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DUALITY IN DYNAMIC DISCRETE CHOICE MODELS

KHAI X. CHIONG§, ALFRED GALICHON†, AND MATT SHUM♣

Abstract. Using results from convex analysis, we investigate a novel approach to iden-

tification and estimation of discrete choice models which we call the “Mass Transport

Approach” (MTA). We show that the conditional choice probabilities and the choice-

specific payoffs in these models are related in the sense of conjugate duality, and that the

identification problem is a mass transport problem. Based on this, we propose a new

two-step estimator for these models; interestingly, the first step of our estimator involves

solving a linear program which is identical to the classic assignment (two-sided matching)

game of Shapley and Shubik (1971). The application of convex-analytic tools to dynamic

discrete choice models, and the connection with two-sided matching models, is new in the

literature.
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1. Introduction

Empirical research utilizing dynamic discrete choice models of economic decision-making

has flourished in recent decades, with applications in all areas of applied microeconomics

including labor economics, industrial organization, public finance, and health economics.

The existing literature on the identification and estimation of these models has recognized

a close link between the conditional choice probabilities (hereafter, CCP, which can be

observed and estimated from the data) and the payoffs (or choice-specific value functions,

which are unobservable to the researcher); indeed, most estimation procedures contain

an “inversion” step in which the choice-specific value functions are recovered given the

estimated choice probabilities.

This paper has two contributions. First, we explicitly characterize this duality relation-

ship between the choice probabilities and choice-specific payoffs. Specifically, in discrete

choice models, the social surplus function (McFadden (1978)) provides us with the mapping

from payoffs to the probabilities with which a choice is chosen at each state (conditional

choice probabilities). Recognizing that the social surplus function is convex, we develop

the idea that the convex conjugate of the social surplus function gives us the inverse map-

ping - from choice probabilities to utility indices. More precisely, the subdifferential of the

convex conjugate is a correspondence that maps from the observed choice probabilities to

an identified set of payoffs. In short, the choice probabilities and utility indices are related

in the sense of conjugate duality. The discovery of this relationship allows us to succinctly

characterize the empirical content of discrete choice models, both static and dynamic.

Not only is the convex conjugate of the social surplus function a useful theoretical object;

it also provides a new and practical way to “invert” from a given vector of choice probabilities

back to the underlying utility indices which generated these probabilities. This is the second

contribution of this paper. We show how the conjugate along with its set of subgradients

can be efficiently computed by means of linear programming. This linear programming

formulation has the structure of an optimal assignment problem (as in Shapley-Shubik’s

(1971) classic work). This surprising connection enables us to apply insights developed in

the optimal transport literature, e.g. Villani (2003, 2009), to discrete choice models. We

call this new methodology the “Mass Transport Approach” to CCP inversion.
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This paper focuses on the estimation of dynamic discrete-choice models via two-step

estimation procedures in which conditional choice probabilities are estimated in the initial

stage; this estimation approach was pioneered in Hotz and Miller (HM, 1993) and Hotz,

Miller, Sanders, Smith (1994).1 Our use of tools and concepts from convex analysis to

study identification and estimation in this dynamic discrete choice setting is novel in the

literature. Based on our findings, we propose a new two-step estimator for DDC models.

A nice feature of our estimator is that it works for practically any assumed distribution

of the utility shocks.2 Thus, our estimator would make possible the task of evaluating the

robustness of estimation to different distributional assumptions.3

Section 2 contains our main results regarding duality between choice probabilities and

payoffs in discrete choice models. Based on these results, we propose, in Section 3, a

two-step estimation approach for these models. We also emphasize here the surprising

connection between dynamic discrete-choice and optimal matching models. In Section 4 we

discuss computational details for our estimator, focusing on the use of linear programming

to compute (approximately) the convex conjugate function from the dynamic discrete-choice

model. Monte Carlo experiments (in Section 5) show that our estimator performs well in

practice, and we apply the estimator to Rust’s (1987) bus engine replacement data (Section

6). Section 7 concludes. The Appendix contains proofs and also a brief primer on relevant

results from convex analysis. Sections 2.2 and 2.3, as well as Section 4, are not specific to

dynamic discrete choice problems but are also true for any (static) discrete choice model.

1 Subsequent contributions include Aguirregabiria and Mira (2002, 2007), Magnac and Thesmar (2002),

Pesendorfer and Schmidt-Dengler (2008), Bajari, et. al. (2009), Arcidiacono and Miller (2011), and Norets

and Tang (2013).
2 While existing identification results for dynamic discrete choice models allow for quite general specifica-

tions of the additive choice-specific utility shocks, many applications of these two-step estimators maintain

the restrictive assumption that the utility shocks are distributed i.i.d. type I extreme value, independently

of the state variables, leading to choice probabilities which take the multinomial logit form.
3 While they are not the focus in this paper, many applications of dynamic choice models do not uti-

lize HM-type two step estimation procedures, and they allow for quite flexible distributions of the utility

shocks, and also for serial correlation in these shocks (examples include Pakes (1986) and Keane and Wolpin

(1997)). This literature typically employs simulated method of moments, or simulated maximum likelihood

for estimation (see Rust (1994, section 3.3)).
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2. Basic Model

2.1. The framework. In this section we review the basic dynamic discrete-choice setup, as

encapsulated in Rust’s (1987) seminal paper. The state variable is x ∈ X which we assume

to take only a finite number of values. Agents choose actions y ∈ Y from a finite space

Y = {0, 1, . . . , D}. The single-period utility flow which an agent derives from choosing y in

a given period is

ūy (x) + εy

where εy denotes the utility shock pertaining to action y, which differs across agents. Across

agents and time periods, the set of utility shocks ε ≡ (εy)y∈Y is distributed according to a

joint distribution function Q(· · · ;x) which can depend on the current values of the state

variable x. We assume that this distribution Q is known to the researcher.

Throughout, we consider a stationary setting in which the agent’s decision environment

remains unchanged across time periods; thus, for any given period, we use primes (′) to

denote next-period values. Following Rust (1987), and most of the subsequent papers in

this literature, we maintain the following conditional independence assumption (which rules

out serially persistent forms of unobserved heterogeneity4):

Assumption 1 (Conditional Independence). (x, ε) evolves across time periods as a con-

trolled first-order Markov process, with transition

Pr(x′, ε′|y, x, ε) =Pr(ε′|x′, y, x, ε) · Pr(x′|y, x, ε)
=Pr(ε′|x′) · Pr(x′|y, x).

The discount rate is β. Agents are dynamic optimizers whose choices each period satisfy5

y ∈ arg max
ỹ∈Y

{
ūỹ (x) + εỹ + βE

[
V̄
(
x′, ε′

)
|x, ỹ

]}
, (1)

where the value function V̄ is recursively defined via Bellman’s equation as6

V̄ (x, ε) = max
ỹ∈Y

{
ūỹ (x) + εỹ + βE

[
V̄
(
x′, ε′

)
|x, ỹ

]}
.

4 See Norets (2009), Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011), and Hu and Shum

(2012).
5 We have used Assumption 1 to eliminate ε as a conditioning variable in the expectation in Eq. (1).
6 See, eg., Bertsekas (1987, chap. 5) for an introduction and derivation of this equation.
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V (x), the ex-ante value function, is defined as:7

V (x) = E
[
V̄ (x, ε) |x

]
.

The expectation above is conditional on the current state x. In the literature, V (x) is

called the ex-ante (or integrated) value function, because it measures the continuation value

of the dynamic optimization problem before the agent observes his shocks ε, so that the

optimal action is still stochastic from the agent’s point of view.

Next we define the choice-specific value functions as consisting of two terms: the per-

period utility flow and the discounted continuation payoff:

wy(x) ≡ ūy(x) + βE
[
V (x′)|x, y)

]
.

In this paper, the utility flows {uy(x);∀y ∈ Y,∀x ∈ X}, and subsequently also the choice-

specific value functions {wy(x), ∀y, x}, will be treated as unknown parameters; and we will

study the identification and estimation of these parameters. For this reason, in the initial

part of the paper, we will suppress the explicit dependence of wy on x for convenience.

Given these preliminaries, we derive the duality which is central to this paper.

2.2. The social surplus function and its convex conjugate. We start by introducing

the expected indirect utility of a decision maker facing the |Y|-dimensional vector of choice-

specific values w ≡ {wy, y ∈ Y}′:

G (w;x) = E
[
max
y∈Y

(wy + εy) |x
]

(2)

where the expectation is assumed to be finite and is taken over the distribution of the utility

shocks, Q(·;x). This function G(·;x) : R|Y| → R, is called the “social surplus function”

in McFadden’s (1978) random utility framework, and can be interpreted as the expected

welfare of a representative agent in the dynamic discrete-choice problem.

7 There is a difference between the definition of V (x) and the last terms in Equation (1) above. Here, we

are considering the expectation of the value function V̄ (x, ε) taken over the distribution of ε|x (ie. holding

the first argument fixed). In the last term of Eq. (1), however, we are considering the expectation over the

joint distribution of (x′, ε′)|x (ie. holding neither argument fixed).
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For convenience in what follows, we introduce the notation Y (w, ε) to denote an agent’s

optimal choice given the vector of choice-specific value functions w and the vector of util-

ity shocks ε; that is, Y (w, ε) = argmaxy∈Y(wy + εy).
8 This notation makes explicit the

randomness in the optimal alternative (arising from the utility shocks ε). We get

G (w;x) = E
[
wY (w,ε) + εY (w,ε)|x

]
=
∑

y∈Y
Pr(Y (w, ε) = y|x)︸ ︷︷ ︸

≡py(x)

(wy + E[εy|Y (w, ε) = y, x]) (3)

which shows an alternative expression for the social surplus function as a weighted average,

where the weights are the components of the vector of conditional choice probabilities p(x).

For the remainder of this section, we suppress the dependence of all quantities on x for

convenience. In later sections, we will reintroduce this dependence when it is necessary.

In the case when the social surplus function G(w) is differentiable (which holds for most

discrete-choice model specifications considered in the literature9), we obtain a well-known

fact that the vector of choice probabilities p compatible with rational choice coincides with

the gradient of G at w:

Proposition 1 (The Williams-Daly-Zachary (WDZ) Theorem).

p = ∇G(w).

This result, which is analogous to Roy’s Identity in discrete choice models, is expounded

in McFadden (1978) and Rust (1994; Thm. 3.1)). It characterizes the vector of choice

probabilities corresponding to optimal behavior in a discrete choice model as the gradient

of the social surplus function. For completeness, we include a proof in the Appendix.

The WDZ theorem provides a mapping from the choice-specific value functions (which are

unobserved by researchers) to the observed choice probabilities p.

However, the identification problem is the reverse problem, namely to determine the set

of w which would lead to a given vector of choice probabilities. This problem is exactly

solved by convex duality and the introduction of the convex conjugate of G, which we denote

as G∗:10

8 We use w and ε (and also p below) to denote vectors, while wy and εy (and py) denote the y-th

component of these vectors.
9 This includes logit, nested logit, multinomial probit, etc. in which the distribution of the utility shocks

is absolutely continuous and w is bounded, cf. Lemma 1 in Shi, Shum and Wong (2014).
10 Details of convex conjugates are expounded in the Appendix. Convex conjugates are also encountered

in classic producer and consumer theory. For instance, when f is the convex cost function of the firm
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Definition 1 (Convex Conjugate). We define G∗, the Legendre-Fenchel conjugate function

of G (a convex function), by

G∗ (p) = sup
w∈RY




∑

y∈Y
pywy − G (w)



 . (4)

Equation (4) above has the property that if p is not a probability, that is if either

conditions py ≥ 0 or
∑

y∈Y py = 1 do not hold, then G∗ (p) = +∞. Because the choice-

specific value functions w and the choice probabilities p are, respectively, the arguments

of the functions G and its convex conjugate function G∗, we say that w and p are related

in the sense of conjugate duality. The theorem below states an implication of this duality,

and provides an “inverse” correspondence from the observed choice probabilities back to

the unobserved w, which is a necessary step for identification and estimation.

Theorem 1. The following pair of equivalent statements capture the empirical content of

the DDC model:

(i) p is in the subdifferential of G at w

p ∈ ∂G (w) , (5)

(ii) w is in the subdifferential of G∗ at p

w ∈ ∂G∗ (p) . (6)

The definition and properties of the subdifferential of a convex function are provided in

Appendix A.11 Part (i) is, of course, connected to the WDZ theorem above; indeed, it is

the WDZ theorem when G(w) is differentiable at w. Hence, it encapsulates an optimal-

ity requirement that the vector of observed choice probabilities p be derived from optimal

discrete-choice decision making for some unknown vector w of choice-specific value func-

tions.

(decreasing returns to scale in production), then the convex conjugate of the cost function, f∗, is in fact the

firm’s optimal profit function.
11 G is differentiable at w if and only if ∂G(w) is single-valued. In that case, part (i) of Th. 1 reduces

to p = ∇G(w), which is the WDZ theorem. If, in addition, ∇G is one-to-one, then we immediately get

w = (∇G)−1 (p), or ∇G∗(p) = (∇G)−1 (p), which is the case of the classical Legendre transform. However,

as we show below, ∇G(w) is not typically one-to-one in discrete choice models, so that the statement in part

(ii) of Th. 1 is more suitable.
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Part (ii) of this proposition, which describes the “inverse” mapping from conditional

choice probabilities to choice-specific value functions, does not appear to have been ex-

ploited in the literature on dynamic discrete choice. It relates to Galichon and Salanié

(2012) who use convex analysis to estimate matching games with transferable utilities. It

specifically states that the vector of choice-specific value functions can be identified from

the corresponding vector of observed choice probabilities p as the subgradient of the convex

conjugate function G∗(p). Eq. (6) is also constructive, and suggests a procedure for com-

puting the choice-specific value functions corresponding to observed choice probabilities.

We will fully elaborate this procedure in subsequent sections12.

Appendix A contains additional derivations related to the subgradient of a convex func-

tion. Specifically, it is known (Eq. (25)) that G(w) + G∗(p) =
∑

y∈Y pywy if and only if

p ∈ ∂G(w). Combining this with Eq. (3), we obtain an alternative expression for the convex

conjugate function G∗:
G∗(p) = −

∑

y

pyE[εy|Y (w, ε) = y], (7)

corresponding to the weighted expectations of the utility shocks εy conditional on choosing

the option y. It is also known that the subdifferential ∂G∗(p) corresponds to the set of

maximizers in the program (4) which define the conjugate function G∗(p); that is,

w ∈ ∂G∗(p) ⇔ w ∈ argmaxw∈RY




∑

y∈Y
pywy − G (w)



 . (8)

Later, we will exploit this variational representation of the subdifferential G∗(p) for compu-

tational purposes; cf. Section 4 below.

Example 1 (Logit). Before proceeding, we discuss the logit model, for which the functions

and relations above reduce to familiar expressions. When the distribution Q of ε obeys an

extreme value type I distribution, it follows from Extreme Value theory that G and G∗ can be

obtained in closed form13: G (w) = log(
∑

y∈Y exp(wy))+γ, while G∗ (p) =
∑

y∈Y py log py−γ
12 Clearly, Theorem 1 also applies to static random utility discrete-choice models, with the w(x) being

interpreted as the utility indices for each of the choices. As such, Eq. (6) relates to results regarding the

invertibility of the mapping from utilities to choice probabilities in static discrete choice models (e.g. Berry

(1994); Haile, Hortacsu, and Kosenok (2008); Berry, Gandhi, and Haile (2013)). Similar results have also

arisen in the literature on stochastic learning in games (Hofbauer and Sandholm (2002); Cominetti, Melo

and Sorin (2010)).
13 Relatedly, Arcidiacono and Miller (2011, pp. 1839-1841) discuss computational and analytical solutions

for the G∗ function in the generalized extreme value setting.
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if p belongs in the interior of the simplex, G∗ (p) = +∞ otherwise (γ ≈ 0.57 is Euler’s

constant). Hence in this case, G∗ is the entropy of distribution p(see Anderson, de Palma,

Thisse (1988) and references therein).

The subdifferential of G∗ is characterized as follows: w ∈ ∂G∗ (p) if and only if wy =

log py − K, for some K ∈ R. In this logit case the convex conjugate function G∗ is the

entropy of distribution p, which explains why it can be called a generalized entropy function

even in non-logit contexts. �

2.3. Identification. It follows from Theorem 1 that the identification of systematic utilities

boils down to the problem of computing the subgradient of a generalized entropy function.

However, from examining the social surplus function G, we see that if w ∈ ∂G∗ (p), then it

is also true that w −K ∈ ∂G∗ (p), where K ∈ R|Y| is a vector taking values of K across all

Y components. Indeed, the choice probabilities are only affected by the differences in the

levels offered by the various alternatives. In what follows, we shall tackle this indeterminacy

problem by isolating a particular w0 among those satisfying w ∈ ∂G∗ (p), where we choose

G
(
w0
)

= 0. (9)

We will impose the following assumption on the heterogeneity.

Assumption 2 (Full Support). Assume the distribution Q of the vector of utility shocks ε

is such that the distribution of the vector (εy − ε1)y 6=1 has full support.

Under this assumption, Theorem 2 below shows that Eq. (9) defines w0 uniquely. The-

orem 3 will then show that the knowledge of w0 allows for easy recovery of all vectors w

satisfying p ∈ ∂G (w).

Theorem 2. Under Assumption 2, let p be in the interior of the simplex ∆|Y|, (i.e. py > 0

for each y and
∑

y py = 1). Then there exists a unique w0 ∈ ∂G∗ (p) such that G
(
w0
)

= 0.

The proof of this theorem is in the Appendix. Moreover, even when Assumption 2 is not

satisfied, w0 will still be set-identified; Theorem 4 below describes the identified set of w0

corresponding to a given vector of choice probabilities p.

Our next result is our main tool for identification; it shows that our choice of w0(x), as

defined in Eq. (9) is without loss of generality; it is not an additional model restriction, but
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merely a convenient way of representing all w(x) in ∂G∗ (p (x)) with respect to a natural

and convenient reference point.14

Theorem 3. Maintain Assumption 2, and let K denote any scalar K ∈ R. The set of

conditions

w ∈ ∂G∗ (p) and G (w) = K

is equivalent to

wy = w0
y +K, ∀y ∈ Y.

This theorem shows that any vector within the set ∂G∗ (p) can be characterized as the

sum of the (uniquely-determined, by Theorem 3) vector w0 and a constant K ∈ R. As we

will see below, this is our invertibility result for dynamic discrete choice problems, as it will

imply unique identification of the vector of choice-specific value functions corresponding to

any observed vector of conditional choice probabilities.15

2.4. Empirical Content of Dynamic Discrete Choice Model. To summarize the em-

pirical content of the model, we recall the fact that the ex-ante value function V solves the

following equation

V (x) =
∑

y∈Y
py (x)

(
ūy (x) + E[εy|Y (w, ε) = y, x] + β

∑

x′

p
(
x′|x, y

)
V
(
x′
)
)

(derived in Pesendorfer and Schmidt-Dengler (2008), among others), where we write p(x′|x, y) =

Pr(xt+1 = x′|xt = x, yt = y). Noting that the choice-specific value function is just

wy(x) = ūy (x) + β
∑

x′

p
(
x′|x, y

)
V
(
x′
)
, (10)

and, comparing with Eq. (3),

V (x) = G (w(x);x) and p (x) ∈ ∂G (w(x);x) .

14 This indeterminacy issue has been resolved in the existing literature on dynamic discrete choice models

(eg. Hotz and Miller (1993), Rust (1994), Magnac and Thesmar (2002) by focusing on the differences between

choice-specific value functions, which is equivalent to setting wy0(x), the choice-specific value function for a

benchmark choice y0, equal to zero. Compared to this, our choice of w0(x) satisfying G(w0(x)) = 0 is more

convenient in our context, as it leads to a simple expression for the constant K (see Section 2.4).
15 See Berry (1994), Chiappori and Komunjer (2010), Berry, Gandhi, and Haile (2012), among others, for

conditions ensuring the invertibility or “univalence” of demand systems stemming from multinomial choice

models, under settings more general than the random utility framework considered here.
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Hence, by Theorem 3, the true w (x) will differ from w0(x) by a constant term V (x):

w(x) = w0 (x) + V (x)

where w0 (x) is defined in Theorem 2. This result is also convenient for identification

purposes, as it separates identification of w into two subproblems, the determination of w0

and the determination of V . Once w0 and V are known, the utility flows are determined

from Eq. (10). This motivates our two-step estimation procedure, which we describe next.

3. Estimation using the Mass Transport Approach (MTA)

Based upon the derivations in the previous section, we present a two-step estimation

procedure. In the first step, we use the results from Theorem 3 to recover the vector

of choice-specific value functions w0(x) corresponding to each observed vector of choice

probabilities p(x). In the second step, we recover the utility flow functions ūy(x) given the

w0(x) obtained from the first step.

3.1. First step. In the first step, the goal is to recover the vector of choice-specific value

functions w0(x) ∈ ∂G∗(p(x)) corresponding to the vector of observed choice probabilities

p(x) for each value of x. In doing this, we use Theorem 1 above and Proposition 2 below,

which show how w0(x) belongs to the subdifferential of the conjugate function G∗(p (x)).

We delay discussing these details until Section 4. There, we will show how this problem

of obtaining w0(x) can be reformulated in terms of a class of mathematical programming

problems, the Monge-Kantorovich mass transport problems, which leads to convenient com-

putational procedures. Since this is the central component of our estimation procedure, we

have named it the mass transport approach (MTA).

3.2. Second step. From the first step, we obtained w0(x) such that w(x) = w0(x) +V (x).

Now in the second step, we use the recursive structure of the dynamic model, along with

fixing one of the utility flows, to jointly pin down the values of w(x) and V (x). Finally,

once w(x) and V (x) are known, the utility flows can be obtained from ūy (x) = wy(x) −
βE [V (x′)|x, y].
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In order to nonparametrically identify ūy (x), we need to fix some values of the utility

flows. Following Bajari, Chernozhukov, Hong, and Nekipelov (2009), we fix the utility flow

corresponding to a benchmark choice y0 to be constant at zero:16

Assumption 3 (Fix utility flow for benchmark choice). ∀x, ūy0 (x) = 0.

With this assumption, we get

0 = w0
y0(x) + V (x)− βE

[
V
(
x′
)
|x, y = y0

]
. (11)

Let W be the column vector whose general term is
(
w0
y0(x)

)
x∈X , let V be the column

vector whose general term is (V (x))x∈X , and let Π0 be the |X | × |X | matrix whose general

term Π0
ij is Pr (xt+1 = j|xt = i, y = y0). Equation (11), rewritten in matrix notation, is

W = βΠ0V − V

and for β < 1, matrix I − βΠ0 is a diagonally dominant matrix. Hence, it is invertible and

Equation (11) becomes

V = (βΠ0 − I)−1W. (12)

The right hand side of this equation is uniquely estimated from the data. After obtaining

V (x), ūy(x) can be nonparametrically identified by

ūy(x) = w0
y(x) + V (x)− βE[V (x′)|x, y], (13)

where w0 (x) is as in Theorem 3, and V is given by (12).

As a sanity check, one recovers ūy0(.) = W + V − βΠ0V = 0. Also, when β → 0,

one recovers ūy(x) = w0
y(x) − w0

y0(x) which is the case in standard static discrete choice.

Moreover, since our approach to identifying the utility flows is nonparametric, our MTA

16 In a static discrete-choice setting (i.e. β = 0), this assumption would be a normalization, and without

loss of generality. In a dynamic discrete-choice setting, however, this entails some loss of generality because

different values for the utility flows imply different values for the choice-specific value functions, which leads

to differences in the optimal choice behavior. Norets and Tang (2013) discuss this issue in greater detail.
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approach does not leverage any known restrictions on the flow utility (including parametric

or shape restrictions) in identifying or estimating the flow utilities.17

Eqs. (12) and (13) above, showing how the per-period utility flows can be recovered from

the choice-specific value functions via a system of linear equations, echoes similar derivations

in the existing literature (e.g. Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-

Dengler (2008), Arcidiacono and Miller (2011, 2013)). Hence, the innovative aspect of our

MTA estimator lies not in the second step, but rather in the first step. In the next section,

we delve into computational aspects of this first step.

Existing procedures for estimating DDC models typically rely on a small class of distri-

butions for the utility shocks – primarily those in the extreme-value family, as in Example

1 above – because these distributions yield analytical (or near-analytical) formulas for the

choice probabilities and {E[εy|Y (w, ε) = y, x]}y, the vector of conditional expectation of

the utility shocks for the optimal choices, which is required in order to recover the utility

flows18. Our approach, however, which is based on computing the G∗ function, easily ac-

commodates different choices for Qε, the (joint) distribution of the utility shocks conditional

on X. Therefore, our findings expand the set of dynamic discrete-choice models suitable

for applied work far beyond those with extreme-value distributed utility shocks.19

4. Computational details for the MTA estimator

In Section 4.1, we show that the problem of identification in DDC models can be for-

mulated as a mass transport problem, and also how this may be implemented in practice.

In showing how to compute G∗, we exploit the connection, alluded to above, between this

17To ensure that the inverted w satisfies certain shape restrictions, the linkage between w and the CCP

will no longer be stipulated by the subdifferential of the convex conjugate function. It is possible that

there exists a modification of the convex conjugate function that is equivalent to imposing certain shape

restrictions on utilities. This is an interesting avenue for future research.
18 Related papers include Hotz and Miller (1993), Hotz, Miller, Sanders, Smith (1994), Aguirregabiria

and Mira (2007), Pesendorfer and Schmidt-Dengler (2008), Arcidiacono and Miller (2011). Norets and

Tang (2013) propose another estimation approach for binary dynamic choice models in which the choice

probability function is not required to be known.
19 This remark is also relevant for static discrete choice models. In fact, the random-coefficients multi-

nomial demand model of Berry, Levinsohn, and Pakes (1995) does not have a closed-form expression for the

choice probabilities, thus necessitating a simulation-based inversion procedure. In ongoing work (Chiong,

Galichon, Shum (2013)), we are exploring the estimation of random-coefficients discrete-choice demand

models using our approach.
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function and the assignment game, a model of two-sided matching with transferable utility

which has been used to model marriage and housing markets (such as Shapley and Shubik

(1971) and Becker (1973)).

4.1. Mass Transport formulation. Much of our computational strategy will be based

on the following proposition, which was derived in Galichon and Salanié (2012, Proposition

2). It characterizes the G∗ function as an optimum of a well-studied mathematical program:

the “mass transport,”problem, see Villani (2003).

Proposition 2 (Galichon and Salanié). Given Assumption (2), the function G∗(p) is the

value of the mass transport problem in which the distribution Q of vectors of utility shocks

ε is matched optimally to the distribution of actions y given by the multinomial distribution

p, when the cost associated to a match of (ε, y) is given by

c (y, ε) = −εy
where εy is the utility shock from taking the y-th action. That is,

G∗ (p) = sup
w,z

s.t. wy+z(ε)≤c(y,ε)

{Ep [wY ] + EQ [z (ε)]} , (14)

where the supremum is taken over the pair (w, z), where wy is a vector of dimension |Y|
and z(·) is a Q-measurable random variable. By Monge-Kantorovich duality, (14) coincides

with its dual

G∗ (p) = min
Y∼p
ε∼Q

E [c (Y, ε)] , (15)

where the minimum is taken over the joint distribution of (Y, ε) such that the the first margin

Y has distribution p and the second margin ε has distribution Q. Moreover, w ∈ ∂G∗ (p) if

and only if there exists z such that (w, z) solves (14). Finally, w0 ∈ ∂G∗ (p) and G(w0) = 0

if and only if there exists z such that
(
w0, z

)
solves (14) and z is such that EQ [z (ε)] = 0.

In Eq. (15) above, the minimum is taken across all joint distributions of (Y, ε) with

marginal distribution equal to, respectively, p and Q. It follows from the proposition that

the main problem of identification of the choice-specific value functions w can be recast as

a mass transport problem (Villani (2003)), in which the set of optimizers to Eq. (14) yield

vectors of choice-specific value functions w ∈ ∂G∗ (p).

Moreover, the mass transport problem can be interpreted as an optimal matching prob-

lem. Using a marriage market analogy, consider a setting in which a matched couple con-

sisting of a “man” (with characteristics y ∼ p) and a “woman” (with characteristics ε ∼ Q)
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obtain a joint marital surplus −c(y, ε) = εy. Accordingly, Eq. (15) is an optimal matching

problem in which the joint distribution of characteristics (y, ε) of matched couples is chosen

to maximize the aggregate marital surplus.

In the case when Q is a discrete distribution, the mass transport problem in the above

proposition reduces to a linear-programming problem which coincides with the assignment

game of Shapley and Shubik (1971). This connection suggests a convenient way for effi-

ciently computing the G∗ function (along with its subgradient). Specifically, we will show

how the dual problem (Eq. (15)) takes the form of a linear programming problem or assign-

ment game, for which some of the associated Lagrange multipliers correspond to the the

subgradient ∂G∗, and hence the choice-specific value functions. These computational details

are the focus of Section 4 below. We include the proof of Proposition 2 in the Appendix for

completeness.

4.2. Linear programming computation. Let Q̂ be a discrete approximation to the dis-

tribution Q. Specifically, consider a S-point approximation to Q, where the support is

Supp(Q̂) = {ε1, . . . , εS}. Let Pr(Q̂ = εs) = qs. The best S-point approximation is such

that the support points are equally weighted, qs = 1
S , i.e. the best Q̂ is a uniform distri-

bution, see Kennan (2006). Therefore, let Q̂ be a uniform distribution whose support can

be constructed by drawing S points from the distribution Q. Moreover, Q̂ converges to Q

uniformly as S →∞,20 so that the approximation error from this discretization will vanish

when S is large. Under these assumptions, Problem (14)-(15) has a Linear Programming

formulation as

max
π≥0

∑

y,s

πysε
s
y (16)

S∑

s=1

πys = py, ∀y ∈ Y (17)

∑

y∈Y
πys = qs, ∀s ∈ {1, ..., S} . (18)

For this discretized problem, the set of w ∈ ∂G∗ (p) is the set of vectors w of Lagrange

multipliers corresponding to constraints (17). To see how we recover w0, the specific element

20 Because Q̂ is constructed from i.i.d. draws from Q, this uniform convergence follows from the Glivenko-

Cantelli Theorem.
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in ∂G∗ (p) as defined in Theorem 1, we begin with the dual problem

min
λ,z

∑

y∈Y
pyλy +

S∑

s=1

qszs (19)

s.t. λy + zs ≥ εsy

Consider (λ, z) a solution to (19). By duality, λ and z are, respectively, vectors of La-

grange multipliers associated to constraints (17) and (18).21 We have G∗ (p) =
∑

y∈Y pyλy+
∑S

s=1 qszs, which implies22 that G (λ) = −∑S
s=1 qszs. Also, for any two elements λ,w0 ∈

∂G∗(p), we have
∑

y∈Y pyλy − G(λ) =
∑

y∈Y pyw
0
y − G(w0).

Hence, because G(w0) = 0, we get

w0
y = λy − G (λ) = λy +

S∑

s=1

qszs. (20)

In Theorem 5 below, we establish the consistency of this estimate of w0.

4.3. Discretization of Q and a second type of indeterminacy issue. Thus far, we

have proposed a procedure for computing G∗ (and the choice-specific value functions w0) by

discretizing the otherwise continuous distribution Q. However, because the support of ε is

discrete, w0
y will generally not be unique.23 This is due to the non-uniqueness of the solution

to the dual of the LP problem in Eq. (16), and corresponds to Shapley and Shubik’s (1971)

well-known results on the multiplicity of the core in the finite assignment game. Applied to

discrete-choice models, it implies that when the support of the utility shocks is finite, the

utilities from the discrete-choice model will only be partially identified. In this section, we

discuss this partial identification, or indeterminacy, problem further.

Recall that

G∗ (p) = sup
wy+z(ε)≤c(y,ε)

{Ep [wY ] + EQ [z (ε)]} (21)

21 Because the two linear programs (16) and (19) are dual to each other, the Lagrange multipliers of

interest λy can be obtained by computing either program. In practice, for the simulations and empirical

application below, we computed the primal problem (16).
22 This uses Eq. (25) in Appendix A, which (in our setup) states that G∗(p) + G(λ) = p · λ, for all

Lagrange multiplier vectors λ ∈ ∂G∗(p).
23 Note that Theorem 1 requires ε to have full support.
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where c (y, ε) = −εy. In Proposition 2, this problem was shown to be the dual formulation

of an optimal assignment problem.

We call identified set of payoff vectors, denoted by I (p), the set of vectors w such that

Pr

(
wy + εy ≥ max

y′
{wy′ + εy′}

)
= py (22)

and we denote by I0 (p) the normalized identified set of payoff vectors, that is the set of

w ∈ I (p) such that G (w) = 0. If Q were to have full support, I0 (p) would contain only

the singleton
{
w0
}

as in Theorem 3. Instead, when the distribution Q is discrete, the set

I0 (p) contains a multiplicity of vectors w which satisfy (5). One has:

Theorem 4. The following holds:

(i) The set I (p) coincides with the set of w such that there exists z such that (w, z) is a

solution to (21). Thus

I (p) =

{
w : ∃z, wy + zε ≤ c (y, ε)

Ep [wY ] + EQ [zε] = G∗ (p)

}
.

(ii) The set I0 (p) is determined by the following set of linear inequalities

I0 (p) =




w : ∃z,

wy + zε ≤ c (y, ε)

Ep [wY ] = G∗ (p)

EQ [zε] = 0




.

This result allows us to easily derive bounds on the individual components of w0 using

the characterization of the identified set using linear inequalities. Indeed, for each y ∈ Y, we

can obtain upper (resp. lower) bounds on wy by maximizing (resp. minimizing) wy subject

to the linear inequalities characterizing I0(p),24 which is a linear programming problem.25

Furthermore, when the dimensionality of discretization, S, is high, the core shrinks to a

singleton, and the core collapses to
{
w0
}

. This is a consequence of our next theorem, which

24However, letting w̄y (resp. wy) denote the upper (resp. lower) bound on wy, we note that typically the

vector (wy, y ∈ Y)′ 6∈ I0(p).
25 Moreover, partial identification in w0 (due to discretization of the shock distribution Q(ε) will naturally

also imply partial identification in the utility flows u0. For a given identified vector w0 (and also given the

choice probabilities p and transition matrix Π0 from the data), we can recover the corresponding u0 using

Eqs. (12)-(13).
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is a consistency result.26 In our Monte Carlo experiments below, we provide evidence for

the magnitude of this indeterminacy problem under different levels of discretization.

4.4. Consistency of MTA estimator. Here we show (strong) consistency for our MTA

estimator of w0, the normalized choice-specific value functions. In our proof, we accommo-

date two types of error: (i) approximation error from discretizing the distribution Q of ε,

and (ii) sampling error from our finite-sample observations of the choice probabilities. We

use Qn to denote the discretized distributions of ε, and pn to denote the sample estimates

of the choice probabilities. The limiting vector of choice probabilities is denoted p0. For a

given (Qn, pn), let wny denote the choice-specific value functions estimated using our MTA

approach.

Theorem 5. Assume:

(i) The sequence of vectors
{
pny
}
y∈Y , viewed as the multinomial distribution of y, con-

verges weakly to p0;

(ii) The discretized distributions of ε converge weakly to Q: Qn
d→ Q;

(iii) The second moments of Qn are uniformly bounded.

Then the convergence wny → w0
y for each y ∈ Y holds almost surely.

The proof, which is in the appendix, may be of independent interest as the main argument

relies on approximation results from mass transport theory, which we believe to be the first

use of such results for proving consistency in an econometrics context.

5. Monte Carlo Evidence

In this section, we illustrate our estimation framework using a dynamic model of resource

extraction. To illustrate how our method can tractably handle any general distribution of

the unobservables, we use a distribution in which shocks to different choices are correlated.

We will begin by describing the setup.

At each time t, let xt ∈ {1, 2, . . . , 30} be the state variable denoting the size of the

resource pool. There are three choices,

26Gretsky, Ostroy, and Zame (1999) also discusses this phenomenon in their paper.
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yt = 0: The pool of resources is extracted fully. xt+1|xt, yt = 0 follows a multinomial

distribution on {1, 2, 3, 4} with parameter π = (π1, π2, π3, π4). The utility flow is

ū(yt = 0, xt) = 0.5
√
xt − 2 + ε0.

yt = 1: The pool of resources is extracted partially. xt+1|xt, yt = 1 follows a multino-

mial distribution on {max{1, xt−10},max{2, xt−9},max{3, xt−8},max{4, xt−7}}
with parameter π. The utility flow is ū(yt = 1, xt) = 0.4

√
xt − 2 + ε1.

yt = 2: Agent waits for the pool to grow and does not extract. xt+1|xt, yt = 3 follows

a multinomial distribution on {xt, xt + 1, xt + 2, xt + 3} with parameter π. We

normalize the utility flow to be ū(yt = 2, xt) = ε2.

The joint distribution of the unobserved state variables is given by (ε0 − ε2, ε1 − ε2) ∼

N

((
0

0

)
,

(
0.5 0.5

0.5 1

))
. Other parameters we fix and hold constant for the Monte Carlo

study are the discount rate, β = 0.9 and π = (0.3, 0.35, 0.25, 0.10).

5.1. Asymptotic performance. As a preliminary check of our estimation procedure, we

show that we are able to recover the utility flows using the actual conditional choice proba-

bilities implied by the underlying model. We discretized the distribution of ε using S = 5000

support points. As is clear from Figure 1, the estimated utility flows (plotted as dots) as a

function of states matched the actual utility functions very well.

5.2. Finite sample performance. To test the performance of our estimation procedure

when there is sampling error in the CCPs, we generate simulated panel data of the following

form: {yit , xit : i = 1, 2, . . . , N ; t = 1, 2, . . . , T} where yit ∈ {0, 1, 2} is the dynamically

optimal choice at xit after the realization of simulated shocks. We vary the number of cross-

section observations N and the number periods T , and for each combination of (N,T ), we

generate 100 independent datasets.27

For each replication or simulated dataset, the root-mean-square error (RMSE) and R2

are calculated, showing how well the estimated ūy(x) fits the true utility function for each

y. The averages are reported in Table 1.

27 In each dataset, we initialized xi1 with a random state in X . When calculating RMSE and R2,

we restrict to states where the probability is in the interior of the simplex ∆3, otherwise utilities are not

identified and the estimates are meaningless.
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Figure 1. Comparison between the estimated and true utility flows.

Design RMSE(y = 0) RMSE(y = 1) R2(y = 0) R2(y = 1)

N = 100, T = 100 0.5586 0.2435 0.3438 0.7708

N = 100, T = 500 0.1070 0.1389 0.7212 0.9119

N = 100, T = 1000 0.0810 0.1090 0.8553 0.9501

N = 200, T = 100 0.1244 0.1642 0.5773 0.8736

N = 200, T = 200 0.1177 0.1500 0.7044 0.9040

N = 500, T = 100 0.0871 0.1162 0.8109 0.9348

N = 500, T = 500 0.0665 0.0829 0.8899 0.9678

N = 1000, T = 100 0.0718 0.0928 0.8777 0.9647

N = 1000, T = 1000 0.0543 0.0643 0.9322 0.9820

Table 1. Average fit across all replications. Standard deviations are re-

ported in the Appendix.

5.3. Size of the identified set of payoffs. As mentioned in Section 4.3, using a discrete

approximation to the distribution of the unobserved state variable introduces a partial

identification problem: the identified choice-specific value functions might not be unique.

Using simulations, we next show that the identified set of choice-specific value functions
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(which we will simply refer to as “payoffs”) shrinks to a singleton as S increases, where

S is the number of support points in the discrete approximation of the continuous error

distribution. For S ranging from 100 to 1000, we plot in Figure 2, the differences between

the largest and smallest choice-specific value function for y = 2 across all values of p ∈ ∆3

(using the linear programming procedures described in Section 4.3).

Figure 2. The identified set of payoffs shrinks to a singleton across ∆3.
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For each value of S, we plot the values of the differences maxw∈∂G∗(p) w −minw∈∂G∗(p) w across all

values of p ∈ ∆3. In the boxplot, the central mark is the median, the edges of the box are the 25th

and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers,

and outliers are plotted individually.

As is evident, even at small S, the identified payoffs are very close to each other in

magnitude. At S = 1000, where computation is near-instantaneous, for most of the values

in the discretised grid of ∆3, the core is a singleton; when it is not, the difference in the

estimated payoff is less than 0.01. Similar results hold for the choice-specific value functions

for choices y = 0 and y = 1, which are plotted in Figures 6 and 7 in the Appendix. To sum

up, it appears that this indeterminacy issue in the payoffs is not a worrisome problem for

even very modest values of S.
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5.4. Comparison: MTA vs. Simulated Maximum Likelihood. One common tech-

nique used in the literature to estimate dynamic discrete choice models with non-standard

distribution of unobservables is the Simulated Maximum Likelihood (SML). Our MTA

method has a distinct advantage over SML – while MTA allows the utility flows ūy(x)

for different choices y and states x to be nonparametric, the SML approach typically re-

quires parameterizing these utility flows as a function of a low-dimensional parameter vector.

This makes comparison of these two approaches awkward. Nevertheless, here we undertake

a comparison of the nonparametric MTA vs. the parametric SML approach. First we com-

pare the performance of the two alternative approaches in terms of computational time.

The computations were performed on a Quad Core Intel Xeon 2.93GHz UNIX workstation,

and the results are presented in Table 2.

From a computational point of view, the disadvantage of SML is that the dynamic pro-

gramming problem must be solved (via Bellman function iteration) for each trial parameter

vector, whereas the MTA requires solving a large-scale linear programming problem – but

only once. Table 2 shows that our MTA procedure significantly outperforms SML in terms

of computational speed. This finding, along with the results in Table 1, show that MTA

has the desirable properties of speed and accuracy, and also allows for nonparametric spec-

ification of the utility flows ūy(x).

Furthermore, the SML approach can be very inaccurate, in addition to being slower.

This is illustrated in Figure 3, which contains a histogram, across 250 replications, of SML

estimates of the utility parameters (same setup as before, with S = 5000). We can see that

estimates from SML depart from the true value of 2. The reason appears to be that the

SML optimization algorithm28 tends to terminate at local rather than global optima; even

worse, the termination points are highly dependent upon the user-provided initial values.

In contrast, the MTA estimator, by virtue of its being a linear programming problem, does

not require specifying initial estimates, always finds the global optimum due to the linearity,

and accordingly, has only negligible bias in finite samples (as we previously documented in

Figure 1 and Table 1).

28 We used MATLAB’s nonlinear constrained optimization algorithm (fmincon) here, a typical choice for

researchers. Unfortunately an exhautive search for the global maximum is too computationally prohibitive

in this non-smooth optimization problem. Even then it will be dependent on what specified intervals of

parameters to search for.
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Table 2. Comparison: MTA vs. Simulated Maximum Likelihood (SML)

S discretized points SML:+ MTA:++

Avg. seconds Avg. seconds

2000 19.8 2.6

3000 24.5 4.4

4000 26.5 6.6

5000 40.9 9.6

6000 70.5 13.4

7000 105.0 17.5

8000 129.4 21.5

+:In this column we report time it takes to estimate the parameters θ = (θ00, θ01, θ10, θ11) as a local

maximum of a simulated maximum likelihood, where θ corresponds to ūy=0(x) = θ00 + θ01
√
x, and

ūy=1(x) = θ10 + θ11
√
x.

++:In this column we report the time it takes to nonparametrically estimate the per-period utility flow.
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Figure 3. Histogram of SML estimates, across 250 replications. The true
value is θ10 = 2 in the per-period utility ū(y = 1, x) = −θ10 + θ11

√
x. Initial

values are uniformly drawn in the interval [1.75, 2.25], and comparable result
is obtained with much wider interval.

Indeed, one advantage of the Hotz-Miller approach is that, under the logistic assumption

on unobservables and linear-in-parameters utility, the system of equations that defines the
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estimator has a unique (global) solution, which avoids the problem with the SML terminat-

ing at a local optimum; in their discussion of this, Aguirregabiria and Mira (2010, pg. 48)

remark that “extending the range of applicability of ... CCP methods to models which do

not impose the CLOGIT [logistic] assumption is a topic for further research.” This paper

fills the gap: our MTA estimator is an invertibility result using the CCP, but works for

non-logistic models. In this sense, the MTA estimator is a generalized CCP estimator.

6. Empirical Application: Revisiting Harold Zurcher

In this section, we apply our estimation procedure to the bus engine replacement dataset

first analyzed in Rust (1987). In each week t, Harold Zurcher (bus depot manager), chooses

yt ∈ {0, 1} after observing the mileage xt ∈ X and the realized shocks εt. If yt = 0, then he

chooses not to replace the bus engine, and yt = 1 means that he chooses to replace the bus

engine. The states space is X = {0, 1, . . . 29}, that is, we divided the mileage space into 30

states, each representing a 12,500 increment in mileage since the last engine replacement.29

Harold Zurcher manages a fleet of 104 identical buses, and we observe the decisions that

he made, as well as the corresponding bus mileage at each time period t. The duration

between t+ 1 and t is a quarter of a year, and the dataset spans 10 years. Figures 8 and 9

in the Appendix summarize the frequencies and mileage at which replacements take place

in the dataset.

Firstly, we can directly estimate the probability of choosing to replace and not to replace

the engine for each state in X . Also directly obtained from the data is the Markov transition

probabilities for the observed state variable xt ∈ X, estimated as:

P̂r(xt+1 = j|xt = i, yt = 0) =





0.7405 if j = i

0.2595 if j = i+ 1

0 otherwise

29 This grid is coarser compared to Rust’s (1987) original analysis of this data, in which he divided

the mileage space into increments of 5,000 miles. However, because replacement of engines occurred so

infrequently (there were only 61 replacement in the entire ten-year sample period), using such a fine grid

size leads to many states that have zero probability of choosing replacement. Our procedure – like all other

CCP-based approaches – fails when the vector of conditional choice probability lies on the boundary of the

simplex.
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Figure 4. Estimates of utility flows ūy=0(x), across values of mileage x

P̂r(xt+1 = j|xt = i, yt = 1) =





0.7405 if j = 0

0.2595 if j = 1

0 otherwise

For this analysis, we assumed a normal mixture distribution of the error term, specifically,

εt0− εt1 ∼ 1
2N(0, 1) + 1

2N(0, 1
1+0.1x).30 We chose this mixture distribution in order to allow

the utility shocks to depend on mileage – which accommodates, for instance, operating costs

which may be more volatile and unpredictable at different levels of mileage. At the same

time, these specifications for the utility shock distribution showcase the flexibility of our

procedure in estimating dynamic discrete choice models for any general error distribution.

30 In this paper, we restrict attention to the case where the researcher fully knows the distribution of the

unobservables Q~ε, so that there are no unknown parameters in these distributions. In principle, the two-step

procedure proposed here can be nested inside an additional “outer loop” in which unknown parameters of

Q~ε are considered, but identification and estimation in this case must rely on additional model restrictions

in addition to those considered in this paper. We are currently exploring such a model in the context of the

simpler static discrete choice setting (Chiong, Galichon and Shum (2014, work in progress)).
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For comparison, we repeat this exercise using an error distribution that is homoskedastic,

i.e., its variance does not depend on the state variable xt. The result appears to be robust

to using different distributions of εt0 − εt1. We set the discount rate β = 0.9.

To non-parametrically estimate ūy=0(x), we fixed ūy=1(x) to 0 for all x ∈ X. Hence, our

estimates of ūy=0(x) should be interpreted as the magnitude of operating costs31 relative to

replacement costs32, with positive values implying that replacement costs exceed operating

costs. The estimated utility flows from choosing y = 0 (don’t replace) relative to y = 1

(replace engine) are plotted in Figure 4. We only present estimates for mileage within the

range x ∈ [9, 25], because within this range, the CCPs are in the interior of the probability

simplex (cf. footnote 29 and Figure 9 in appendix).

Within this range, the estimated utility function does not vary much with increasing

mileages, i.e. it has slope that is not significantly different from zero. The recovered utilities

fall within the narrow band of 9 and 9.5, which implies that on average the replacement cost

is much higher than the maintenance cost, by a magnitude of 18 to 19 times the variance of

the utility shocks. It is somewhat surprising that our results suggest that when the mileage

goes beyond the cutoff point of 100,000 miles, Harold Zurcher perceived the operating costs

to be inelastic with respect to accumulated mileage. It is worth noting that Rust (1987)

mentioned: “According to Zurcher, monthly maintenance costs increase very slowly as a

function of accumulated mileage.”

To get an idea for the effect of sampling error on our estimates, we bootstrapped our

estimation procedure. For each of 100 resamples, we randomly drew 80 buses with replace-

ment from the dataset, and re-estimated the utility flows ūy=0(x) using our procedure. The

results are plotted in Figure 5. The evidence suggests that we are able to obtain fairly tight

cost estimates for states where there is at least one replacement, i.e. for x ≥ 9 (x ≥ 112, 500

miles), and for states that are reached often enough; i.e. for x ≤ 22 (x ≤ 275, 000 miles).

7. Conclusion

In this paper, we have shown how results from convex analysis can be fruitfully applied

to study identification in dynamic discrete choice models; modulo the use of these tools, a

31 Operating costs include maintenance, fuel, insurance costs, plus Zurcher’s estimate of the costs of lost

ridership and goodwill due to unexpected breakdowns.
32 To be pedantic, this also includes the operating cost at x = 0.
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Figure 5. Bootstrapped estimates of utility flows ūy=0(x)
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We plot the values of the bootstrapped resampled estimates of ūy=0(x). In each boxplot, the

central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers

extend to the 5th and 95th percentiles.

large class of dynamic discrete choice problems with quite general utility shocks becomes no

more difficult to compute and estimate than the Logit model encountered in most empirical

applications. This has allowed us to provide a natural and holistic framework encompassing

the papers of Rust (1987), Hotz and Miller (1993), and Magnac and Thesmar (2002). While

the identification results in this paper are comparable to other results in the literature, the

approach we take, based on the convexity of the social surplus function G and the resulting

duality between choice probabilities and choice-specific value functions, appears new. Far

more than providing a mere reformulation, this approach is powerful, and has significant

implications in several dimensions.

First, by drawing the (surprising) connection between the computation of the G∗ function

and the computation of optimal matchings in the classical assignment game, we can apply

the powerful tools developed to compute optimal matchings to dynamic discrete-choice
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models.33 Moreover, by reformulating the problem as an optimal matching problem, all

existence and uniqueness results are inherited from the theory of optimal transport. For

instance, the uniqueness of a systematic utility rationalizing the consumer’s choices follows

from the uniqueness of a potential in the Monge-Kantorovich theorem.

We believe the present paper opens a more flexible way to deal with discrete choice

models. While identification is exact for a fixed structure of the unobserved heterogeneity,

one may wish to parameterize the distribution of the utility shocks and do inference on

that parameter. The results and methods developed in this paper may also extend to dy-

namic discrete games, with the utility shocks reinterpreted as players’ private information.34

However, we leave these directions for future exploration.
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8. Background results

8.1. Convex Analysis for Discrete-choice Models . Here, we give a brief review of

the main notions and results used in the paper. We keep an informal style and do not give

proofs, but we refer to Rockafellar (1970) for an extensive treatment of the subject.

Let u ∈ R|Y| be a vector of utility indices. For utility shocks {εy}y∈Y distributed according

to a joint distribution function Q, we define the social surplus function as

G(u) = E[max
y
{uy + εy}], (23)

where uy is the y-th component of u. If E(εy) exists and is finite, then the function G
is a proper convex function that is continuous everywhere. Moreover assuming that Q

is sufficiently well-behaved (for instance, if it has a density with respect to the Lebesgue

measure), G is differentiable everywhere.

Define the Legendre-Fenchel conjugate, or convex conjugate of G as G∗(p) = supu∈R|Y|{p ·
u− G(u)}. Clearly, G∗ is a convex function as it is the supremum of affine functions. Note

that the inequality

G(u) + G∗(p) ≥ p · u (24)

holds in general. The domain of G∗ consists of p ∈ R|Y| for which the supremum is finite.

In the case when G is defined by (23), it follows from Norets and Takahashi (2013) that the

domain of G∗ contains the simplex ∆|Y|, which is the set of p ∈ R|Y| such that py ≥ 0 and
∑

y∈Y py = 1. This means that our convex conjugate function is always well-defined.

The subgradient ∂G (u) of G at u is the set of p ∈ R|Y| such that

p · u− G(u) ≥ p · u′ − G(u′)
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holds for all u′ ∈ R|Y|. Hence ∂G is a set-valued function or correspondence. ∂G (u) is a

singleton if and only if G(u) is differentiable at u; in this case, ∂G (u) = ∇G (u).

One sees that p ∈ ∂G (u) if and only if p · u− G(u) = G∗(p), that is if equality is reached

in inequality (24):

G(u) + G∗(p) = p · u. (25)

This equation is itself of interest, and is known in the literature as “Fenchel’s equality”. By

symmetry in (25), one sees that p ∈ ∂G (u) if and only if u ∈ ∂G∗(p). In particular, when

both G and G∗ are differentiable, then ∇G∗ = ∇G−1.

9. Proofs

Proof of Proposition 1. Consider the y-th component, corresponding to ∂G(w)
∂wy

:

∂G(w)

∂wy
=

∂

∂wy

∫
max
y

[wy + εy]dQ (26)

=

∫
∂

∂wy
max
y

[wy + εy]dQ (27)

=

∫
1(wy + εy ≥ wy′ + εy′),∀y′ 6= y)dQ = p(y). (28)

(We have suppressed the dependence on x for convenience.) �

Proof of Theorem 1. This follows directly from Fenchel’s equality (see Rockafellar (1970),

Theorem 23.5, see also Appendix 8.1), which states that

p ∈ ∂G (w)

is equivalent to G (w) + G∗ (p) =
∑

y pywy, which is equivalent in turn to

w ∈ ∂G∗ (p) .

�

Proof of Theorem 2. Because ε has full support, the choice probabilities p will lie strictly

in the interior of the simplex ∆|Y|. Let w̃ ∈ ∂G∗ (p), and let wy = w̃y − G (w̃). One has

G (w) = 0, and an immediate calculation shows that ∂G (w) = p. Let us now show that w is

unique. Consider w and w′ such that G (w) = G (w′) = 0, and p ∈ ∂G (w) and p ∈ ∂G (w′).

Assume w 6= w′ to get a contradiction; then there exist two distinct y0 and y1 such that

wy0 − wy1 6= w′y0 − w′y1 ; without loss of generality one may assume

wy0 − wy1 > w′y0 − w′y1 .
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Let S be the set of ε’s such that

wy0 − wy1 > εy1 − εy0 > w′y0 − w′y1
wy0 + εy0 > max

y 6=y0,y1
{wy + εy}

w′y1 + εy1 > max
y 6=y0,y1

{
w′y + εy

}

Because ε has full support, S has positive probability.

Let w̄ = w+w′

2 . Because p ∈ ∂G (w) and p ∈ ∂G (w′), G is linear on the segment [w,w′],

thus G (w̄) = 0, thus

0 = E
[
w̄Y (w̄,ε) + εY (w̄,ε)

]
=

1

2
E
[
wY (w̄,ε) + εY (w̄,ε)

]
+

1

2
E
[
w′Y (w̄,ε) + εY (w̄,ε)

]

≤ 1

2
E
[
wY (w,ε) + εY (w,ε)

]
+

1

2
E
[
w′Y (w′,ε) + εY (w′,ε)

]

=
1

2

(
G (w) + G

(
w′
))

= 0

Hence equality holds term by term, and

wY (w,ε) + εY (w,ε) = wY (w̄,ε) + εY (w̄,ε)

w′Y (w′,ε) + εY (w′,ε) = w′Y (w̄,ε) + εY (w̄,ε)

For ε ∈ S, Y (w, ε) = Y (w̄, ε) = y0 and Y (w′, ε) = Y (w̄, ε) = y1, and we get the desired

contradiction.

Hence w = w′, and the uniqueness of w follows. �

Proof of Theorem 3. From G
(
w0
)

= 0 and ∂G (w − G (w)) = ∂G (w), and by the uniqueness

result in Theorem 2, it follows that

w0 = w − G (w) .

�

Proof of Proposition 2. The proof is in Galichon and Salanié (2012), but we include it here

for self-containedness. This connection between the G∗ function and a matching model



DUALITY IN DYNAMIC DISCRETE CHOICE MODELS 33

follows from manipulation of the variational problem in the definition of G∗:

G∗ (p) = sup
w∈RY

{∑

y

pywy − EQ
[
max
y∈Y

(wy + εy)

]}
(29)

= sup
w∈RY





∑

y

pywy + EQ
[
min
y∈Y

(−wy − εy)
]

︸ ︷︷ ︸
≡z(ε)




.

Defining c (y, ε) ≡ −εy, one can rewrite the above as

G∗ (p) = sup
wy+z(ε)≤c(y,ε)

{Ep [wY ] + EQ [z (ε)]} . (30)

As is well-known from the results of Monge-Kantorovich (Villani (2003), Thm. 1.3), this is

the dual-problem for a mass transport problem. The corresponding primal problem is

G∗ (p) = min
Y∼p
ε∼Q̂

E [c (Y, ε)]

which is equivalent to (16)-(18). Comparing Eqs. (29) and (30), we see that the subdif-

ferential ∂G∗(p) is identified with those elements w such that (w, z), for some z, solves the

dual problem (30). �

Proof of Theorem 4. (i) follows from Proposition 2 and the fact that if wy + z (ε) ≤ c (y, ε),

then Ep [wY ] + EQ [z (ε)] = G∗ (p) if and only if (w, z) is a solution to the dual problem.

(ii) follows from the fact that −z (ε) = supy {wy − c (y, ε)} = supy {wy + εy}, thus

EQ [z (ε)] = 0 is equivalent to EQ
[
supy {wy + εy}

]
= 0, that is G (w) = 0. �

Proof of Theorem 5. We shall show that the vector of choice-specific value functions derived

from the MTA estimation procedure, denoted wn, converges to the true vector w0. In our

procedure, there are two sources of estimation error. The first is the sampling error in the

vector of choice probabilities, denoted pn. The second is the simulation error involved in

the discretization of the distribution of ε; we let Qn denote this discretized distribution.

A distinctive aspect of our proof is that it utilizes the theory of mass transport; namely

convergence results for sequences of mass transport problems. For y ∈ Y, let ιy denote the

|Y|-dimensional row vector with all zeros except a 1 in the y-th column. This discretized

mass transport problem from which we obtain wn is:

sup
γ∈M(Qn,pn)

∫

Rd×Rd

(ι · ε) γ(dε, dι) (31)
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where M(Qn, pn) denotes the set of joint (discrete) probability measures with marginal

distributions Qn and pn. In the above, ι denotes a random vector which is equal to ιy with

probability pny , for y ∈ Y. The dual problem used in the MTA procedure is

inf
z,w

∫
z (ε) dQn (ε) +

∑

y

wyp
n
y : (32)

s.t. z(ε) ≥ ιy · ε− wy, ∀y, ∀ε (33)

Gn(wny ) = 0, (34)

where Gn(w) ≡ EQn(wy + εy). We let (zn, wn) denote solutions to this discretized dual

problem (32). Recall (from the discussion in Section 2.3) that the extra constraint (34) in

the dual problem just selects among the many dual optimizing arguments (wn, zn) corre-

sponding to the optimal primal solution γn, and so does not affect the primal problem.35

Next we derive a more manageable representation of this constraint (34). From Fenchel’s

Equality (Eq. (25)), we have
∑

y p
n
yw

n
y = Gn(wn) + G∗n(pn) = G∗n(pn) (with G∗n defined as

the convex conjugate function of Gn). Moreover, from Proposition 2, we know that G∗n(pn)

can be characterized as the optimized dual objective function in (32). Hence, we see that

the constraint Gn(wn) = 0 is equivalent to
∫
zn(ε)dQn(ε) = 0. We introduce this latter

constraint directly and rewrite the dual program

inf
z,w

∑

y

wyp
n
y +

∫
z (ε) dQn (ε) (35)

s.t. z(ε) ≥ ιy · ε− wy, ∀y, ∀ε (36)
∫
z (ε) dQn (ε) = 0. (37)

We will demonstrate consistency by showing that (zn, wn) converge a.s. to the dual

optimizers in the “limit” dual problem, given by

inf
z,w

∑

y

wyp
0
y (38)

z(ε) ≥ ιy · ε− wy, ∀y, ∀ε (39)
∫
z (ε) dQ = 0 (40)

We denote the optimizers in this limit problem by (w0, z0), where, by construction, w0

are the “true” values of the choice-specific value functions. The difference between the

35 We note that, as discussed before, the discreteness of Qn implies that (zn, wn) will not be uniquely

determined, as the core of the assignment game for a finite market is not a singleton. But this does not

affect the proof, as our arguments below hold for any sequence of selections {zn, wn}n.
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discretized and limit dual problems is that Qn in the former has been replaced by Q, the

continuous distribution of ε, and the estimated choice probabilities pn have been replaced

by the limit p0.

We proceed in two steps. First, we argue that the sequence of optimized dual programs

(35) converges to the optimized limit dual program (38), a.s. Based upon this, we then

argue that the sequence of dual optimizers, (wn, zn), necessarily converge to their unique

limit optimizers, (w0, z0), a.s.

First step. By the Kantorovich duality theorem, we know that the optimized values for

the limit primal and dual programs coincide

sup
γ∈Π(Q0,p0)

∫

Rd×Rd

(ι · ε) γ(dε, dι) = inf
∑

y

wyp
0
y +

∫
z (ε) dQ. (41)

Moreover, both the primal and dual problems in the discretized case are finite-dimensional

linear programming problem, and by the usual LP duality, the optimal primal and dual

problems for the discretized case also coincide:
∫

Rd×Rd

(ι · ε) γn(dε, dι) =
∑

y

wny p
n
y +

∫
zn (ε) dQn.

Given Assumption 1, and by Theorem 5.20 in Villani (2009), p. 77, we have that, up

to a subsequence extraction, γn (the optimizing argument of (31)) converges weakly. In

addition, by Theorem 5.30 in Villani (2009), the left-hand side of (41) has a unique solution

γ; hence, the sequence γn must converge generally to γ. This implies a.s. convergence of

the value of the primal problems:
∫

Rd×Rd

(ι · ε) γn(dε, dι)→
∫

Rd×Rd

(ι · ε) γ(dε, dι), a.s.,

and, by duality, we must also have a.s. convergence of the discretized dual problem to the

limit problem:

∑

y

wny p
n
y +

∫
zn (ε) dQn →

∑

y

wyp
0
y +

∫
z (ε) dQ, a.s. (42)

Second step. Next, we show that the discretized dual minimizers (zn, wn) converge a.s.

For convenience, in what follows we will suppress the qualifier “a.s.” from all the statements

below. Let

w
¯
n = min

y
wny . (43)
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From examination of the dual problem (35), we see that zn is the piecewise affine function

zn(ε) = max
y
{ιy · ε− wny }, (44)

thus zn is M -Lipschitz with M := maxy |ιy| = 1. Now observe that

zn(ε) + w
¯
n = max

y
{ιy · ε− wny + w

¯
n} ≤ max

y
{ιy · ε} =: z(ε) (45)

and, letting y′ be the argument of the minimum in (43),

zn(ε) + w
¯
n ≥ ιy′ · ε− wny′ + w

¯
n = ιy

′ · ε ≥ min
y
{ιy · ε} =: z(ε) (46)

thus, by a combination of (45) and (46),

z(ε) ≤ zn(ε) + w
¯
n ≤ z(ε). (47)

By
∫
zn (ε) dQn (ε) = 0, we have that that w

¯
n is uniformly bounded (sublinear): for some

constant K, |zn(ε)| ≤ C(1+ |ε|) for every n and every ε. Hence the sequence zn is uniformly

equicontinuous, and converges locally uniformly up to a subsequence extraction by Ascoli’s

theorem. Let this limit function be denoted z0. By (42), and Theorem 2, we deduce that z,

the optimizer in the limit dual problem is unique36, so that it must coincide with the limit

function z0.

By the definition of (wn, zn) as optimizing arguments for (35), we have
∑

y w
n
y p

n
y ≤∑

y w
¯
npy +

∫
[z (ε)]dQn (ε) or

∑

y

(
wny − w

¯
n
)
pny ≤

∫
[z (ε)]dQn (ε) = EQnz

The second moment restrictions on Qn (condition (ii) in the theorem) imply that EQnz(ε)

exists and converges to EQz. Hence, the nonnegative vectors
(
wny − w

¯
n
)

are bounded;

accordingly, the vectors
(
wny
)

are themselves bounded. This implies that wn converges up

to a subsequence to some limit point w∗, using the Bolzano-Weierstrass theorem. This

implies that
∑

y w
n
y p

n
y →

∑
y w
∗
ypy by bounded convergence. By Theorem 2, we know that

the limit point w∗ must coincide with w0, which is the unique optimizer in the dual limit

problem (38). Thus, we have shown that wn converges to w0, a.s. �

36 Although the support of ε is not bounded, the locally uniform convergence of zn and the fact that the

second moments of Qn are uniformly bounded are enough to conclude.
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10. Additional Figures

Design RMSE(y = 0) RMSE(y = 1) R2(y = 0) R2(y = 1)

N = 100, T = 100 0.5586 (3.7134) 0.2435 (0.1155) 0.3438 (0.7298) 0.7708 (0.2073)

N = 100, T = 500 0.1070 (0.0541) 0.1389 (0.0638) 0.7212 (0.2788) 0.9119 (0.0820)

N = 100, T = 1000 0.0810 (0.0376) 0.1090 (0.0425) 0.8553 (0.1285) 0.9501 (0.0352)

N = 200, T = 100 0.1244 (0.0594) 0.1642 (0.0628) 0.5773 (0.6875) 0.8736 (0.1112)

N = 200, T = 200 0.1177 (0.0736) 0.1500 (0.0816) 0.7044 (0.2813) 0.9040 (0.0842)

N = 500, T = 100 0.0871 (0.0375) 0.1162 (0.0430) 0.8109 (0.2468) 0.9348 (0.0650)

N = 500, T = 500 0.0665 (0.0261) 0.0829 (0.0290) 0.8899 (0.1601) 0.9678 (0.0374)

N = 1000, T = 100 0.0718 (0.0340) 0.0928 (0.0344) 0.8777 (0.1320) 0.9647 (0.0314)

N = 1000, T = 1000 0.0543 (0.0176) 0.0643 (0.0162) 0.9322 (0.0577) 0.9820 (0.0101)

Table 3
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Figure 6. For each value of S, we plot the values of the differences

maxw∈∂G∗(p)w1 − minw∈∂G∗(p)w1 across all values of p ∈ ∆3. In the box-

plot, the central mark is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme data points not

considered outliers, and outliers are plotted individually.
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Figure 7. For each value of S, we plot the values of the differences

maxw∈∂G∗(p)w2 − minw∈∂G∗(p)w2 across all values of p ∈ ∆3. In the box-

plot, the central mark is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme data points not

considered outliers, and outliers are plotted individually.
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Figure 8
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Figure 9


