v; : j € {1,..,J},1 €
{1, ..., L}) such that the linear map:

L
(u, z) — ®7L(u, 2) := ZZ%Z% ) =: B(j;(u)TfL(z),

=1 I=1

where Bl (u) = (ijl vugi(w),l € {1,..,L}) and fE(z) = (fi(2),l €
{1, ..., L}), provides uniformly consistent approximation of the potential and
its derivative:

lim sup (Jip(u, 2) =075 (u, )| | Vup(e, )~ Vu® (0, 2)]]) =0. 1
JL—N)O(uz)GZ/{Z

The approximation property via the sieve-type approach provides a ra-
tionale for the linear (in parameters) specification (1.3). Another approach,
based on local polynomial approximations over a collection of (increasingly
smaller) neighborhoods, also provides a useful rationale for the linear (in
parameters) specification, e.g., similarly in spirit to [37]. If the linear spec-
ification does not hold ezactly we say that the model is misspecified. If the
model is flexible enough, by using a suitable basis or localization, then the
approximation error is small, and we effectively ignore the error when assum-
ing (1.3). However, when constructing a sensible estimator we must allow
the possibility that the model is misspecified, which means we can’t really
force (1.3) onto data. Our proposal for estimation presented next does not
force (1.3) onto data, but if (1.3) is true in population, then as a result,
the true conditional vector quantile function would be recovered perfectly
in population.
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3.2. Linear Program for VQR. Our approach to multivariate quantile
regression is based on the multivariate extension of the covariance maxi-
mization problem with a mean independence constraint:

(3.1) m§x{E(VTY) : Vo~ Fy, B(X |V)=E(X)}.

Note that the constraint condition is a relaxed form of the previous inde-
pendence condition.

REMARK 3.1. The new condition V' ~ Fyy, E(X | V) = E(X) is weaker
than V' | X ~ Fy, but the two conditions coincide if X is saturated rel-
ative to Z, as in Example 3.1, in which case E(g(Z)V) = EX Ta,V =
E(X Tay)E(V) = Eg(Z)EV for every g € L?(Fz). More generally, this ex-
ample suggests that the richer X is, the closer the mean independence con-
dition becomes to the conditional independence. I

The relaxed condition is sufficient to guarantee that the solution exists
not only when (L) holds, but more generally when the following quasi-linear
assumption holds.

(QL) We have a quasi-linear representation a.s.
Y =8(0)'X, U~ Fy, E(X|U)=EX),

where u — f(u) is a map from U to the set M, q of p X d matrices
such that u — B(u) "z is a gradient of convex function for each z € X
and a.e. u € U:

ﬁ(u)Ta: =VuP:(u), Pp(u):= B(U)TZL’,

where u +— B(u) is C! map from U to R% and u > B(u) 'z is a
strictly convex map from U to R.

This condition allows for a degree of misspecification, which allows for a
latent factor representation where the latent factor obeys the relaxed inde-
pendence constraints.

THEOREM 3.1.  Suppose conditions (M), (N) , (C), and (QL) hold.

(i) The random vector U entering the quasi-linear representation (QL)
solves (3.1).

(i) The quasi-linear representation is unique a.s. that is if we also have
Y = B(0)TX withU ~ Fy,E(X | U) = EX, u — X "B(u) is a gradient
of a strictly convex function in uw € U a.s., then U = U and XT,B(ﬁ) =
XTAU) a.s.

(iii) Under condition (L) and assuming that E(XX ) has full rank, U =
U a.s. and U solves (3.1). Moreover, 5,(U) = S(U) a.s.
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The last assertion is important — it says that if (L) holds, then the linear
program (3.1), where the independence constraint has been relaxed into
a mean independence constraint, will find the true linear vector quantile
regression in the population.

3.3. Dual Program for Linear VQR. As explained in details in the ap-
pendix, Program (3.1) is an infinite-dimensional linear programming prob-
lem whose dual program is:

infyp EY(X,Y)+Eb(V) E(X) : ¢(z,y) +b(u) z>u'y,
V (y,z,u) € VXU,

where V' ~ Fpy, where the infimum is taken over all continuous functions
(y,x) — ¥(y, z), mapping YX to R and u — b(u) mapping U to R, such
that E¢(X,Y) and Eb(V) are finite.

Since for fixed b, the smallest ¥ which satisfies the pointwise constraint
in (3.2) is given by

(3.2)

P(z,y) = sup{u'y — b(u) "z},
ueU

one may equivalently rewrite (3.2) as the minimization over continuous b of
/ sup{u'y — b(u) "z} Fy x (dz, dy) + / b(w) "E(X) Fyr(du).
ueU

By standard arguments ([34], section 1.1.7), the infimum over continuous
functions coincides with the one over smooth or simply integrable functions.

THEOREM 3.2.  Under (M) and (QL), we have that the optimal solution
to the dual is given by functions:

P(z,y) = igg{uTy — B(u)'z}, b(u) = B(u).

This result can be recognized as a consequence of strong duality of the
linear programming (e.g. [34]).

3.4. Connecting to Scalar Quantile Regression. We now consider the
connection to the canonical, scalar quantile regression primal problem, where
Y is scalar and for each probability index ¢ € (0,1), the linear functional
form x — x T B(t) is used. [20] define linear quantile regression as X ' 3(t)
with 3(t) solving the minimization problem

(3.3) B(t) € arg min Ep,(Y — X ' B),
BERP

where p,(z) := tz— + (1 — t)zy4, with z_ and z; denoting the negative and
positive parts of z. The above formulation makes sense and (3(t) is unique
under the following simplified conditions:
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(QR) E|Y| < oo and E[| X[ < oo, (y,2) > fy|x(y,2) is bounded and
uniformly continuous, and E(fy‘X(XTﬁ(t), X)X XT) is of full rank.

We note that (3.3) can be conveniently rewritten as

(3.4) érel%{E(Y - X8+ (1 -t)EXTH}.

[20] showed that this convex program admits as dual formulation:
(3.5) max{E(A4;Y) : A, €[0,1], E(AX)=(1—-¢t)EX}.

An optimal 5 = S(t) for (3.4) and an optimal rank-score variable A; in (3.5)
may be taken to be

(3.6) A =1(Y > XTB(1)),
and thus the constraint E(A4;X) = (1 — t)EX reads:
(3.7) E(1(Y > X"8(t))X) = (1 — t)EX,

which simply is the first-order optimality condition for (3.4).
We say that the specification of quantile regression is quasi-linear if

(3.8) t — x ! B(t) is increasing on (0,1).
Define the rank variable U = fol Aydt, then under (3.8) we have that
A =1(U > t),
and the first-order condition (3.7) implies that for each ¢ € (0, 1)
E1(U>1t)=(1-1t), EI(U>t)X = (1—t)EX.

The first property implies that U ~ U (0,1) and the second property can be
easily shown to imply the mean-independence condition:

E(X |U) = EX.

Thus quantile regression naturally leads to the mean-independence condition
and the quasi-linear latent factor model. This is the reason we used mean-
independence condition as a starting point in formulating the vector quantile
regression. Moreover, in both vector and scalar cases, we have that, when
the conditional quantile function is linear (not just quasi-linear), the quasi-
linear representation coincides with the linear representation and U becomes
fully independent of X.
The following result summarizes the connection more formally.
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THEOREM 3.3 (Connection to Scalar QR). Suppose that (QR) holds.
(i) If (3.8) holds, then for U = fol Adt we have the quasi-linear model
holding

Y =X"8(U) as., U~U(0,1) and E(X | U) = B(X).

Moreover, U solves the problem of correlation mazimization problem with a
mean independence constraint:

(3.9) max{E(VY): V ~U(0,1), E(X | V) = E(X)}.

(ii) The quasi-linear representation above is unique almost surely. That
is, if we also have Y = B(U)" X with U ~ U(0,1),E(X |U) = EX, u+—
X TB(u) is increasing inu € (0,1) a.s., thenU = U and X ' 3(U) = X "B(U)
a.s.

(iii) Consequently, if the conditional quantile function is linear, namely
Qyx(u) = X TBy(u), so that Y = X TBy(U), then the latent factors in the

quasi-linear and linear specifications coincide, namely U = ff, and so do the
model coefficients, namely Bo(U) = B(U).

4. Implementation of Vector Quantile Regression. In order to
implement VQR in practice, we employ discretization of the problem, namely
we approximate the distribution Fy x of the outcome-regressor vector (Y, X)
and Fy of the vector rank U by discrete distributions v and u, respectively.
For example, for estimation purposes we can approximate Fy x by an em-
pirical distribution of the sample, and the distribution Fy of U by a finite
grid.

Let y; € R? denote values of outcomes and z; € RP of regressors for
1 <i < n; we assume the first component of z; is 1. For estimation purposes,
we assume these values are obtained as a random sample from distribution
Fyx, and so each observation receives a point mass v; = 1/n. When we
perform computation for theoretical purposes, we can think of these values
as grid points, which are not necessarily obtained as a random sample, and
so each observation receives a point mass v; which does not have to be 1/n.
We also set up a collection of grid points ug, for k = 1,...,m, for values of
the vector rank U, and assign the probability mass pu; to each of the point.
For example, if U ~ U(0,1)? and we generate values uy, as a random sample
or via a uniformly spaced grid of points, then p;, = 1/m.

Thus, let Y be the n x d matrix with row vectors ij and X the n x r
matrix of row vectors :E]-T; the first column of this matrix is a vector of ones.
Let v be a n x 1 matrix such that v; is the probability attached to a value
(4, v:), so that v; > 0 and ) ;" ; v; = 1. Let m be the number of points in
the support of u. Let U be a m x d matrix, where the ith row denoted by
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ulT Let u be a m x 1 matrix such that u,; is the probability weight of uy
(hence p; > 0 and >, py, = 1).

We are looking to find an m x n matrix 7 such that m;; is the probability
mass attached to (u;,xj,y;) which maximizes

Z mjy;rui = TI'(UT’ZTY)
ij

subject to constraint 7l, = v, where 1,, is a m x 1 vector of ones, and
subject to constraints 71, = u and 7X = ur ' X.

Hence, the discretized VQR program is given in its primal form by

(4.1) max Tr (UTT('Y) ol =v ] aX =X [b],
=

where the square brackets show the associated Lagrange multipliers, and in

its dual form by

(4.2) mint Ty 0T s w1+ XBT > YUT 7]
where 9 is a n X 1 vector, and b is a m X r matrix.

Problems (4.1) and (4.2) are two linear programming problems dual to
each other. However, in order to implement them on standard numerical
analysis software such as R or Matlab coupled with a linear programming
software such as Gurobi, we need to convert matrices into vectors. This is
done using the vec operation, which is such that if A is a p x ¢ matrix, vec(A)
is a column vector of size pq such that vec (A)Hp(jfl) = A;j. The use of the
Kronecker product is also helpful. Recall that if A is a px ¢ matrix and B is a
p’ X ¢’ matrix, then the Kronecker product A® B is the pp’ X q¢’ matrix such
that for all relevant choices of indices 1, j, k, 1, (A®B)i+p(k_1)’j+q(l_1) =
A;i;By;. The fundamental property linking Kronecker products and the vec
operator is vec (BXAT) = (A® B) vec (X).

Introduce vecr = vec (7), the optimization variable of the “vectorized
problem”. Note that the variable vecr is a mn-vector. Then we rewrite the
objective function, Tr (UTT('Y) = veen vec (UYT); as for the constraints,
vec (1),7) = (I, ® 1,},) vecr is a nx 1 vector; and vec (mX) = (XT ® I,,,) vecr
is a mr-vector. Thus we can rewrite the program (4.1) as:

T
max vec (UY ) VeCT :
vec>0

(4.3) (In ® 1;) vecr = vec (V)

(XT ® Im> vecm = vec (/UJTX>
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which is a LP problem with mn variables and mr 4+ n constraints. The
constraints (In ® 1;) and (XT ® Im) are very sparse, which can be taken
advantage of from a computational point of view.

5. Empirical Illustration. We demonstrate the use of the approach
on a classical application of Quantile Regression since [21]: Engel’s ([15])
data on household expenditures, including 199 Belgian working-class house-
holds surveyed by Ducpetiaux ([11]), and 36 observations from all over Eu-
rope surveyed by Le Play ([28]). Due to the univariate nature of classical QR,
[21] limited their focus on the regression of food expenditure over total in-
come. But in fact, Engel’s dataset is richer and classifies household expenses
in nine broad categories: 1. Food; 2. Clothing; 3. Housing; 4. Heating and
lighting; 5. Tools; 6. Education; 7. Safety; 8. Medical care; and 9. Services.
This allows us to have a multivariate dependent variable. While we could in
principle have d = 9, we focus for illustrative purposes on a two-dimensional
dependent variable (d = 2), and we choose to take Y] as food expenditure
( category #1) and Y, as housing and domestic fuel expenditure (category
#2 plus category #4). We take X = (X3, X2) with X7 = 1 and Xo= the
total expenditure (income) as an explanatory variable.

5.1. One-dimensional VQR. To begin with, we run a pair of one dimen-
sional VQRs, where we regress Y7 on X, and Y5 on X. We plot the results in
Figure 1; the curves drawn here are u — B(u) "z for five percentiles of the in-
come x_1 (0%, 25%, 50%, 75%, 100%), and the corresponding probabilistic
representations are

(5.1) Vi =8, (U1)" X and Yo = 8, (Uz)" X

with Uy | X ~ U ([0,1]) and Uy | X ~ U (]0,1]). Here, U; is interpreted
as a propensity to consume food, while Us is interpreted as a propensity to
consume the housing good. Note that in general, U; and U, are not inde-
pendent; in other words, the distribution of (U, Us) differs from ([0, 1]%).
In fact, the distribution of (Up,Us) is called the copula associated to the
conditional distribution of (Y1, Y2) conditional on X.

As explained above, when d = 1, VQR is very closely connected to classi-
cal quantile regression. Hence, in Figure 1, we also draw the classical quan-
tile regression (in red). In each case, the curves exhibit very little difference
between classical quantile regression and vector quantile regression. Small
differences occur, since vector quantile regression in the scalar case can be
shown to impose the fact that map ¢ — A; in (3.5) is nonincreasing, which
is not necessarily the case with classical quantile regression under misspeci-
fication in population, or even under specification in sample. As can be seen
in Figure 1, the difference, however, is minimal.
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From the plots in Figure 1, it is also apparent that one-dimensional VQR
can also suffer from the “crossing problem,” namely the fact that B(t) z
may not be monotone with respect to t. Indeed, the fact that ¢t — A is
nonincreasing fails to imply the fact that ¢ — B(t)"x is nondecreasing.
There exist procedures to repair the crossing problem, see [7]. However, we
see that the crossing problem is modest in the current example.

Running a pair of one-dimensional Quantile Regressions is interesting, but
it does not immediately convey the information about the joint conditional
dependence in Y7 and Y3 (given X). In other words, representations (5.1)
are not informative about the joint propensity to consume food and income.
One could also wonder whether food and housing are locally complements
(respectively locally substitute), in the sense that, conditional on income, an
increase in the food consumption is likely to be associated with an increase
(respectively a decrease) in the consumption of the housing good. All these
questions can be immediately answered with higher-dimensional VQR.
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Fig 1: Classical quantile regression (red) and one-dimensional vector quantile
regression (green) with income as explanatory variable and with: (i) Food
expenditure as dependent variable (Left) and (ii) Housing expenditure as
dependent variable (Right). The maps t — 3(t) "z are plotted for five values
of income z_; (quartiles).

5.2. Two dimensional VQR. In contrast, the two-dimensional vector quan-
tile regression with Y = (Y7,Y3) as a dependent variable yields a represen-
tation

0B

Vi =6,(U1, U)X = 5 (01, )" X,
U1
0B

YQ - ﬁQ(Ul) UQ)TX = 87’&2 (U17 U2)T X7

where (U1, Us) | X ~ U([0,1]?). Let us make a series of remarks.
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First, U; and Uy have an interesting interpretation: Uy is a propensity for
food expenditure, while Us is a propensity for domestic (housing and heating)
expenditure. Let us explain this denomination. If VQR is correctly specified,
then ®, (u) = B(u)' z is convex with respect to u, and Y = V,®x (U),
which implies in particular that

6/8u1 (aq)l“ (ulv UQ) /6'“1) = 82(1)96 (Uh UQ) /aU% > 0.

Hence an increase in u; keeping us constant leads to an increase in ;.
Similarly, an increase in ug keeping u; constant leads to an increase in ys.

Second, the quantity U(z,y) = Q;,lx (y,x) is a measure of joint propen-
sity of expenditure Y = y conditionaH on X = x. This is a way of rescal-
ing the conditional distribution of Y conditional on X = x into the uni-
form distribution on [0, 1]2. If VQR is correctly specified, then (Uy,Us) is
independent from X, so that U (X,Y) ~ Fy = U([0,1]*). In this case,
Pr(U(X,Y)>u,U(X,Y) >uz) = (1 —wup)(1—uz) can be used to detect
“nontypical” values of (y1,y2).

Third, representation (5.2) may also be used to determine if Y7 and Y5
are local complements or substitutes. Indeed, if VQR is correctly specified
and (Y7, Y2) are independent conditional on X, then B (u,u2) = By (u1) +
Bs (us2), so that the cross derivative 0%2B (u1, uz) /Ou10us = 0. In this case,
(5.2) becomes Y] = ‘g—fll (U1)" X and Yy = ‘3522 (U) " X, which is equivalent
to two single-dimensional quantile regressions. In this case, conditional on
X, an increase in Y7 is not associated to an increase or a decrease in Yo.
On the contrary, when (Y7,Y3) are no longer independent conditional on X,
then the term 0?B (uy, us) /Ou1dus is no longer zero. Assume it is positive.
In this case, an increase in the propensity to consume food w; not only
increases the food consumption y;, but also the housing consumption yo,
which we interpret by saying that food and housing are local complements.

Going back to Engel’s data, in Figure 2, we set = (1, 883.99), where
r9 = 883.99 is the median value of the total expenditure X2, and we are
able to draw the two-dimensional representations.

The top pane expresses Y7 as a function of U; and Us, while the bottom
pane expresses Yo as a function of U; and Us. The insights of the two-
dimensional representation become apparent. One sees that while Y7 covaries
strongly with U; and Y5 covaries strongly with Us, there is a significant and
negative cross-covariation: Y7 covaries negatively with respect to Us, while
Y5 covaries negatively with Uy. The interpretation is that, for a median level
of income, the food and housing goods are local substitutes. This makes
intuitive sense, given that food and housing goods account for a large share
of the surveyed households’ expenditures.
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APPENDIX A: PROOFS FOR SECTION 2

A.1. Proof of Theorem 2.1. The first assertion of the theorem is a
consequence of the refined version of Brenier’s theorem given by [25] (as,
e.g, stated in [34], Theorem 2.32), which we apply for each z € Z. In par-
ticular, this implies that for each z € Z, the map u +—— Qy|Z(u, z) is Borel-
measurable. The Borel measurability of (u,z) —— (Qyz(u,2),2) follows
from the measurability of conditional probabilities and standard measur-
able selection arguments [14]; for details, we refer to the supplement to this
paper [4].

Next we are going to show that the probability law of (Qy 2 (V, 2), Z) is
the same as that of (Y, Z). Indeed, for any rectangle A x B C R4¥,

P((Y,Z) € A x B) = /B [/A Fyz(dy, z)] Fy(dz)

_ /B { / 1{(Qyz(u ) GA}FU(du)} dFy(dz)
= P((QY\Z(V¢ Z),Z) € AX B)>

where the first equality relies on the regularity of the conditional distribution
function, and the penultimate equality follows from the previous paragraph.
Since probability measure defined over rectangles uniquely pins down the
probability measure on all Borel sets via Caratheodory’s extension theorem,
the claim follows.

To show the second assertion we invoke Dudley-Phillip’s ([12]) coupling
result given in their Lemma 2.11.

LEMMA A.1 (Dudley-Phillip’s coupling). Let S and T be Polish spaces
and Q a law on SXT, with marginal law n on S. Let (2, A, P) be a probability
space and J a random variable on  with values in S and J ~ p. Assume
there is a random wvariable W on €, independent of J, with values in a
Polish space R and law v on R having no atoms. Then there exists a random

variable I on Q with values in T such that (J,I) ~ Q.

First we recall that our probability space has the form:
(Q7 A7 P) = (Qo, -’407 PO) X (Qh A17 Pl) X ((07 1)7 B<07 1)7 Leb)a

where (0,1), B(0,1),Leb) is the canonical probability space, consisting of
the unit segment of the real line equipped with Borel sets and the Lebesgue
measure. We use this canonical space to carry W, which is independent
of any other random variables appearing below, and which has the uniform
distribution on R = [0, 1]. The space R = [0, 1] is Polish and the distribution
of W has no atoms.
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Next we apply the lemma to J = (Y, Z) to show existence of I = U,
where both J and I live on the probability space (£2,.4,P) and that obeys
the second assertion of the theorem. The variable J takes values in the
Polish space S = R? x R*, and the variable I takes values in the Polish
space T = R,

Next we describe a law @ on S x T' by defining a triple (Y*, Z*,U*) that
lives on a suitable probability space. We consider a random vector Z* with
distribution Fz, a random vector U* ~ Fy;, independently distributed of Z*,
and Y* = Qyz(U*, Z*) uniquely determined by the pair (U*,Z*), which
completely characterizes the law @ of (Y*, Z* U*). In particular, the triple
obeys Z* ~ Fyz, U*|Z* ~ Fy and Y™ | Z* = 2z ~ Fy|z(+, 2). Moreover, the
set {(y*, 2%, u") : [|ly* — Qyz(u,2%)|| = 0} C S x T is assigned probability
mass 1 under Q.

By the lemma quoted above, given J, there exists an I = U, such that
(J, 1) ~ Q, but this implies that U|Z ~ Fy and that [|[Y — Qyz(U, Z)| =0
with probability 1 under P. 1

A.2. Proof of Theorem 2.2. We condition on Z = z. By reversing
the roles of V' and Y, we can apply Theorem 2.1 to claim that there exists
amap y — Qﬁlz(y, z) with the properties stated in the theorem such that

Q;llz(Y, z) has distribution function Fp, conditional on Z = z. Hence for
any test function ¢ : R? — R such that ¢ € Cy(R%) we have

[ €@t AQizu2). ) Futaw) = [ €w)Fu(au)

This implies that for Fy-almost every u, we have Q;qu(QY\Z(% 2),2) = u.
Hence P-almost surely, Q;‘IZ(Y, Z) = Q;?Z(Q”Z(U, Z),7Z) = U. Thus we
can set U = Q;llz(Y, Z) P-almost surely in Theorem 2.1. §

A.3. Proof of Theorem 2.3. The result follows from [34], Theorem
2.12. 1

APPENDIX B: PROOFS FOR SECTION 3
B.1. Proof of Theorem 3.1. We first establish part(i). We have a.s.

Y = Vox(U), with ®x(u) = B(u)' X.

For any V ~ Fy such that E(X|V) = E(X), and ®%(y) = sup,ey{v'y —
®,(v)}, we have by the mean independence

E[®x (V) + &% (V)] = EB(V)TE(X) + E®%(Y) := M,
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where M depends only on Fy. We have by Young’s inequality
VY <@x(V)+ % (Y),
but Y = V®x (U) a.s. implies that a.s.
UTY = ®x(U) + ®5(Y),
so taking expectations gives
EV'Y <M=EU'Y, VV ~ Fy:EX|V)=EX),

which yields the desired conclusion.

We next establish part(ii). We can argue similarly as above to show
that Y = B(U)"X = V®x(U), for some convex potential u — &, (u) =
B(u) ", and that for @, (y) := sup,cy{v 'y — ®»(v)} we have a.s.

T'Y =3x(T) + By (Y).
Using the fact that U ~ U and the fact that mean-independence gives
E(B(U)'X)=EB(U)"E(X) =EB(U)"E(X) = E(B(U)" X), we have
E{UTY) = E@%(Y) + B(0)TX) = E(@%(Y) + BU) X)>ET'Y),

where we used Young’s inequality again. Reversing the role of U and U and
using the same reasoning, we also conclude that E(UTY) < E(UTY), and
hence then - B

E{U Y)=E(@%(Y)+B0)"X)
so that, thanks to the Young’s inequality again,

Oy (y) + Bw) 'z > uly, V(u,z,y) € UXY,

we have B -

YY)+ BU)'X=UY, as.,
which means that U = arg max,cy{u'Y — B(u)T X} as., which by strict
concavity admits U as the unique solution a.s. This proves that U = U a.s.

and thus we have (B(U) — B(U))TX =0 a.s.

The part (iii) is a consequence of part (i). Note that by part (ii) we
have that U = U a.s. and (8(U) — B,(U))TX = 0 a.s. Since U and X are
independent, we have that, for e, ...,e, denoting vectors of the canonical
basis in RP, and each j € {1,...,p}:

0=E (e] (BU) = Ao(U) XX T(BW) - Bol1))e; )
= (] (B(U) = Bo(U)) TEXX T (BU) = By(U))e;
> mineg(EX X NE ([[(B(U) — Bo(U))e;I) -

Since EXX " has full rank this implies that E||(3(U) — B¢(U))e;||*> = 0 for
each j € {1,...,p}, which implies the rest of the claim. &

N—
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B.2. Proof of Theorem 3.2. We have that any feasible pair (v,0)
obeys the constraint

Y(z,y) +bw) z>uly, Yy, zu) € YXU.

Let U ~ Fy : E(X | U) = E(X) be the solution to the primal program.
Then for any feasible pair (¢,b) we have:

E(X,Y) +Eb(U) EX = E¢(X,Y)+Eb(U)"X >EY'U.
The last inequality holds as equality if
(Bl) 1/’(% y) = SUB{uTy - b(u)T:c}, b(u) = B(’LL),
ue

since this is a feasible pair by (QL) and since
WX, Y)+BU)'X=Y"U,

as shown the proof of the previous theorem. It follows that EY U is the
optimal value and it is attained by the pair (B.1). &

B.3. Proof of Theorem 3.3. Obviously 4; =1 = U > t, and U >
t = Ay = 1. Hence P(U > t) > P(4; = 1) = P(Y > B(t)" X) = (1 — t) and
P(U > t) < P(A; = 1) = (1—t) which proves that U is uniformly distributed
and 1{U > t} coincides with 1{U, = 1} a.s. We thus have E(X1{U > t}) =

E(XA4;) = EX(1 —t) = EXEA;, with standard approximation argument
we deduce that E(X f(U 7)) = EXEf(U) for every f € Cy([0,1],R), which
means that E(X | U) = E(X).

As already observed U>t implies that Y > B(t)" X in particular Y >
B(U—-6)TX for 6 > 0, letting § — 0T and using the a.e. continuity of u —
B(u) we get Y > (U )TX The converse 1nequahty is obtained similarly by
remaking that U < ¢ implies that Y < 8(¢)T X

Let us now prove that U solves (3.9). Take V uniformly distributed and
mean-independent from X and set V; := 1{V > t}, we then have E(XV;) =
0, E(V;) = (1 —t) but since A; solves (3.5) we have E(V}Y) < E(A4;Y).
Observing that V = fol Vidt aild integratin~g the previous inequality with
respect to t gives E(VY) < E(UY) so that U solves (3. 9)

Next we show part(ii). Let us define for every t € [0, 1] fo
Let us also define for (z,y) in RV*1:

Vlz,y) = max{ty - B(t )z}
thanks to monotonicity condition, the maximization program in the display
above is strictly concave in ¢ for every y and each z € X. We then note that

Y =8U)"X =VBU)"X as.
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exactly is the first-order condition for the above maximization problem when
(z,y) = (X,Y). In other words, we have

(B.2) U(x,y) + B(t) 'z > ty, Y(t,z,y) € [0,1] x X x R
with an equality holding a.s. for (z,y,t) = (X,Y, (7), ie.
(B.3) Y(X,Y)+B(U)"X =UY, as.

Using the fact that U ~ U and the fact that the mean independence gives
E(B(U)"X) =E®b{U)"X) = E(X), we have

E(UY) =EW(X,Y)+ BU) X)) =EW(X,Y)+ BU)"X) > E{UY)
but reversing the role of U and U, we also have E(UY) < E(UY) and then
E[UY)=E@(X,Y)+ BU)"X)

so that, thanks to inequality (B.2)
Y(X,Y)+BU)"X =TY, as.

which means that U solves maxe(o1]{tY — ¢(t) — B(t)T X} which, by strict
concavity admits U as unique solution.

Part (iii) is a consequence of Part (i) and independence of U and X. Note
that by part (i) we have that U = U a.s. and that (8(U) — 8,(U))TX =0
a.s. Since U and X are independent, we have that

0=E ((8(0) = Bo(0)) XX (B(U) = 5o(U))

=E ((B(U) — Bo(U)) 'EXXT(B(U) — ﬂo(U)))
> mineg(EX X ")E (||(B(U) — Bo(U))|I?) .

Since EX X T has full rank this implies that E||(3(U) — B,(U))||?> = 0, which
implies the rest of the claim. §
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SUPPLEMENTARY MATERIAL

Supplement to “Vector Quantile Regression”
(doi: XXX). In the online supplement [4], we provide additional results for
Sections 2 and 3, including a proof of duality for CVQF and Linear VQR,
and the measurability claims for Theorem 2.1.
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(Uh UQ) = /31(u1', uz)TDC

Fig 2: Predicted outcome conditional on total expenditure equal to median
value, that is Xo = 883.99. Top: food expenditure, Bottom: housing expen-
diture.
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