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Abstract

Given a convex bounded domain Ω in R
d and an integer N ≥ 2, we associate to any jointly N-

monotone (N − 1)-tuplet (u1, u2, ..., uN−1) of vector fields from Ω into R
d, a Hamiltonian H on R

d ×

R
d...×R

d, that is concave in the first variable, jointly convex in the last (N − 1) variables such that for
almost all x ∈ Ω,

(u1(x), u2(x), ..., uN−1(x)) = ∇2,...,NH(x, x, ..., x).

Moreover, H is N-sub-antisymmetric, meaning that
N−1∑

i=0

H(σi(x)) ≤ 0 for all x = (x1, ..., xN) ∈ ΩN , σ

being the cyclic permutation on R
d defined by σ(x1, x2, ..., xN) = (x2, x3, ..., xN , x1). Furthermore, H is

N-antisymmetric in a sense to be defined below. This can be seen as an extension of a theorem of E.
Krauss, which associates to any monotone operator, a concave-convex antisymmetric saddle function. We
also give various variational characterizations of vector fields that are almost everywhere N-monotone,
showing that they are dual to the class of measure preserving N-involutions on Ω. .

1 Introduction

Given a domain Ω in R
d, recall that a single-valued map u from Ω to R

d is said to be N -cyclically monotone
if for every cycle x1, ..., xN , xN+1 = x1 of points in Ω, one has

N
∑

i=1

〈u (xi) , xi − xi+1〉 ≥ 0. (1)

A classical theorem of Rockafellar [10] states that a map u from Ω to R
d is N -cyclically monotone for every

N ≥ 2 if and only if
u(x) ∈ ∂φ(x) for all x ∈ Ω, (2)

where φ : Rd → R is a convex function. On the other hand, a result of E. Krauss [9] yields that u is a
monotone map, i.e., a 2-cyclically monotone map, if and only if

u(x) ∈ ∂2H(x, x) for all x ∈ Ω, (3)

where H is a concave-convex antisymmetric Hamiltonian on R
d × R

d, and ∂2H is the subdifferential of H
as a convex function in the second variable.

In this paper, we extend the result of Krauss to the class of N -cyclically monotone vector fields, where
N ≥ 3. We shall give a representation for a family of (N − 1) vector fields, which may or may not be
individually N -cyclically monotone. Here is the needed concept.
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Definition 1 Let u1, ..., uN−1 be bounded vector fields from a domain Ω ⊂ R
d into R

d. We shall say that
the (N − 1)-tuple (u1, u2, ..., uN−1) is jointly N -monotone, if for every cycle x1, ..., xN+ℓ of points in Ω such
that xN+i = xi for 1 ≤ i ≤ ℓ, one has

N
∑

i=1

N−1
∑

ℓ=1

〈ul(xi), xi − xl+i〉 ≥ 0. (4)

Examples of jointly N-monotone families of vector fields:

• It is clear that (u, 0, 0, ..., 0) is jointly N -monotone if and only if u is N -monotone.

• More generally, if each uℓ is N -monotone, then the family (u1, u2, ..., uN−1) is jointly N -monotone.
Actually, one only needs that for 1 ≤ ℓ ≤ N − 1, the vector field uℓ be (N, ℓ)-monotone, in the
following sense: for every cycle x1, ..., xN+ℓ of points in Ω such that xN+i = xi for 1 ≤ i ≤ ℓ, we have

N
∑

i=1

〈uℓ (xi) , xi − xℓ+i〉 ≥ 0. (5)

This notion is sometimes weaker than N -monotonicity since if ℓ divides N , then it suffices for u to be
N
ℓ
-monotone in order to be an (N, ℓ)-monotone vector field. For example, if u1 and u3 are 4-monotone

operators and u2 is 2-monotone, then the triplet (u1, u2, u3) is jointly 4-monotone.

• Another example is when (u1, u2, u3) are vector fields such that u2 is 2-monotone and

〈u1(x) − u3(y), x− y〉 ≥ 0 for every x, y ∈ R
d.

In this case, the triplet (u1, u2, u3) is jointly 4-monotone. In particular, if u1 and u2 are both 2-
monotone, then the triplet (u1, u2, u1) is jointly 4-monotone.

• More generally, it is easy to show that (u, u, ..., u) is jointly N -monotone if and only if u is 2-cyclically
monotone.

In the sequel, we shall denote by σ the cyclic permutation on R
d × ...× R

d, defined by

σ(x1, x2, ..., xN−1, xN ) = (x2, x3, ..., xN , x1),

and consider the family of continuous N -antisymmetric Hamiltonians on ΩN , that is

HN (Ω) = {H ∈ C(ΩN );

N−1
∑

i=0

H(σi(x1, ..., xN )) = 0} (6)

We shall say that H is N -sub-antisymmetric on Ω if

N−1
∑

i=0

H(σi(x1, ..., xN )) ≤ 0 on ΩN and H(x, x, ..., x) = 0 on the diagonal. (7)

We shall also say that a function F of two variables is N -cyclically sub-antisymmetric on Ω, if

F (x, x) = 0 and
N
∑

i=1

F (xi, xi+1) ≤ 0 for all cyclic families x1, ..., xN , xN+1 = x1 in Ω. (8)

Note that if a function H(x1, ..., xN ) N -sub-antisymmetric and if it only depends on the first two variables,
then the function F (x1, x2) := H(x1, x2, ..., xN ) is N -cyclically sub-antisymmetric.

We associate to any function H on ΩN , the following functional on Ω× (Rd)N−1,

LH(x, p1, ..., pN−1) = sup

{

N−1
∑

i=1

〈pi, yi〉 −H(x, y1, ..., yN−1); yi ∈ Ω

}

. (9)
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Note that if Ω is convex and if H is convex in the last (N−1) variables, then LH is nothing but the Legendre
transform of H̃ with respect to the last (N −1) variables, where H̃ is the extension of H over (Rd)N , defined
as: H̃ = H on ΩN and H̃ = +∞ outside of ΩN . Since H(x, ..., x) = 0 for any H ∈ HN (Ω), then for any
such H , we have for x ∈ Ω and p1, ..., pN−1 ∈ R

d,

LH(x, p1, ..., pN−1) ≥
N−1
∑

i=1

〈x, pi〉. (10)

To formulate variational principles for such vector fields, we shall consider the class of σ-invariant probability
measures on ΩN , which are those π ∈ P(ΩN ) such that for all h ∈ L1(ΩN , dπ), we have

∫

ΩN

h(x1, ..., xN )dπ =

∫

ΩN

h(σ(x1, ..., xN ))dπ. (11)

We denote
Psym(Ω

N ) = {π ∈ P(ΩN ); π σ-invariant probability on ΩN}. (12)

For a given probability measure µ on Ω, we also consider the class

Pµ
sym(Ω

N ) = {π ∈ Psym(Ω
N ); proj1π = µ}, (13)

i.e., the set of all π ∈ Psym(Ω
N ) with a given first marginal µ, meaning that

∫

ΩN f(x1) dπ(x1, ..., xN ) =
∫

Ω f(x1) dµ(x1) for every f ∈ L1(Ω, µ). (14)

Consider now the set S(Ω, µ) of µ-measure preserving transformations on Ω, which can be identified with
a closed subset of the sphere of L2(Ω,Rd). We shall also consider the subset of S(Ω, µ) consisting of N -
involutions, that is

SN (Ω, µ) = {S ∈ S(Ω, µ); SN = I µ a.e.}.

2 Monotone vector fields and N-antisymmetric Hamiltonians

In this section, we establish the following extension of a theorem of Krauss.

Theorem 2 Let N ≥ 2 be an integer, and consider u1, ..., uN−1 to be bounded vector fields from a convex
domain Ω ⊂ R

d into R
d.

1. If the (N − 1)-tuple (u1, ..., uN−1) is jointly N -monotone, then there exists an N -sub-antisymmetric
Hamiltonian H that is concave in the first variable, convex in the other (N − 1) variables such that

(u1(x), ..., uN−1(x)) = ∇2,...,NH(x, x, ..., x) for a.e. x ∈ Ω. (15)

Moreover, H is N -antisymmetric in the following sense

H(x1, x2, ..., xN ) +H2,...,N(x1, x2, ..., xN ) = 0, (16)

where H2,...,N is the concavification of the function K(x) =
N−1
∑

i=1

H(σi(x)) with respect to the last (N−1)

variables.

Furthermore, there exists a continuous N -antisymmetric Hamiltonian H̄ on ΩN , such that

LH̄(x, u1(x), u2(x), ..., uN−1(x)) =
N−1
∑

i=1

〈ui(x), x〉 for all x ∈ Ω. (17)

2. Conversely, if (u1, ..., uN−1) satisfy (15) for some N -sub-antisymmetric Hamiltonian H that is concave
in the first variable, convex in the other variables, then the (N − 1)-tuple (u1, ..., uN−1) is jointly N -
monotone.
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Remark 3 Note that in the case N = 2, K (x) = H (x2, x1) is concave with respect to x2, hence H2 (x1, x2) =
H (x2, x1), and (16) becomes

H (x1, x2) +H (x2, x1) = 0,

thus H is antisymmetric, recovering well-known results [9], [4], [7], [8].

We start with the following lemma.

Lemma 4 Assume the (N − 1)-tuple of bounded vector fields (u1, ..., uN−1) on Ω is jointly N -monotone.

Let f(x1, ..., xn) :=
∑N−1

l=1 〈ul(x1), x1 − xl+1〉 and consider the function f̃(x1, ..., xn) to be the convexification
of f with respect to the first variable, that is

f̃ (x1, x2, ..., xN ) = inf

{

n
∑

k=1

λkf
(

xk1 , x2, ..., xN
)

: n ∈ N, λk ≥ 0,

n
∑

k=1

λk = 1,

n
∑

k=1

λkx
k
1 = x1

}

. (18)

Then, f̃ satisfies the following properties:

1. f ≥ f̃ on ΩN ;

2. f̃ is convex in the first variable and concave with respect to the other variables;

3. f̃(x, x, ..., x) = 0 for each x ∈ Ω,

4. f̃ satisfies
∑N−1

i=0 f̃(σi(x1, ..., xN )) ≥ 0 on ΩN . (19)

Proof: Since the (N − 1)-tuple (u1, ..., uN−1) is jointly N -monotone, it is easy to see that the function

f(x1, ..., xn) :=

N−1
∑

l=1

〈ul(x1), x1 − xl+1〉

is linear in the last (N − 1) variables, that f(x, x, ..., x) = 0, and that

∑N−1
i=0 f(σi(x1, ..., xN )) ≥ 0 on ΩN . (20)

It is also clear that f ≥ f̃ , that f̃ is convex with respect to the first variable x1, and that it is concave with
respect to the other variables x2, ..., xN , since f itself is concave (actually linear) with respect to x2, ..., xn.
We now show that f̃ satisfies (19).

For that, we fix x1, x2, ..., xN in Ω and consider (xk1)
n
k=1 in Ω, and (λk)k in R such that λk ≥ 0 such that

∑n
k=1 λk = 1 and

∑n
k=1 λkx

k
1 = x1. For each k, we have

f(xk1 , x2, ..., xN ) + f(x2, ..., xN , x
k
1) + ...+ f(xN , x

k
1 , x2, ..., xN−1) ≥ 0.

Multiplying by λk, summing over k, and using that f is linear in the last (N − 1)-variables, we have

n
∑

k=1

λkf(x
k
1 , x2, ..., xN ) + f(x2, ..., xN , x1) + ...+ f(xN , x1, x2, ..., xN−1) ≥ 0.

By taking the infimum, we obtain

f̃ (x1, x2, ..., xN ) +
N−1
∑

i=1

f(σi(x1, x2, ..., xN )) ≥ 0.

Let now n ∈ N, λk ≥ 0, xkN ∈ Ω be such that
∑n

k=1 λk = 1 and
n
∑

k=1

λkx
k
2 = x2. We have for every 1 ≤ k ≤ n,

f̃
(

x1, x
k
2 , x3, ..., xN

)

+ f
(

xk2 , x3, , ..., x1
)

+ ...+ f
(

xN , x1, x
k
2 , x3, ..., xN−1

)

≥ 0.
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Multiplying by λk, summing over k and using that f̃ is convex in the first variable and f is linear in the last
(N − 1)-variables, we obtain

f̃ (x1, x2, x3, ..., xN ) +
n
∑

k=1

λkf
(

xk2 , x3, , ..., x1
)

+ ...+ f (xN , x1, x2, x3, ..., xN−1)

≥
n
∑

k=1

λkf̃
(

x1, x
k
2 , x3, ..., xN

)

+

n
∑

k=1

λkf
(

xk2 , x3, , ..., x1
)

+ ...+

n
∑

k=1

λkf
(

xN , x1, x
k
2 , x3, ..., xN−1

)

≥ 0.

By taking the infimum over all possible such choices, we get

f̃ (x1, x2, x3, ..., xN ) + f̃ (x2, x3, , ..., x1) + ...+ f (xN , x1, x2, x3, ..., xN−1) ≥ 0.

By repeating this procedure with x3, ..., xN−1, we get

N−2
∑

i=0

f̃
(

σi(x1, x2, , ..., xN )
)

+ f (xN , x1, x2, x3, ..., xN−1) ≥ 0.

Finally, since

f (xN , x1, x2, x3, ..., xN−1) ≥ −
N−2
∑

i=0

f̃
(

σi(x1, x2, , ..., xN )
)

.

and since f̃ is concave in the last (N − 1) variables, we have for fixed x1, x2, ..., xN−1, that the function

xN → −
N−2
∑

i=0

f̃
(

σi(x1, x2, , ..., xN )
)

is a convex minorant of xN → f (xN , x1, x2, x3, ..., xN−1). It follows that

f (xN , x1, x2, x3, ..., xN−1) ≥ f̃ (xN , x1, x2, x3, ..., xN−1) ≥ −
N−2
∑

i=0

f̃
(

σi(x1, x2, , ..., xN )
)

,

which finally implies that
∑N−1

i=0 f̃(σi(x1, x2, ..., xN )) ≥ 0.

This clearly implies that f̃(x, x, ..., x) ≥ 0 for any x ∈ Ω. On the other hand, since f̃(x, x, ..., x) ≤
f(x, x, ..., x) = 0, we get that f̃(x, x, ..., x) = 0 for all x ∈ Ω. �

Proof of Theorem 2: Assume the (N − 1)-tuple of vector fields (u1, ..., uN−1) is jointly N -monotone on Ω,

and consider the function f(x1, ..., xn) :=
∑N−1

l=1 〈ul(x1), x1−xl+1〉 as well as its convexification with respect

to the first variable f̃(x1, ..., xn).
By Lemma 4, the function ψ(x1, ..., xn) := −f̃(x1, ..., xn) satisfies the following properties

(i) x1 → ψ(x1, ..., xn) is concave;

(ii) (x2, x3, ..., xN ) → ψ(x1, ..., xn) is convex;

(iii) ψ(x1, ..., xn) ≥ −f(x1, ..., xn) =
∑N−1

l=1 〈ul(x1), xl+1 − x1〉;

(iv) ψ is N -sub-antisymmetric.

Consider now the family H of functions H : ΩN → R such that

1. H(x1, x2, ..., xN ) ≥
∑N−1

l=1 〈ul(x1), xl+1 − x1〉 for every N -tuple (x1, ..., xN ) in ΩN ;

2. H is concave in the first variable;

3. H is jointly convex in the last (N − 1) variables;

4. H is N -sub-antisymmetric.
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Note that H 6= ∅ since ψ belongs to H. Moreover, by N -subsymmetry, any H ∈ H satisfies for all
x = (x1, ..., xN ) ∈ ΩN ,

H(x) ≤ −
N−1
∑

i=1

H(σi(x)) ≤ −
N−1
∑

i=1

ψ(σi(x)). (21)

This also yields that

N−1
∑

ℓ=1

〈uℓ(x1), xℓ+1 − x1〉 ≤ H(x) ≤ −
N
∑

i=2

N−1
∑

ℓ=1

〈uℓ(xi), xi − xi+ℓ〉, (22)

where we denote xi+N := xi for i = 1, ..., ℓ. This yields that H(x, x, ..., x) = 0 for every H ∈ H and any
x ∈ Ω.

On the other hand, it is easy to see that every directed family (Hi)i in H has a supremum H∞ ∈ H,
meaning that H is a Zorn family, and therefore it has a maximal element H .

Consider now the function

H̄(x) =
(N − 1)H(x)−

∑N−1
i=1 H(σi(x))

N
,

and note that

(i) H̄ is N -antisymmetric, since

H̄(x) =
1

N

N−1
∑

i=1

[H(x)−H(σi(x))],

and each Ki(x) := H(x)−H(σi(x)) is N -antisymmetric.

(ii) H̄ ≥ H on ΩN , since

N [H̄(x)−H(x)] = −
N−1
∑

i=0

H(σi(x)) ≥ 0,

because H itself is N -sub-antisymmetric.

The maximality of H would have implied that H = H̄ is N -antisymmetric if only H̄ was jointly convex
in the last (N − 1)-variables, but since this is not necessarily the case, we consider for x = (x1, x2, ..., xN ),
the function

K(x1, x2, ..., xN ) = K(x) := −
N−1
∑

i=1

H(σi(x)),

which is already concave in the first variable x1. Its convexification in the last (N − 1)-variables, that is

K2,...,N(x) = inf

{

n
∑

i=1

λiK(x1, x
i
2, ..., x

i
N ); λi ≥ 0,

n
∑

i=1

λi(x
i
2, ..., x

i
N , 1) = (x2, ..., xN , 1)

}

,

is still concave in the first variable, but is now convex in the last (N − 1) variables. Moreover,

H ≤ K2,...,N ≤ K = −
N−1
∑

i=1

H ◦ σi. (23)

Indeed, K2,...,N ≤ K from the definition of K2,...,N , while H ≤ K2,...,N because H ≤ K and H is already
convex in the last (N − 1)-variables. It follows that

H ≤
(N − 1)H +K2,...,N

N
≤

(N − 1)H +K

N
=

(N − 1)H −
N−1
∑

i=1

H ◦ σi

N
= H̄.
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The function H ′ = (N−1)H+K2,...,N

N
belongs to the family H and therefore H = H ′ by the maximality of H .

This finally yields that H is N -sub-antisymmetric, that H(x, x, x) = 0 for all x ∈ Ω and that

H(x) +H2,...,N(x) = 0 for every x ∈ ΩN ,

where H2,...,N = −K2,...,N , which for a fixed x1, is nothing but the concavification of (x2, ..., xN ) →
∑N−1

i=1 H(σi(x1, x2, ..., xN )).
Note now that since for any x1, ..., xN in Ω,

H(x1, x2, ...xN ) ≥
N−1
∑

ℓ=1

〈uℓ(x1), xℓ+1 − x1〉, (24)

and
H(x1, x1, ..., x1) = 0, (25)

we have

H(x1, x2, ..., xN )−H(x1, ..., x1) ≥
N−1
∑

ℓ=1

〈uℓ(x1), xℓ+1 − x1〉. (26)

Since H is convex in the last (N − 1) variables, this means that for all x ∈ Ω, we have

(u1(x), u2(x), ..., uN−1(x)) ∈ ∂2,...,NH(x, x, ..., x). (27)

as claimed in (15). Note that this also yield that

LH(x, u1(x), ..., uN−1(x)) +H(x, x, ..., x) =
∑N−1

ℓ=1 〈uℓ(x), x〉 for all x ∈ Ω.

In other words, LH(x, u1(x), ..., uN−1(x)) =
∑N−1

ℓ=1

∫

Ω
〈uℓ(x), x〉 for all x ∈ Ω. As above, consider

H̄(x) =
(N − 1)H(x)−

∑N−1
i=1 H(σi(x))

N
.

We have that H̄ ∈ HN (Ω) and H̄ ≥ H , and therefore LH̄ ≤ LH . On the other hand, we have for all x ∈ Ω,

LH̄(x, u1(x), ..., uN−1(x)) = LH̄(x, u1(x), ..., uN−1(x)) + H̄(x, x, ..., x) ≥
N−1
∑

ℓ=1

〈uℓ(x), x〉.

To prove (17), we use the appendix in [6] to deduce that for i = 2, ..., N , the gradients ∇iH(x, x, ..., x)
actually exist for a.e. x in Ω.

The converse is straightforward since if (27) holds, then (26) does, and since we also have (25), then the
property that (u1, ..., uN−1) is jointly N -monotone follows from (24) and the sub-antisymmetry of H . �

In the case of a single N -monotone vector field, we can obviously apply the above theorem to the (N−1)-
tuple (u, 0, ..., 0) which is then N -monotone to find a N -sub-antisymmetric Hamiltonian H , which is concave
in the first variable, convex in the last (N − 1) variables such that

(−u(x), u(x), 0, ..., 0) = ∇H(x, x, ..., x) for a.e. x ∈ Ω. (28)

However, in this case we can restrict ourselves to N -cyclically sub-antisymmetric functions of two variables
and establish the following extension of the Theorem of Krauss.

Theorem 5 If u is N -cyclically monotone on Ω, then there exists a concave-convex function of two variables
F that is N -cyclically sub-antisymmetric, such that

(−u(x), u(x) ∈ ∂F (x, x) for all x ∈ Ω, (29)

where ∂H is the sub-differential of H as a concave-convex function [11]. Moreover,

u(x) = ∇2F (x, x) for a.e. x ∈ Ω. (30)
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Proof: Let f(x, y) = 〈u(x), x − y〉 and let f1 (x, y) be its convexification in x for fixed y, that is

f1 (x, y) = inf

{

n
∑

k=1

λkf (xk, y) : λk ≥ 0,

n
∑

k=1

λk = 1,

n
∑

k=1

λkxk = x

}

. (31)

Since f(x, x) = 0, f is linear in y, and
∑N

i=1 f(xi, xi+1) ≥ 0 for any cyclic family x1, ..., xN , xN+1 = x1 in
Ω, it is easy to show that f ≥ f1 on Ω, f1 is convex in the first variable and concave with respect to the
second, f1(x, x) = 0 for each x ∈ Ω, and that f1 is N -cyclically supersymmetric in the sense that for any

cyclic family x1, ..., xN , xN+1 = x1 in Ω, we have
∑N

i=1 f
1(xi, xi+1) ≥ 0.

Consider now F (x, y) = −f1(x, y) and note that x→ F (x, y) is concave, y → F (x, y) is convex, F (x, y) ≥
−f(x, y) = 〈u(x), y − x〉 and F is N-cyclically sub-antisymmetric. By the antisymmetry, we have

〈u(x1), x2 − x1〉 ≤ F (x1, x2) ≤ 〈u(x2), x2 − x1〉, (32)

which yields that (−u(x), u(x)) ∈ ∂F (x, x) for all x ∈ Ω.
Since F is anti-symmetric and concave-convex, the possibly multivalued map x→ ∂2F (x, x) is monotone

on Ω, and therefore single-valued and differentiable almost everywhere [10]. This completes the proof.

Remark 6 Note that we cannot expect to have a function F such that
N
∑

i=1

F (xi, xi+1) = 0 for all cyclic

families x1, ..., xN , xN+1 = x1 in Ω. Actually, we believe that the only function satisfying such an N -anti-
symmetry for N ≥ 3 must be of the form F (x, y) = f(x)−f(y). This is the reason why one needs to consider
functions of N -variables in order to get N -antisymmetry. In other words, the function defined by

H(x1, x2, ..., xN ) :=
(N − 1)F (x1, x2)−

∑N−1
i=2 F (xi, xi+1)

N
, (33)

is N -antisymmetric in the sense of (6) and H(x1, x2..., xN ) ≥ F (x1, x2) for all (x1, x2..., xN ) in ΩN .

3 Variational characterization of monotone vector fields

In order to simplify the exposition, we shall always assume in the sequel that dµ is Lebesgue measure dx
normalized to be a probability on Ω. We shall also assume that Ω is convex and that its boundary has
measure zero.

Theorem 7 Let u1, ..., uN−1 : Ω → R
d be bounded measurable vector fields. The following properties are

then equivalent:

1. The (N − 1)-tuple (u1, ..., uN−1) is jointly N -monotone a.e., that is there exists a measure zero set Ω0

such that (u1, ..., uN−1) is jointly N -monotone on Ω \ Ω0.

2. The infimum of the following Monge-Kantorovich problem

inf

{

∫

ΩN

N−1
∑

ℓ=1

〈u(x1), x1 − xℓ+1〉dπ(x1, x2, ..., xN )); π ∈ Pµ
sym(Ω

N )

}

(34)

is equal to zero, and is therefore attained by the push-forward of µ by the map x→ (x, x, ..., x).

3. (u1, ..., uN−1) is in the polar of SN (Ω, µ) in the following sense,

inf

{

∫

Ω

N−1
∑

ℓ=1

〈uℓ(x), x − Sℓx〉 dµ;S ∈ SN (Ω, µ)

}

= 0. (35)

4. The following holds:

inf

{

∫

Ω

N−1
∑

ℓ=1

|uℓ(x)− Sℓx|2dµ;S ∈ SN (Ω, µ)

}

=

N−1
∑

ℓ=1

∫

Ω

|uℓ(x)− x|2dµ. (36)
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5. There exists a N -sub-antisymmetric Hamiltonian H which is concave in the first variable, convex in
the last (N − 1) variables such that

(u1(x), ..., uN−1(x)) = ∇2,...,NH(x, x, ..., x) for a.e. x ∈ Ω. (37)

Moreover, H is N -symmetric in the sense of (16).

6. The following duality holds:

inf{

∫

Ω

LH(x, u1(x), ..., uN−1(x))dµ; H ∈ HN (Ω)} = sup{

∫

Ω

N−1
∑

ℓ=1

〈uℓ(x), S
ℓx〉 dµ;S ∈ SN (Ω, µ)}

and the latter is attained at the identity map.

We start with the following lemma, which identifies those probabilities in Pµ
sym(Ω

N ) that are carried by

graphs of functions from Ω to ΩN .

Lemma 8 Let S : Ω → Ω be a µ-measurable map, then the following properties are equivalent:

1. The image of µ by the map x→ (x, Sx, ..., SN−1x) belongs to Pµ
sym(Ω

N ).

2. S is µ-measure preserving and SN (x) = x µ-a.e.

3. For any bounded Borel measurable N -antisymmetric H on ΩN , we have
∫

Ω
H(x, Sx, ..., SN−1x) dµ = 0.

Proof. It is clear that 1) implies 3) since
∫

ΩN H(x) dπ(x) = 0 for any N -antisymmetric Hamiltonian H
and any π ∈ Pµ

sym(Ω
N ).

That 2) implies 1) is also straightforward since if π is the push-forward of µ by a map of the form
x → (x, Sx, ..., SN−1x), where S is a µ-measure preserving S with SNx = x µ a.e. on Ω, then for all
h ∈ L1(ΩN , dπ), we have

∫

ΩN

h(x1, ..., xN )dπ =

∫

ΩN

h(x, Sx, ..., SN−1x) dµ(x) =

∫

ΩN

h(Sx, S2x, ..., SN−1x, SNx) dµ(x)

=

∫

ΩN

h(Sx, S2x, ..., SN−1x, x) dµ(x) =

∫

ΩN

h(σ(x1, ..., xN ))dπ.

We now prove that 2) and 3) are equivalent. Assuming first that S is µ-measure preserving such that SN = I

µ a.e., then for every Borel bounded N -antisymmetric H , we have
∫

Ω

H(x, Sx, S2x, ..., SN−1x)dµ =

∫

Ω

H(Sx, S2x, ..., SN−1x, x)dµ

= ... =

∫

Ω

H(SN−1x, x, Sx, ..., SN−2x)dµ.

Since H is N -antisymmetric, we can see that

H(x, Sx, ..., SN−1x) +H(Sx, S2x, ..., SN−1x, x) + ...H(SN−1x, x, Sx, .., SN−2x) = 0.

It follows that N
∫

Ω
H(x, Sx, S2x, .., SN−1x)dµ = 0.

For the reverse implication, assume
∫

ΩH(x, Sx, S2x, ..., SN−1x)dµ = 0 for every N -antisymmetric Hamil-
tonian H . By testing this identity with the Hamiltonians

H(x1, x2, ..., xN ) = f(x1)− f(xi),

where f is any continuous function on Ω, one gets that S is µ-measure preserving. Now take the Hamiltonian

H(x1, x2, ..., xN ) = |x1 − SxN | − |Sx1 − x2| − |x2 − Sx1|+ |Sx2 − x3|.
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Note that H ∈ HN (Ω) since it is of the form H(x1, ..., xN ) = f(x1, x2, xN ) − f(x2, x3, x1). Now test the
above identity with such an H to obtain

0 =

∫

Ω

H(x, Sx, S2x, ..., SN−1x)dµ =

∫

Ω

|x− SSN−1x| dµ.

It follows that SN = I µ a.e. on ω, and we are done. �

Proof of Theorem 7: To show that (1) implies (2), it suffices to notice that if π is a σ-invariant probability
measure on ΩN such that proj1π = µ, then

∫

ΩN

N−1
∑

ℓ=1

〈uℓ(x1), x1 − xℓ+1〉dπ (x1, ..., xN ) =
1

N

N
∑

i=1

∫

ΩN

N−1
∑

ℓ=1

〈uℓ (xi) , xi − xi+ℓ〉dπ (x1, ..., xN )

=
1

N

∫

ΩN

(

N
∑

i=1

N−1
∑

ℓ=1

〈uℓ (xi) , xi − xi+ℓ〉

)

dπ (x1, ..., xN )

≥ 0,

since (u1, ..., uN−1) is jointly N -monotone. On the other hand, if π is the σ-invariant measure obtained by
taking the image of µ := dx by x→ (x, ..., x), then

∫

ΩN

N−1
∑

ℓ=1

〈uℓ(x1), x1 − xℓ+1〉dπ (x1, ..., xN ) = 0.

To show that (2) implies (3), let S be a µ-measure preserving transformation on Ω such that SN = I µ a.e.
on Ω. Then the image πS of µ by the map

x→
(

x, Sx, S2x, ..., SN−1x
)

is σ-invariant, hence

∫

ΩN

N−1
∑

ℓ=1

〈uℓ(x1), x1 − xℓ+1〉dπS (x1, ..., xN ) =

∫

Ω

N−1
∑

ℓ=1

〈uℓ(x), x − Sℓx〉 dµ ≥ 0.

By taking S = I, we get that the infimum is necessarily zero.

The equivalence of (3) and (4) follows immediately from developing the square.

We now show that (3) implies (1). For that take N points x1, x2, ..., xN in Ω, and let R > 0 be such that
B (xi, R) ⊂ Ω. Consider the transformation

SR (x) =























x− x1 + x2 for x ∈ B (x1, R)
x− x2 + x3 for x ∈ B (x2, R)

...

x− xN + x1 for x ∈ B (xN , R)
x otherwise

It is easy to see that SR is a measure preserving transformation and that SN
R = Id. We then have

0 ≤

∫

Ω

N−1
∑

ℓ=1

〈uℓ(x), x − Sℓ
Rx〉 dµ ≤

N
∑

i=1

∫

B(xi,R)

N−1
∑

ℓ=1

〈uℓ (x) , xi − xℓ+i〉 dµ.

Letting R→ 0, we get from Lebesgue’s density theorem, that

1

|B (xi, R)|

∫

B(xi,R)

〈uℓ (x) , xi − xℓ+i〉 dµ → 〈uℓ (xi) , xi − xℓ+i〉 ,
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from which follows that (u1, ..., uN−1) are jointly N -monotone a.e. on Ω.

The fact that (1) is equivalent to (5) follows immediately from Theorem 2.
To prove that 5) implies 6) note that for all pi ∈ R

d, x ∈ Ω, yi ∈ Ω, i = 1, ..., N − 1,

LH(x, p1, ..., pN−1) +H(x, y1, ..., yN−1) ≥
N−1
∑

i=1

〈pi, yi〉,

which yields that for any S ∈ SN (Ω, µ),

∫

Ω

[LH(x, u1(x), ..., uN−1(x)) dµ+H(x, Sx, ..., SN−1x)] dµ ≥

∫

Ω

N−1
∑

ℓ=1

〈uℓ(x), S
ℓx〉 dµ.

If H ∈ HN (Ω) and S ∈ SN (Ω, µ), we then have
∫

ΩH(x, Sx, ..., SN−1x)dµ = 0, and therefore

∫

Ω

LH(x, u1(x), ..., uN−1(x)) dµ ≥

∫

Ω

N−1
∑

ℓ=1

〈uℓ(x), S
ℓx〉 dµ.

If now H is the N -sub-antisymmetric Hamiltonian obtained by 5), which is concave in the first variable,
convex in the last (N − 1) variables, then

LH(x, u1(x), ..., uN−1(x)) +H(x, x, ..., x) =
∑N−1

ℓ=1 〈uℓ(x), x〉 for all x ∈ Ω \ Ω0,

and therefore
∫

Ω
LH(x, u1(x), ..., uN−1(x)) dµ =

∑N−1
ℓ=1

∫

Ω
〈uℓ(x), x〉 dµ.

Consider now

H̄(x) =
(N − 1)H(x)−

∑N−1
i=1 H(σi(x))

N
.

As before, we have that H̄ ∈ HN (Ω) and H̄ ≥ H . Since LH̄ ≤ LH , we have that
∫

Ω LH̄(x, u1(x), ..., uN−1(x)) dµ =
∑N−1

ℓ=1

∫

Ω
〈uℓ(x), x〉 dµ and (6) is proved.

Finally, note that (6) readily implies (3), which means that (u1, ..., uN−1) is then jointly N -monotone. �

We now consider again the case of a single N -cyclically monotone vector field.

Corollary 9 Let u : Ω → R
d be a bounded measurable vector field. The following properties are then

equivalent:

1. u is N -cyclically monotone a.e., that is there exists a measure zero set Ω0 such that u is N -cyclically
monotone on Ω \ Ω0.

2. The infimum of the following Monge-Kantorovich problem

inf{
∫

ΩN 〈u(x1), x1 − x2〉dπ(x); π ∈ Pµ
sym(Ω

N )} (38)

is equal to zero, and is therefore attained by the push-forward of µ by the map x→ (x, x, ..., x).

3. The vector field u is in the polar of SN (Ω, µ), that is

inf{

∫

Ω

〈u(x), x − Sx〉 dµ;S ∈ SN (Ω, µ)} = 0. (39)

4. The projection of u on SN (Ω, µ) is the identity map, that is

inf{

∫

Ω

|u(x)− Sx|2dµ;S ∈ SN (Ω, µ)} =

∫

Ω

|u(x)− x|2dµ. (40)
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5. There exists a N -cyclically sub-antisymmetric function H of two variables, which is concave in the first
variable, convex in the second variable such that

u(x) = ∇2H(x, x) for a.e. x ∈ Ω. (41)

6. The following duality holds:

inf{

∫

Ω

LH(x, u(x), 0, ..., 0)dµ; H ∈ HN (Ω)} = sup{

∫

Ω

〈u(x), Sx〉 dµ;S ∈ SN (Ω, µ)}

and the latter is attained at the identity map.

Proof: This is an immediate application of Theorem 7 applied to the (N−1)-tuplet vector fields (u, 0, ..., 0),
which is clearly jointly N -monotone on Ω \ Ω0, whenever u is N -monotone on Ω \ Ω0.

Remark 10 Note that the sets of µ-measure preserving N -involutions (SN (Ω, µ))N do not form a nested
family, that is SN (Ω, µ) is not necessarily included in SM (Ω, µ), whenever N ≤ M , unless of course M is a
multiple of N . On the other hand, the above theorem shows that their polar sets, i.e.,

SN (Ω, µ)0 = {u ∈ L2(Ω,Rd);
∫

Ω〈u(x), x− Sx〉 dµ ≥ 0 for all S ∈ SN (Ω, µ)},

which coincide with the N -cyclically monotone maps, satisfy

SN+1(Ω, µ)
0 ⊂ SN (Ω, µ)0,

for every N ≥ 1. This can also be seen directly. Indeed, it is clear that a 2-involution is a 4-involution but
not necessarily a 3-involution. On the other hand, assume that u is 3-cyclically monotone operator, then for
any transformation S : Ω → Ω, we have

∫

Ω

〈u(x), x − Sx〉dµ+

∫

Ω

〈u(Sx), Sx− S2x〉dµ+

∫

Ω

〈u(S2x), S2x− x〉dµ ≥ 0.

If now S is measure preserving, we have
∫

Ω

〈u(x), x − Sx〉dµ+

∫

Ω

〈u(x), x − Sx〉dµ+

∫

Ω

〈u(S2x), S2x− x〉dµ ≥ 0,

and if S2 = I, then
∫

Ω
〈u(x), x − Sx〉dµ ≥ 0, which means that u ∈ S2(Ω, µ)

0. Similarly, one can show that
any (N + 1)-cyclically monotone operator belongs to SN (Ω, µ)0. In other words, SN+1(Ω, µ)

0 ⊂ SN (Ω, µ)0

for all N ≥ 2. Note that S1(Ω, µ)
0 = {I}0 = L2(Ω,Rd), while

S(Ω, µ)0 = ∩NSN (Ω, µ)0 = {u ∈ L2(Ω,Rd), u = ∇φ for some convex function φ in W 1,2(Rd)},

in view of classical results of Rockafellar [11] and Brenier [1].

Remark 11 In a forthcoming paper [6], the above result is extended to give a similar decomposition for
any family of bounded measurable vector fields u1, u2, ...., uN−1 on Ω. It is shown there that there exists
a measure preserving N -involution S on Ω and an N -antisymmetric Hamiltonian H on ΩN such that for
i = 1, ..., N − 1, we have

ui(x) = ∇i+1H(x, Sx, S2x, ...SN−1x) for a.e. x ∈ Ω.
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