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This paper studies strategic disclosure by multiple senders competing for prizes awarded by a single receiver. They decide whether to disclose a piece of information that is both verifiable and equivocal (it can influence the receiver both ways). The standard unraveling argument breaks down: if the commonly known probability that her information is favorable is high, a single sender never discloses. Competition restores full disclosure only if some of the senders are sufficiently unlikely to have favorable information. When the senders are uncertain about each other's strength, however, all symmetric equilibria approach full disclosure as the number of candidates increases.

Introduction

It is a common intuition that competition should favor information revelation. In the standard persuasion game framework where an informed sender tries to persuade an uninformed receiver to take a certain action by selectively communicating verifiable information, however, it plays no role. Even with a single sender, all the information is revealed because the receiver understands the motives behind any action of the sender. For this argument to work, the sender must know how her information would influence the receiver's choice. In many instances, however, an agent controls the access of others to a piece of information but is unable to predict their reactions to it. When information is equivocal in such a way, the classical unravelling argument breaks down and competition may play a role.

There are many situations where information may be equivocal. For example, a climate expert may understand the environmental effects of a particular emission reduction policy, but be unable to assess its electoral value to those in charge of approving it. A movie producer, or an online advertiser, may find it impossible to predict how the information conveyed in a trailer or an ad will affect the willingness to purchase of any particular consumer. 1When an uninformed receiver is sufficiently inclined to act as the sender wishes, the sender has no incentive to run the risk of informing her if she is uncertain about the impact of this information. A job candidate with a good resume, for example, is unlikely to reveal additional information about herself in a statement of purpose. Indeed, since it is both difficult to appreciate how such information will be interpreted by the employer and easy to make the statement of purpose deliberately vague, a candidate who thinks that she will be hired on the basis of her resume alone will not communicate potentially detrimental information. Furthermore, common knowledge that information is equivocal to the candidate prevents the employer from drawing any unfavorable conclusion from her behavior. A candidate with a weaker resume, however, may have to provide as much additional information as possible in order to sway the employer's decision. Similarly, the best strategy to advertise a movie from a popular director is to keep the trailer elliptic and mysterious, while the trailer of a movie from an unknown director will feature all its best scenes in order to attract audiences. But these examples ignore the effects of competition.

If there are multiple job candidates, for example, a weak one who has to provide more information about herself in order to stay in the race, may get ahead of an ex ante stronger candidate if her information turns out to be favorable. This should incentivize strong candidates to disclose more information as well. Thus, the forces of competition may be expected to lead to more disclosure. This paper shows that competition is not sufficient for full disclosure in general, and that weak candidates play an important role.

In the model, several candidates with heterogeneous prospects compete for a limited number of homogeneous prizes or slots which can be interpreted as positions, grants, the decision to implement a project or a policy or the decision to purchase an item. The model incorporates the search strategy of the receiver who decides how to allocate the slots. A candidate's prospect is her probability of being a good fit. I analyze the case in which the prospects of all candidates are common knowledge among them, as well as the case in which candidates ignore the prospects of their competitors.

An important assumption is that each piece of information is costly to process for the receiver. The decision maker has received documentation about some of the projects and can decide whether to process it. If the processing cost is sufficiently low, I show that it is an optimal policy for the decision maker to first learn sequentially about all the documented projects, and allocate a slot to each project that is found to be good. In this processing phase, she examines the projects in the order of decreasing prospects as long as there are slots to allocate. She starts allocating slots to undocumented projects only after having examined all the documented projects, even those less promising than the non-documented ones. Hence, by withholding information, a candidate loses her priority in the decision process of the decision maker. It might, however, still be beneficial to do so in equilibrium if the probability that there are sufficiently many good projects in the set of documented projects is low. For the decision maker, it is clearly optimal that all information be made available to her since it expands her choice set.

The first important finding is that sufficient competition leads to full disclosure only if some of the candidates are weak, 2 that is their prospects are sufficiently low that approving them without further investigation would be wasteful in expectation. This result holds both under symmetric and asymmetric information. It emphasizes the importance of weak candidates in this type of contests. Additional results show how the presence of weak candidates improves information disclosure. The second important finding limits the scope of the first one since, when candidates do not know about the strength of their competitors, all symmetric equilibria approach full disclosure asymptotically as the number of candidates increases. Hence, in this case, the role of weak candidates is muted and competition may suffice.

Related Literature. There is a large literature on strategic communication that distinguishes soft information [START_REF] Crawford | Strategic Information Transmission[END_REF], from hard information [START_REF] Grossman | The Informational Role of Warranties and Private Disclosure about Product Quality[END_REF][START_REF] Grossman | Disclosure Laws and Takeover Bids[END_REF][START_REF] Milgrom | Good News and Bad News: Representation Theorems and Applications[END_REF]. The literature on persuasion games3 studies the case of hard (certifiable) information in problems with a single sender trying to persuade a single receiver to take a certain action. [START_REF] Milgrom | Relying on the Information of Interested Parties[END_REF] and subsequent contributions identified conditions under which the unraveling argument holds. The receiver must be capable of strategic reasoning, informed about the interests of the sender and aware of the type of information that is available to her. [START_REF] Shin | Disclosures and Asset Returns[END_REF] shows that it may fail if there is uncertainty about the precision of the sender's information and [START_REF] Wolinsky | Information Transmission When the Sender's Preferences are Uncertain[END_REF] introduces a particular form of uncertainty about the preferences of the sender. In [START_REF] Dziuda | Strategic Argumentation[END_REF], the unraveling argument fails because of the structure of provability: every argument disclosed is verifiable, but the receiver cannot know whether every argument has been disclosed. Another reason that unraveling may fail is if the direction in which the sender tries to influence the receiver changes with respect to the sender's type (see Giovannoni and Seidmann, 2007;[START_REF] Hagenbach | Certifiable Pre-Play Communication: Full Disclosure[END_REF][START_REF] Seidmann | Strategic Information Transmission with Verifiable Messages[END_REF].

I also focus on hard information. The single sender/single receiver case of this paper, which was first analyzed by [START_REF] Caillaud | Consensus Building: How to Persuade a Group[END_REF], points at another important assumption: the sender must be able to anticipate the impact of the information she owns on the receiver. Interestingly, the inability of the sender to interpret her information is an advantage. By effectively eliminating the asymmetry of information, it renders the actions of the sender uninterpretable by the receiver and allows the sender to fully benefit from the control she exerts over the availability of information. [START_REF] Caillaud | Consensus Building: How to Persuade a Group[END_REF] extend their analysis to a multiple-receivers framework and use a mechanism design perspective to understand optimal persuasion strategies when decisions affecting the sender are made by a committee under a qualified majority rule. I analyze a multiple-senders/single-receiver version of the same benchmark model to explore the effects of competition. There are few studies of the effects of competition in the literature on hard information. [START_REF] Milgrom | Relying on the Information of Interested Parties[END_REF] and [START_REF] Milgrom | What the Seller Won't Tell You: Persuasion and Disclosure in Markets[END_REF] show that, even when the conditions for the unraveling argument fail, competition among senders can sometimes lead to efficient disclosure.

The paper is also related to [START_REF] Kamenica | Bayesian Persuasion[END_REF]. They model an information transmission game in which the sender has to commit to a signaling technology before knowing her type, which has the same implications as the equivocal information assumption. As in this paper, the game is effectively a symmetric information game. They make no restrictions on the signaling technology that can be chosen by the sender. By contrast, the model in this paper and [START_REF] Caillaud | Consensus Building: How to Persuade a Group[END_REF] restrains the alternatives to perfect signaling or no signaling. The same authors consider the effects of competition for their model in [START_REF] Gentzkow | Competition in Persuasion[END_REF]. Their framework is broader in a way but does not encompass the model in this paper. A first difference is the restriction on signaling technologies, a second difference is that information is costless to process in their model. The results are very different since, with two players or more, full revelation is always an equilibrium outcome in their model. [START_REF] Bhattacharya | Strategic Information Revelation when Experts Compete to Influence[END_REF] also consider competition in a situation where information is unequivocal and the senders can conceal information by pretending to be uninformed. Finally, in their conclusion, [START_REF] Che | Pandering ro Persuade[END_REF] suggest that competition may even harm the receiver in an extension of their framework.

The assumption that an economic agent can control access to information that she cannot process plays an important role in [START_REF] Eso | The One Who Controls the Information Appropriates its Rents[END_REF]. They propose an agency model where the principal can release, but not observe, information that would allow the agent to refine her knowledge of her own type. They show that when the full mechanism design problem is considered altogether, the optimal mechanism calls for full disclosure and allows the principal to appropriate the rents of the information she controls exactly as if it were observable to her. [START_REF] Eso | Optimal Information Disclosure in Auctions[END_REF] develop an auction model with similar conclusions. This paper is also connected to the literature on obfuscation which studies the incentive for firms to manipulate the search cost of consumers. [START_REF] Ellison | Search, Obfuscation and Price Elasticities on the Internet[END_REF] provide evidence of such practices. [START_REF] Carlin | Strategic Price Complexity in Retail Financial Markets[END_REF]; [START_REF] Ellison | A Search Cost Model of Obfuscation[END_REF]; [START_REF] Wilson | Ordered Search and Equilibrium Obfuscation[END_REF] develop static models of obfuscation and Carlin and Manso (2010) provide a dynamic model. In the literature on marketing and advertising, [START_REF] Bar-Isaac | Information Gathering and Marketing[END_REF] study the incentive of a monopoly to manipulate the cost of consumers to learn their true valuation. In a similar spirit, [START_REF] Lewis | Supplying Information to Facilitate Price Discrimination[END_REF] and [START_REF] Johnson | On the Simple Economics of Advertising, Marketing and Product Design[END_REF] study the optimal information structure of the consumer about her valuation from the point of view of a monopolist.

Finally, the advertising literature makes predictions about the relationship between product quality and the informativeness of advertising. This question is connected to the analysis of the relationship between product quality and levels of advertising in the literature. As summarized in [START_REF] Bagwell | The Economic Analysis of Advertising[END_REF], the empirical literature does not strongly support a systematic positive relationship. [START_REF] Bagwell | Look How Little I'm Advertising![END_REF] and [START_REF] Bar-Isaac | Information Gathering and Marketing[END_REF] offer possible theoretical explanations for a negative relationship. To the extent that the quantity of advertising and informativeness are related, the benchmark model of [START_REF] Caillaud | Consensus Building: How to Persuade a Group[END_REF] and of this paper offers an alternative simple theoretical explanation in the case of a monopolist.

The Model

Setup

For clarity, the model is described in the language of project adoption, although it fits other situations as well. Finitely many candidates with a single project each are indexed by the set N = {1, . . . , N }. They seek to maximize the probability that their project be adopted by a decision maker who can implement only M ≤ N of them. A project is either good or bad for the decision maker. A good project yields an expected gain G > 0, whereas a bad project yields an expected loss L > 0. 4

All the players share the belief that the projects are independent from one another, and assign probability ρ n ∈ (0, 1) to the event that project n is good. With minimal loss of generality, 5 ρ 1 > • • • > ρ N . Each candidate n controls information that would allow the decision maker to figure out the value of project n but is irrelevant to other projects. The candidates, however, are unable to process this information and can only decide whether to communicate it to the decision maker. Alternatively, I could assume that the candidates must commit to a communication decision before observing the value of their project. When a candidate discloses her information, I say that her project is documented. The communication decisions are taken simultaneously. The decision maker can then choose whether to investigate each documented project at a cost c > 0, and decide which projects to approve. To denote this action, I use the term investigate and conditionally approve, where conditionally means that after being investigated a project is approved if it turns out to be good and if there are slots available. Her decisions are not contractible and she cannot commit to a policy at the outset.

Assumptions and Notations

Assumptions. Approving a project with prospect ρ without inquiring provides the decision maker with an expected incremental payoff ρ(G+L)-L, whereas investigating and conditionally approving the project gives the expected incremental payoff ρG-c. Let ρ ≡ c/G, ρ ≡ L/(L+G) and ρ ≡ 1c/L. These values are thresholds such that: a project with prospect below ρ is never worth considering, ρ is the threshold at which the expected value of a project becomes 4 In the multi-seller/buyer interpretation of the model, projects are items for sale to a seller with demand for a fixed quantity M . Then these payoffs implicitly assume away any price heterogeneity across sellers.

5 There is a small loss of generality since ties are ruled out, but this is a measure 0 event if the probability profile is drawn from an atomless joint distribution on [0, 1] N . However, some results are sensitive to this assumption as indicated below.

positive, a project with prospect above ρ is so promising that it is better to rubberstamp than to investigate.

Assumption 1 (Affordable Learning). The processing cost is sufficiently low to ensure that investigating is profitable in some cases: c < LG/(L + G).

(AL)

(AL) ensures that ρ < ρ < ρ. The interval (0,1) can then be partitioned into four intervals (see Figure 1) such that:

(i) if ρ ∈ (0, ρ), the project is not worth considering for either immediate (i.e. rubberstamping) or conditional approval (i.e. after investigation);

(ii) if ρ ∈ (ρ, ρ), the project is worth investigating, but rubberstamping is wasteful;

(iii) if ρ ∈ (ρ, ρ), the first-best option is to investigate, but rubberstamping beats mere rejection;

(iv) if ρ > ρ, rubberstamping is the first-best option, investigating is wasteful.

Hence (AL) simply says that at least some projects are worth investigating.

Projects with ρ < ρ will always be rejected without investigation since the expected incremental payoff of investigating ρGc and the expected incremental payoff of rubberstamping ρ(G+L)-L are both negative. The presence of these projects is also irrelevant to the disclosure game, since they have no effects on the payoffs of other candidates. It is therefore without loss of generality that I assume that there are no such projects in the remainder of the paper. I also assume, although not without loss of generality, that no candidate is sufficiently strong to make the incremental payoff of investigating smaller than the incremental payoff of rubberstamping, Assumption 2 (No Extremes). For every n ∈ N , ρ < ρ n < ρ.

(NE)

Let N W ≡ n ∈ N ; ρ < ρ n < ρ be the set of weak candidates or weak set, and N S ≡ n ∈ N ; ρ < ρ n < ρ be the set of strong candidates or strong set. Weak candidates are those for which the incremental payoff of investigation is positive while the payoff from rubberstamping is negative. Strong candidates are those for which this inequality is reversed. In the remainder of the paper, I also make the following assumption.

Assumption 3 (Learning Priority).

Whenever N ≥ 2, ρ N (1 -ρ 1 ) > c/(L + G). (LP)
This assumption is satisfied if

N S = ∅ or if N W = ∅, but it is not satisfied in general. If, for example, ρ 1 ρ = 1 -c/L and ρ N ρ = c/G, then ρ N (1 -ρ 1 ) c 2 /(LG) < c/(L + G),
where the last inequality is a consequence of (AL). (LP) is always satisfied when learning is costless for the decision maker (c = 0). It can be interpreted as a bound on the processing cost, or as ruling out excessive heterogeneity in prospects.

I call it the learning priority assumption because it implies that a decision maker with one slot to fill and a pool of projects reduced to the best and the worst projects from the original pool would always choose to process all available information before rubberstamping a project.

Indeed, suppose the decision maker has only received documentation about N , the worst project, and is therefore contemplating two choices: (i) rubberstamp the best project, with expected payoff ρ 1 (G + L) -L, or (ii) first investigate project N and then rubberstamp project 1 if N is a bad project, with expected payoff ρ N G + (1ρ N )(ρ 1 (G + L) -L)c. The latter dominates the former if and only if (LP) is satisfied. Proposition 1 in the next section shows that this assumption implies that the decision maker prioritizes learning in any situation. It also ensures that any optimal policy of the decision maker gives the same incentives to candidates in the disclosure game which is important for the analysis.

Notations. For any subset J ⊆ N , denote its cardinality by J, and let j(1) < • • • < j(J) be the ordered elements of this subset, so that ρ j(1) > • • • > ρ j(J) .

Definition 1 (Truncated Subsets). For any subset J = {j(1), . . . , j(J)} ⊆ N and any k < J, let J -(k) ≡ {j(1), . . . , j(k)} and J + (k) ≡ {j(k + 1), . . . , j(J)} be the left and right truncations of J at k. Also for

1 ≤ k < k + r ≤ J, write J (k, k + r) = {j(k + 1), . . . , j(k + r)}. By convention, J -(0) = J + (J) = ∅.
For a project n ∈ N , and a subset of projects J ⊆ N , let r J (n) be the rank of n in J . This does not require n to be an element of J : if n / ∈ J then r J (n) is the rank that n would have in J ∪ {n}. For example, if N consists of three projects 1, 2 and 3 such that ρ 1 > ρ 2 > ρ 3

and J = {1, 3}, then r J (3) = r J (2) = 2 as project 3 is the second strongest project in J and project 2 would be the second strongest project in J ∪ {2}.

For comparisons between sets of projects, I use the usual set containment order ⊂, and the strength order which compares the projects of two sets of the same cardinality one by one according to their rank.

Definition 2 (Strength Order on Sets). For two sets of projects K, K ⊆ N with the same

cardinality K = K , K is stronger than K , denoted K > K if for every κ = 1, . . . , K, ρ k(κ) ≥ ρ k (κ)
, with at least one of these inequalities holding strictly.

3 The Decision Maker's Choice The policies available to the decision maker can be described as finite sequences of investigation and approval decisions with bounded lengths. Hence the decision maker's problem is to maximize a function over a finite set which implies the existence of an optimal policy. Because (NE) excludes projects for which it is not optimal to investigate on an individual basis, any policy is equivalent to a sequential policy where, at each stage, the decision maker can either rubberstamp a project from H or investigate and conditionally approve6 a project from D. A policy in state (D, H, M ) is therefore well described by a vector π = π 1≤ ≤ of dimension ≤ N , listing elements of N in the order of their examination, with the understanding that if π ∈ D, the policy means investigating π at cost c, conditionally approving it, and then moving on to π +1 if some slots remain available, while if π ∈ H, the policy means rubberstamping π and then moving on to step π +1 if some slots remain available.

Let Π(D, H, M ) denote the set of optimal policies at (D, H, M ) and let V (D, H, M ) be the maximum achievable payoff. It is intuitive that, at each stage, the decision maker is best off by choosing between the strongest project in H and the strongest project in D. Hence in each state (D, H, M ), the choice of the decision maker can be described as a choice between (i) approving h(1) and moving on to the state (D, H + (1), M -1); or (ii) investigating d(1), approving it if it is good and moving on to the state (D + (1), H, M -1), or simply moving on to the state

(D + (1), H, M ) if d(1) is bad.
Of course there is also the option to rubberstamp a project in D, but investigating is always better because of (NE). The following lemma identifies some useful properties that optimal policies must satisfy.

Lemma 1. (i) Projects in H W are optimally discarded and only the first M projects in H S are ever considered:

Π(D, H, M ) = Π(D, H - S (M ), M ). (ii) If M > D it is optimal to rubberstamp the first K = min(M -D, H S ) projects in H S .
More precisely, any policy in Π(D, H, M ) is a policy resulting from the combination of a

policy π ∈ Π(D, H + S (K), max(D, M -H S )
) with the rubberstamping of every project in H - S (K) in any order and at any point in the sequence.

(iii) If M > H S , there is an optimal policy that consists of filling as many of the first M -H S slots as possible with projects in D that are found to be good after processing, and then solving for the continuation problem.

Proof. See Appendix A

The next result shows that an optimal policy for the decision maker is to start by investigating all the documented projects in the order of decreasing strength, and then to fill the remaining slots with the most promising strong undocumented projects while discarding weak undocumented ones. Hence, withholding information implies losing one's ex ante priority in the order of attribution, generating a cost to non-disclosure.

Proposition 1 (Optimal Policy). Given any triple (D, H, M ), the following two-step procedure is an optimal policy for the decision maker. Furthermore, the probability that a certain project is approved is invariant across all optimal policies of the decision maker.

Step 1. Investigate and conditionally approve all projects in D sequentially in the order d(1) → d(2) → . . . as long as there are some empty slots.

Step 2. Fill the m ≥ 0 remaining slots with the min {m, H S } strongest projects in H S .

Proof. See Appendix A

The proof consists of a double induction on M and N that extends (LP) to more than two candidates and one slot. Induction works because of the recursive nature of the decision maker's problem, as is usual in search models.

As c approaches 0, any pool of projects satisfies the assumptions of the model ensuring that the policy is an optimal one. When it is costless to process information, it is natural for the decision maker to prioritize learning. The proposition says that this priority is maintained for sufficiently small processing costs where small is defined by both (LP) and (AL). When c = 0, the order of investigation is irrelevant. Therefore, while the policy of the proposition is still an optimal one, it is no longer true that the probability that a given project is implemented is invariant across all optimal policies. For instance, another optimal policy would be to process all documented projects and then to implement as many of the good ones as possible, using a randomization device if their number is greater than the number of slots. Hence different optimal policies would give different incentives to the candidates for the disclosure game when c = 0. Therefore, taking the limit as c goes to 0 of the equilibria analyzed in this paper provides a method for selecting equilibria in the game with c = 0.

As a consequence of the proposition, the probability that a project is approved depends on the probabilities of finding good projects in subsets of D. Hence it is useful to introduce the following notations. For a subset K of D, let f (p, K) denote the probability of finding exactly p good projects in K, and let

F (p, K) ≡ p q=0 f (q, K)
be the probability that there are no more than p good projects in K.

f (p, K) = J ⊂K J=p j∈J l∈K J ρ j (1 -ρ l ), (1) 
and

F (p, K) = J ⊂K J≤p j∈J l∈K J ρ j (1 -ρ l ).
(2)

F (p, K) is clearly increasing in p.
It is also decreasing in K for the set containment order and decreasing in ρ k for any k ∈ K (see Lemma 5 in Appendix A). It is therefore decreasing in K for the strength order. Intuitively, adding new candidates to a pool or increasing the probability that any project already in the pool is good increases the probability that at least p projects in the pool are good. These observations derive directly from Lemma 5 and Lemma 6 that can be found in Appendix A.

With these notations, the probability that d(k), the k-th best project in D, is implemented by the decision maker is

F (M -1, D -(k -1))ρ i(k) ,
and the probability that h(k), the k-th project in H, is implemented is

F (M -k, D) • 1 h(k)∈H S .

Implied Preferences of the Decision Maker

Proposition 1 implies the following expression for the expected payoff of the decision maker

V (D, H, M ) = (1 -F (M -1, D))M G + G M -1 p=1 pf (p, D) -c D-1 q=0 F (M -1, D -(q)) + min(M,H S ) r=1 F (M -r, D) ρ h(r) (G + L) -L . (3) 
The first term measures the payoff from implementing M good projects, weighted by the probability 1 -F (M -1, D) of finding them. The second term measures the expected payoff obtained when less than M -1 good projects are found in D. The third term measures the expected cost of the search in D. If less than M -1 projects are found among the first q < D projects in D, at least one more project has to be investigated at the cost of c. Finally, the last term measures the payoff from filling the remaining slots with projects in H S . This expression uncovers some properties of the decision maker's preferences over outcomes of the communication game.

Proposition 2 (Preferences of the Decision Maker).

(i) The decision maker prefers a larger documented set:

7 D 0 ⊆ D 1 ⇒ V (D 1 , H 1 , M ) ≥ V (D 0 , H 0 , M ).
(ii) When M = 1, a decision maker who can choose from which candidate to get information between a stronger and a weaker one always opts for the stronger one.

Proof. See Appendix A

Clearly, a larger documented set gives more options to the decision maker who can then choose whether to investigate. With a single slot, it is also true that the decision maker prefers to get information from stronger candidates. It is perhaps more surprising that this result does not hold in general for M > 1, as the following example shows.

Example 1. Consider the case of three strong candidates for two slots. If the two most promising candidates disclose their information while the third one does not, the payoff of the decision

maker is V 1 = 2ρ 1 ρ 2 G + G(ρ 1 (1 -ρ 2 ) + ρ 2 (1 -ρ 1 )) -2c + (1 -ρ 1 ρ 2 )(ρ 3 (G + L) -L).
The first term gives her payoff if the search in her documented set is fully successful weighted by the probability of such a success; the second term is the weighted payoff of the search when it is only partially successful, the third term is the cost of the search; the last term is the weighted payoff from rubberstamping the third project when the search is not fully successful.

If the first and the third candidate disclose their information while the second does not her

payoff is V 2 = 2ρ 1 ρ 3 G + G(ρ 1 (1 -ρ 3 ) + ρ 3 (1 -ρ 1 )) -2c + (1 -ρ 1 ρ 3 )(ρ 2 (G + L) -L). Then V 2 -V 1 = (1 -ρ 1 )(ρ 2 -ρ 3 )L > 0.
Hence the decision maker prefers to get information from candidate 3 than from candidate 2 when candidate 1 is disclosing. In fact, it is easy to show that with 3 strong candidates and two slots, the decision maker always prefers to obtain her information from weaker candidates.

7 To read this, recall that H = N D.

The Disclosure game

To read this section, recall that in the disclosure game, the candidates simultaneously decide whether to disclose their information to the decision maker.

Benchmark: One Candidate

This case is also the benchmark case of [START_REF] Caillaud | Consensus Building: How to Persuade a Group[END_REF] who first analyzed it. The only problem for the decision maker is to know whether the single project is worth implementing.

Let ρ be its prospect. If ρ > ρ the decision maker accepts the project based on her prior. She would, however, be willing to investigate the project whenever ρGc > ρG -(1ρ)L, or equivalently ρ < ρ. If on the other hand ρ < ρ, the decision maker is willing to investigate if

ρG -c > 0 that is ρ > ρ.
Proposition 3 [START_REF] Caillaud | Consensus Building: How to Persuade a Group[END_REF]. If ρ < ρ, the project is discarded without examination. If it is in the weak set (ρ < ρ < ρ), it is investigated and conditionally approved, while if ρ > ρ it is rubberstamped by the decision maker. If the project is in the strong set (ρ < ρ < ρ), the decision maker prefers to investigate, but the candidate is not willing to disclose her information. The expected payoff of the decision maker in equilibrium is given by

ρG -c 1 ρ∈N W + ρ(L + G) -L 1 ρ∈N S . Proof. See Appendix B.
The result of Proposition 3 is illustrated in Figure 2. When ρ is in the strong set, the candidate has real authority over the final decision in the sense of [START_REF] Aghion | Formal and Real Authority in Organizations[END_REF] since she effectively controls the decision. This generates a non-monotonicity in the expected payoff of the decision maker as a function of ρ. This leads to the following remark.

Multiple Candidates

Remark 1. It is a dominant strategy for candidates in N W to disclose their information. 

M ⊆ N is a chain if it consists of consecutive elements of N , that is M = {n, n + 1, . . . , n + k} ⊆ N . A chain M ⊆ L ⊆ N is said to be maximal in L if any other chain M ⊆ L satisfies M ⊆ M or M ∩ M = ∅.
The next result states that along any chain of strong disclosing candidates, the incentive to deviate is higher for weaker projects. This useful result works for a single slot or if the prospect of the strongest project is less than 1/2.

Lemma 2. Suppose M = 1 or ρ 1 ≤ 1/2. Pick an action profile [D, H], and a chain J ⊆ D S .

Then for any p < J, candidate j(p + 1) has a higher incentive to deviate from disclosure than j(p).

Proof. See Appendix B.

These observations lead to a considerable reduction of the incentive constraints that need to be checked to ensure that a pure strategy profile is an equilibrium of the disclosure game.

This is summarized in a characterization of pure strategy equilibria provided in Proposition 15 in Appendix B.

Full Disclosure

Since full disclosure is the optimal outcome of the disclosure game for the decision maker, it is important to characterize the conditions under which it obtains. The first result is that there must be at least one weak candidate in the pool for full disclosure to be possible.

Proposition 4 (Full Disclosure -Impossibility). Full disclosure is impossible in the absence of weak candidates.8 

Proof. If all projects are strong and all candidates disclose, the weakest candidate has the same probability of being reached by the search whether she discloses or not. But, conditionally on being reached, her project is certain to be accepted if she withholds and not otherwise.

When Lemma 2 applies, it is easy to provide a necessary and sufficient conditions for the existence of a full disclosure equilibrium. Indeed, the only condition to check is that the weakest candidate in N S has no incentive to deviate.

Proposition 5 (Full Disclosure -Characterization).

If M = 1 or ρ 1 ≤ 1/2 , full disclosure is
an equilibrium of the disclosure game if and only if the weakest of the strong candidates has no incentive to deviate, that is

ρ N S ≥ F (M -1, N {N S }) F (M -1, N -(N S -1)) . ( 4 
)
Furthermore, the disclosure game is dominance solvable whenever the inequality in (4) holds strictly. In particular, full disclosure is then the unique equilibrium.

Proof. See Appendix B.

Proposition 4 and 5 show the importance of weak candidates. It is competition from weak candidates, who cannot afford secrecy, that puts pressure on stronger candidates to reveal their information. More generally, the right-hand side of ( 4) is decreasing in N W both for the set order and for the strength order, implying that a better pool of weak candidates makes condition (4) easier to satisfy.

For the single-slot case, a sufficient condition for full disclosure can be provided in the form of a lower bound on the number N W of weak candidates.

Proposition 6. If M = 1, full disclosure is an equilibrium if and only if

ρ N S ≥ n∈N W (1 -ρ n ). ( 5 
)
In particular N W ≥ B(ρ N S ) is a sufficient condition for the existence of a full disclosure equilibrium, where

B(ρ) ≡ min k ∈ N : (1 -c/G) k < ρ = log ρ log(1 -c/G
) .

An alternative sufficient condition that does not depend on the prospect of any particular project is N W > B(ρ).

Proof. See Appendix B.

The Single-Slot Case

When there is a single slot, the pure strategy equilibrium of the game can be fully characterized.

Let n * = min{n ∈ N S : ρ n ≤ (1ρ n+1 ) . . . (1ρ N )}, and n * = 0 when the set is empty. n * is the strongest candidate of the strong set whose prospect is less than the probability that none of the projects with lower prospects is good. It is also the strongest candidate of the strong set who prefers to withhold when everyone else discloses. If there is no such candidate, full disclosure is the equilibrium outcome. If n * = 1, then candidate 1 is the only one withholding information in equilibrium. Otherwise, there are two cases: (i) n * -1 has no incentive to withhold given that n * withholds and others disclose, and then this is an equilibrium, or (ii)

n * -1 has an incentive to withhold given that n * withholds and others disclose, and then there is no pure strategy equilibrium.

Proposition 7 (Single Slot -Equilibrium Characterization). In the case M = 1 there exists an equilibrium in pure strategies if

n * ∈ {0, 1} or if n * satisfies ρ n * -1 ≥ (1 -ρ n * +1 ) . . . (1 -ρ N ).
When it exists, this equilibrium is the unique pure strategy equilibrium. There is full disclosure if n * = 0, and otherwise the only withholding candidate in equilibrium is n * .

Proof. See Appendix B.

The next proposition shows that improving the set of weak candidates N W can only lead to a better pure strategy equilibrium of the disclosure game from the point of view of the decision maker. The reason is that as the set of weak candidates gets better, the single withholding candidate in equilibrium gets weaker, which is good for the decision maker by Proposition 2.

Proposition 8 (Single Slot -Comparative Statics). Improving the set of weak candidates, either by adding more weak candidates or by increasing the prospects of the current ones, is good for the decision maker.

Proof. See Appendix B.

With a single slot, it is also possible to know when the strongest project would be optimally rubberstamped by the decision maker as the outcome of the game. It is the case if its strength is above a lower bound ρ + . Interestingly, it does not depend on the number of candidates, or the particular profile of prospects, but it is naturally decreasing in c. In this proposition only, (NE) and (LP) are no longer assumed to hold.

Proposition 9 (Outstanding Candidates). If M = 1, there exists ρ + > ρ such that for every profile of prospects, the decision maker optimally rubberstamps project 1 given any documented set that excludes project 1 whenever ρ 1 > ρ + , where

ρ + = 1 2 1 + 1 - 4c L + G .
Hence in any equilibrium project 1 is rubberstamped, and candidate 1 either withholds or is indifferent between withholding and disclosing.

Proof. See Appendix B.

To conclude this section, I consider the example of two strong candidates, and possibly many weak candidates. In general, mixed strategy equilibria are difficult to characterize and may involve mixing by more than two candidates, but they can be analyzed in a simple way in this example.

Example 2. When N S = 2, a mixed strategy equilibrium obtains whenever (1

-ρ 2 )f (0, N W ) < ρ 1 < f (0, N W ) (from Proposition 7
). In this case, the mixed strategy equilibrium is unique and the two strong candidates play as follows. The stronger one discloses her information

with probability λ 1 = ρ 2 ρ 1 ρ 2 +(1-ρ 1 )f (0,N W )
, while the weaker one discloses her information with probability λ 2 = f (0,N W )-ρ 1 ρ 2 f (0,N W ) . The argument is in Appendix B).

Incomplete Information

In some applications, it may be unreasonable to assume that candidates know each other's prospect, especially when their number is large. Then it is still true that weak types are needed for full disclosure, and more generally that they favor information revelation. However, their role is less important since, even in the absence of weak types, competition leads to full disclosure in the limit as the number of candidates goes to infinity.

I assume that the prospects of the projects are drawn independently from an atomless distribution with cumulative density function Ψ and full support S = [x, x] ⊆ [ρ, ρ] such that

x(1x) > c/(L + G). 9 The corresponding probability density function ψ is assumed to be bounded away from 0 by some ψ > 0. 10 All prospects are observed by the decision maker so that the policy of Proposition 1 remains optimal. N is common knowledge. The type of candidate n is her realized prospect ρ n ∈ S. Types lying in S ∩ (0, ρ) are weak, and types in S ∩ (ρ, x) are strong. If ρ ≤ x, weak types are absent, and otherwise they are present.

A distributional strategy of candidate n is a probability measure λ n on S × {0, 1} for which the marginal distribution of S is ψ, where {0, 1} is a description of the action set and 9 Hence any particular realization of the vector of prospects satisfies (LP). 10 The only result that relies on this assumption is Proposition 14

1 corresponds to disclosing. This formalism introduced by [START_REF] Milgrom | Distributional Strategies for Games with Incomplete Information[END_REF] allows one to describe mixing behaviors by the players while avoiding the measurability issue noted in [START_REF] Aumann | Mixed and Behavior Strategies in Infinite Extensive Games[END_REF]. The probability that player n discloses information given that her type is ρ is then λ n (1|ρ). To simplify the notations, I denote this probability by λ n (ρ). The equilibrium notion for the disclosure game is Bayesian Nash equilibrium in distributional strategies. In general, I consider only symmetric equilibria but I show in Proposition 11 that under certain conditions the game is dominance solvable and then full disclosure is the unique equilibrium.

In this section, full disclosure denotes the strategy profile such that all the candidates disclose with probability 1 regardless of their type. Finally, if (λ 1 , . . . , λ N ) is an equilibrium, then so is any strategy profile (λ 1 , . . . , λ N ) such that λ n and λ n differ on a subset of measure 0 of the set on which n is indifferent between disclosing or not. The characterization results in what follows are up to this known issue. Int(X) and Cl(X) denote the interior and the closure of a set X.

The Single-Slot Case

Let λ = (λ 1 , • • • , λ N ) be a strategy profile. Supposing that all other candidates are playing according to λ, the payoffs of candidate n are given by

V λ D,n (ρ) ≡ ρE m =n (1 -λ m (ρ m )ρ m 1 ρm>ρ ) = ρ m =n 1 - x ρ xλ m (x)dΨ(x) , (6) 
if she discloses, and

V λ H,n (ρ) ≡ E m =n λ m (ρ m ) (1 -ρ m ) + (1 -λ m (ρ m )) 1 ρm<ρ 1 ρ≥ρ = 1 ρ≥ρ m =n x x λ m (x)(1 -x)dΨ(x) + ρ x (1 -λ m (x)) dΨ(x) , (7) 
if she withholds. 11 V λ D,n is continuous in type 12 while V λ H,n has a single discontinuity at ρ if weak types are present. V λ D,n is also strictly increasing in ρ, while V λ H,n is only weakly increasing in ρ. In particular, it is constant on any interval of types on which all other players disclose with probability 1. The reason is that the probability of being considered by the decision maker when withholding depends on a candidate's own type ρ only through the implied probability that a candidate with type higher than ρ also withholds, which is invariant while ρ stays within an interval on which other candidates disclose.

If λ = (λ, . . . , λ) is a symmetric strategy profile, dropping the n index for the payoff functions,

V λ D (ρ) = ρ 1 - x ρ xλ(x)dΨ(x) N -1 , (8) 
and,

V λ H (ρ) = x x λ(x)(1 -x)dΨ(x) + ρ x (1 -λ(x)) dΨ(x) N -1 1 ρ≥ρ . (9) 
A profile λ is an equilibrium if n is willing to play according to λ n when other candidates follow λ. Let Λ n ≡ {ρ ∈ S : λ n (ρ) ∈ (0, 1)}, Λ 0 n ≡ {ρ ∈ S : λ n (ρ) = 0} and Λ 1 n ≡ {ρ ∈ S :

λ n (ρ) = 1}. Then λ is an equilibrium strategy if and only if

(i) ∀ρ ∈ Λ 0 n , V λ D,n (ρ) ≤ V λ H,n (ρ), (ii) ∀ρ ∈ Λ n , V λ D,n (ρ) = V λ H,n (ρ), (iii) ∀ρ ∈ Λ 1 n , V λ D,n (ρ) ≥ V λ H,n (ρ).
Before going further, note that there exists a symmetric Bayesian Nash equilibrium in 11 In both equations, the equality is a consequence of the independence of the prospects.

12 The only non-obvious part of the argument consists in showing that

x ρ xλ m (x)dΨ(x) is continuous in ρ. Because λ m is bounded between 0 and 1,

x ρ xλ m (x)dΨ(x) - x ρ xλ(x)dΨ(x) ≤ ρ ρ dΨ(x) = |Ψ(ρ) -Ψ(ρ )|
for any pair (ρ, ρ ). Hence, Ψ being atomless, this difference goes to 0 when ρ → ρ, and that concludes the argument. A similar argument works for V λ H .

distributional strategies. This result needs a minor adaptation of [START_REF] Milgrom | Distributional Strategies for Games with Incomplete Information[END_REF] because of the symmetry requirement and the argument can be found in Appendix C. As I show below, symmetric pure strategy equilibria, however, do not always exist. 13Proposition 10 (BNE existence). There exists a symmetric Bayesian Nash Equilibrium in distributional strategies for the disclosure game.

Proof. See Appendix C.

As in the case with perfect information, it is clear that any strategy that prescribes to disclose with probability less than 1 for weak types is strictly dominated.

Lemma 3. Any strategy λ n such that λ n (ρ) < 1 for some ρ < ρ is strictly dominated.

Proof. See Appendix C.

Therefore in equilibrium [x, ρ) ⊆ Λ 1 n . It is easy to prove that when weak types are present, sufficient competition yields full disclosure.

Proposition 11 (Full Disclosure). If weak types are present, full disclosure is an equilibrium if and only if

N ≥ N ≡ 1 + log(1/ρ) log 1 - x ρ xdΨ(x) -log 1 - x x xdΨ(x) . ( 10 
)
Furthermore the game is dominance solvable whenever this inequality holds strictly. In particular, full disclosure is then the unique equilibrium. In the absence of weak types, full disclosure is never an equilibrium.

Proof. See Appendix C.

In order to understand the role of weak and strong candidates, it is interesting to look at the effect of the distribution of types on N . The next result shows that increasing the weight on stronger types in the weak set and decreasing the weight on stronger types in the strong set while keeping the relative weights of these sets constant, hence concentrating the distribution around ρ, leads to a lower threshold N . Obviously it is also better to have stronger candidates for the decision maker, therefore decreasing the weight on stronger types in the strong set has an additional detrimental effect. Increasing the weight on stronger types in the weak set, however, is unambiguously better for the decision maker.

Proposition 12 (Comparative Statics). Consider two distributions Φ and Ψ with the same support S that includes weak types, ρ ∈ S, and such that for every x ∈ S, Φ(x) ≤ Ψ(x) if

x ≤ ρ, and

Φ(x) ≥ Ψ(x) if x ≥ ρ. Then NΦ ≤ NΨ . Proof. See Appendix C.
The next lemma shows that if a strong type ρ discloses information with probability 1 in a symmetric equilibrium, then all the types above ρ also disclose with probability 1. The intuition is the following. If there exists an interval Ω on which λ is equal to 1, then as already noted

V λ H is constant on Ω while V λ D is strictly increasing. If λ is an equilibrium strategy, V λ D > V λ H
on Ω. But then, the continuity of the two payoff functions implies that V λ H can never catch up with V λ D as ρ increases, so that disclosing must be strictly better than withholding.

Lemma 4. If λ is a symmetric equilibrium such that there exists a strong type ρ > ρ satisfying

ρ ∈ Int(Λ 1 ), then [ρ, x] ⊆ Λ 1 . Proof. See Appendix C.
Therefore, in any equilibrium Int(Λ 1 ) = (x, ρ) ∪ (ρ * , x) for some ρ * ∈ [ρ, x], or Int(Λ 1 ) = (x, x). In the absence of weak types, Int(Λ 1 ) = (ρ * , x). The next proposition, which characterizes the symmetric equilibria in pure strategies, is an immediate corollary of this lemma.

Proposition 13 (Equilibrium Characterization). If λ is a symmetric equilibrium in pure strategies, it must take the form

λ(ρ) = 1 ρ∈Λ 1 ,
where

Λ 1 = [x, ρ) ∪ ρ * , x]
for some ρ * ≥ ρ, and where denotes either ( or [.

When ρ * is interior, ρ * ∈ (ρ, x), it must be a solution to the following equation in ρ

1 -ρ 1 N -1 1 - x ρ xdΨ(x) = ρ x xdΨ(x). ( 11 
)
Furthermore, in the absence of weak types, there is no symmetric equilibrium in pure strategies.

Proof. See Appendix C.

Hence, symmetric pure strategy equilibria other than full disclosure, when they exist, must be non-monotonic in the presence of weak types. The characterization of the threshold ρ * in (11) derives from the fact that a player with type ρ * must be indifferent between disclosing and withholding. It is not difficult to find examples of such equilibria. A simple one is with c = 0, ρ = 0.25, [x, x] = [0, 1], the uniform distribution and less than 3 candidates.

Knowing that sufficient competition leads to full disclosure as long as weak types are present, one may wonder about the effect of competition in the absence of weak types. The following proposition shows that, even though full disclosure is never an equilibrium, any sequence of symmetric equilibria approaches full disclosure as N goes to infinity.

Proposition 14 (Competition at the Limit). In the absence of weak types, there exists some Ñ such that for all N > Ñ every symmetric equilibrium λ is of the form Cl(Λ) = [x, y] and

Λ 1 ⊇ (y, x], with y ∈ (x, x). If {λ N } ∞ N =1 is a sequence of equilibria for N candidates then y N is defined for N > Ñ and lim N →∞ y N = x.
Furthermore for every ε > 0 there exists some N > Ñ such that if N > N , then for almost

every ρ ∈ Λ N , λ N (ρ) - 1 1 + ρ < ε.
Proof. See Appendix C.

These equilibria approach full disclosure in the sense that as N goes to infinity, any type discloses with a probability arbitrarily close to 1.

Corollary 1. In the absence of weak types, if {λ N } ∞ N =1 is a sequence of symmetric equilibria, then for every ρ ∈ (x, x]

lim N →∞ λ N (ρ) = 1.

Multiple Slots M ≥ 1

The case with multiple slots is far less tractable. However the results of Proposition 13 still hold with a different characterization of ρ * , and in particular the impossibility of full disclosure in the absence of weak types (see Proposition 16 in Appendix C for a proof).

Conclusion

The results of this paper highlight the importance of ex ante weaker candidates to elicit information transmission in certain types of contests. They are less important, however, when candidates have imperfect information about their competitors. Then increasing the number of player ensures full disclosure asymptotically. fill the slots that cannot be filled by projects in D since D < M . Finally (iii) holds because it never hurts to fill slots that cannot be filled by projects in H S with projects in D.

Proof of Proposition 1 (Optimal Policy). If D = N it is clearly optimal to investigate projects starting from the strongest one and then moving down in the strength order, approving a project each time it is found to be good, until all slots are filled. The policy of the proposition clearly does this. If H = N it is also clear that the policy of the proposition is optimal: since projects in N S have positive expected incremental payoffs the strongest ones should be approved according to the availability of slots.

Consider states that satisfy D ≥ M = H and H ⊆ N S . Below, I show, by a double induction on D and M = H, that the policy described in the proposition is optimal for all such states, and that it is the unique optimal policy up to some details in the order of learning explained below. Take this result as given for now. It implies that the policy of the proposition is optimal, although not uniquely, in any other state. This is a consequence of Lemma 1. Indeed, by point (i) of the lemma, projects in H W are irrelevant. Hence I can assume that M ≤ N -H W = D + H S for additional slots would never be filled. By point (ii), I can assume D ≥ M for otherwise the optimal policy consists in rubberstamping projects in H S until a state where D = M is reached and then continuing with the optimal policy. Furthermore, the lemma says that this rubberstamping can occur at any place in the sequence describing the optimal policy. Hence it can be done at the end of the sequence so that the policy of the proposition is indeed optimal. This is the first source of non uniqueness of the optimal policy. Since the projects rubberstamped in this operation are the strongest in H, and are certain to get approved, however, they are also irrelevant to the probability that any given project is approved across different optimal policies. Point (i) and (iii) of the lemma allow me to consider only the cases where H = M . As a consequence, an optimal policy can always be described as: always start by learning as much as possible, and then rubberstamp. But since the order of investigation never affects the probability of having to rubberstamp some projects in the end, it is always optimal to investigate stronger projects first as it minimizes the cost of the search. This is not uniquely optimal, however, for the following reason. If there are M slots available then the order in which the first M projects in D are investigated is irrelevant since at least M projects will be investigated regardless of what is found. Hence the proof that follows implies optimality, and uniqueness up to this subtlety. But the argument just made implies that the probability that a given project is approved is unaltered by which particular optimal policy is used.

Initiation D = {d}, H = {h}, M = 1. In this case the choice is between (i) rubberstamping h, and (ii) investigating d, approving d if it is of the good type, rejecting d and rubberstamping h if it is of the bad type. The first choice pays ρ h (G + L) -L while the second one pays

ρ d G -c + (1 -ρ d )(ρ h (G + L) -L). Letting ∆ be the gain from learning, ∆ = ρ d (1 -ρ h )(G + L) -c > 0.
where the inequality holds because of (LP). Hence the unique optimal policy is to learn first. The decision maker can either (i) rubberstamp h and end, or (ii) investigatea project d in D, approve d and end if it is of the good type, and move on to the state (D {d}, {h}, 1) otherwise.

Induction

Hence we only need to compare the payoff of (ii)

ρ d G -c + (1 -ρ d )V (D {d}, {h}, 1), to the payoff ρ h (G + L) -L of (i). Letting ∆ denote the gain from learning ∆ = ρ d (1 -ρ h )(G + L) -c + (1 -ρ d )V (D {d}, {h}, 1) > 0,
where the first two terms add up to something positive by (LP), and the last term is nonnegative because the decision maker always has the option to discard all remaining projects and get 0. Hence, investigating first is optimal, and by the induction hypothesis it is also the best continuation policy. Because investigating in the order of decreasing strength minimizes the cost of search, it is optimal to do so. This proves the claim. It is unique up to the subtlety about the order of learning explained above.

Induction Step, D > M = H > 1. Suppose the result holds for all (D, H, M ) with H ⊆ N S such that H = M ≤ K, or H = M = K + 1 and D ≤ J. Consider a triple (D, H, M )
where H = M = K + 1 and D = J + 1. Consider the choice between (i) investigating (and conditionally approving) project d(1) in D, and (ii) rubberstamping a project h ∈ H. Then the decision can move on with an optimal continuation policy. I only consider the investigation of d(1) since it is clearly the best option among policies that start with investigation. The first option yields

ρ d(1) G + V (D {d(1)}, H {h(H)}, M -1) + (1 -ρ d(1) )V (D {d(1)}, H, M ) -c,
while the second option yields

ρ h (G + L) -L + V (D, H {h}, M -1),
which by induction can be rewritten as

ρ h (G+L)-L+ρ d(1) G+V (D {d(1), H {h, h(H)}, M -2) +(1-ρ d(1) )V (D {d(1)}, H {h}, M -1)-c
The gain from learning is then

∆ = ρ d(1) V (D {d(1)}, H, M -1) -V (D {d(1)}, H {h, h(H)}, M -2) + ρ h (G + L) -L A +(1 -ρ d(1) ) V (D {d(1)}, H, M ) -V (D {d(1)}, H {h}, M -1) + ρ h (G + L) -L B .
A > 0. Indeed in state (D {d(1)}, H {h(H)}, M -1) an available policy is to rubberstamp h and then move on to state (D {d(1)}, H {h, h(H)}, M -2) and continue with the optimal policy. Because of the induction hypothesis, this is not optimal at (D {d(1)}, H {h(H)}, M -1), and A is exactly the difference of payoffs between the former policy and the optimal one.

A similar argument shows that B > 0. Therefore ∆ > 0 implying that learning is optimal at (D, H, M ). Once again this implies that the policy of the proposition is uniquely optimal up to the order of learning.

Induction

Step, D = M = H. Suppose now that the result holds for all (D, H, M ) with

H ⊆ N S and H = M ≤ K, and consider a triple (D, H, M ) such that D = H = M = K + 1.
Then the payoff of learning about d( 1) is

ρ d(1) G+V (D {d(1)}, H {h(H)}, M -1) + 1 -ρ d(1) ρ h(1) (G+L)-L+V (D + (1), H + (1), M -1) -c,
and the payoff of rubberstamping h(1) (h(1) is clearly better than any other h here) is

ρ h(1) (G + L) -L + V (D, H {h(1)}, M -1),
or, because of the induction hypothesis,

ρ h(1) (G + L) -L + ρ d(1) G + V (D {d(1)}, H {h(1), h(H)}, M -2) + 1 -ρ d(1) V (D {d(1)}, H {h(1)}, M -1) -c.
Hence the gain from learning is

∆ = ρ d(1) V (D {d(1)}, H {h(H)}, M -1) -V (D {d(1)}, H {h(1), h(H)}, M -2) + ρ h(1) (G + L) -L .
By the induction hypothesis, rubberstamping h(1) is an available but non optimal policy at (D {d(1)}, H {h(H)}, M -1), hence ∆ > 0. This concludes the proof.

Lemma 5. For any K ⊆ N , k ∈ K, p ∈ {1, • • • , K} and q ≤ K, f (p, K) = ρ k f (p -1, K {k}) + (1 -ρ k )f (p, K {k}), (12) 
and

F (q, K) = F (q, K {k}) -ρ k f (q, K {k}). (13) 
Proof. For p ≥ 1 the probability of finding p good projects in K is equal to the probability of finding p -1 good projects in K {k} times the probability that k is a good project plus the probability of finding p good projects in K {k} times the probability that k is not a good project. This is exactly (12). ( 13) is obtained by summation of (12) for p ≤ q.

Lemma 6. For fixed p > 0 and J ⊆ N , and any subset of projects K ⊆ N such that J ∩ K = ∅ and 0 < K < p,

F (p, J ∪ K) > F (p -K, J ) (14) 
Proof. I show the result for K = 1. The general result follows by iteration. Let k be the unique project in K. Then, by Lemma 5

F (p, J ∪ {k}) = F (p, J ) -ρ k f (p, J ). Therefore F (p, J ∪ {k}) -F (p -1, J ) = F (p, J ) -F (p -1, J ) -ρ j f (p, J ) = (1 -ρ j )f (p, J ) > 0.
Proof of Proposition 2 (Preferences of the Decision Maker). Point (i) is clear. For (ii), consider a swap of the following type. For a fixed set of projects N take two projects n and m, with n < m (ρ n > ρ m ). Let [ D, Ĥ] be a partition of N {n, m}.

Let D 0 = D ∪ {m}, H 0 = Ĥ ∪ {n}, D 1 = D ∪ {n} and H 1 = Ĥ ∪ {m}. Then [D 0 , H 0 ] and [D 1 , H 1 ] are both
partitions of N that are obtained from one another by swapping the roles of n and m, so that

D 1 > D 0 and H 1 < H 0 .
The decision maker of the proposition is asked to choose between (D 1 , H 1 ) and (D 0 , H 0 ), and the proposition says that it is optimal to choose (D 1 , H 1 ), that is

V (D 1 , H 1 , 1) ≥ V (D 0 , H 0 , 1).
I prove the proposition for the case where the two swapped projects are adjacent in N , that is m = n + 1. Evidently this proves the general result, as any other swap can be decomposed in a series of swaps between adjacent projects. When M = 1 and the learning partition of the decision maker is given by [D, H], the expected payoff of the decision maker is

V (D, H, 1) = (1 -f (0, D))G + f (0, D) ρ h(1) (G + L) -L -c D-1 q=0 F (0, D -(q)).
Let ∆ be the change in payoff due to the swap ∆ = V (D 1 , H 1 , 1)-V (D 0 , H 0 , 1). Using Lemma 5, and supposing r

H (n) > 1 or n / ∈ N S , it is equal to ∆ = (ρ n -ρ n+1 )f (0, D)(1 -ρ h(1) )(G + L) + c D q=Q F (0, D - 0 (q)) -F (0, D - 1 (q)) ,
where Q = r D (n). The first term is clearly positive, and the second term, that corresponds to the decrease of the search cost when the set of searchable projects is improved, is positive because for any q = Q, . . . , D, it is true that D - 0 (q) < D - 1 (q) and F (., .) is decreasing in its second argument for the strength order. and

δ(n + 1) = F (M -r, D {n + 1}) F (M -1, D -(d))ρ n+1 .
Therefore, with the help of Lemma 5,

δ(n + 1) δ(n) = ρ n X -Y ρ n ρ n+1 X -Y ρ n+1 F (M -1, D -(d -1)) F (M -1, D -(d))
,

where

X = F (M -r, D {n, n + 1}) > 0,
and

Y = f (M -r, D {n, n + 1}) > 0.
The second fraction is clearly greater than 1 because F (P, .) is decreasing in its second argument for the set order. As for the first fraction, notice that the function ρ(X -ρY ) is increasing in ρ on (0, 1/2) whenever X/Y ≥ 1, and the latter is obviously satisfied. Since ρ n > ρ n+1 , this fraction is also greater than 1 when ρ 1 ≤ 1/2. Therefore δ(n + 1) > δ(n), which concludes the proof for this case. (ii) H ≤ M .

When M = 1, δ(n + 1)/δ(n) is equal to ρ n /(ρ n+1 (1 -ρ n )) > 1. Proposition 15. If M = 1 or ρ 1 ≤ 1/2, [
(iii) For any maximal chain J ⊆ D S , F M -1, D -r D (j(J)) -1 ρ j(J) ≥ F Mr H (j(J)), D {j(J)} .

(iv) For any project h ∈ H,

F M -1, D -r D (h) -1 ρ h ≤ F M -r H (h), D .
Proof. The necessity is clear since (iii) and (iv) constitute a subset of the incentive conditions that must hold in equilibrium. Sufficiency is a direct consequence of Lemma 2.

Proof of Proposition 5 (Full Disclosure -Characterization). By Proposition 15, the only incentive condition that needs to be checked is that of N S , the weakest candidate in N S , which is done in (4). When N W = ∅, the right-hand side of (4) becomes equal to 1, proving the second statement. For the last point, remember that it is a dominant strategy for all the candidates in N W to disclose their information. When (4) holds strictly, the proof is immediate if N S = 1, while if N S > 1 it is strictly optimal for N S to disclose when all the candidates in N -(N S -1) disclose as well. If on the other hand M or more candidates in N -(N S -1) were to withhold, it would clearly be strictly optimal for N S to disclose her information as she would stand no chance of being rubberstamped otherwise. Finally, suppose that K < M candidates in N -(N S -1) withhold and denote by K ⊆ N -(N S -1) this set of candidates, and J = N -(N S -1) K. In this case, N S strictly prefers to disclose if and only if

ρ N S > F (M -K -1, N + (N S ) ∪ J ) F (M -1, J ) . ( 15 
)
Because F is decreasing in its second argument for the set order, But since for there to be an equilibrium in which n is the only withholding candidate ρ n-1 ≥ F n must also hold, n * is the only possibility. Indeed if n ≥ n * , ρ n-1 ≤ F n-1 < F n so that the second condition for an equilibrium cannot hold.

F (M -1, J ) > F (M - 1, N -(N S -1)). And by Lemma 6, F (M -K -1, N + (N S )∪J ) < F (M -1, N + (N S )∪J ∪K) = F (M -1, N {N S }).
Proof of Proposition 8 (Single Slot -Comparative Statics). Let N 0 = N S ∪ N W 0 and N 1 = N S ∪ N W 1 be two sets of projects such that each of them leads to a pure strategy equilibrium [D, H] γ of the corresponding disclosure games Γ γ . The proposition says that, if

either N W 0 < N W 1 or N W 0 ⊂ N W 1 , the decision maker prefers N 1 to N 0 , that is V ([D, H] 1 , 1) > V ([D, H] 0 , 1).
Because F (0, .) is decreasing in its second argument for the set order as well as for the strength order, and for any N and any n ∈ N S it is true that N W ⊆ N + (n), and therefore for every n ∈ N S , F (0, N + 1 (n)) < F (0, N + 0 (n)). Hence if n γ is the unique candidate who withholds information in the equilibrium of the game γ ∈ {0, 1}, it must be true that n 1 ≥ n 0 that is the withholding candidate is a weaker candidate in game 1 than in game 0. Since all the candidates in N W γ disclose their information in equilibrium, this implies that the decision maker prefers

Γ 1 to Γ 0 .
Proof of Proposition 9 (Outstanding Candidates). First note that ρ + > ρ so that rubberstamping project 1 beats learning about it. Since 1 is the best project, any alternative policy of the decision maker that stands a chance of being optimal given that 1 is not providing information consists in learning about k projects and rubberstamping 1 only if this search proves unfruitful. The payoff of such a policy is of the form V = P 1 + P 2 where

P 1 = ρ 1 G -c + (1 -ρ 1 )(ρ 2 G -c + (1 -ρ 2 )(ρ 3 G -c + . . . ))
where the sum stops at ρ k Gc, and

P 2 = (1 -ρ 1 ) . . . (1 -ρ k )(ρ 1 (G + L) -L)
, and where ρ 1 , . . . , ρ k denote the ordered prospects of the k projects investigated by the decision maker. A little bit of algebra shows that

∂V ∂ρ i = (1 -ρ 1 ) . . . (1 -ρ i-1 ) c(1 + (1 -ρ i+1 ) + . . . (1 -ρ k-1 )) + (1 -ρ i+1 ) . . . (1 -ρ k )(1 -ρ 1 )(G + L) > 0.
Hence V is strictly increasing in each ρ i , and

V < (ρ 1 G -c)(1 + (1 -ρ 1 ) + • • • + (1 -ρ 1 ) k-1 ) + (1 -ρ 1 ) k (ρ 1 (G + L) -L) = (ρ 1 G -c)(1 -(1 -ρ 1 ) k )/ρ 1 + (1 -ρ 1 ) k (ρ 1 (G + L) -L).
The payoff of rubberstamping 1 without going through the preliminary search is ρ 1 (G + L) -L, and it is greater than the former expression if and only if (with some algebra)

ρ 2 1 -ρ 1 + c G + L > 0.
The greatest root of the second degree equation associated with the former is

ρ + = 1 2 1 + 1 - 4c L + G ,
where 4c/(L + G) < 1 is implied by (AL) . Therefore ρ 1 > ρ + implies that rubberstamping 1 beats the alternative strategy. Because, by withholding, candidate 1 can force the decision maker to rubberstamp her project irrespective of the behavior of other candidates, rubberstamping 1 has to be the outcome of the game.

Characterization of the Mixed Strategy Equilibrium in Example 2. In order to make 1 indifferent between disclosing and withholding, λ 2 must satisfy (λ 2 (1-ρ

2 )+(1-λ 2 ))f (0, N W ) =
ρ 1 where the left-hand side is 1's payoff when withholding and the right-hand side is her payoff when she discloses. The same indifference condition for candidate 2 gives λ 1

(1 -ρ 1 )ρ 2 + (1 - λ 1 )ρ 2 = λ 1 (1 -ρ 1 )f (0, N W ).
an equilibrium. Now suppose that (10) holds with a strict inequality, and that there exists ρ k ≥ ρ such that all strategies prescribing to disclose with probability less than 1 for some ρ < ρ k have been eliminated and call L k the set of remaining strategies. Because the function

ρ 1 - x ρ xdΨ(x) 1 - x x xdΨ(x) N -1
is increasing in ρ, it must be strictly greater than 1 when evaluated at ρ k . Now given a strategy profile λ ∈ L k , the incentive to disclose for a type ρ > ρ k is given by

V λ D,n (ρ) V λ H,n (ρ) = ρ m =n 1 - x ρ xλ m (x)dΨ(x) x x λ m (x)(1 -x)dΨ(x) + ρ ρ k (1 -λ m (x)) dΨ(x) = ρ m =n 1 - x ρ xλ m (x)dΨ(x) ρ k x λ m (x)(1 -x)dΨ(x) + ρ ρ k (1 -λ m (x)x) dΨ(x) + x ρ (1 -x)λ m (x)dΨ(x) ≥ ρ 1 - x ρ xdΨ(x) 1 - x x dΨ(x) + ρ ρ k xdΨ(x) N -1 ≡ L(ρ k , ρ),
where the lower bound is attained on L k by the strategy λ(x) = 1 -1 x∈(ρ k ,ρ) . L(., .) is clearly continuous and the limit of

L(ρ k , ρ) as ρ → ρ k is ρ k 1 - x ρ k xdΨ(x) 1 - x x xdΨ(x) N -1 > 1.
By continuity, it must also be strictly greater than 1 on a neighborhood to the right of ρ k . Thus we can define

ρ k+1 = sup {ρ ∈ (ρ k , x) : L(ρ k , ρ) > 1} .
If ρ k+1 < x, it must be true that L(ρ k , ρ k+1 ) = 1. We can define L k+1 to be the set of strategies that prescribe to disclose with probability 1 whenever ρ < ρ k+1 . The construction of ρ k+1 implies that, provided that players are restricted to use strategies in L k , strategies in L k L k+1 are strictly dominated.

Let ρ 0 = ρ and define L 0 accordingly. I have already proved in Lemma 3 that strategies that are not in L 0 are strictly dominated. Therefore I can apply the construction above to find an increasing sequence {ρ 0 , ρ 1 , . . . } and the corresponding shrinking sequence {L 0 , L 1 , . . . } stopping whenever ρ k = x. If this happens, the construction implies that the only strategy that survives the iterated elimination of strictly dominated strategies is to disclose with probability 1 everywhere except perhaps at ρ = x. Suppose that it is not the case so that for every k, ρ k < x. Because the sequence (ρ k ) k≥0 is increasing and bounded, it admits a limit ρ ∞ ≤ x. By construction, the relationship L(ρ k , ρ k+1 ) = 1 must hold for every k. Then, taking k to infinity and using the continuity of L(., .)

L(ρ ∞ , ρ ∞ ) = ρ ∞ 1 - x ρ∞ xdΨ(x) 1 - x x dΨ(x) N -1 = 1. But the function ρ 1 - x ρ xdΨ(x) 1 - x x xdΨ(x) N -1
is increasing in ρ and strictly greater than 1 at ρ and therefore also at ρ ∞ > ρ. A contradiction. Therefore all strategies that disclose with probability less than 1 anywhere except at ρ = x are eliminated in a finite number of steps. But then the incentive to disclose for type x is given by

x 1 1 - x x xdΨ(x) N -1 ≥ ρ 1 - x ρ xdΨ(x) 1 - x x xdΨ(x) N -1 > 1.
Hence strategies that prescribe to disclose with probability less than 1 for x can be eliminated as well.

Proof of Proposition 12 (Comparative Statics).

To show that NΦ ≤ NΨ , note that I can rewrite

NΨ = 1 + log(1/ρ) -log R Ψ , where R Ψ = 1 - x x xdΨ(x) 1 - x ρ xdΨ(x) = 1 - ρ x xdΨ(x) 1 - x ρ xdΨ(x)
, and NΨ is increasing in R Ψ . Integrating by parts, I obtain

R Ψ = 1 + ρ x Ψ(x)dx -ρΨ(ρ) 1 -x + ρΨ(ρ) + x ρ Ψ(x)dx . And clearly, R Φ ≤ R Ψ since Φ(x) ≤ Ψ(x) on [x, ρ] and Φ(x) ≥ Ψ(x) on [ρ, x]. Hence NΦ ≤ NΨ .
Proof of Lemma 4. Let Ω ⊆ (ρ, x) be an open interval such that λ = 1 on Ω and x ∈ Ω. Let y = sup{ρ : ∀ρ ∈ [x, ρ], λ(ρ ) = 1}. Suppose y < x. By continuity of the payoff functions, it must be true that V λ D (y) = V λ H (y). However, V λ D (.) is strictly increasing on (x, y) while V λ H (.) is constant on the same interval. Furthermore, since λ is an equilibrium strategy,

V λ D (x) > V λ H (x), but then by continuity V λ D (y) > V λ D (x) > V λ H (x) = V λ H (y), a contradiction.
Proof of Proposition 13 (Equilibrium Characterization). The only claim that needs to be proved is the last point of the proposition. By Proposition 11, full disclosure is not an equilibrium. No disclosure cannot be an equilibrium either as then V

0 D (x) = x > 0 = V 0 H (x). By
Lemma 4, a pure strategy equilibrium must be of the type λ(ρ) = 1 ρ>ρ * for some ρ * ∈ (x, x).

But then, V λ D (ρ * ) = ρ * 1 - x ρ * xdΨ(x) N -1 < 1 - x ρ * xdΨ(x) N -1 = V λ H (ρ *
) which is a contradiction since by continuity the type ρ * should be indifferent between the two actions.

Proof of Proposition 14 (Competition at the Limit). I start by proving three useful lemmas.

Lemma 7. Suppose weak types are absent. There exists some N 0 such that for N > N 0 , if the strategy λ defines a symmetric Bayesian Nash equilibrium of the disclosure game such that there exists ρ ∈ Int(Λ 0 ), then [ρ, x] ⊆ Λ 0 .

Proof. There must be some η > 0 such that Ω = [ρ, ρ + η) ⊆ Λ 0 . I can differentiate V λ D (.) and

V λ H (.) on Ω to obtain

V λ D (ρ) = 1 - x ρ xλ(x)dΨ(x) N -1 = V λ D (ρ) ρ < V λ H (ρ) x ,
where the inequality is due to the fact that ρ ∈ Λ 0 and that λ is an equilibrium. Also,

V λ H (ρ) = (N -1)ψ(ρ) ρ x (1 -xλ(x))dΨ(x) + x ρ λ(x)(1 -x)dΨ(x) N -2 = (N -1)ψ(ρ)V λ H (ρ) 1-1 N -1 ≥ (N -1)ψV λ H (ρ),
where ψ is the lower bound of ψ and the last inequality obtains because V H is always bounded above by 1.

It is clear then that for N > 1 + 1 xψ , V λ H (.) grows faster than V λ D (.) on Ω. But since

V λ H (ρ) > V λ D (ρ)
, it means that V λ H must remain above V λ D on Ω so that the payoff from disclosing can never catch up with the payoff from withholding. This implies that no type above ρ would want to disclose with positive probability, hence [ρ, x] ⊆ Λ 0 .

Lemma 8. For every ε > 0, there exists some N 1 such that if λ defines a symmetric Bayesian Nash equilibrium of the disclosure game for some N > N 1 such that Int(Λ) = ∅, then for every

ρ ∈ Int(Λ), λ(ρ) - 1 1 + ρ < ε. Proof. For every ρ ∈ Int(Λ), V λ H (ρ) = V λ D (ρ).
Since the two functions are differentiable on Int(Λ), their derivatives must be equal as well, implying

(N -1)(1 -λ(ρ))ψ(ρ)V λ H (ρ) 1-1 N -1 = V λ D (ρ) ρ + ρ 2 (N -1)λ(ρ)ψ(ρ) V λ D (ρ) ρ 1-1 N -1 . Noting that V λ H (ρ) = V λ D (ρ)
, and after some algebra, I obtain

1 1 + ρ -λ(ρ) = V λ D (ρ) 1 N -1 (N -1)ρ(1 + ρ)ψ(ρ) + ρλ(ρ) 1 + ρ ρ 1 N -1 -1 . Hence 1 1 + ρ -λ(ρ) ≤ 1 (N -1)x(1 + x)ψ + x 1 + x 1 -x 1 N -1 .
Since both terms on the right-hand side go to 0 and are independent of ρ, this proves the lemma.

Lemma 9. There exists some > 0 and some N 2 such that if λ defines a symmetric Bayesian Nash equilibrium of the disclosure game for some N > N 2 such that Int(Λ) = ∅, then for every ρ ∈ Int(Λ),

1 -> λ(ρ) > .
Proof. This is a corollary of Lemma 8 obtained by choosing = ε = min Suppose that there exists a sequence (λ k ) ∞ k=1 of equilibria of type (iv) for the disclosure game with N (k) candidates, where N (k) increases strictly with k. To each λ k is associated a y k ∈ (x, x) and since [x, x] is compact, I can assume, up to an extraction, that the sequence y N (k) converges to some y ∞ ∈ [x, x]. Because it is an equilibrium to withhold with the type x, I can write

V k D (x) = x < 1 - x x xλ k (x)dΨ(x) N (k)-1 = V k H (x).
Using Lemma 9, for a sufficiently high k

1 - x x xλ k (x)dΨ(x) N (k)-1 ≤ 1 -xΨ(y k ) N (k)-1 ,
and for the right-hand side to be greater than x for every k it must be true that y ∞ = x. But then, looking at the incentives of type y k , we have

V k D (y k ) = y k ---→ k→∞ x,
and

V k H (y k ) = y k
x

(1xλ(x))dΨ( x)

N (k)-1 ≤ ((1 -x)Ψ(y k )) N (k)-1 ---→ k→∞ 0,
implying that for k sufficiently high V k D (y k ) > V k H (y k ) which is a contradiction since these payoffs should be equal for λ k to be an equilibrium.

Suppose now that there exists a similar sequence (λ k ) ∞ k=1 of equilibria of type (v). Then for k sufficiently high, V k H (x) = 1 - Hence for k sufficiently high V k H (x) < x = V k D (x), which contradicts the fact that λ k is an equilibrium.

Hence, for N sufficiently large, the only possible equilibria are of type (iii). They exist by Proposition 10. Let (λ k ) ∞ k=1 be a sequence of equilibria of this type. The payoffs of type y k are given by V k D (y k ) = y k 1 - where

Λ 1 = [x, ρ) ∪ ρ * , x]
for some ρ * ≥ ρ, and where denotes either ( or [. In the absence of weak types, there is no pure strategy equilibrium. In particular, full disclosure is impossible in the absence of weak types.

Proof. The arguments used to prove this proposition extend those of the single slot case. I only describe the main intuitions.

For any Borel set K ⊆ S, let η (K) = K dΨ(x) be the measure of this set according to the measure implied by the distribution Ψ, and let x e (K) = 1 η K K xdΨ(x) denote the expected type of a candidate knowing that her type lies in K. When M ≥ 1 and all the candidates except i play according to the pure strategy: disclose on Λ 1 , withhold on Λ 0 = S Λ 1 , the payoff from disclosing for candidate n as a function of her type ρ is given by V D (ρ) = ρ • Pr there are less than M -1 good projects in Λ 1 ∩ (ρ, x)

= ρ • N -1 m=0 m N -1 η Λ 1 ∩ (ρ, x) m 1 -η Λ 1 ∩ (ρ, x) N -1-m × min(m,M -1) k=0 k m x e Λ 1 ∩ (ρ, x) k 1 -x e Λ 1 ∩ (ρ, x) m-k , (16) 
and the payoff from withholding V H (ρ) = 1 ρ>ρ Pr the number of good projects in Λ 1 + the number of projects in Λ 0 ∩ (ρ, x)

≤ M -1 = 1 ρ>ρ N -1 m=0 m N -1 η Λ 1 m 1 -η Λ 1 N -1-m × min(m,M -1) k=0 k m x e Λ 1 k 1 -x e Λ 1 m-k × M -1-k l=0 l N -1 -m η Λ 0 ∩ (ρ, x) η Λ 0 l η Λ 0 -η Λ 0 ∩ (ρ, x) η Λ 0 N -1-m-l . ( 17 
)
The intuition works in the same way as in the case with M = 1. V D is strictly increasing in ρ everywhere (because the set Λ 1 ∩ (ρ, x) is shrinking as ρ increases implying that if there are less than M -1 good projects in that set for a certain ρ then there are also less than M -1 good projects in that set for a higher ρ), whereas V H is constant in ρ on Λ 1 and increasing elsewhere. Both functions are continuous on (ρ, x). Therefore Λ 1 = [x, ρ) ∪ ρ * , x] for some 

(18) simply states that the frontier type ρ * must be indifferent between disclosing (on the left-hand side) and withholding (on the right-hand side). If for ρ * = ρ, the left-hand side is greater than the right-hand side, then full disclosure is an equilibrium. If for ρ * = x, the left-hand side is smaller than the right-hand side, then no disclosure is an equilibrium. If the left-hand side is strictly greater than the right-side for every ρ * ∈ (ρ, x), full disclosure is the unique symmetric equilibrium in pure strategies, and if the opposite inequality holds on (ρ, x), no disclosure is the unique equilibrium. In the absence of weak candidates Ψ(ρ) = 0 and the left-hand side of ( 18) is then equal to its right-hand side multiplied by ρ * < 1. Therefore, in the absence of weak types, no disclosure is the only possible symmetric equilibrium in pure strategies. However it is clear that no disclosure cannot be an equilibrium as the lowest type would be better off by disclosing, and therefore there is no symmetric pure strategy equilibrium in the absence of weak types.
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 1 Figure 1: The Decision Maker's Payoff with One Candidate.

FFigure 2 :

 2 Figure 2: Payoff of the Decision Maker with One Candidate. The first-best payoff and the equilibrium payoff are plotted as functions of the prospect of the candidate.

  An action profile is equivalent to a partition[D, H] of N . Given a project n ∈ N , denote by[D, H] -n an action profile of all the candidates except n. It is a partition of N {n}. Since, by Lemma 1, any project in H W is discarded by the decision maker, a candidate n ∈ N W is certain that her project stands no chance if she refuses to disclose her information. If, on the other hand, she disclosed this information, she would face the probability of adoptionF M -1, D -r D (n) -1 ρ n > 0,where (following the rank notation introduced in Section 2.2) r D (n) denotes the rank of project n in the subset of projects which are documented D ⊆ N , and D -r D (n) -1 is therefore the set of documented projects with stronger prospect than n.

  Step, D > M = H = 1. Suppose the result holds for any triple (D, H, M ) such that D = K > H = M = 1 and H ⊆ N S , and consider a state (D, H, M ) with D = K + 1.

  Lemma 7, there are five possible types of symmetric Bayesian Nash equilibria when N is sufficiently high:(i) λ = 1; (ii) λ = 0; (iii) Λ = [x, y) and Λ 1 = (y, x]for some y ∈ (x, x); (iv) Λ = [x, y) and Λ 0 = (y, x] for some y ∈ (x, x); (v) Λ = [x, x]. By Proposition 13, (i) and (ii) are impossible.

  (y k ) = 1 -

x

  xλ k (x)dΨ(x) N (k)-1, and are equal since λ k is an equilibrium. Hence, for every k > 0(x) is bounded and 0 < x < y k < x < 1, the left-hand side goes to 0 as k → ∞. Because the right-hand side is bounded below by xΨ(y k ), it must be true that y ∞ = x. The remaining of the proposition is a consequence of Lemma 8.16 (Multiple Slots). With multiple slots, any symmetric pure strategy equilibrium must take the form λ(ρ) = 1 ρ∈Λ 1 ,

ρ

  * ∈ [ρ, x].The threshold ρ * is now characterized by the following equation which says thatV D (ρ * ) = V H (ρ * ) and makes use of the particular form of Λ 1 . (ρ * ) + Ψ(ρ) (x,ρ)∪(ρ * ,x) xdΨ(x) k × 1 -1 1 -Ψ(ρ * ) + Ψ(ρ) (x,ρ)∪(ρ * ,x) xdΨ(x) m-k.

  The relevant variable to a decision maker with M slots to fill and a pool of candidates N is the subset of projects that she can investigate. Let D ⊂ N denote this subset, and H = N D. D is the documented set of the decision maker, while H is her hidden set. The partition [D, H] of the set of projects N is her learning partition. The set of expected payoffs that she can reach given any policy is then completely characterized by the triple (D, H, M ). Let H W ≡ H ∩ N W , H S ≡ H ∩ N S , D W ≡ D ∩ N W and D S ≡ D ∩ N S denote the weak and strong subsets of these sets.

	3.1 The Search Problem of the Decision Maker

  By definition, an equilibrium must satisfy as many incentive constraints as there are candidates. Fortunately, many of these constraints do not bind. To see this I introduce a new definition. A subset of projects

Therefore, in any equilibrium H = H S , and N W ⊆ D. Note that disclosing always yields a positive probability of approval. Withholding, on the other hand, yields a null probability of approval for all but the first M projects in H S . Consequently, in any equilibrium, H ≤ M , for otherwise candidate h(M + 1) would gain by disclosing. Remark 2. Any (pure strategy) equilibrium action profile [D, H] satisfies H ≤ M . For the same reason, when H = M , no candidate weaker than h(M ) has any incentive to withhold. Remark 3. Given any action profile [D, H] such that H = M , a candidate n ∈ D such that r N (n) > r N (h(M )) has no incentive to deviate.

  Therefore, (4) implies(15), showing that it is a dominant strategy for N S to disclose. Now consider candidate N S -1. By Lemma 2, the equation obtained by replacing N S by N S -1 in (4) is satisfied. Hence repeating the argument implies that it is also a dominant strategy for N S -1 to disclose. By induction, this shows that the game is dominance solvable.Proof of Proposition 7 (Single Slot -Characterization). The fact that the equilibrium described in the proposition exists under the condition given is a direct consequence of Proposition 15. In fact there is an equilibrium such that n is the only candidate withholding information if and only ifρ n ≤ (1ρ n+1 ) . . . (1ρ N ) and ρ n-1 ≥ (1ρ n+1 ) . . . (1ρ N ). The only point to prove is therefore uniqueness. Let F n = (1ρ n+1 ) . . . (1ρ N ). {F n }is an increasing sequence whereas {ρ n } is a decreasing sequence. Then, by definition of n * , ρ n ≤ F n if and only if n ≥ n * .

That is true even if she knows the average consumer's reaction.

In the case of asymmetric information, if the type distribution puts a positive weight on weak types.

For a review of this literature see[START_REF] Milgrom | What the Seller Won't Tell You: Persuasion and Disclosure in Markets[END_REF]; recent contributions also includeGlazer and Rubinstein (2001, 2004).[START_REF] Sobel | Signaling Games[END_REF] summarizes the literature on information transmission.[START_REF] Kartik | Strategic Communication with Lying Costs[END_REF] builds a bridge between the hard and soft information approaches.

The decision maker could delay approval after observing that a project is good, but there is no advantage in doing so since all good projects yield the same expected payoffs. She could also rubberstamp a project in D, but (LP) implies that this option is always dominated.

If some candidates have the same prospects, however, competition may lead to full disclosure even in the absence of weak candidates.

Since payoffs depend on both the types and actions of other candidates, the purification theorem of[START_REF] Milgrom | Distributional Strategies for Games with Incomplete Information[END_REF] does not apply.

Appendix A Optimal Policy of the Decision Maker

Proof of Lemma 1. The first part of (i) comes from the fact that projects in H W cannot be investigated, and the incremental expected payoff of rubberstamping them is negative. The second part of the statement is obvious given the existence of the cap M on the number of projects that can be implemented. (ii) is true because any project in H S has a positive expected incremental payoff, and therefore the first min(M -D, H S ) projects in H S should be used to

and the first three terms sum up to 0 so that ∆ > 0.

Appendix B The disclosure game

The incentive of a candidate n to deviate from an action profile [D, H] is defined as the ratio of her deviation payoff over her current payoff, and it is denoted by δ(n, [D, H]) or simply δ(n)

when the context is clear.

Proof of Lemma 2. Let n and n + 1 be two adjacent projects in N in J , let r = r H (n) = r H (n + 1) be the rank that any of these projects would occupy in H and d = r D (n) be the rank of n in D, so that r D (n + 1) = d + 1. Then the incentives to deviate of the two candidates are given by

Appendix C Incomplete Information

Proof of Proposition 10 (BNE Existence). Propositions 1 and 3 and Theorem 1 of [START_REF] Milgrom | Distributional Strategies for Games with Incomplete Information[END_REF] imply that when the set of distributional strategies is topologized by weak convergence, the players' strategy sets are compact, convex metric spaces and the payoff functions are continuous and linear in each single player's strategy, then the best response function β : Σ → 2 Σ that maps a strategy σ into the set of best responses of any player (the game is symmetric) to σ is a Kakutani map (that is upper-semicontinuous, non-empty valued and convex valued), where Σ is the set of distributional strategies of each player. Then the Kakutani-Glicksberg-Fan fixed point theorem implies that there exists a symmetric equilibrium of the disclosure game in distributional strategies .

Proof of Proposition 11 (Full Disclosure). First note that ( 10) is equivalent to

and the left-hand side is equal to the ratio V 1 D (ρ)/V 1 H (ρ) of the payoffs of a player with type ρ when all other players disclose with probability 1. Therefore, (10) implies that there is no incentive of a player with type ρ to deviate from full disclosure. It is therefore clearly a necessary condition for equilibrium.

To show that it is also sufficient, note that for a candidate with type ρ > ρ, when all the other candidates disclose with probability 1,

implying that there is no incentive to deviate from the full disclosure profile for such a candidate.

Since it is a dominant strategy for the types below ρ to disclose, this proves that (10) is also a sufficient condition. In the absence of weak types, N is infinite and full disclosure cannot be