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The Network Structure of International Trade †

By Thomas Chaney *

Motivated by empirical evidence I uncover on the dynamics of 
French firms’ exports, I offer a novel theory of trade frictions. Firms 
export only into markets where they have a contact. They search 
directly for new trading partners, but also use their existing network 
of contacts to search remotely for new partners. I characterize the 
dynamic formation of an international network of exporters in this 
model. Structurally, I estimate this model on French data and confirm 
its predictions regarding the distribution of the number of foreign 
markets accessed by exporters and the geographic distribution of 
exports. (JEL D85, F11, F14, L24)

This paper proposes a new theory of the frictions associated with international 
trade, and more generally the frictions that affect the ability of firms to trade with 
each other. Samuelson (1954) and later Krugman (1980) recognized the key impor-
tance that trade frictions play not only in shaping the patterns of international trade, 
but also in determining relative factor prices between countries, and ultimately 
comparative development. Despite the central role they play in trade models, trade 
frictions remain largely unexplained, and we only have a very crude formalization 
of those frictions. Samuelson (1954), Krugman (1980) and most of the trade litera-
ture assume “iceberg”-type trade costs, a simple proportional cost. Melitz (2003); 
Helpman, Melitz, and Rubinstein (2008); and Chaney (2008) recognize the impor-
tance of the extensive margin of trade in determining firm level and aggregate flows, 
and introduce a fixed cost in addition to the usual iceberg cost. Arkolakis (2010) 
further endogenizes this fixed cost and allows firms to choose from a menu of fixed 
costs. Yet this simple combination of a fixed and a variable cost is too crude to cap-
ture many facts about firm-level exports. Whereas Bernard et al. (2003) or Melitz 
(2003) assume that differences in the ability of firms to enter foreign markets are 
entirely driven by heterogeneous productivities, Armenter and Koren (forthcom-
ing) point out that productivity differences can only account for a fraction of the 
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 exposure to international markets. Similarly, Eaton, Kortum, and Kramarz (2011) 
show that a large amount of idiosyncratic noise has to be added to the simple combi-
nation of fixed and variable costs of the Melitz model in order to empirically match 
firm level exports from France.

The main contribution of this paper is to develop a theory of trade frictions based 
on the notion of informational frictions. This theory is motivated by new stylized 
facts I uncover on the dynamics of firm-level exports in France. The second contri-
bution of this paper is to build a dynamic model of trade frictions. While there are 
strong patterns in the dynamics of firm-level trade, most existing trade models are 
static in essence.1 By adding structure to the export dynamics, I generate predictions 
linking the cross section and the time series of international trade. The third contri-
bution of this paper is explicitly to account for the geography of trade. Geography, 
measured as the physical distance between countries, plays a crucial role in explain-
ing the empirical patterns of international trade, yet it is absent from most trade 
models.2 I show how to introduce geographic space into a theoretical model of firm-
level trade, and provide precise empirical evidence in support of the model. I focus 
primarily on the physical distance between locations. The reason is both that this is 
a measure that is easy to calculate and that this is the measure that is empirically 
most relevant to explain trade flows. Putting together those three contributions—the 
notion that information is a key friction to trade, its corollary that the diffusion of 
information will follow an intrinsically dynamic process, and the fact that geogra-
phy matters for trade in a specific way—this paper offers a very different perspective 
on international trade compared to traditional models.

Before describing the related literature, I will spell out quickly the main intuition 
from the model, as well as the main predictions that I bring to the data.

Potential exporters meet foreign trading partners in two distinct ways. First, a 
firm searches directly for foreign partners, which I model as a geographically biased 
random search. Second, once a firm has acquired a network of foreign contacts in 
various foreign locations, it can search remotely for new trading partners from these 
locations. Those two assumptions are motivated by novel empirical evidence on the 
dynamics of firms exports I uncover using data on French firms from 1986 to 1992. 
The more countries a firm exports to, the more likely it is to enter new market sub-
sequently. Moreover, where a firm exports to affects which specific markets it will 
enter in the future: if a French firm exports to country a in year t, it is then more 
likely to enter in year t + 1 a country b geographically close to a, even if b is not 
close to France. The possibility to use existing contacts to find new ones gives an 
advantage to firms with many contacts. This generates a fat-tailed distribution for 
the number of foreign contacts across firms. The empirical distribution of the num-
ber of foreign contacts is well described by the theory.

A more elaborate contribution of this paper accounts for geographic space. 
Remote search allows say a French exporter that has a acquired a contact in Japan 

1 Dixit (1989); Krugman (1987); and Young (1991) are among a few early and notable exceptions, as are a few 
recent papers mentioned below in this introduction.

2 There are a few important exceptions in the economic geography literature (for instance, Fujita, Krugman, and 
Mori 1999). However, this literature is primarily theoretical, and rarely goes beyond testing a few stylized empirical 
facts, if any. Desmet and Rossi-Hansberg (2010) identify some of the challenges of introducing space in an equilib-
rium model, and show some empirical evidence. See Allen and Arkolakis (forthcoming) for a recent contribution.
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to radiate away from Japan as Japanese firms would. It does so by using its Japanese 
contacts as a remote hub from which it can expand out of Japan. By acquiring more 
foreign contacts, firms expand into more remote countries and, as a result, export 
over longer distances. Empirically, the geographic distance of exports increases with 
the number of foreign contacts as the theory predicts.

This is a theory of a network. Therefore, a shock that hits anywhere will be 
transmitted throughout the network, with an intensity that depends on the struc-
ture of the network. The data confirms this prediction. For instance, I show that for 
a French firm which already exports to a, the probability that it begins exporting 
to b will be higher following an increase in the trade volume between a and b, all 
else equal.

This paper contributes to the literature on international trade and networks.
There is a nascent literature in international trade and macroeconomics on the role 

that informational barriers and informational networks play in facilitating or ham-
pering transactions, and in transmitting shocks. In a seminal paper, Rauch (1999) 
conjectures that informational barriers play an important role. He offers a classifi-
cation of traded goods between differentiated and homogeneous goods, and shows 
that geographic proximity is more important for trade in differentiated goods. He 
argues that this is evidence for the importance of informational barriers. While the 
Rauch classification has been used widely in international trade, the notion that 
informational networks are important in overcoming informational barriers has 
remained relatively underexplored. I offer a formal treatment of the network that 
allows information to diffuse, and show evidence of this network using firm-level 
trade data. Rauch and Trindade (2002) show that the presence of ethnic Chinese 
networks facilitates bilateral trade, and particularly so for trade in differentiated 
goods. They argue that these findings are evidence for the importance of infor-
mational barriers, and that social networks mitigate those barriers. Rauch (2001) 
offers a survey of the literature on networks in international trade. In the context of 
intranational trade, Combes, Lafourcade, and Mayer (2005) show that social and 
business networks facilitate trade between regions within France, where they use 
migrations and  multiplant firms to infer a measure of social and business linkages. 
Using Spanish data, Garmendia et al. (2012) show that social and business networks 
have a stronger impact on the extensive margin than on the intensive margin of trade, 
a prediction that holds in my model. Burchardi and Hassan (2013) show that West 
German regions which have closer social ties with East Germany inherited from the 
tumultuous history of refugees relocations after WWII experienced faster growth 
and engaged in more investment into East Germany after the German reunification. 
In this paper, I develop a more general model of the formation of an international 
network of firms, and show how this network matters for firm-level trade patterns, 
over and beyond the effects analyzed in special cases studied so far.

On a somewhat related topic, Hidalgo et al. (2007) show that the product mix of 
goods manufactured and exported by countries can be described as a network, and 
that countries move toward more connected sectors as they grow. Acemoglu et al. 
(2012) describe the input-output linkages between sectors in the United States as a 
network, and show how idiosyncratic shocks to individual sectors have a nonnegligi-
ble impact on aggregate volatility. The results I present on the transmission of aggre-
gate trade shocks on firm exports suggest that similar forces may be at play in trade.
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This paper is also related to a recent literature which emphasizes the role of trade 
intermediaries in overcoming informational barriers. Casella and Rauch (2002) 
offer a formal model of trade with informational barriers. They assume that there 
are only two types of agents: some are perfectly informed about the quality of for-
eign goods, while the others are uniformed. The informed agents may chose to act 
as intermediaries for international trade. I offer a more nuanced model where firms 
gradually learn about foreign markets, so that there is close to a continuum of firms 
with a differential access to information about foreign markets. Antràs and Costinot 
(2011) develop a theoretical model of trade that relaxes the assumption of a central-
ized Walrasian market, and derive predictions for the welfare gains from trade in a 
setting where trade is intermediated. Ahn, Khandelwal, and Wei (2011) demonstrate 
empirically the importance of trade intermediaries in facilitating trade, especially 
for smaller exporters and for penetrating less accessible markets. I do not formally 
introduce trade intermediaries, but I stress the importance of informational barri-
ers, and show how a network can partially overcome these barriers. The network 
I describe can be thought of as a formal treatment of how intermediaries connect 
importers and exporters.

This paper is complementary to models of international trade with heterogeneous 
firms such as Bernard et al. (2003), Melitz (2003) and its extension in Chaney 
(2008). Those models assume that differences in the ability of individual firms to 
enter foreign markets are driven entirely by some exogenous productivity differ-
ences, and by the configuration of exogenous parameters which govern the acces-
sibility of different foreign markets. These models replicate successfully a series of 
stylized facts regarding the size distribution of individual firms in different markets 
and the efficiency of firms entering different sets of countries, as shown by Eaton, 
Kortum, and Kramarz (2011). While successful at explaining the intensive margin 
of firm-level trade, these models are unable to match simultaneously the different 
stylized facts I uncover regarding the distribution of the number and the geographic 
location of foreign markets entered by different firms. By contrast, the model I 
develop offers a parsimonious explanation for the extensive margin of trade at the 
firm level, but is mostly silent about the intensive margin of trade. In that sense, this 
model is complementary to the existing models of trade with heterogeneous firms.

This paper is also complementary to a recent literature on the dynamics of exports 
or more generally expansion at the firm level. Albornoz et al. (2012) and Defever, 
Heid, and Larch (2010) both present simple models of learning about a firm’s poten-
tial in a foreign market. They show evidence of the sequential entry into foreign 
markets of Argentine and Chinese exporters, respectively, meaning that where a 
firm already exports influences where it enters next. Morales, Sheu, and Zahler 
(2013) use a moment inequality estimation procedure to estimate a similar model of 
sequential export choice, and document that exports tend to be history dependent. 
They stress the importance of what they call extended gravity, which is the fact 
that if a firm exports to a particular country, it is subsequently more likely to export 
to other similar countries. This corresponds to the notion of remote search in my 
model. In the case study of a single firm, Jia (2008) and Holmes (2011) study the 
geographic expansion of Wal-mart in the United States. Both stress the importance 
of local complementarities. New Wal-mart outlets tend to benefit from the proxim-
ity of its existing retail centers. Local complementarities are similar to the notion 
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of remote search in my paper, and the expansion of this single firm is similar to the 
expansion of exporters in my model. My paper is complementary to those papers, in 
the sense that I incorporate these observations formally into a theoretical model of 
the dynamics of entry of firms. I show how to analyze the properties of this model in 
a tractable way. And I show formally how the dynamics of firm-level exports shape 
both the cross-sectional distribution of exports as well as the time series of exports at 
the firm level. By going further into solving a theoretical model, I extract empirical 
predictions which are easier to test.

Finally, this paper is indirectly related to the literature on social networks. While 
there is no explicit notion of social ties in my model, the formal treatment of firm 
linkages resembles the analysis of the social network literature. Jackson and Rogers 
(2007) propose a tractable way to combine the features of a random network and 
a preferential network. The notions of direct and remote search in my model are 
similar to their notions of random and preferential attachment. The main theoretical 
innovation of my model is to embed this general network into an arbitrary space. 
For the purpose of this paper, I assume that this space corresponds to the physical 
geographic space. It could alternatively correspond to any other space that describes 
some of the attributes of the agents connected through that network.3 Bramoulle 
et al. (2012) consider a model with a finite number of types that are biased against 
each other. They show that over time, agents increase the diversity of their contacts, 
in the sense that they get connected with different types. They derive conditions 
under which an agent’s initial bias asymptotically vanishes. As the notion of a bias 
between types is similar to the notion of geographic distance between firms in my 
model, their results are comparable to the gradual geographic expansion of exports 
in my model. The technique used in those papers for finitely many types is comple-
mentary to the approach for infinitely many types I use: while I can model a large 
number of types, I have to impose an assumption of symmetry that these authors 
relax. Those more general assumptions however limit them to results with only two 
types, or to only monotonicity and asymptotic results with more than two types. 
I also offer an empirical application of a network model to a dataset much larger 
than has typically been used in the social network literature.

I present reduced-form evidence on the dynamics of firms exports in Section I, 
build a theory motivated by this evidence in Section II, and structurally estimate the 
theory in Section III.

I. Reduced-Form Evidence on Trade Dynamics

In this section, I present reduced-form evidence that individual firms follow a 
history-dependent process when expanding into foreign markets. In particular, I 
show that a firm which exports to more countries is more likely to enter new mar-
kets subsequently. More interestingly, where a firm currently exports affects which 
new markets it enters subsequently: if a firm exports to country  c′  at time t, it is 
subsequently more likely to enter any country c that is closely connected to country  

3 See McPherson, Smith-Lovin, and Cook (2001) for an overview of various situations where agents tend to con-
nect to each other according to some attributes outside of the network, which is generally described as homophily.
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c′ , either in the sense that it is geographically close to  c′ , or that it trades a lot with  
c′ . This reduced-form evidence motivates the theory presented in the next section.

Data Sources.—I use two sources of data.4 First, I use firm-level export data for 
French exporters, over the period 1986–1992. The data come from the same source 
as the data used by Eaton, Kortum, and Kramarz (2011). For each firm and each 
year, I use information on the set of countries to which a firm exports. There are 
between 115,000 (in 1988) and 122,000 exporters (in 1987) in my sample (121,581 
in 1992). Those firms export to a total of 103 different foreign countries for which 
I have additional information on size and location. French firms export on average 
to between 3.49 (in 1991) and 3.62 (in 1986) different foreign countries (3.50 in 
1992).

In addition to these data on firm-level exports for France, I use information on 
the size of countries, their distance from France and from each other, and aggregate 
bilateral trade between country pairs. The size of a country is measured as nominal 
gross domestic product (GDP), collected from the Penn World Tables. The distance 
between two countries is the population-weighted geodesic distances between the 
main cities in both countries, collected from the CEPII. Finally, I use data on aggre-
gate bilateral trade flows between countries, collected from the NBER.

Regression Specification.—Formally, I estimate a Probit regression of different 
specifications of the following equation:

(1)  Pr (exp or t i, c, t+1  > 0 | observables) 

   = Φ  ( α  ∑   
 c′ 
   

 
  1 [ exp or t i,  c′ , t  > 0 ]   +  β 1 g ( Dis t France, c  )  

 +  β 2    
 ∑   c′   

 
  1 [ exp or t i,  c′ , t  > 0 ]  g ( Dis t  c′ , c  ) 

   ___   
 ∑   c′   

 
  1 [ exp or t i,  c′ , t  > 0 ] 

   

 +  β 3    
 ∑   c′ ≠Fr

   
   g ( Dis t  c′ , c  ) 

  __   N  c′ ≠France 
   +  γ 1   ∑   

 c′ 
   

 
    

Δ Export s  c′ , c, t 
  __  

Export s  c′ , c, t 
   

 +  γ 2   ∑   
 c′ 
   

 
  1 [ exp or t i,  c′ , t  > 0 ]     

Δ Export s  c′ , c, t 
  __  

Export s  c′ , c, t 
  

 + δ 1 [ exp or t i, c, t  > 0 ]  + Control s c,t  ) ,

where Φ is the c.d.f. of the standard normal distribution; 1 [ exp or t i, c, t+1  > 0 ]  takes 
the value 1 if firm i exports to country c at time t and 0 otherwise; Dis t  c′ , c  is the 
distance between countries  c′  and c;  N  c′ ≠France  is the number of countries  excluding 

4 Further details about the data sources are provided in Appendix A.
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France in my sample; and   
Δ Export s  c  ′ , c, t 

 _ Export s  c  ′ , c, t 
   is the growth of aggregate exports from coun- 

try  c′  to country c between years t and t + 1. The downward-sloping function g gov-
erns how the proximity between countries  c′  and c is related to the geographic dis-
tance between them. I consider the following two specifications for the function g:5

(2) g(Dis t c′, c ) = { 1/Dis t c′, c 
.

 e −Dis t  c  ′ , c /3.5 

Coefficients Interpretation.—The coefficient α controls for impact of the number 
of countries a firm exports to on the likelihood it enters new markets subsequently. 
α > 0 would mean that the more markets a firm exports to today, the more likely 
it is to enter new markets in the future. The coefficient  β 1  controls for the direct 
impact of proximity on trade: for both specifications of the function g in equation 
(2), the term g ( Dis t France, c  )  is larger for a country c that is geographically closer 
to France.  β 1  > 0 would mean that proximity has a beneficial effect on entry, in 
the sense that a firm is more likely to enter close-by markets than remote ones. 
The coefficient  β 2  controls for the indirect impact of proximity on trade: the term 

  
 ∑   c′   

 
  1 [ exp or t i,  c  ′ , t  > 0 ]  g ( Dis t  c  ′ , c  ) 

  __  
 ∑   c  ′   

 
  1 [ exp or t i,  c  ′ , t  > 0 ] 

   measures the average proximity between the countries 

toward which firm i already exports in year t and country c.  β 2  > 0 would mean that 
if a firm exports to countries which are close to c, it is subsequently more likely to 
enter that country c. The coefficients  γ 1  and  γ 2  are analogous to  β 1  and  β 2 , except 
that the proximity between two countries is not measured by their physical distance, 
but by how much trade between them increases.  γ 1  > 0 would mean that the faster a 
country’s imports grow, the more likely it is that any firm enters that country.  γ 2  > 0 
would mean that if a firm already exports to countries whose exports to c grow, it is 
subsequently more likely to enter that country. Finally, the coefficient δ controls for 
the export status of firm i in the previous year, and the possibility that a firm loses 
foreign contacts. I expect α,  β 1 ,  β 2 ,  γ 1 ,  γ 2  > 0 and 0 < δ ≤ 1.

I control for country size, since firms are mechanically more likely to export to a 
large country than to a small one. I also add controls for the sector in which a firm 
operates, as firms in different sectors may be more or less likely to export to any par-
ticular country. Removing the sector fixed effects does not affect the results materi-
ally. Replacing the flexible g ( Dist )  function by country fixed effects does not affect 
the results materially either. Finally, it is likely that if country c is more isolated 
from the rest of the world, in the sense that it is more distant from all other coun-
tries, competition in c will be milder, and all else equal, it will be easier to access c. 
In order not to bias the estimated direct impact of distance  (  β 1  ) , the coefficient  β 3 , 
expected to be negative, controls for this remoteness measure.

Results.—Table 1 shows the marginal effects from the Probit estimation of dif-
ferent specifications of equation (1). Standard errors are clustered at the firm level. 

5 I take the number 3.5 in  e −x/3.5  from the SMM (simulated method of moments) estimate of the theory presented 
in the next section.
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In every specification, all coefficients are statistically significant (at the 1 percent 
confidence level), and of the expected signs.

A firm which currently exports to more countries  (  ∑   c′   
 
  1 [ exp or t i,  c′ , t  > 0 ]  larger )  

is more likely to enter yet another country. The increment in the probability of enter-
ing any country from having an extra export destination (α ≈ 0.0048 in column 1 of 
Table 1) is of the same order of magnitude as the unconditional probability of enter-
ing any country in my sample (0.0047). This effect is statistically and economically 
significant.

More interestingly, the actual existing portfolio of a firm’s export destinations 
shapes its future expansion into new markets. For instance, firm i is likely to enter 
country c if c is geographically close to countries where firm i already exports 
( β 2  ≈ 0.0333 in column 2), or if c has experienced an increase in its imports from 
those countries ( γ 2  ≈ 0.0034 in column 3). This is true even after controlling for the 
fact that firm i is likely to export to any country that is close to France ( β 1  ≈ 0.1255 
in column 2), or to any country experiencing an increase in imports, because it has 
been growing fast, for instance ( γ 1  ≈ 0.0028 in column 3).

Table 1—Number and Location of Contacts and Trade between Third Countries Predict Entry

Dependent variable: 
1 [ exp or t i, c, t+1  > 0 ]  

dy/dx

— g ( x )  = 1/x — — g ( x )  =  e −x/3.5  —

(1) (2) (3) (4) (5) (6) (7)

 ∑  
c′  
 
   1 [ exp or t i,  c′ , t  > 0 ]  0.0048 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

(0.00003) (0.00001) (0.00002) (0.00001) (0.00001) (0.00001) (0.00001)
g ( Dis t France, c  )  0.1255 0.1437 0.1310 0.0936 0.1437 0.0969

(0.0007) (0.0005) (0.0007) (0.0005) (0.0005) (0.0005)

  
 ∑   c′   

 
  1 [ exp or t i,  c′ , t  > 0 ]  g ( Dis t  c′ , c  ) 

  __  
 ∑   c′   

 
  1 [ exp or t i,  c′ , t  > 0 ] 

   
0.0333 0.0281 0.0456 0.0433

(0.0006) (0.0007) (0.0005) (0.0005)

  
 ∑   c′ ≠Fr

   
   g ( Dis t  c′ , c  ) 

  __   |  |  c′  ≠ France |  |    
−0.0773 −0.0752 −0.0334 −0.0283
(0.0037) (0.0037) (0.0010) (0.0011)

 ∑   c′   
 
    Δ Export s  c′ , c, t 

 _ Export s  c′ , c, t 
   0.0028 0.0028 0.0034 0.0050

(0.0002) (0.0002) (0.0001) (0.0002)

 ∑   c′   
 
  1 [ exp or t i,  c′ , t   >  0 ]    

Δ Export s  c′ , c, t 
 _ Export s  c′ , c, t 

   0.0034 0.0033 0.0029 0.0027
(0.0001) (0.0001) (0.0002) (0.0001)

GD P c, t  0.009 0.009 0.009 0.009 0.010 0.010
(0.00004) (0.00004) (0.00004) (0.00005) (0.00005) (0.00004)

1 [ exp or t i, c, t  > 0 ]  0.4196 0.4403 0.4220 0.4002 0.4403 0.4023
(0.0013) (0.0013) (0.0014) (0.0013) (0.0013) (0.0014)

Sector fixed effect Yes Yes Yes Yes Yes Yes Yes
Constant Yes Yes Yes Yes Yes Yes Yes

Observations — 21,884,616 in (1); 21,603,426 in (2) and (5); 20,857,435 otherwise —

Firms — 35,412 in (1); 34,957 otherwise —

Years — 6 —

Destinations — 103 —

Pseudo- R 2  0.1262 0.5529 0.5494 0.5499 0.5560 0.5493 0.5528

Notes: This table shows the marginal effects for the PROBIT estimation of equation (1) for a panel of all French 
exporters between 1986 and 1992. The dependent variable is an indicator function that takes the value 1 if firm i is 
exporting to country c at time t + 1. The description of the explanatory variables is given along with equation (1). 
The marginal effect is calculated as dy/dx at the average value of each x in the sample. dy/dx is for a discrete change 
from 0 to 1 when x is a dummy variable. Standards errors are clustered at the firm level. All coefficients are statisti-
cally different from zero at the 1 percent level of significance.
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Of special interest is the size of the coefficient δ. δ measures the persistence 
of a firm’s exports to a particular country. Across the various specifications of 
equation (1), δ is around 40 percent. This implies that every year, a firm has a   
60 percent chance of exiting a country where it is currently exporting. This large 
number implies a high degree of churning in exports, an observation that resonates 
with the findings in Eaton et al. (2010). The estimated δ is of course the marginal 
effect across a heterogeneous set of exporters, so it may hide a large amount of 
heterogeneity.

To conclude, I find reduced-form evidence that individual firms follow a history-
dependent process which governs their gradual entry into foreign markets. I isolate 
two stylized facts. First, the more countries a firm exports to today, the more likely 
it is to enter yet other countries in the future. Second, where a firm exports today 
affects where that firm will export in the future: all else equal, if a firm exports to 
countries that are close to country c, it is more likely to enter that country c in the 
future. Motivated by those stylized facts, I now build a theoretical model of firm-
level export dynamics.

II. A Dynamic Model of Exports

In this section, I develop a model of the sequential entry of firms into foreign mar-
kets that incorporates the stylized facts uncovered earlier in the paper. I show that 
a model which features a history-dependent process for exporting generates strong 
predictions not only for the time series of exports, but also for the cross-section of 
exports.

A. Setup

Space.—  is a discrete set of locations. I will consider several alternatives for the 
set . I start with a presentation of the theory without imposing any restriction on 
. I then fully solve the model for the special case  = ℤ. I use this special case 
to illustrate the key forces of the model. I finally turn back to a more general setup 
where  ≠ ℤ. Using numerical simulations, I show that the results derived in the 
special case  = ℤ offer a good approximation of what happens in more general 
cases, and provide a useful guidance for the structural estimation of the model.

Firms.—In each location x ∈ , there is a finite set of firms. Those firms sell their 
output to consumers in various locations. Time is discrete, and the number of firms 
in each location grows at a constant rate γ.

Search Frictions.—In the absence of any frictions, all firms would sell to all con-
sumers in every location. I assume instead that firms face the following matching 
frictions.6 Every period, a firm acquires new consumers in two distinct ways. First, 
the firm searches for new consumers locally, meaning that the search originates from 
where the firm itself is located. This first direct search corresponds to  β 1 ,  γ 1  > 0 in 

6 I develop in the online Appendix a simple extension of the Krugman (1980) model which endogenizes those 
assumptions.
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the reduced-form evidence presented in Table 1. Second, the firm uses its existing 
network of consumers to search remotely, meaning that the search originates from 
where the existing consumers are located. This second remote search corresponds 
to  β 2 ,  γ 2  > 0 in the reduced form evidence presented in Table 1. It captures the idea 
of local externalities as in the case of the geographic expansion of Wal-mart in Jia 
(2008) and Holmes (2011), or in the case of Chilean exporters in Morales, Sheu, 
and Zahler (2013). It may either correspond to the technological constraint on the 
expansion of a distribution network as in Holmes (2011); to the cost of customizing 
a product for local tastes and requirements as in Morales, Sheu, and Zahler (2013); 
or more generally to the notion that exporting entails some amount of traveling and 
communicating with business partners, so that a firm which exports to a location y 
will acquire some knowledge about y and its surrounding locations.

Note that this is a model of the extensive margin of trade only. To fix ideas, think 
of the firm as an intermediate input producer, and its consumers as other down-
stream firms, potentially in other locations. I model explicitly how this firm over 
time sells to more consumers in more locations, but I do not model how much it sells 
to each of them. Superimposing a model for the intensive margin of sales is left for 
future research.

Before describing the dynamic acquisition of consumers formally, it is useful to 
introduce a few notations. Consider firm i of age t in a location which I arbitrarily 
call the origin. It has a network of consumers in various locations. The total number 
of consumers of firm i is  m i, t , distributed in various locations. I call  f i, t  ( x )  the num-
ber of consumers firm i has in location x,

  f i, t  :  → ℕ with  ∑  
x∈

  
 
    f i, t  ( x )  ≡  m i, t  ,

so that  ∑  
x∈   
    f i, t  ( x )  is the number of consumers firm i of age t has in the subset 

 ⊂ . The function  f i, t  specifies both the number and the location of all the con-
sumers of the firm.  f i, t  is not a probability distribution, as it sums up to  m i, t  and not 1.

The distribution of consumers  f i, t  evolves as follows.
First, firm i searches locally for consumers from where it is located (the location 

arbitrarily called the origin). Each period, it finds  ∼ γμ  new consumers where  ∼ γμ  is a 
positive integer-valued random variable of mean γμ. γ is the (constant) growth rate 
of the population of firms, and μ > 0 is a parameter.7 The location x ∈  of each 
of these consumers is drawn randomly according to a function g, where g ( 0, x )  
denotes the probability that a search originating from the origin (arbitrarily called 0) 
identifies a customer in location x. I expect that the function g ( 0, x )  depends on the 
distance between the origin  ( 0 )  of the search and the destination  ( x ) , and the size 
of the destination x, but I will only impose such conditions later in Sections IIC and 
IID and when I bring the model to the data in Section III.

Second, given that firm i already has consumers in various locations, it searches 
for new consumers remotely from these locations. For each existing consumer in 
location y ∈ , the firm meets  ∼ γμπ  new consumers where  ∼ γμπ  is a positive integer 

7 Expressing the number of randomly drawn new consumers as a multiple of the population growth rate is merely 
a normalization, which will simplify the exposition of the main results.
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valued random variable of mean γμπ. π ≥ 0 is a parameter. The geographic loca-
tion of these consumers is independently and randomly drawn according to the same 
function g, where g ( y, x )  is the probability that a search originating from y  identifies 
a customer in x. Remote search works exactly as local search, except that  ( i )  it is 
shifted from the origin to location y, and  ( ii )  the efficiency of this remote search 
is scaled by a constant factor π, which measures the relative importance of remote 
versus local search.

Without loss of generality, neither does a firm lose consumers, nor do firms die. 
Adding a random death process to either contacts or firms does not change any of 
the results below, beyond some simple rescaling of the parameters.8

Firm Level Dynamics.—The dynamic evolution of the network of consumers 
described above can be summarized in the following difference equation for  f i, t  :

(3)  f i, t+1  ( x )  −  f i, t  ( x )  =  ∑  
 k   0 =1

  
  ∼ γμ  i 

  1 [   ̃ x   i,  k 0   = x ]  +  ∑  
y∈

  
 
    f i, t  ( y )   ∑  

 k y =1
  

  ∼ γμπ  i, y 

 1 [   ̃ x   i,  k y   = x ]  ,

with the initial condition  f i, 0  ( x )  = 0,  ∀x ∈ . 1 [ · ]  is the indicator function.   ∼ γμ  i  and 
the   ∼ γμπ  i, y  are independent draws from the random variables  ∼ γμ  and  ∼ γμπ , respec-
tively. The  ̃ x  s are independent realizations from the probability distribution g, which 
determine the geographic location of each new contact. I give these draws some 
arbitrary index: for instance, Pr  ( 1 [   ̃ x   i,  k y   = x ]  )  = g ( y, x )  is the probability that a 
remote search from y identifies a consumer in x. The change in the number of con-
sumers in location x from time t to time t + 1 can be decomposed in two terms. The 
first term corresponds to the local search for new contacts. Any  k 0  of the   ∼ γμ  i  new 
contacts is located in x only if   ̃ x   i,  k 0   = x. The second term corresponds to the remote 
search for new contacts. For each existing contact firm i has in location y (there are  
f i, t  ( y )  of them), any  k y  of the   ∼ γμπ  i, y  new contacts acquired from y is located in x only 
if   ̃ x   i,  k y   = x. Since the remote search can be intermediated via any location y ∈ , 
the new consumers found in x via y have to be summed over all possible remote 
location y ∈ .

The same parameters  ( γμ, γμπ )  in equation (3) govern the dynamic evolution of 
the network of contacts of any firm. This does not mean of course that any two firms 
will follow the same path ex post, as the luck of the draw will shape each individual 
firm’s network differently. In particular, the second term in equation (3) implies a 
strong history dependence in firms export dynamics.

Aggregate Dynamics.—Averaging across a large number of firms within a cohort 
however, the randomness of each draw disappears, and I can derive a simple expres-
sion for the recursive evolution of population averages. Consider all the firms of age 
t located in the origin, and call N the number of such firms. I define  f   t  N  ( x )  as the 
average number of contacts in location x ∈  within this cohort, and  f t  ( x )  the limit 
of this population average when N gets large,

8 See Atalay et al. (2011) for a related model, without geography, that features firm deaths.
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  f   t  N  ( x )  ≡   
 ∑  i=1  

N
    f i, t  ( x ) 

 _ 
N

   ∈ ℚ and  f t  ( x )  ≡  lim   
N→∞

   
    f   t  N  ( x )  ∈  ℝ + .

I show in Appendix B how to use the law of large numbers and the fact that all 
random shocks are i.i.d. in order to derive the following difference equation for the 
dynamics of  f t , the network of consumers of an entire cohort when the population 
is large:

(4)  f t+1  ( x )  −  f t  ( x )  = γμg ( 0, x )  + γμπ  ∑   
y∈

   
 
   f t  ( y )  g ( y, x )  ,

with the initial condition  f 0  ( x )  = 0,  ∀x ∈ . Note that as the population is large, 
all uncertainty has been removed in the aggregate. This does not mean that all firms 
within a cohort are identical, but that those differences are summarized by a stable 
function. This stable behavior for the population average obtains despite the inher-
ent randomness of the small sample of consumers of any individual firm, but also 
despite the fact that as time goes on, the network of consumers of individual firms 
within the same cohort diverges.

The recursive definition of  f t  in equation (4) is complex. In Section IIB, I present 
an analytical solution for the distribution of the total number of consumers  (  m t  )  
within the population. This solution holds for any set  and function g. Solving for 
other moments of  f t  requires me to take a stand on  and on the function g. In Section 
IIC, I present an analytical solution for other moments of  f t  in the special case where 
 = ℤ and g ( y, x )  only depends on the distance  | x − y | . In Section IID, I conjec-
ture using numerical simulations that as long as g ( y, x )  only depends on the distance  
|  | x − y |  |  and on the size of the destination location x, the solution for the special 
case  = ℤ is a good approximation of the general case where  ≠ ℤ.

B. The Number of Consumers

Geography plays no role in the number of a firm’s consumers. The geographically 
biased distribution g affects the location of consumers, but not the total number 
of them. Summing equation (4) over , I get a difference equation for the average 
number of consumers of firms within a cohort,

(5)  m t+1  −  m t  = γμ + γμπ m t   .

This process does not depend on any of the properties of the distribution g or of the 
set .

This recursive equation for the number of consumers resembles the model of 
acquisition of a network of “friends” in Jackson and Rogers (2007), which itself is 
an extension of the Steindl (1965) model of the firm size distribution.9 In particular, 
the same mean-field approximation as in Jackson and Rogers can be used to solve 

9 The model is different from Jackson and Roger’s in that firms do not explicitly learn about new contacts from 
the contacts of their existing contacts. For more elaborate models of the dynamic evolution of size, see for instance 
Gabaix (1999); Luttmer (2007); or Rossi-Hansberg and Wright (2007).
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for the invariant distribution of the number of contacts among all cohorts for the 
cases where γμ and γμπ are nonintegers.10 Numerical simulations in Section IID 
suggest that such a mean-field approximation is precise.

The following proposition characterizes the invariant distribution of the total 
number of consumers for any set  and function g.

PROPOSITION 1: Under the mean-field approximation that the number of a firm’s 
contacts evolves as the population average, the fraction of firms with fewer than m 
consumers is

 F ( m )  = 1 −   (   1 _ 
1 + πm

   )  
  

 ln  ( 1+γ ) 
 _  

 ln  ( 1+γμπ ) 
  
 .

PROOF:
See Appendix B.

Let me briefly describe the properties of the cross-sectional distribution of the 
number of consumers, and provide some intuition. The upper tail of the distribution 

asymptotes to a scale-free Pareto distribution (with exponent −   ln  ( 1 + γ ) 
 _ 

ln  ( 1 + γμπ )    ≈ −   1 _ μπ   
for γ small), whereas the lower tail is close to an exponential distribution (with rate 

parameter   
ln  ( 1 + γ ) 
 _ γμ   ≈   1 _ μ   for γ small).

For m large (i.e., for firms that already have many consumers), the local search 
component  ( γμ )  becomes negligible, and only the remote search component 
remains. Each existing consumer allows the firm to gain a constant number  ( γμπ )  
of new consumers. The growth rate of the number of consumers is approximately 
constant  (  m t   ∝ t→∞   e γμπt  ) . With the population growing at a rate γ, this leads to a 
Pareto distribution with an exponent −1/ ( μπ )  in the upper tail.

For m small on the other hand (i.e., for firms with few consumers), the remote 
search component becomes negligible, and only the local search component remains. 
Each period, an approximately constant number  ( γμ )  of new consumers are added 
 (  m t   ∝ t→0  γμt ) . With the population growing at a rate γ, this leads to an exponential 
distribution with parameter 1/μ in the lower tail.

For intermediate values of m, the cross-sectional distribution of the number of 
consumers is a mixture of the above exponential and Pareto distributions. Plotting 
the counter-cumulative distribution 1 − F ( m )  in a log-log scale, the right end would 
asymptote a straight line (the Pareto upper tail), while the left end would exhibit 
some degree of concavity (the exponential lower tail). The slope of the upper tail, 
the range over which the distribution is concave, and how concave it is, all depend 
on the parameters μ and π.

10 Under a mean-field approximation, the dynamics of the number of consumers of all individual firms within 
a cohort is assumed to be the same as the average within the cohort, where the number of a firm’s consumers is 
understood as an expected number, generically not an integer. This assumption is perfectly suitable for the discrete 
time setup of my model, and does not require to take a continuous time limit.
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C. The Geography of Consumers when  = ℤ

In the special case where  = ℤ, g ( y, x )  only depends on the distance  | x − y |  
and the function g (  | · |  )  has a finite second moment, the recursive characterization 
of the distribution of consumers  f t  in equation (4) always admits an analytical solu-
tion.11 In the interest of concision, I relegate this explicit solution to Lemma 1 in the 
Appendix. This solution allows me to derive closed-form solutions for any moment 
of the geographic distribution of consumers. I focus my attention on one particu-
lar moment, the average (squared) distance from a firm’s consumers. I present the 
results in the special case  = ℤ to sharpen the reader’s intuition of the mechanics 
of the model. Those results do not necessarily hold exactly for other choices of  
and g. I offer suggestive evidence in the next section that the solution derived in this 
special case is a good approximation of the general case where  ≠ ℤ.

Define Δ ( m )  as the average (squared) distance from a firm’s consumers among 
firms with m consumers, for a firm located in the origin x = 0. I call  f m  the distri-
bution of consumers among firms with m consumers, and  g m  =  f m /m the corre-
sponding probability distribution. This average (squared) distance corresponds to 
the second moment of  g m  (  | · |  ) ,

(6) Δ ( m )  ≡  ∑   
x∈ℤ

   
 
   x   2   g m  (  | x |  )  dx.

The next proposition characterizes the average (squared) distance from a firm’s con-
sumers among firms with m consumers, as a function of m.

PROPOSITION 2: Under the mean-field approximation that the number of a firm’s 
contacts evolves as the population average, the average (squared) distance from a 
firm’s consumers, Δ ( m ) , increases with the number of consumers m,

 Δ ( m )  =   
γμπ
  __   

 ( 1 + γμπ )   ln  ( 1 + γμπ ) 
    ( 1 +   1 _ πm   )   ln  ( 1 + πm )   Δ g  ,

with  Δ g  ≡  ∑  x∈S   
    x 2 g (  | x |  )  the second moment of g (  |  ⋅  |  ) .

PROOF:
See Appendix B.

First note that the first term on the right-hand side becomes arbitrarily close to 1 
for γ small,12 which may help the reader get a more intuitive understanding of this 
proposition.

11  f t  also admits an analytical solution when  = ℝ, with the summation signs in equation (4) replaced by inte-
gral signs. It even admits a closed-form solution for the special cases where  = ℝ and g is either a Gaussian or a 
Cauchy distribution. See Lemma 1 in Appendix B for the presentation and derivation of those results.

12 Using l’Hopital’s rule, li m  γ→0        γμπ
  __   ( 1 + γμπ )   ln  ( 1 + γμπ )    = 1.
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Over time, not only does a firm acquire more consumers, but the geographic dis-
tance from these consumers increases. This result is entirely due to remote search, 
and can be understood as follows. Each time a firm gains one more consumer, it 
searches remotely from where this consumer is located. On average, existing con-
sumers are some distance away from the firm, and remote searches bring new con-
sumers who are themselves some distance away from those existing consumers. So 
each new wave of remote searches brings new consumers who tend to be further and 
further away.

Formally from the difference equation (4), the location of the new consumers 
acquired via remote search is the sum of the signed distance of the existing con-
sumers and the signed distance of the remote search: for each consumer at a signed 
distance y from the origin, if the remote search delivers a new consumer who is 
herself at a signed distance  ( x − y )  from y, the new consumer will be at a signed 
distance y +  ( x − y )  = x from the origin. In other words, the remote search pro-
cess is equivalent to taking the sum of two random variables, the first one being the 
variable that describes the location of existing consumers, and the second one being 
the remote search. The fact that the variance of the sum of two independent random 
variables is the sum of their variances explains why the average (squared) distance 
from a firm’s consumers increases over time. This can be seen formally in equa-
tion (4). The term  ∑  y∈ℤ    

 
   f t  ( y )  g (  | x − y |  )  is the convolution product of the functions 

 f t  ( ⋅ )  and g (  | ⋅ |  ) . In probability theory, the convolution product is used to study the 
sum of random variables: the probability distribution of the sum of two random vari-
ables is the convolution product of their respective probability distributions. This is 
the essence of the proof of Proposition 2, where I show how to use Fourier trans-
forms to manipulate convolution products.

From the reasoning above, and as can readily be seen in Proposition 2, the fact 
that the average (squared) distance from a firm’s consumers increases with the num-
ber of consumers is only driven by the remote search process. Absent this remote 
search  ( π → 0 )  the average (squared) distance from consumers would be constant: 
Δ ( m )  =  Δ g ,  ∀m. Without remote search, a firm accumulates over time more and 
more consumers from a series of independent waves of local searches. All waves of 
new consumers brought by this local search have the exact same geographic distribu-
tion. Large firms sell to more consumers, but they have the same geographic distri-
bution of consumers as small firms. If remote search is present (π > 0), the average 
(squared) distance of sales increases with the number of consumers. Initially, for 
m small, the majority of new consumers come from local searches, and Δ ( m )  is 
relatively insensitive to m : ∂Δ ( m ) /∂m  |  m=0  = 0. As the number of consumers gets 
large (i.e., m large), the average (squared) distance of exports increases with the 
number of consumers in a log-linear way: Δ ( m )    ≈   

m→∞
 constant +  Δ g  ln  ( m ) .

Note that Proposition 2 holds for any arbitrary g (  | ⋅ |  )  with a finite second moment. 
This is true despite the fact that the geographic distribution of new consumers 
depends in a complex nonlinear fashion on the entire distribution g, and hence on 
all the moments of this distribution. This result, while striking at first, can easily be 
understood as follows. The average (squared) distance from a firm’s consumers after 
t periods corresponds to the second moment of  g t  =  f t / m t . The second moment of a 
distribution can be derived from the second derivative of the  characteristic function 
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of that distribution evaluated at zero. The proof of Proposition 2 in the Appendix 
shows how to transform the difference equation (4) so as to express the character-
istic function of  g t  in terms of the characteristic function of g. Then, for the same 
reason that the n th derivative of a composition of functions depends only on the first 
n derivatives of these functions, the second moment of  g t  (the second derivative of 
its characteristic function) does not depend on any moment of g higher than 2 (any 
derivative of its characteristic function of order above 2).

Using the same analytical tools, potentially I can describe all the moments of the 
distribution of consumers  f t . While I will not describe all these moments, I make two 
observations which help understand the process of acquiring consumers.

First, the process of acquiring a network of consumers exhibits a strong history 
dependence. I have characterized above, for a large population, the distribution of 
the location of a firm’s consumers, across cohorts with different numbers of con-
sumers. This population average hides a lot of idiosyncracies even among firms with 
the same number of consumers.13 If a firm initially happens to gain consumers in 
one particular location, it is subsequently more likely to keep gaining consumers in 
the vicinity of that location. So over time, the distribution of consumers of two ini-
tially identical firms will tend to diverge, each following its own history-dependent 
path. In equation (3), the location of a firm’s new consumers at time t + 1 depends 
on the location of its existing consumers at time t. This property of the model con-
forms with the reduced-form empirical evidence presented in the previous section.

Second, over time, firms’ consumers are not only further away, but also more 
geographically dispersed. This result is also due to the history dependence of the 
search process, but this time within and not between firms. Each existing consumer 
allows a firm to acquire new ones who will tend to be geographically concentrated 
around this existing consumer. Consumers tend to be clustered around each other. 
Time brings new clusters of consumers who tend to be increasingly far apart from 
each other. I formally state and prove this proposition in the online Appendix.

D. The Number and Geography of Consumers when  ≠ ℤ

I have presented in the previous section a full characterization of the geographic 
distribution of any firm’s consumers  f t  for the special case where  = ℤ and g ( y, x )  
only depends on the distance  | x − y | . This exact solution can easily be extended to 
ℝ,  ℤ n , or  ℝ n , but not to more complex sets. In particular, having in mind an empirical 
test of the theory using real world data, I have not been able to characterize  f t  for the 
case where the set  is a discrete set of locations on a sphere.

To investigate the properties of the model when  ≠ ℤ, I resort to numerical 
simulations.14 Those simulations serve two purposes. First, the results presented in 
the previous section hold exactly for ℤ, but not necessarily for other sets. Second, 
even in the special case where  = ℤ, I only characterize population averages for 
the limit when the population is large. The behavior of the model with a finite num-
ber of firms may differ from the large population limit.

13 The distribution  f t  is not a sufficient statistic to directly calculate some other population averages of interest, 
such as the average clustering of consumers of individual firms.

14 Detailed instructions for replicating the simulations are given in the online Appendix.
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I simulate the model numerically for three special cases for the set  and the func-
tion g :

•    circle  is a set of 8,766 equidistant locations along the circumference of a circle,

 g ( y, x )  =  α y   e −|| x−y ||/λ  ,

 where λ = 3.5,  |  | x − y |  |  is the length of the shorter arc between x and y, and  
α y  is a simple constant that ensures that probabilities sum to 1.

•   sphere  is a set of 8,766 approximately equidistant locations on the surface of a 
sphere,

 g ( y, x )  =  α y   e −|| x−y ||/λ  ,

 where λ = 3.5,  |  | x − y |  |  is the great circle distance between x and y, and  α y  is 
a simple constant which ensures that probabilities sum to 1.

•   cities  is the set of the largest 8,766 actual cities in all countries in 2012 (with 
population above 50,000),

 g ( y, x )  =  α y  Po p x   e −|| x−y ||/λ  ,

 where λ = 3.5, Po p x  is the population of city x,  |  | x − y |  |  the great circle dis-
tance between x and y, and  α y  is a simple constant that ensures that probabilities 
sum to 1. This means that after controlling for distance, it is twice as likely to 
find a contact in a city twice as large. The cardinality of the set  (8,766) is 
dictated by the number of cities in my dataset.15

Figure 1 compares the theoretical prediction from Proposition 1 (solid line) to a 
simulation of model with a finite number of firms (plus signs). The number of con-
sumers does not depend on the properties of the set  or the distribution g, so that the 
results from the simulations are identical for all three choices for . I simulate 250 
successive cohorts with a population of 20 firms in the first cohort. I chose param-
eters  ( γ, μ, π )  =  ( 0.02, 1,1 ) . Both γμ, the number of directly searched contacts 
per period, and γμπ, the number of remotely searched contacts per period for each 
existing contact are nonintegers. Strictly speaking, a firm cannot receive a number 
γμ or γμπ of contacts in a period as the mean-field approximation in the proof of 
Proposition 1 assumes. They only do so on average. For instance, each period 1 in 
50 firms receives a single direct contact, and the remaining 49 receive none. This 
integer constraint introduces some amount of residual noise. Figure 1 shows that 
this residual noise is relatively small.

15 The dataset of city sizes and geographic coordinates is downloaded from http://download.geonames.org/. I am 
grateful to Thierry Mayer for providing me with references to this dataset.

http://download.geonames.org
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Figure 2 compares the theoretical prediction from Proposition 2 (solid lines), 
which holds in the special case  = ℤ, to numerical simulations of the model (plus 
signs) under three alternative choices for the set : 8,766 equidistant locations on 
a circle  (   circle  ) , 8,766 equidistant locations on a sphere  (   sphere  ) , and the set of the 
actual 8,766 largest cities in the world in 2012  (   cities  ) . The numerical simulations 
suggest that despite the fact that the sets of   circle ,   sphere , and   cities  differ from 
ℤ, Proposition 2 provides a fair approximation of the geographic distribution of 
contacts even when  ≠ ℤ. In particular, the average (squared) distance increases 
with m, the firm’s number of contacts, as the theory predicts. How fast this average 
(squared) distance increases with m only depends on the parameters π, which gov-
erns the relative importance of remote versus direct search. The differences in units 
on the vertical axis across the three alternative choices for  are only due to differ-
ences in scale across the different sets.

Taken together, the results of the simulations for different sets  presented in 
Figures 1 and 2 suggest that Propositions 1 and 2 provide a fair approximation 
for alternative cases where  ≠ ℤ. This is true in particular for the set   cities  that 
matches the actual geography of the world.

I will now formally bring the model predictions to the data.

III. Structural Estimation

In this section, I bring the key testable predictions from the theoretical model to 
the data on French exporters. The data are the same as those described in Section I. 
I structurally test the first two main aggregate predictions of the model regarding 
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Figure 1. The Distribution of the Number of Contacts: Theory versus Simulation
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π = 1, and μ = 1.
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the fraction of firms exporting to various countries, as well as the distance of those 
exports, derived from Propositions 1 and 2. I use a simulated method of moments to 
bridge the gap between a micro-model (about firms selling to contacts) and macro-
data (about firms exporting to countries).

A. A Simulated Method of Moments Estimation

The theory makes two separate yet equally important predictions. The first, 
Proposition 1, has to do with the fractions of firms that have many versus few con-
sumers; the second, Proposition 2, has to do with the geographic location of those 
consumers. The theory predicts that the distribution of the number of consumers 
across firms is a mixture of an exponential and a Pareto distribution. The only two 
parameters which govern this distribution are μ, the number of new consumers 
acquired each period via local search (expressed in multiples of the firm population 
growth rate γ), and π, the efficiency of remote search relative to local search. The 
higher μπ is, the fatter the upper tail of the distribution of the number of contacts. 
In addition, the theory predicts that as a firm acquires more consumers, the average 
(squared) distance from those consumers increases. The higher is π, the efficiency 
of remote search relative to direct search, the faster the increase.

There is unfortunately one main complication which arises when bringing those 
predictions to the data: while the model makes predictions regarding the patterns of 
firm-level exports toward consumers (the number and location of those), the data 
only tells us about firm-level exports toward countries. Data on firm-level exports 
toward countries contain an informative but noisy signal about the underlying unob-
served exports toward consumers. It is informative in the sense that if a firm exports 
to a given country, it has at least one consumer there. It is however noisy because 
the firm may have one or many consumers there. I have not been able to analytically 
characterize, directly from the model, the distribution of the number of countries a 

Figure 2. The Geography of Exports: Theory versus Three Simulations when  ≠ ℤ.

Notes: Average squared distance from a firm’s contacts, among firms with m contacts. Plus signs: 71,864 simulated 
firms in 250 cohorts for three different choices of the set . Left panel: circle  is a set of 8,766 equidistant locations 
on a circle. Center panel:   sphere  is a set of 8,766 equidistant locations on a sphere. Right panel: cities is the set of the 
8,766 largest cities in the world in 2012, with their actual sizes and coordinates. Solid line: theory,  = ℤ and large 
population limit. Parameters: γ = 0.02, π = 1, μ = 1, and g( || x − y ||) =   1 _ λ    e −|| x−y ||/λ  with λ = 3.5. 
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firm exports to in such a complex world. To circumvent this complication, I instead 
follow the guidance of the theory, in particular the simulations in Section IID, and 
estimate the model using the simulated method of moments (SMM). This SMM 
procedure closely follows that in Eaton, Kortum, and Kramarz (2011).

The model describes how firms acquire consumers gradually in various locations 
of the world. It is fully specified by equation (3) and by the actual geography of the 
world. From a simulated model where firms sell to notional consumers located in 
countries, I can observe whether or not a given firm exports to a given country, as I 
would do in the data.

Parametrization.—Equation (3) is fully parametrized by the probability distribu-
tion g, the geography of the world, and the parameters γ, μ, and π. I assume that g is 
an exponential function of distance, governed by a single parameter, λ > 0, scaled 
by the size (measured as GD P x ) of the destination country,

(7) g ( y, x )  =  α λ, y  GD P x  e −|| x−y ||/λ  ,

where  α λ , y  is a simple scaling constant that ensures that the probabilities sum to 1.16 
The parameter λ dictates how geographically dispersed new contacts are, with the 
higher λ the higher g’s variance.17 Finally, I assume γ = 0.02 per period. As a small 
γ does not affect the theoretical moments, I do not include it in the set of parameters 
to be estimated. For the geography of the world, I simply read from the data the 
actual sizes and distances between countries. I am left with a vector of only three 
parameters to estimate,

 Θ =  ( μ, π, λ ) .

Simulation Algorithm.—For a given set of parameters Θ, I simulate successive 
artificial cohorts of French firms which sell to consumers in various countries. To 
ensure that as I search for the best Θ the simulated data does not vary from purely 
idiosyncratic sources, I store all the realizations of the random elements of equation 
(3) for each contact of each firm at each time. This is not trivial. For instance, the 
higher μ or μπ, the more consumers firms have, so that even the size of the simu-
lated dataset varies with the choice of μ and π. Moreover, as the process is history 
dependent, where the consumers of a firm are located at a point in time affects where 
the future consumers of that firm will be located, so that changing the parameter λ 
that governs the function g alters entire branches of this dynamic tree. I solve these 
difficulties as follows.

Step 1 (firms): The oldest generation has 20 firms. The number of firms of age t is 
20  ( 1 + 0.02 )  t , rounded up to the nearest integer. I simulate 360 successive cohorts, 

16  α λ, y  = 1/ ∑  x  
   GD P x  e −|| x−y ||/λ .

17 This functional form is coincidentally the same as Comin, Dmitriev, and Rossi-Hansberg (2012) use for the 
geographical diffusion of technologies. Their median estimate for λ in the case of the diffusion of technology over 
space is 0.85 (mean = 0.4), compared to 3.5 for my estimate in the case of firm-level exports. This means that geo-
graphic barriers represent a hurdle for technology adoption about four times larger than for firms’ exports.
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for a total of 1,271,509 firms. Whether a firm is an exporter will of course depend 
on the parameters.

Step 2 (potential consumers): I choose “large” initial values for μ and μπ—i.e., 
much larger than the optimal values: μ = 1 and π = 1.35. For each firm of age 
t, I keep all the consumers this firm had in period t − 1. I add to those a directly 
searched consumer with probability γμ = 0.02. For each existing consumer, I add 
an extra remotely searched consumer with probability γμπ = 0.027.

Step 3 (stored information): For each link l between a French firm and a con-
sumer I store four numbers:  l′ ,  u 1 ,  u 2  , and  u 3 .  l′  is the name of the link that preceded 
l if l is the outcome of remote search, and 0 if l is the outcome of direct search. If l is 
the outcome of direct search,  u 1  is a randomly generated uniform  [ 0, 1 ]  number and  
u 2  = 0. If l is the outcome of remote search,  u 1  is equal to the  u  1  ′   of the preceding 
link, and  u 2  is the maximum of a randomly generated uniform  [ 0, 1 ]  number and 
the  u  2  ′   of the preceding link  l′ . Storing the maximum of all the randomly generated 
random numbers is what will allow me appropriately to “chop off ” entire chains of 
links when I search over alternative μs and πs corresponding to smaller datasets. 
Finally,  u 3  is a randomly generated uniform  [ 0, 1 ]  number that will determine the 
destination of the link.

Step 4 (actual consumers): For given μ and π different from 1 and 1.35, a particu-
lar link between a firm and a customer exists if both γμ >  u 1  and γμπ >  u 2 . Note 
that since all descendants of a random meeting share the same  u 1 , if this ancestor 
random meeting does not exist for a particular choice of μ, then none of the down-
stream links will exist either. By the same token, since  u 2  is the maximum over an 
entire chain of links, if any upstream link does not exist for a particular choice of 
μ and π, then none of the downstream links that could have emanated from it will 
exist either.

Step 5 (geographic location): For a given link’s source country, which is the des-
tination country? For each origin country c, I assume that the probability that a 
link originating from that country falls into country  c′  is given by g ( c,  c′  ) . I then 
 arbitrarily order all countries. The answer to the above question is that the link 
will fall in country  c′  if and only if   ∑  n=1  

 c′ 
  g ( c, n )  ≤  u 3  <  ∑  n=1  

 c′ +1 g ( c, n ) .
I run steps 1, 2, and 3 once and for all. Steps 4 and 5 are run iteratively while 

searching for the parameters that best fit the data. For a given set of parameters Θ, 
at the end of step 5, I have generated an artificial set of French exporters, exporting 
to various sets of countries.

Moments.—I match 120 moments. The first 70 moments are the fraction of firms 
exporting to 1 country, 2 countries, … , 69 countries, and 70 or more countries.18 
They are the analog to the probability distribution f  ( M )  = F ( M + 1 )  − F ( M )   
in the theory, where M counts countries instead of consumers. The remaining  

18 The reason for stopping at 70 countries has to do with the construction of the weight matrix, described below.
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50 moments are the average (squared) distance of exports, among firms that export 
to 1 country, 2 countries, … , and 50 countries.19 They are the analog to the Δ ( M ) s 
in the theory, where M counts countries instead of consumers. Those moments are 
constructed as follows.

To compute Δ ( M ) , the average (squared) distance of exports among firms that 
export to exactly M countries, I need to measure both the geographic distance 
between France and other countries, as well as the distribution which governs the 
location of export destinations among firms that export to M countries. I use the 
empirical distribution of exports among firms that export to M countries and a sim-
ple linear correction for country size to define the moment Δ ( M ) ,

(8) Δ ( M )  =   
   

i∈(M),c  
 
   (Dis t France,c  ) 2   (   1 _ 

GD P c 
   )  1[expor t i,c  > 0]

     ____    
   

i∈(M),c  
 
    (   1 _ 

GD P c 
   )  1[expor t i,c  > 0]

  ,

where  ( M )  is the set of firms that export to M countries.
I now have a vector of 120 moments, 1 for the actual data, k, and 1 for each arti-

ficial dataset generated using a candidate set of parameters Θ,    k  ( Θ ) . For each can-
didate Θ, I have a vector of deviations between the actual and simulated moments,

 y ( Θ )  = k −    k  ( Θ ) .

Estimation Procedure.—Under the moment condition that E [ y (  Θ 0  )  ]  = 0 for 
the true value of the parameters  Θ 0 , I search the set of parameters    Θ  that 
minimizes the weighted deviations between the actual and simulated moments,

    Θ  =  arg  min    
Θ
    { y ( Θ ) ′ Wy ( Θ )  } ,

where W is a weight matrix20 that accounts for the fact that some moments in the 
data are more precisely estimated than others. To search for    Θ , I first use a simulated 

19 The reason for stopping at 50 countries has to do with the construction of the weight matrix as well.
20 The weight matrix W is constructed as follows. From the data, I draw 1,000 samples (Eaton, Kortum, and 

Kramarz 2011 take 2,000 draws). For each sample, I draw with replacement from the data as many firms as there 
are exporters and non-exporters in the actual data (about 600,000). Since I draw with replacement, the same firm 
may be sampled more than once. For each sample b, I calculate the moments  k b . The weight matrix W is the inverse 
of the empirical variance-covariance matrix of my 120 moments, Ω,

W =  Ω −1 , with Ω =   1 _ 
1,000

    ∑  
b=1

  
1,000

   ( k −  k b  )   ( k −  k b  ) ′.

In the data, there are no firms selling to exactly 70 countries (as well as some other numbers above 70). If I had cho-
sen as one of the moments to match “the fraction of firms that export to exactly 70 countries,” there would have been 
no difference between that moment in the data and in any of the 1,000 random samples. That would have meant 
taking   0 _ 0   in the above formula for W. This justifies my choice for the first 70 moments (fraction of firms exporting 
to 1 country, 2 countries, … , 69 countries, and 70 or more countries). Furthermore, when drawing samples from the 
data, it sometimes happens that no firm exports to exactly 51 countries (as well as other numbers above 51), so that 
would have meant taking   0 _ 0   in equation (8) and I cannot calculate Δ ( 51 ) . This justifies my choice of the remaining 
50 moments (average (squared) distance of exports, Δ ( M ) , only for M = 1, … , 50).
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annealing algorithm21 to find     Θ   ( 1 )  . Then, starting from     Θ   ( 1 )  , I run a simplex maxi-
mization algorithm to get    Θ . This two-step approach is required because of the pres-
ence of many local minima, with a series of small “lakes” (local minima) separated 
by a series of “ridges.” Standard errors are calculated by bootstrapping and account 
for both sampling and simulating errors.22 I run the above estimation separately for 
each year from 1986 to 1992.

Results.—The estimated parameters are presented in Table 2. For the year 1992, 
the data suggest that μ = 0.38 and π = 2.4. In other words, remote search is more 
than twice as important as direct search for a firm with a single existing contact. Of 
course, as firms acquire more contacts, remote search accounts for an increasing 
share of the firm’s new contacts. For a firm with the sample mean number of 3.5 for-
eign contacts, 90 percent of new contacts come from remote search. For a firm with 
20 foreign contacts (ninetieth percentile), remote search dominates, and accounts 
for 98 percent of new contacts. In the aggregate, remote search accounts for about 
90 percent of all new contacts.23

Figure 3 plots together the actual data (dots) and the simulated data (plus signs) 
for the year 1992. It shows the fraction of firms that export to different number of 

21 For this algorithm, I use the MATLAB code from Joachim Vandekerckhove, available at http://www.
mathworks.com/matlabcentral/fileexchange/10548/.

22 For bootstrap b, I take a sample with replacement from the data as well as from the steps 1, 2, and 3 of the 
simulation. As for the construction of the weight matrix, the number of draws is the same as either in the actual data 
or in the simulated data. With these two samples, I can calculate  y b  ( Θ )  =  k b  −     k  b  ( Θ )  for any Θ. I use the same 
maximization to find     Θ  b  = arg mi n  Θ      {  y b  ( Θ ) ′ W y b  ( Θ )  } . Note that as Eaton, Kortum, and Kramarz (2011), I do 
not recalculate a new weight matrix  W b  for each bootstrap. I perform 20 such bootstraps (Eaton et al. 2011 use 25 
bootstraps), and calculate the empirical variance-covariance matrix of the estimated parameters,

V ( Θ )  =   1 _ 
20

    ∑   
b=1

   
20

   (     Θ  b  −    Θ  )   (     Θ  b  −    Θ  ) ′.

The bootstrapped standard errors are the square roots of the diagonal elements of V ( Θ ) .
23 For this calculation, I use a continuous approximation to circumvent integer constraints. In any period, direct 

search delivers    
_
 m  direct  = γμ new contacts for all firms, irrespective of their number of existing contacts. Remote 

search brings γμπm new contacts for a firm with m existing contacts. Given that the contacts are distributed within 
the population according to the c.d.f. F ( m ) , the average number of new contacts brought by remote searches 
is    

_
 m  remote  =  ∫  0  

+∞ γμπmdF ( m )  = γμ ( μπ ) / ( 1 − μπ ) . The fraction of new contacts delivered by remote search is 
therefore    

_
 m  remote /(   _ m  direct  +    _ m  remote ) = μπ ≈ 0.93.

Table 2—Direct Search, Remote Search, and Geography (SMM estimates)

(1986) (1987) (1988) (1989) (1990) (1991) (1992)

π 2.420 2.495 2.479 2.499 2.574 2.633 2.401
(0.187) (0.114) (0.150) (0.066) (0.114) (0.130) (0.200)

μ 0.371 0.368 0.384 0.362 0.357 0.338 0.384
(0.022) (0.013) (0.021) (0.010) (0.013) (0.014) (0.027)

Parameter for g (  |  | x − y |  |  )  =   1 _ λ    e 
−|| x−y ||/λ  :

λ 3.419 3.398 3.448 2.906 3.515 3.418 3.513
(0.131) (0.145) (0.130) (0.403) (0.177) (0.132) (0.135)

Notes: This table presents the SMM estimates of μ, π, and λ. The parameters μ and π govern the acquisition of the 
number of new consumers, while the parameter λ governs the geographic location of those consumers. Data: all 
French exporters, 1986–1992. Bootstrapped standard errors are in parentheses. All coefficients are statistically dif-
ferent from zero at the 1 percent level of significance.

http://www.mathworks.com/matlabcentral/fileexchange/10548
http://www.mathworks.com/matlabcentral/fileexchange/10548
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countries (left panel), and the average (squared) distance of exports among firms 
that export to different number of countries (right panel). For both, the fit between 
the simulation and the data is good. The simulated data underestimates the fraction 
of firms that export to many countries, and overestimates the average (squared) 
distance of exports among firms that export to an intermediate number of countries.

The next section discusses the relation between my theory and existing trade 
models.

B. Discussion

Existing international trade models with heterogeneous firms, such as Bernard et 
al. (2003) or Melitz (2003) and its extension in Chaney (2008), do not offer specific 
predictions regarding the distribution of the number of countries reached by differ-
ent firms. By comparison, the model I develop offers a parsimonious theory for the 
extensive margin of international trade.

For this discussion, I assume that in my model, the number of contacts of a firm, 
m, is proportional to the number of countries it exports to, M: m ∝ M.

In the original Melitz (2003) model, all trade barriers are symmetric, and any 
exporter exports to all foreign markets. This is obviously an artifact of the simplify-
ing assumption that all trade barriers and country sizes are perfectly symmetric. In 
Chaney (2008), I offer a simple extension of Melitz (2003) with asymmetric country 
sizes and fixed and variable trade barriers. In this model, from the point of view of 
a given exporting country, say France, there is a strict hierarchy of foreign markets. 
This means that markets can be strictly ordered in a decreasing level of accessibility, 
so that if a French firm exports to the Mth most accessible market, it will necessarily 
export to all markets  M′  ≤ M. The fraction of firms that export to exactly M markets 

Figure 3. The Number and Geography of Exports (SMM estimates)

Notes: Left panel: fraction of firms that export to M different countries. Right panel: average squared distance to 
a firm’s export destinations, among firms exporting to M destinations, as defined in equation (8); distances are cal-
culated in thousands of kilometers. Dots: data, all French exporters in 1992. Plus signs: simulated data; π = 2.401 
(0.200), μ = 0.384 (0.027) and λ = 3.513 (0.135) are estimated by simulated method of moments.
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is then the fraction of firms that have a productivity between the productivity thresh-
olds for exporting to M and M + 1. Even if productivities are distributed Pareto, the 
fraction of firms that export to exactly M markets can take any value, depending on 
the distance between the thresholds for exporting to country M and M + 1. Even 
if country sizes are themselves Pareto distributed, and if fixed export costs are log 
proportional to country size, there is no reason to make the counterfactual assump-
tion that variable trade barriers are themselves log proportional to country size. The 
fraction of firms that export to exactly M markets does not even have to be decreas-
ing in M.24

By adding to the Melitz/Chaney model firm-destination specific idiosyncratic 
shocks to the entry cost and demand faced by each firm, Eaton, Kortum, and 
Kramarz (2011) can a priori replicate any pattern of entry in the data. Calibrating 
their model to the data, they need to assume a large amount of idiosyncratic noise, 
with a ratio of the relevant combination of fixed entry costs and local demand shocks 
of 1 to 13 between the twenty-fifth and the seventy-fifth percentiles. So the produc-
tivity thresholds are essentially randomly distributed. With the assumption of this 
additional noise, the fraction of firms that export to exactly M markets inherits the 
assumed Pareto distribution of productivities across firms, which matches the data 
well. The fact that the model lines up with the data comes from the assumption of 
a large amount of idiosyncratic noise and of Pareto-distributed productivity shocks, 
and not from the underlying Melitz/Chaney model.25 My model can be thought of 
as a micro-foundation for the distribution of the entry shocks that Eaton, Kortum, 
and Kramarz (2011) agnostically take as a purely random process.

In the stochastic model of Bernard et al. (2003), there is no strict hierarchy in the 
accessibility of foreign markets. A given exporter, even if it has a low productivity, 
may still export to many foreign countries, if this exporter is lucky enough to face 
unproductive foreign competitors. However, the structure of country sizes, relative 
productivities and labor costs across countries, and bilateral trade barriers between 
countries imposes a severe restriction on the cross-sectional distribution of the num-
ber of foreign markets entered. For a large number of firms, or for the continuous 
limit that they analyze, there is no uncertainty either in the fraction of firms enter-
ing any given market, or in the distribution of the number of markets entered. This 
distribution depends on the specific trade barriers and country characteristics. Even 
under the convenient Frechet assumption for the distribution of productivities, there 
is no reason why any particular distribution should arise. As in the Melitz model, the 
fraction of firms that export to exactly M markets does not even have to be decreas-
ing in M. The following argument makes this point clear. In the limit of infinitely 
large trade barriers, all firms only sell in their domestic market, so that no firm 
sells to any foreign markets  (  f  ( M )  = 0 if 0 < M ≤  M max   ) . In the other extreme 
of  perfectly free trade, all firms which sell domestically also export to all countries 
in the world ( f  ( M )  = 0 if M <  M max   and f  (  M max   )  = 1). So whereas the fraction 

24 I develop these arguments formally and provide a calibration of the Melitz/Chaney model in the online 
Appendix.

25 Similarly, Armenter and Koren (2014) estimate from the data the distribution of the number of shipments (the 
distribution of the number of “balls”) from the data, and then generate predictions for the occurrence of zeroes in 
the trade data (empty “bins”). By contrast, instead of assuming this distribution to match the data, my model offers 
a theory that generates such a distribution endogenously.
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of firms that export to all foreign countries in the world  (  M max   )  is monotonically 
decreasing from 1 to 0 as trade barriers rise, the fraction of firms exporting to any 
other number of foreign countries  ( M <  M max   )  is not monotone. The fraction of 
firms exporting to exactly M markets can be made arbitrarily small or large by sim-
ply varying bilateral trade barriers.

Finally, if trade barriers tend to increase with distance, and if as in the data there 
is no systematic correlation between country size and distance from France, both 
the Melitz/Chaney model and Bernard et al. (2003) would correctly predict that the 
distance of exports increases with the number of markets a firm enters. However, 
neither model offers any specific prediction for the shape of this relationship. Even 
if a large amount of noise is added as in Eaton, Kortum, and Kramarz (2011), the 
very strong tendency of firms in the Melitz/Chaney model to first enter close by 
markets implies that exports are far more geographically concentrated than in the 
data. For instance, among firms that export to a single foreign market, the average 
squared distance (in thousands of km) between France and that country is 18 in the 
data, 17 in my simulated model, but only 2 in the calibrated Eaton, Kortum, and 
Kramarz (2011) model.26

To summarize, while existing firm-level trade models cannot match several facts 
about the extensive margin of trade, I develop a parsimonious model that matches 
those facts. On the other hand, my model is silent about the determinants of the inten-
sive margin of trade, or about the relationship between a firm’s exposure to interna-
tional trade and its size in different markets, while those models make precise and 
factually correct predictions about those patterns. In that sense, the network model 
I develop is complementary to the existing firm-level trade models. The proposed 
theory can be thought of as a micro-foundation for the assumptions on export costs 
needed in those existing models to match the data on the extensive margin of trade.

IV. Conclusion

Motivated by reduced-form evidence on the dynamics of firms’ exports I uncover, 
I propose a new model of trade frictions, which generates a dynamic entry of firms 
into geographically dispersed markets. Firms can sell only in locations where they 
have a contact. Firms search for trading partners directly, but they also use their 
existing network of contacts to search remotely for new partners. This dynamic 
model generates a stable spatial distribution of sales across firms. Bringing those 
predictions to data on French firm-level exports between 1986 and 1992 suggests 
that remote search is about twice as important as direct search for a firm with a 
single foreign contact, but it quickly dominates as a firm acquires more contacts. 
This explains both the fat upper tail and the thinner lower tail of the distribution of 
the number of foreign countries accessed by French firms. It jointly explains the 
fact that the average distance of exports increases at an accelerating pace with the 
number of foreign countries accessed.

This model and the empirical findings that support it suggest several extensions 
and generalizations. First, the emergence of a stable distribution of entrants into 

26 For a more intuitive interpretation of these numbers, the average distance is 3,500km in the actual and simu-
lated data versus 900km in the calibrated Eaton, Kortum, and Kramarz (2011) model.



3626 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2014

 different foreign markets, and the fact that firms that export to more countries are less 
affected by geographic distance, may generate aggregate trade flows that follow the 
so-called gravity equation. This may provide an explanation for the stable role geo-
graphic distance plays in explaining aggregate bilateral trade flows. I propose such 
an explanation in Chaney (2013). Second, whereas I have only sketched the welfare 
implications of a simple economic model that would support the proposed dynamics, 
the structure of the network lends itself to further welfare analysis. In particular, the 
welfare gains from trade in my model are unevenly distributed, because information 
about profitable foreign trade is unevenly distributed. Moreover, the measure itself of 
the welfare gains from trade in my model would be very different from conventional 
models. For instance, information on price dispersion would be of little help, as they 
would reflect to a large extent the uneven distribution of information. This point is 
further developed and tested by Allen (forthcoming), who uses a similar theoretical 
framework. Third, I have only studied a simple symmetric case, and described its 
steady-state properties. A large shock to this dynamic system would generate non-
trivial transitional dynamics. For example, a large disruption of trade linkages (e.g., 
wars or economic crises such as the 2008 global Great Recession), the rapid growth 
of a large country (e.g., China), or the sudden decline of a set of firms (e.g., sili-
con wafer and semiconductor producers after the Fukushima disaster) may have a 
long-lasting impact on the world geography of trade, since (re)building contacts is 
a lengthy and  history-dependent process. I leave these questions for future research.

Appendix

A. Data Sources

Firm-level export data: The data on firm-level exports come from the French 
customs, and are described in greater detail in Eaton, Kortum, and Kramarz 
(2011). I only keep a 0/1 indicator for positive exports. I use data on all French 
exporters.27 In addition, the customs data are matched with balance sheet infor-
mation collected by the French fiscal authorities for all firms with a turnover of 
1,000,000 French francs in services, or 3,000,000 French francs in manufacturing 
(US$1 ≈ 5 French francs in 1992). Virtually all exporters are in this dataset. I use this 
dataset to assign each firm to its primary two-digit industrial sector. Table A1 reports 
the list of two-digit sectors, as well as the distribution of all exporters in those sectors.

Distance data: I use data on bilateral distances between countries collected and 
constructed by the CEPII. The distance between two countries, measured in thou-
sands of kilometers, is calculated as a population-weighted arithmetic average of 
the geodesic distances between the main cities in these countries. See Mayer and 
Zignago (2006).

Country size data: I use as a measure of a country’s size its nominal GDP (in mil-
lions US$) in the current year. See http://pwt.econ.upenn.edu/.

27 Restricting the sample to manufacturing firms does not alter the results significantly.

http://pwt.econ.upenn.edu
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Bilateral trade flows: To proxy for the intensity of firm-level contacts between 
countries, I use data on the nominal value (in US$) of aggregate bilateral exports. 
See Feenstra et al. (2004).

B. Mathematical Proofs

PROPOSITION 3: When the population N of a cohort of firms grows large, the dis-
tribution of consumers for the entire cohort evolves recursively according to

  f t+1  ( x )  −  f t  ( x )  = γμg ( 0, x )  + γμπ  ∑   
y∈

   
 
   f t  ( y )  g ( y, x ) .

PROOF:
The law of motion for the distribution of consumers for a single firm i is

  f i, t+1  ( x )  − f   i, t  ( x )  =  ∑  
k=1

  
  ∼ γμ  i 

   1 [   ̃ x   i, k  = x ]  +  ∑  
y∈

  
 
    f i, t  ( y )    ∑   

 k y =1
   

  ∼ γμπ  i, y 

  1 [   ̃ x   i,  k y   = x ]  .

Averaging across N firms of age t, one gets the laws of motion for the population 
average,

 f   t+1  N
   ( x )  −  f   t  N  ( x )  =   

 ∑  i=1  
N
   (   f i, t+1  ( x )  −  f i, t  ( x )  ) 

  __  
N

  

 =   
 ∑  i=1  

N
   (  ∑  k=1  

  ∼ γμ  i 
   1 [   ̃ x   i, k  = x ]  +  ∑  y∈  

 
      m t   f i, t  ( y ) 

 _  m t     ∑   k y =1  
  ∼ γμπ  i, y   1 [   ̃ x   i,  k y   = x ]  ) 

     _____   
N

  

 =   
 ∑  i=1  

N
    ∑  k=1  

  ∼ γμ  i 
   1 [   ̃ x   i, k  = x ] 

  __  
N

   

 +  m t   ∑   
y∈

   
 
    

 ∑  i=1  
N
    ∑   k y =1  

  ∼ γμπ  i, y    g i, t  ( y )  1 [   ̃ x   i,  k y   = x ] 
   ___  

N
   ,

Table A1—Industrial Sectors

Sector N100 Industries Firm-Year-Destination

Agriculture 0–3 387,589
Mining 4–14 217,433
Construction 15–15 335,059
Manufacturers 16–56 11,589,869
Transportation 68–75 179,941
Wholesale 57–59 5,960,095
Retail 60–64 1,883,046
F.I.R.E. 76, 78–81, 88–89 269,345
Services 65–67, 77, 82–87 1,041,124
Public Administration + Other 90–99 21,115

Total 21,884,616

Note: F.I.R.E. refers to Finance, Insurance, and Real Estate.
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with  g i, t  ( x )  =  f i, t  ( x ) / m t  the function describing not the number of contacts of 
firm i at time t in location x, but the fraction of i’s contacts in x. The term  g i, t  ( y )  1 
[   ̃ x   i,  k y   = x ]  is the analog for a particular firm i of the joint probability distribution 
of the events “a random draw from i’s direct search at t is in y AND a random new 
search originating from y is in x.” For a large population, define  h t  ( y, y, x )  as the 
corresponding joint probability distribution of the events “a random draw from all 
firms’ existing contacts at t is in y AND a random new search originating from y is 
in x.” From the law of large numbers, the empirical frequencies converge to the true 
probabilities as the population grows large. Moreover, from the law of larger num-
bers, the number of terms in the sum  ∑  i=1  

N
    ∑  k=1  

  ∼ γμ  i 
   converges to Nγμ and the number 

of terms in the sum  ∑  i=1  
N
    ∑   k y =1  

 ∼ γμπ i, y
  converges to Nγμπ. For any  ( x, y ) ,

  when N → ∞ :

⎧
⎪
⎪
⎨
⎪
⎪
⎩

  
 ∑  i=1  

N
    ∑  k=1  

  ∼ γμ  i 
  1 [   ̃ x   i, k  = x ] 

  __  
N

    →   
a.s.

  γμg ( 0, x ) 

.

  
 ∑  i=1  

N
    ∑   k y =1  

 ∼ γμπ i, y
   g i, t  ( y )  1 [   ̃ x   i,  k y   = x ] 

   ___  
N

    →   
a.s.

  γμπ h t  ( y, y, x ) 

As the new draws from the g distribution are independent from the existing distri-
bution of contacts  (  g i, t  ) , the joint distribution  h t  ( ⋅, ⋅, ⋅ )  is simply the product of the 
distributions of each variable,

  h t  ( y, y, x )  =  g t  ( y )  g ( y, x )   with  g t  ( y )  =  lim   
N→∞

   
    

  ∑  i=1  
N
     

 f i, t  ( y ) 
 _  m t   
 _ 

N
   =   

 f t  ( y ) 
 _  m t   .

Plugging those limits into the law of motion for the population average, I get the 
proposed expression when the population of the cohort grows large,

  lim   
N→∞

   
    f   t+1  N

   ( x )  −  lim   
N→∞

   
    f   t  N  ( x )  =  = γμg ( 0, x )  + γμπ  ∑   

y∈
   

 
   f t  ( y )  g ( y, x ) .

PROPOSITION 1 (Reminded): Under the mean-field approximation that the num-
ber of a firm’s contacts evolves as the population average, the fraction of firms with 
fewer than m consumers is28

 F ( m )  =  1 −   (   1 _ 
1 + πm

   )  
  

 ln  ( 1+γ ) 
 _  

 ln  ( 1+γμπ ) 
  
 .

PROOF:
At any time, in any location, and therefore in the union of any set of locations (any 

country), the fraction of firms with more than m contacts is the same. Summing the 
number of contacts of a firm of age t over the entire set , I get the following simple 

28 Note that the ms only take a discrete set of values (corresponding to  m 1 ,  m 2 , … , etc.). The formula for F ( · )  is 
neither an approximation nor a limit. It holds exactly at any time t for those values  (  m 1 ,  m 2 , … ,  m t  ) .
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difference equation for the evolution of the average number of contacts of firms 
within a cohort,

  m t+1  −  m t  = γμ + γμπ m t   ,

with initial condition  m 0  = 0. Note that when γμ (respectively γμπ) is not an integer, 
the number of directly (respectively, remotely) searched contacts from one period 
to the next is equal to γμ (respectively, γμπ) only in expectation. As in Jackson and 
Rogers (2007), when γμ or γμπ are nonintegers, I use a mean-field approxima-
tion and assume that each firm receives exactly the population average number of 
directly (resp., remotely) searched contacts. The numerical simulations in Section 
IID suggest that this approximation is precise. See Atalay (2013) for a formal deri-
vation without a mean-field approximation. The above difference equation admits 
the solution,

  m t  =   1 _ π    (   ( 1 + γμπ )  t  − 1 ) .

I invert this equation to get the age of a firm as a function of its number of contacts,

 t ( m )  =   
 ln  ( 1 + πm ) 

  _  
 ln  ( 1 + γμπ ) 

  .

where t only takes integer values.29 The fraction of firms with more than m contacts, 
1 − F ( m ) , is the fraction of firms older than t ( m ) . Given the exponential growth 
rate of the population, this fraction is   ( 1 + γ )  −t ( m )  . Using the above expression for 
t ( m ) , I get a general expression for any γ,

 1 − F ( m )   =   ( 1 + γ )  −t ( m )  

 =   ( 1 + πm )  − ln  ( 1+γ ) /ln  ( 1+γμπ )   ,

from which I derive the proposed expression,

 F ( m )  = 1 −   (   1 _ 
1 + πm

   )  
  

 ln  ( 1+γ ) 
 _  

 ln  ( 1+γμπ ) 
  
  .

LEMMA 1: The distribution of consumers  f t  is given by

  f t  =   1 _ π   (   ( δ + γμπg )  ∗t  − δ ) ,

29 Note that I am not making any continuous approximation of the discrete model. The proposed formulas are 
exactly correct when t is an integer.
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where δ is the Dirac delta function and the exponent ∗t stands for a function convo-
luted t times with itself.  f t  admits a closed-form solution in the special cases where g 
is a centered Gaussian or Cauchy distribution.

PROOF:
First note that the sum on the right-hand side of equation (4) is a convolution 

product, so that the difference equation can be written in a compact form as

  f t+1  = γμg +  f t  + γμπg ∗  f t  ,

where ∗ stands for the convolution product of two functions. I take the Fourier trans-
form of this equation, where I denote    f    ( ω )  ≡  ∑  x∈ℤ  

 
   f  ( x )   e −iωx  the Fourier transform 

of f. Using the convolution theorem which states that the Fourier transform of the 
convolution of distributions is the product of their Fourier transforms, I get

    f   t+1  = γμ    g  +    f   t  + γμπ   g     f   t  ,

with initial condition     f   0  = 0, where I denote by    f   the Fourier transform of the func-
tion f. This first-order linear recursive equation admits the following solution:

    f   t  =   1 _ π    (   ( 1 + γμπ   g   )  t  − 1 ) .

Taking the inverse Fourier transform of this equation, I get the proposed expression 
for  f t .

To derive a closed-form solution for the special cases where g (  | ⋅ |  )  is a Gaussian 
or a Cauchy distribution,30 I manipulate this expression and get

  f t   =   1 _ π     (   ( δ + γμπg )  ∗t  − δ ) 

 =   1 _ π    ∑   
s=1

   
t

    ( γμπ )  s  (   t    s   )   g ∗s  .

Note that the convolution of the p.d.f.s of t random variables is the p.d.f of their sum. 
As the sum of t Gaussian (respectively, Cauchy) distributed random variables is also 
a Gaussian (Cauchy), I derive closed form solutions. If g (  | ⋅ |  )  =  ϕ  σ 2   ( ⋅ )  where  ϕ  σ  2   
is the p.d.f. of a Gaussian distribution with mean zero and variance  σ 2 , then g  (  | ⋅ |  )  ∗s   
=  ϕ s σ  2   ( ⋅ ) , and I get

  f t  =   1 _ π    ∑   
s=1

   
t

    ( γμπ )  s  (   t    s   )   ϕ s σ  2  .

30 Note that there is a slight abuse of language, as I have so far worked with a discrete set of locations, and 
the corresponding discrete random variables, while the Normal and the Cauchy are continuous random variables. 
All the analysis presented in the paper is identical with a continuum of locations  ( x ∈ ℝ )  instead of a discrete set  
( x ∈ ℤ ) , with summation signs replaced by integral signs, but the discrete case is more natural given the empirical 
application to international trade.
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If g (  | ⋅ |  )  =  ψ γ  ( ⋅ )  where  ψ γ  is the p.d.f. of a Cauchy distribution centered around 
zero and with scale parameter γ, then g  (  | ⋅ |  )  ∗s  =  ψ sγ  ( ⋅ ) , and I get

  f t  =   1 _ π    ∑   
s=1

   
t

    ( γμπ )  s  (   t    s   )   ψ sγ .

PROPOSITION 2 (Reminded): Under the mean-field approximation that the number 
of a firm’s contacts evolves as the population average, the average (squared) distance 
from a firm’s consumers, Δ(m), increases with the number of consumers m,31

 Δ ( m )  =   
γμπ
  __   

 ( 1 + γμπ )   ln  ( 1 + γμπ ) 
    ( 1 +   1 _ πm   )   ln  ( 1 + πm )   Δ g 

with  Δ g  ≡  ∑  x∈ℤ  
 
    x 2 g (  | x |  )  dx the second moment of g (  | ⋅ |  ) .

PROOF:
From Lemma 1, I get an expression not only for the the distribution of contacts,  

g t  =  f t / m t , but more interestingly for its Fourier transform,     g   t  =     f   t / m t ,

     g   t  =   
  ( 1 + γμπ   g   )  t  − 1

  __  
  ( 1 + γμπ )  t  − 1

  .

Note that if  g t  (  | ⋅ |  )  is the probability distribution of a random variable  X t , then its 
Fourier transform     g   t  is closely related to  φ  g t  (  | · |  )   ( ω )  = E [  e iω X t   ] , the characteristic 
function of  X t ,

     g   t  ( ω )  =  ∑   
x∈ℤ

   
 
   g t  (  | x |  )   e −iωx  = E [  e −iω X t   ]  =  φ  g t  (  | ⋅ |  )   ( −ω )  .

The various moments of  g t  (  | ⋅ |  )  are then simply given by the various derivatives of     g   t  
evaluated at zero. The first two derivatives are

     g    t  ′   =   
γμπt   g  ′  ( 1 + γμπ   g   )  t−1 

  __  
  ( 1 + α )  t  − 1

  

     g   t ′′ = γμπt    
   g  ′′  ( 1 + γμπ )  t−1  + γμπ ( t − 1 )     g  ′  2  ( 1 + γμπ   g   )  t−2 

    ____   
  ( 1 + γμπ )  t  − 1

  .

31 As for Proposition 1, note that the ms only take a discrete set of values (corresponding to  m 1 ,  m 2 , … , etc). The 
formula for Δ ( · )  for those values is exact and neither an approximation nor a limit.
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Note that since the distribution g (  | x |  )  is symmetric about zero, its first moment is 
zero,    g  ′ ( 0 )  = 0. The average (squared) distance of exports for a firm of age t,  Δ t , 
is simply the second moment of  g t , given by the second derivative of     g   t  evaluated at 
zero.

  Δ t  ≡  ∑  
x∈ℤ

  
 
    x 2   g t  (  | x |  )  = E [  X  t  2  ]  =     g   t ′′ ( 0 )  =   

γμπt  ( 1 + γμπ )  t−1 
  __  

  ( 1 + γμπ )  t  − 1
    Δ g  ,

with  Δ g  ≡  ∑  x∈ℤ  
 
    x 2 g (  | x |  )  the second moment of g (  | ⋅ |  ) . Using the expression that 

relates a firm’s age to the number of its contacts from the proof of Proposition 1,  
I get32

 t ( m )   =   
ln  ( 1 + πm ) 

 _  
ln  ( 1 + γμπ ) 

  

   ( 1 + γμπ )  t ( m )   − 1 = πm

   ( 1 + γμπ )  t ( m ) −1  =   1 + πm
 _ 

1 + γμπ
   .

Plugging those expressions into the expression for  Δ t ( m )   = Δ ( m ) , I derive the pro-
posed expression

 Δ ( m )  =   
γμπ
  __   

 ( 1 + γμπ )   ln  ( 1 + γμπ ) 
    ( 1 +   1 _ πm   )   ln  ( 1 + πm )   Δ g   .
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