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Abstract

This paper analyzes the determination of equity portfolios and country stock returns in

the context of imperfectly integrated stock markets. We consider a continuous-time model of

a two-country endowment economy in which the level of financial integration is captured by a

proportional tax on foreign dividends. Despite the heterogeneity among investors induced by this

tax, we obtain approximate closed-form expressions for asset prices and we characterize equity

holdings and the joint process followed by country stock returns in equilibrium. Our model is

consistent with a broad range of empirical findings on international financial integration. When

the (endogenous) cross-country return correlation is high, small frictions in equity markets can

generate a substantial home bias in portfolios. In the baseline version of our model, the cross-

country return correlation is driven by fundamental correlation and portfolio rebalancing. In a

two-good extension of the model, the adjustment of relative good prices can generate high stock

return correlation even for a low level of fundamental correlation, thus magnifying the impact

of the financial friction on portfolios.
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1 Introduction

Over the last decades most equity markets around the world have been liberalized and cross-

border equity holdings have surged.1 However a number of frictions remain in international equity

markets: transaction costs, withholding taxes, as well as informational and agency problems, still

act as impediments to cross-border investment. In a sense, the mere existence of a home bias in

portfolios, initially documented by French and Poterba (1991), indicates that some frictions are still

at play.2 In 2005, US investors held 82% of their stock portfolios in domestic stocks, and the equity

home bias is observed in all developed countries (Sercu and Vanpee (2007)). As a big picture, it

is probably fair to describe international equity markets today as neither perfectly integrated nor

totally segmented.

In this paper, we analyze the workings of international financial markets in between the polar

cases of perfect financial integration and complete segmentation. We consider a two-country en-

dowment economy with one non-storable good, one Lucas tree in each country and equity claims

on national output. The friction which induces equity markets to be partially segmented takes the

form of a proportional cost that shareholders have to pay on the dividends earned abroad. Natu-

rally, the size of the home bias in portfolios depends on the size of the friction on equity markets,

but it also depends on the international correlation of returns which determines the benefits of

diversification. At the same time, this correlation is affected by cross-border equity holdings, since

portfolio rebalancing effects can generate comovements in asset prices. Our main achievement is

to determine both the joint distribution of asset returns and portfolio holdings in equilibrium for

various levels of financial integration. We believe our setting is appropriate to make sense of (i)

the extent of international portfolio diversification, (ii) the joint behavior of country stock markets,

and (iii) how they are affected by the process of financial integration.3

Modeling imperfectly integrated financial markets is appealing for the sake of realism but it is

technically challenging. Any form of financial segmentation essentially implies some heterogeneity

among investors, a feature which makes the pricing of assets more complicated than under perfect
1See Lane and Milesi-Ferreti (2003). Quinn (1997), Bekaert and Harvey (2000) and Kaminsky and Schmuckler

(2003) provide direct institutional measures of financial openness.
2In a standard CAPM world with perfectly integrated financial markets and identical preferences, all investors

would hold the world market portfolio, independently of their nationality. However, even in the absence of frictions
in international financial markets, deviations from purchasing power parity or the existence of non-insurable labor
income shocks could induce heterogenous portfolios (for references, see the literature review below).

3We assume that fundamentals are not affected by the integration process, as would be the case, for instance, if
access to new risksharing opportunities and new sources of finance induced inter-sectoral reallocations (e.g., Obstfeld
(1994)). Empirically, Imbs (2006) does find a positive impact of financial integration on the synchronization of country
outputs.
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and complete markets. We manage to keep the problem tractable by capturing in a simple way

the partial segmentation of international financial markets. The friction we consider essentially

acts as a withholding tax on foreign dividends.4 Withholding taxes are relevant in practice (e.g.,

pension funds have to bear such taxes on their foreign equity investments), but our friction can

also be interpreted metaphorically as a reduced form for agency costs or informational frictions.5

The asset pricing problem is non trivial. Indeed, since each investor has a specific “after-tax”

investment opportunity set, the equilibrium allocation resulting from trade in assets is not Pareto

efficient, risksharing is imperfect, and we cannot use the pricing kernel of a single representative

investor holding the world market portfolio and consuming the aggregate endowment at each instant

to price assets. In order to characterize the equilibrium, we need to keep track of the time-varying

cross-country distribution of wealth. Asset prices can be expressed as functions of three state

variables: the world endowment, the relative size of the two economies and their relative wealth

which fluctuates endogenously. Working under the assumptions of logarithmic utility and lognormal

endowment processes, we pin down these pricing functions and use them to derive the joint behavior

of returns and equity portfolios.

An important contribution of this paper lies in the approximation method we use to solve the

model. Even though we keep it very parsimonious, the dynamic asset pricing problem that we for-

mulate, with two risky assets and heterogenous investors, translates into an infinite-horizon coupled

forward-backward stochastic differential equations (FBSDE) problem (Ma and Yong (1999)). The

exact solution to this problem cannot be obtained analytically. Instead, we derive approximate

analytical formulas for asset prices, the (time-varying) first- and second moments of asset returns,

and portfolios by taking Taylor expansions around the zero-tax case. To our knowledge, this use of

approximation techniques to characterize the effect of taxes “in the small” is novel and we believe

it could be applied fruitfully in other contexts.

Our solution technique allows us to characterize the impact of financial integration (which in

our model means a decrease in the withholding tax on foreign dividends) through comparative

statics. As the size of the friction decreases, we find that asset prices increase, the cross-country

correlation of returns and cross-country equity holdings both also increase (the latter being a first-

order effect, while the former is a second-order effect) and the volatility of asset returns diminishes
4This friction is by nature different from a transaction cost à la Constantinides (1986): it does not bear on

transactions but instead reduces cash-flows during the holding period.
5Stulz (2005) analyzes the impact of moral hazard on cross-border investment. The role of informational frictions

is emphasized in, e.g., Gehrig (1993) and Van Nieuweburgh and Veldkamp (2008).
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(also a second-order effect). The overall impact of financial integration on the cost of funds is

not clear-cut, depending on the respective size of the increase in the riskfree rate (due to lower

precautionary saving) and of the decrease in the risk premium. The latter effect shows up as an

extra term in a modified version of the CCAPM, where the level of friction is interacted with the

relative wealth of countries. As a by-product of our analysis, we also derive a gravity equation for

international trade in financial assets, giving a theoretical foundation to the use of gravity equations

in empirical work on cross-border asset holdings (e.g., Portes and Rey (2005)).

What size of friction do we need to generate a reasonable level of home bias? In order to get a

sense of the magnitude of the effects, we calibrate our model to stock market and output data for

the US and Europe. We find that small frictions akin to a proportional dividend tax of the order

of 10% can generate a level of domestic exposure around 80%, close to the observed home bias for

the US economy.6

The result that small frictions on cross-border holdings can result in substantial portfolio home

bias relies on a high elasticity of asset demand and on a high level of assets substitutability. In our

model, the substitutability between national assets is driven by common shocks affecting national

economic fundamentals and by portfolio rebalancing. The portfolio rebalancing mechanism that

induces the correlation of two assets returns to be higher than their “fundamental” correlation

works as in Cochrane et al. (2007). A good shock to domestic dividends drives the price of the

domestic asset up and increases its share in investors’ portfolios. When financial markets are

integrated, investors increase their demand for the foreign asset in order to keep the composition of

their portfolios constant, which drives the price of the foreign asset up. In other words, as the share

of the domestic asset in the world market portfolio increases, the required return on the foreign

asset decreases because its diversification properties become more valuable. In financial autarky by

contrast, a good shock to an asset drives its price up without affecting the price of the other asset

and the correlation of asset returns is equal to the correlation of economic fundamentals. In-between

complete segmentation and perfect integration, the lower the frictions between two markets, the

higher the comovements of their stock prices, for a given level of fundamental correlation.7 We

point out that this portfolio rebalancing effect, though spectacular for low levels of fundamental
6As a point of comparison, the average level of withholding dividend taxes faced by a (domestically tax-exempt)

US pension fund investing abroad is 14% (source: International Bureau of Fiscal Documentation).
7One might prefer to think in terms of stochastic discount factors (SDFs). The two agents have perfectly correlated

SDFs in the perfectly integrated case, so that the two assets are discounted the same way, which increases their
correlation compared to the extreme case of complete segmentation where each asset is priced using the corresponding
autarkic SDF. As financial integration increases, the discount factors that are applied to national assets become closer
to each other, which increases the correlation of their returns.
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correlation and no friction on financial markets, is quantitatively small for a realistic calibration

of the model. This result is interesting when one wants to think about the home bias from a

general equilibrium perspective. Any cost bearing on foreign equity holdings has two opposite

effects on portfolios: the direct effect is to reduce cross-border holdings by reducing expected

returns on foreign assets; but there is also an indirect effect, which is to reduce the substitutability

between national assets by reducing the correlation of their returns, thus increasing the willingness

to diversify internationally. The overall quantitative impact of a friction depends on the relative

size of the two effects, and the fact that the indirect effect is of small magnitude plays in favor of

the result that small frictions can generate a large home bias.

We also provide an extension of our framework with two differentiated goods: each country

produces one type of good and agents have CES preferences over the two goods. We show that the

two-good model is completely isomorphic to the one-good case up to a simple transformation of the

state variables. Hence, all our findings go through in this environment but we can endogenously

generate a high level of asset substitutability without requiring an exogenously high level of funda-

mental correlation. The reason is that a positive domestic endowment shock increases the relative

price of foreign goods and foreign dividends at market value. This Ricardian adjustment of the

terms of trade (see also Cole and Obstfeld (1991) and Pavlova and Rigobon (2007)) generates high

levels of stock return correlation even when endowment shocks are independent across countries,

thus magnifying the impact of the financial friction on portfolios.

Finally, our analysis yields some insight on the correlation puzzle in international equity hold-

ings, by which we refer to the empirical finding of a robust positive relationship between bilateral

equity holdings and bilateral stock return correlations (see Portes and Rey (2005), Chan et al.

(2005) and Lane and Milesi-Ferreti (2008)). As the level of financial integration between two

countries affects positively both their cross-border holdings and the correlation of their returns, it

could be that the positive relationship between these two variables across pairs of countries is just

driven by variations in the bilateral level of financial integration. In an empirical companion paper

(Coeurdacier and Guibaud (2007)), we show that once this endogeneity issue is taken into account

the correlation puzzle indeed disappears: holding financial frictions constant, investors do tilt their

foreign holdings towards countries which offer better diversification opportunities.

Related literature. Basak and Gallmeyer (2003) consider a dynamic asset pricing model with

asymmetric dividend taxation and a unique risky asset. We follow their approach to deal with
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investors’ heterogeneity through the introduction of a time-varying Pareto-Negishi weight.8 But

to address issues of portfolio composition or stock return correlation, we need at least two risky

assets. Our analysis can be seen as a natural extension of the work of Basak and Gallmeyer (2003)

to the two-asset case. But our solution method clearly differs from theirs: whereas they solve their

FBSDE problem numerically by solving an equivalent quasi-linear PDE (see Ma, Protter and Yong

(1994)), we provide approximate analytical formulas. Because our two-tree specification follows

Cochrane et al. (2007), we can use the quasi-closed-form pricing functions provided in their paper

to compute our approximations.9

A vast strand of the literature in international finance studies portfolios and asset prices in

the context of imperfectly integrated financial markets. Two papers closely related to ours are

Martin and Rey (2004) and Bhamra (2004). Martin and Rey (2004) build a static model featuring

a transaction cost on international trade in assets. Much as in our paper, this cost induces a home

bias and the size of the bias depends on the elasticity of the demand for foreign assets, which is

related to investors’ risk aversion.10 The dynamic setup of our model allows us to explore the joint

dynamic of asset prices and wealth distribution, and issues related to portfolio rebalancing and

endogenous return correlation.11 Bhamra (2004) builds a full-fledged dynamic equilibrium model

of partially segmented financial markets, but he imposes constraints directly on the amount of

wealth that can be invested abroad.12 We get the home bias in a more endogenous way by relating

it to small frictions in equity markets.

Black (1974), Stulz (1981), Errunza and Losq (1985, 1989), Eun and Jarakiramanan (1986)

and Hietala (1989) analyze the impact of international financial barriers on portfolio holdings and

on the risk-return tradeoff, characterizing how specific kinds of financial frictions lead to specific

deviations from the traditional CAPM. We derive a modified version of the CCAPM in our dynamic

asset pricing model, which is close in spirit to their work.

By focusing on small frictions in financial markets, we depart from a literature which tries to
8Stochastic weights have been used in the literature to characterize equilibrium under incomplete markets (e.g.,

Cuoco and He (1994), Basak and Cuoco (1998)). In our setup, like in Basak and Gallmeyer (2003), world markets
are dynamically complete but deviation from perfect risksharing results from differential taxation.

9Menzly, Santos and Veronesi (2004), Santos and Veronesi (2006) and Martin (2007) build multi-asset dynamic
asset pricing models under alternative assumptions on preferences and cash flows. Our solution method could be
generalized to their setups.

10This effect shows up in our model through the impact of volatility.
11Dumas et al. (2003) and Cochrane et al. (2007) analyze the endogenous determination of asset return correlation

in the context of perfectly integrated financial markets. The implications of portfolio rebalancing for the joint behavior
of asset returns and the exchange rate is explored in Hau and Rey (2004).

12Pavlova and Rigobon (2008) analyze the impact of portfolio constraints on the international propagation of
shocks.
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ascribe the observed equity home bias to hedging motives. One strand of this literature focuses on

the hedging of real exchange rate fluctuations, which can be induced by the imperfect integration

of markets for goods and services (Adler and Dumas (1983), Dumas (1992), Cooper and Kaplanis

(1994)). It explores whether portfolio biases can be related to the presence of trade costs (Uppal

(1993), Obstfeld and Rogoff (2000), Coeurdacier (2008)) or to the presence of non-tradable goods

(Stockman and Dellas (1989), Baxter, Jermann and King (1998), Serrat (2001), Kollmann (2006)).

Another strand of this literature focuses on the hedging of non-diversifiable labor income risk

(Baxter and Jermann (1997), Bottazzi, Pesenti and van Wincoop (1996), Heathcote and Perri

(2007), Engel and Matsumoto (2008)). In our paper, these hedging motives do not operate. We

focus on the implications of frictions in international financial markets.

Our theoretical predictions regarding the impact of financial integration on asset prices relate to

some empirical contributions on this subject. Henry (2000) and Chari and Henry (2004) document

a positive impact of financial integration on asset prices. Bekaert and Harvey (2000), Goetzmann

et al. (2005) and Quinn and Voth (2008) find evidence of a positive relationship between the level

of financial market integration and stock return correlations. Our results are consistent with this

set of findings.

From a methodological perspective, our paper is related to Devereux and Sutherland (2006)

and Tille and van Wincoop (2007). Building on Judd and Guu (2001), they independently devel-

oped an approximation approach to solve for international portfolios in general equilibrium with

heterogenous agents. Their method also relies on Taylor expansions but whereas we take approx-

imations in the size of the friction (around the frictionless case), they take approximations in the

variance of shocks (around the non-stochastic steady-state).

The rest of the paper proceeds as follows. Section 2 lays out the model. Section 3 shows how to

deal with investors’ heterogeneity and solve for equilibrium asset prices by taking Taylor expansions

around the frictionless case. The implications of imperfect market integration for asset prices, asset

returns and portfolios are derived in Section 4. Section 5 presents the two-good extension. Section

6 concludes. The proofs are relegated in the Appendix.
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2 Model

2.1 Assumptions

We consider a continuous-time economy with an infinite horizon. There are two countries, home

(H) and foreign (F ), and a single non-storable good. Each country has a representative agent with

time-separable expected utility and logarithmic preferences. The utility of agent i at time t is

Uit = Et

[∫ ∞

t
e−ρ(s−t) log(cis)ds

]
, (1)

where cis is the consumption rate in country i = H, F , and ρ is the common rate of time preference.

Endowments. There is a Lucas tree in each country. We assume the real endowments (dividends)

follow geometric Brownian motions:

dDi(t)
Di(t)

= µDidt + σT
Di

dW (t), i = H, F. (2)

All uncertainty is generated by the bi-dimensional standard Wiener process W (t). We call η the

instantaneous correlation of the two dividend growth rates, which we henceforth refer to as the

“fundamental” correlation. Throughout, we use bold cases for vectors and matrices and AT to

denote the transpose of A.

From (2), the world endowment D ≡ DH + DF follows a diffusion process whose drift and

diffusion coefficients are weighted averages of those of DH and DF , with a time-varying weight

depending on the size of each economy’s endowment relative to the world endowment. We can

write

dD(t)
D(t)

= [δ(t)µDH
+ (1− δ(t))µDF

]︸ ︷︷ ︸
≡ µD(t)

dt +
[
δ(t)σT

DH
+ (1− δ(t))σT

DF

]
︸ ︷︷ ︸

≡ σT
D(t)

dW (t), (3)

where δ(t) ≡ DH(t)/ (DH(t) + DF (t)) captures the relative size of the domestic economy. Using

the dynamics of DH and DF and applying Itô’s lemma, one can write

dδ/δ = µδdt + σT
δ dW , (4)

with

µδ = (1− δ) [µDH
− µDF

− δ(σDH
.σDH

) + (1− δ)(σDF
.σDF

) + (2δ − 1)(σDH
.σDF

)] , (5)

σδ = (1− δ)(σDH
− σDF

). (6)
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Menu of assets. The menu of financial assets consists of stocks that are claims on the two Lucas

trees (each stock being in constant net supply normalized to one) and a frictionless international

bank deposit (in zero net supply). We will note SH and SF the two stock prices and r the riskfree

interest rate. Their processes will be determined as part of the equilibrium.

Frictions on equity markets. We assume investors have to pay a proportional cost τ ∈ (0, 1)

on the dividends they earn abroad.13 For instance, a domestic agent who holds a unit of foreign

stock receives the instantaneous dividend (1− τ)DF . No cost is paid on the domestic dividends.

One way to think about this τ is that it captures literally differences in the taxation of domestic

and foreign dividends. Such kind of fiscal discrimination is relevant in practice (see, for instance,

Gordon and Hines (2002)): it can be due to withholding taxes on foreign dividends,14 or to tax

credits that are extended to shareholders (based on their domestic holdings only), in principle

to avoid the double taxation of dividends at the corporate and at the personal level.15 But our

proportional cost could be given other interpretations: it could capture for instance higher fees

required by mutual funds investing in international stocks, or it could be micro-founded as an

agency cost in a model with moral hazard on cross-border investment. In what follows though, for

simplicity, we refer to τ as a tax. When τ = 0, financial markets are perfectly integrated.

We follow Basak and Gallmeyer (2003) and assume that taxes are redistributed in the economy

as lump sum transfers, each agent continuously receiving transfers ei(t)dt. This assumption allows

us to write the market clearing condition for goods in a simple way, keeping the aggregate con-

sumption equal to aggregate dividend at each instant. The particular redistribution scheme under

consideration does not matter much for our results. One could assume for instance that each agent

receives the taxes paid by the other investor.16 In that case,

eH(t) = ταFH(t)DH(t), (7)

eF (t) = ταHF (t)DF (t). (8)

where αij denotes the quantity of claim on country j output held by the representative investor in

country i.
13Our analysis could easily be extended to the case where these costs differ between countries.
14Though the payment of these taxes to foreign fiscal authorities often gives a right to tax credits at home,

withholding taxes constitute a real cost for tax-exempt investors like pension funds.
15These “dividend imputation schemes” are quite common. An extreme example is the “avoir fiscal” in France:

Until a recent reform, a French investor would receive from the French fiscal authorities an amount equal to 50%
of the dividends perceived on stocks held in a PEA, i.e., a tax-exempt saving account! Only domestic stocks were
eligible in PEAs, which created a powerful incentive to invest domestically.

16We assume all investors act competitively. Therefore, the redistribution of taxes does not give rise to any kind
of strategic behavior.
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2.2 Individual optimization

Investor i is endowed with an initial share αij(0) of each stock j. At each point in time, given the

price processes SH and SF , the interest rate process r, her wealth Xi and a transfer process ei, she

chooses consumption ci and asset holdings αi = (αiH , αiF )T in order to maximize her intertemporal

utility (1). The induced process for financial wealth Xi is given by

dXi(t) = [r(t)Xi(t) + αT
i (t)IS(t)(µi(t)− r(t)) + ei(t)− ci(t)]dt + αT

i (t)IS(t)σT (t)dW (t), (9)

with IS a diagonal matrix that has SH and SF as diagonal coefficients, µi the vector of expected

returns from the perspective of investor i, and σ = [σH σF ] the diffusion matrix of stock prices.17

2.3 Definition of equilibrium

Given preferences, initial endowments and a tax reallocation rule, a competitive equilibrium is a

set of adapted processes for asset prices, consumption ci and asset holdings αi such that (ci, αi) is

a solution to investor i’s optimization problem, and all markets clear at all dates, i.e., for all t ≥ 0

cH(t) + cF (t) = DH(t) + DF (t) = D(t),

αH(t) + αF (t) = 1,

XH(t) + XF (t) = SH(t) + SF (t).

Imposing that the aggregate financial wealth be equal to the world market capitalization is equiv-

alent to imposing that the aggregate position on the bank deposit be zero.

3 Equilibrium

In this section, we start with a brief description of the equilibrium in the benchmark case of perfect

integration (i.e., τ = 0), recalling the quasi-closed-form expressions obtained for asset prices in

that case (Cochrane et al. (2007), Martin (2007)). This is a good starting point to understand, by

contrast, the impact of the friction we introduce. Moreover, we later make use of the frictionless

solution by deriving Taylor approximations for asset prices around the case of perfect integration.
17The instantaneous expected returns as well as the four coefficients of σ are stochastic processes to be determined

in equilibrium.
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3.1 Benchmark case: no friction

When τ = 0, all investors face the same opportunity set. Since they have identical preferences,

they choose the same portfolio composition – every investor holds the world market portfolio. In

this case, one can use the pricing kernel of a logarithmic representative agent consuming the world

endowment at every instant to price each asset as the expected present value of appropriately

discounted future dividends:

Si0(t) = Et

[∫ ∞

t
e−ρ(s−t) D(t)

D(s)
Di(s)ds

]
, i = H, F.

Using the definition of δ, one can rewrite the price of each stock as follows:

SH0(t) = D(t)Et

[∫ ∞

t
e−ρ(s−t)δ(s)ds

]
,

SF0(t) = D(t)Et

[∫ ∞

t
e−ρ(s−t)(1− δ(s))ds

]
.

Letting yH(δ) ≡ E [∫∞
t e−ρ(s−t)δ(s)ds

∣∣ δ(t) = δ
]

and yF (δ) = 1
ρ − yH(δ), one obtains:

SH0(t) = D(t)yH(δ(t)), (10)

SF0(t) = D(t)yF (δ(t)). (11)

The equation for SH0 says that the price of the home country asset at time t is equal to the

world endowment at time t, D(t), times the conditional expectation at time t of the discounted

future values of δ. Because δ is a Markov process, this conditional expectation can be written as

a function yH of δ(t). The expression for SF0 is similar, so that both stock prices are functions

of only two state variables: D and δ. As pointed out by Cochrane et al. (2007), the function yH

turns out to be the standard hypergeometric function (see details in Appendix A).

The consumption allocation in the benchmark case is straightforward. The relative consump-

tion ratio is constant over time, both agents consuming a constant fraction of the world endowment

according to their relative wealth ratio. There is perfect risksharing. Besides, due to the loga-

rithmic utility assumption, both agents’ consumption-to-wealth ratios are constant, equal to their

common rate of time preference ρ.
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3.2 Heterogeneity and imperfect risksharing

The immediate impact of a tax on foreign dividends is that all investors do not get the same after-

tax returns; in that sense they face different investment opportunities. In the presence of taxes, we

have a model with heterogenous investors.18

Wedge in perceived expected returns. We will now pin down precisely the heterogeneity

among investors, taking the returns on asset H as an example. The total instantaneous expected

payoff on this asset is DH(t)dt+EtdSH(t) for a domestic investor and (1−τ)DH(t)dt+EtdSH(t) for

a foreign investor. The difference in the expected payoff on asset H for home and foreign investors

comes from the dividends, which are lower for the foreign investor because of the tax. From this,

we can define the total instantaneous expected rates of return on asset H, which we respectively

note µH for the home investor and µF,H for the foreign investor:

µH(t)dt = Et

[
DH(t)dt + dSH(t)

SH(t)

]
, µF,H(t)dt = Et

[
(1− τ)DH(t)dt + dSH(t)

SH(t)

]
.

Obviously, µH is greater than µF,H , the wedge between the two being equal to the tax rate τ

multiplied by the dividend-price ratio of asset H:

µH(t)− µF,H(t) = τ
DH(t)
SH(t)

. (12)

Analogously, we get

µF (t)− µH,F (t) = τ
DF (t)
SF (t)

, (13)

where µH,F and µF respectively denote the total instantaneous expected rates of return on as-

set F for home and foreign investors. These expressions for the wedges characterize tightly the

heterogeneity induced by taxes.

Investor-specific state prices. Investors being heterogenous, we have to solve their individual

optimization problems separately. Since both investors face dynamically complete markets, we

use the solution technique of Cox and Huang (1989) and Karatzas et al. (1987). Therefore, we

introduce the investor-specific (after-tax) market prices of risk θH and θF :

θH(t) ≡ (
σT (t)

)−1
(

µH(t)− r(t)
µH,F (t)− r(t)

)
, θF (t) ≡ (

σT (t)
)−1

(
µF,H(t)− r(t)
µF (t)− r(t)

)
. (14)

18This subsection and the next draw extensively on Basak and Gallmeyer (2003).
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The difference between the market prices of risk relevant for the two representative agents follows

directly from the wedges characterized in (12) and (13):

θH(t)− θF (t) =
(
σT (t)

)−1

(
τ DH(t)

SH(t)

−τ DF (t)
SF (t)

)
. (15)

We can now define investor i’s state-price deflator ξi as

ξi(t) = exp
(
−

∫ t

0
r(s)ds

)
exp

(
−

∫ t

0
θi(s)dW (s)− 1

2

∫ t

0
θT

i (s)θi(s)ds

)
, i = H, F.

ξi(ω, t) can be understood as the price (faced by agent i) of a security paying dt at time t in state

ω. Each ξi satisfies the following stochastic differential equation:

dξi(t)
ξi(t)

= −r(t)dt− θT
i (t)dW (t). (16)

Using these state prices, each individual dynamic optimization problem can be restated as a static

problem, which consists in choosing a vector of contingent consumption rates under a single budget

constraint:

max
{ci(t)}

E
[∫ ∞

0
e−ρt log(ci(t))dt

]

subject to

E
[∫ ∞

0
ξi(t)ci(t)dt

]
≤ Xi(0) + E

[∫ ∞

0
ξi(t)ei(t)dt

]
,

where the initial wealth Xi(0) depends on the initial distribution of property rights on the equity

claims.

Imperfect risksharing. Letting Ψi denote the Lagrange multiplier on investor i’s budget con-

straint, the first-order conditions of the above problem can be stated as

e−ρt 1
ci(t)

= Ψiξi(t), ∀t, ∀i = H, F. (17)

This implies

cF (t)
cH(t)

=
ΨHξH(t)
ΨF ξF (t)

≡ λ(t), ∀t. (18)

We know from (15) and (16) that ξH and ξF follow different dynamics, therefore (18) implies that

the consumption ratio cF /cH is not constant: imperfect risksharing prevails. Using the market

12



clearing condition on the goods market, we can write

cH(t) =
1

1 + λ(t)
D(t) and cF (t) =

λ(t)
1 + λ(t)

D(t). (19)

The consumption of each agent is a function of the total endowment D and of λ, which acts as

a time-varying relative Pareto-Negishi weight for agent F . This is reminiscent of equilibria under

incomplete markets à la Cuoco and He (1994). In our case, markets are complete but the deviation

from the Pareto-efficient allocation is induced by asymmetric taxation.

These results have to be contrasted with the case where τ = 0. In a frictionless environment,

the two investors face the same state prices, ξH/ξF is constant, the relative consumption ratio is

constant and each agent consumes a constant fraction of the world endowment. In that case, λ is

exactly equal to the constant wealth ratio XF /XH . When it comes to asset prices, the impact of

the deviation from perfect risksharing which materializes in the time-varying relative weight λ is

to increase the volatility of asset returns by adding a source of volatility in the stochastic discount

factors and to decrease the correlation between asset returns. The reason for this latter effect is that

in the frictionless case, both assets are priced by a same SDF, whereas when τ 6= 0, the effective

SDFs underlying the pricing of each asset (which can be thought of as linear combinations of the

intertemporal rate of substitutions of the two investors, with weights depending on the relative size

of their asset holdings) are no longer the same.

3.3 Asset prices and relative wealth: an FBSDE problem

When τ 6= 0, the distribution of wealth captured by the stochastic weight λ plays as a state variable

in addition to D and δ. From the expressions for individual consumption given in (19), we can get

the pricing kernels of both agents and use them to price the two assets.

Lemma 1. The two asset prices at time t can be written as

SH(t) = SH(D(t), δ(t), λ(t)) = D(t)
1

1 + λ(t)
h(δ(t), λ(t)) (20)

SF (t) = SF (D(t), δ(t), λ(t)) = D(t)
λ(t)

1 + λ(t)
f(δ(t), λ(t)) (21)
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where h and f are defined on (0, 1)× (0,∞) as

h(δ(t), λ(t)) ≡ Et

[∫ ∞

t
e−ρ(s−t) [1 + λ(s)] δ(s)ds

]
, (22)

f(δ(t), λ(t)) ≡ Et

[∫ ∞

t
e−ρ(s−t)

(
1 +

1
λ(s)

)
(1− δ(s))ds

]
. (23)

Stock prices at time t can be written as functions of D(t), δ(t) and λ(t): this is enough

information to form expectations on the future dividends of both assets and on the pricing kernels

of both agents. It is noticeable that, though they do not share the same pricing kernels (because

risksharing is imperfect), the two investors agree on asset prices. They have to do so and what

makes it possible is the fact that they do not face exactly the same assets. Indeed, the dividend

flows net of taxes are different for the two investors. Another way to put it is that investors have

different perceptions both of dividends and risk: for a given investor, the bad characteristic of an

investment abroad in terms of expected returns is exactly compensated by the good diversification

property of that investment.

To complete the characterization of equilibrium, we need to determine the functions h and f .

The conditional expectations involve future values of δ and λ. The process for δ is exogenous (Eq.

(4)). The dynamic of the relative weight λ is determined endogenously. From the definition of λ

in (18) and from the dynamic of ξi in (16), Itô’s lemma implies:

dλ(t)
λ(t)

= (θF (t)− θH(t))T θF (t)dt + (θF (t)− θH(t))T dW (t). (24)

The drift and diffusion coefficients driving the dynamics of λ themselves depend on the investor-

specific market prices of risk. The latter can be shown to verify the following equilibrium restriction.

Lemma 2. The market prices of risk, as perceived by home and foreign investors, satisfy

θH(t) = σD(t) + τ
λ(t)

1 + λ(t)
(
σT (t)

)−1

(
DH(t)
SH(t)

−DF (t)
SF (t)

)
, (25)

θF (t) = σD(t) + τ
1

1 + λ(t)
(
σT (t)

)−1

(
−DH(t)

SH(t)
DF (t)
SF (t)

)
. (26)

In these expressions, the first term corresponds to the market prices of risk in the frictionless

case. Indeed, when τ = 0, investors face the same market prices of risk, which are equal to σD,
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the vector of diffusion coefficients in the world endowment process (Eq. (3)). The second term

captures the impact of taxes, interacted with the dividend yields. Using (20)-(21) and (25)-(26),

we can rewrite (24) as dλ/λ = µλdt + σλdW , with

µλ = τ

[
−δ(1 + λ)

h(δ, λ)
(1 + λ)(1− δ)

λf(δ, λ)

]
σ−1σD

+ τ2 1
1 + λ

[
−δ(1 + λ)

h(δ, λ)
(1 + λ)(1− δ)

λf(δ, λ)

] (
σT σ

)−1

(
− δ(1+λ)

h(δ,λ)
(1+λ)(1−δ)

λf(δ,λ)

)
, (27)

σλ = τ
(
σT

)−1

(
− δ(1+λ)

h(δ,λ)
(1+λ)(1−δ)

λf(δ,λ)

)
. (28)

In our economy, asset prices depend on the distribution of wealth (captured by λ) and vice-

versa. Technically, the infinite-horizon backward SDEs defining h and f are coupled with a forward

SDE for λ, so that our pricing problem reduces to a forward-backward SDE problem (Ma and Yong

(1999)).

3.4 Approximation strategy

Our strategy will be to derive an approximated solution to this problem around the case of perfect

financial integration. We use the fact that to µλ and σλ are functions of τ , which we denote

by writing µλ(δ, λ; τ) and σλ(δ, λ; τ). In the benchmark frictionless case, λ is constant, so that

µλ(δ, λ; 0) = 0 and σλ(δ, λ; 0) = 0 for all (δ, λ). For τ close to zero, we can therefore derive

first-order Taylor expansions for µλ and σλ as

µλ(D, δ, λ; τ) = τ

[
− δ

yH(δ)
1− δ

yF (δ)

]
σ−1

0 (δ)σD(δ) + o(τ), (29)

σλ(D, δ, λ; τ) = τ(σT
0 )−1(δ)

(
− δ

yH(δ)
1−δ

yF (δ)

)
+ o(τ). (30)

Subscripts 0 refer to values prevailing when τ = 0 (see Section 3.1). In particular, the diffusion

matrix σ0 is obtained as σ0 = [σH0 σF0], with

σH0 = σD +
y′H
yH

δσδ, (31)

σF0 = σD +
y′F
yF

δσδ. (32)
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In Appendix C, we also obtain second-order approximations for µλ and σλ. We use these approxi-

mations to derive Taylor expansions in τ for the pricing functions h and f .

4 Findings

In this section, we give a full description of international financial markets equilibrium in the

neighborhood of the frictionless case. Section 4.1 gives first and second order approximations for

asset prices. Section 4.2 explores asset returns volatility and cross-country return correlations.

Section 4.3 gives expressions for risk premia and the riskfree rate. Finally, we display results on

the composition of portfolios in Section 4.4.

4.1 Asset prices

Proposition 1. To the first order, SH and SF are given by

SH(D, δ, λ; τ) =
[
1− τ

λ

1 + λ

]
SH0(D, δ) + o(τ), (33)

SF (D, δ, λ; τ) =
[
1− τ

1
1 + λ

]
SF0(D, δ) + o(τ). (34)

The first-order effect of imperfect market integration is to reduce equilibrium asset prices:

frictions in financial markets translate into lower prices by reducing expected income streams on

domestic shares received by foreigners. Note that the decrease in domestic asset prices is higher

when λ is higher. This makes sense since λ is a proxy for the relative wealth of the foreign investors:

as λ increases, the relative influence of foreign investors in the pricing of assets becomes higher,

which has a negative impact on the domestic asset price, since foreigners are willing to pay a lower

price because of the tax they pay on dividends.

Proposition 2. Let Γ ≡ (σT
0 )−1

(
− DH

SH0
DF
SF0

)
. Second-order approximations for SH and SF are:

SH(D, δ, λ; τ) =
[
1− τ

λ

1 + λ

]
SH0(D, δ) + τ2 λ

(1 + λ)2
D [yH(δ) + ϕH(δ)] + o(τ2), (35)

SF (D, δ, λ; τ) =
[
1− τ

1
1 + λ

]
SF0(D, δ) + τ2 λ

(1 + λ)2
D[yF (δ) + ϕF (δ)] + o(τ2), (36)
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where ϕH and ϕF are solutions of the following ODEs 19

ρϕH(δ)− δµδ(δ)ϕ′H(δ)− 1
2
δ2σT

δ (δ)σδ(δ)ϕ′′H(δ) = yH(δ)Γ(δ).Γ(δ),

ρϕF (δ)− δµδ(δ)ϕ′F (δ)− 1
2
δ2σT

δ (δ)σδ(δ)ϕ′′F (δ) = yF (δ)Γ(δ).Γ(δ),

with boundary conditions

ϕH(0) = 0

ϕH(1) = lim
δ→1

1
ρ2

Γ(δ).Γ(δ)

ϕF (0) = lim
δ→0

1
ρ2

Γ(δ).Γ(δ)

ϕF (1) = 0.

To make sense of the second-order price effect of integration, one needs to understand the

impact of integration on the riskless rate and on the variance-covariance matrix of returns. As

we will see, the riskless rate and the return correlation are both decreasing in τ , which induces a

positive impact on asset prices through the risk-adjusted discount factor.

4.2 Volatility and correlation of asset returns

Proposition 3. Second-order approximations of asset prices diffusion coefficients σH and σF are:

σH(δ, λ) = σH0(δ) + τ2 λ

(1 + λ)2

{
−Γ(δ) +

[
ϕ′H(δ)
yH(δ)

− λ
y′H(δ)
yH(δ)

− ϕH(δ)y′H(δ)
y2

H(δ)

]
δσδ(δ)

}
+ o(τ2), (37)

σF (δ, λ) = σF0(δ) + τ2 λ

(1 + λ)2

{
Γ(δ) +

[
ϕ′F (δ)
yF (δ)

− 1
λ

y′F (δ)
yF (δ)

− ϕF (δ)y′F (δ)
y2

F (δ)

]
δσδ(δ)

}
+ o(τ2). (38)

We obtain the instantaneous volatility and correlation of asset returns from the instantaneous

variance-covariance matrix σT σ, where σ = [σH σF ]. A noticeable feature of Eqs. (37)-(38) is

that withholding taxes have no first-order impact on asset returns second-order moments.

Parameter values. In order to illustrate our results, we will assume symmetric fundamentals,

taking the following parameters: ρ = 0.04, µDH
= µDF

= 0.025, σDH ,1 = σDF ,2 = 0.145 and

19We solve these boundary value problems using Chebychev polynomial approximations.
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σDH ,2 = σDF ,1 = 0.039.20 This calibration is meant to match some dimensions of US stock market

data: on an annual basis, the S&P500 volatility after World War II is 0.15 and the dividend

yield (equal to ρ in the symmetric case of perfect integration) is around 0.04. Our fundamental

correlation η is equal to 0.5, which is consistent with the empirical stock return correlation of 0.58

between the US and a non-US synthetic world index over the period 1980-2000.21 In what follows,

we focus on the impact of τ and fix the state variables at δ = 0.5 and λ = 1 (symmetric state).

Impacts of financial integration on return volatility and correlation. As illustrated in

Figure 1 and Figure 2, we find that return volatility decreases with financial integration, while

return correlation increases. In order to understand the impact of the degree of market integration

on the equilibrium correlation of returns, a good starting point is to contrast the two polar case of

perfect integration and complete segmentation. When markets are completely segmented, a good

dividend shock in one country has no impact on the price of assets in another country. However,

the story goes differently when investors can hold assets everywhere. The reason is that following

the rise in the domestic price induced by a good domestic shock, the share of asset H in the world

market portfolio increases, making country F ’s asset more appealing because the diversification

opportunities it offers are suddenly more valuable. Therefore, the required excess return on asset

F decreases and its price increases.22 For a small but positive τ , the same mechanism is at work

but dampened due to investors heterogeneity. Indeed, a good shock to DH affects each investor

differently: the home investor is the most affected since his portfolio is biased towards domestic

assets; but because he is reluctant to rebalance his portfolio towards taxed foreign assets, the

increase in SF is attenuated compared to the case of perfect integration. The result that stock

return correlations between countries increase when cross-border impediments to foreign equity

holdings are relaxed is consistent with the empirical findings of Bekaert and Harvey (2000) who

show that, following episodes of stock market liberalization in emerging countries, the stock market

indices of these countries became more correlated with a global index.

[Figures 1 and 2 here]

Sensitivity analysis. Table 1 shows the magnitude of asset return correlation ηS conditional on

three structural parameters: the degree of market integration (inversely related to τ), the level of
20This corresponds to σD = 0.15 and to a fundamental correlation η = 0.5. This calibration allow us to match the

moments of stock returns in the US at the expense of the moments observed for the fundamentals. It is well known
that the volatility of stock markets is well above the volatility of GDP.

21The empirical stock return correlation is calculated using monthly returns in US$ for both indices.
22The increase of SH is also lower than under full segmentation. Note that this reasoning only holds when the

market share of H is not “too small” to start with.
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fundamental correlation η and the rate of time preference ρ.23 For given η and ρ, the correlation

of asset returns is monotonously decreasing in τ . It is noticeable that the ratio ηS/η decreases

with the exogenous level of fundamental correlation: the endogenous component of asset returns

comovements becomes relatively less important. This is because when the fundamental correlation

is higher, high dividends in one country are often accompanied by high dividends in the other

country, reducing the incentives to rebalance the portfolio.

[Table 1 here]

4.3 Risk premia and riskfree rate

Proposition 4. To the first order, “before-tax” excess returns on assets H and F are

µH − r = σH0.σD + τ
λ

1 + λ

DH

SH0
+ o(τ), (39)

µF − r = σF0.σD +
τ

1 + λ

DF

SF0
+ o(τ). (40)

Proposition 4 is a modified version of the continuous-time consumption-based CAPM. With

logarithmic utility, in the benchmark case without taxes, the vector of expected excess returns for

the two assets is σT
0 σD: the risk premia are equal to the covariance of asset returns with aggregate

consumption growth.24 The first-order impact of τ is to drive the risk premia above their benchmark

level. This is because both assets are partly held by taxed investors who require a higher pre-tax

excess return to compensate for taxation.25 The prediction that an increase in financial markets

integration (a decrease in τ) reduces the required excess return is consistent with the empirical

evidence (Bekaert and Harvey (2000), Henry (2000), Chari and Henry (2004)). The term in τ

that appears in Proposition 4 is interacted with the dividend-price ratio and the relative wealth

of countries. This suggests a potential way of testing our international version of the CCAPM, by

testing for the significance of a proxy for this term in the pricing equation.

When we go to the second order, two additional effects on the risk premia show up, through

the level of asset prices and through asset returns volatilities. First, since dividend-price ratios are
23The return correlation decreases with the rate of time preference ρ. When τ = 0 for instance, inspection of Eqs.

(31)-(32) shows that the covariance of returns decreases with ρ while return volatility increases with ρ. In the limit
case of complete myopia, the portfolio rebalancing behavior that induces extra endogenous comovements between
asset prices no longer operates.

24A nice feature of our model is that it exhibits time-varying risk premia (cf. Cochrane et al. (2007)). But it
obviously does a poor job at matching the observed level of equity premium.

25It is straightforward to see that the presence of taxes lowers the “after-tax” risk premia µH,F − r and µF,H − r.
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higher under imperfect integration, the effect of the friction on the risk premium is amplified.26 The

decrease in the correlation of stock returns with aggregate output plays in the opposite direction,

driving the risk premium down.

Proposition 5. The second-order approximation of the riskfree rate is

r = ρ + µD − σD.σD − τ2 λ

(1 + λ)2

[
−DH

SH0

DF

SF0

] (
σT

0 σ0

)−1

(
− DH

SH0
DF
SF0

)
+ o(τ2). (41)

In the fully integrated case (τ = 0), we obtain the standard interest rate formula with loga-

rithmic utility: the riskfree rate is determined by the rate of time preference and by the mean and

variance of aggregate consumption growth. When markets are imperfectly integrated, the interest

rate is below its level of perfect integration. This can be seen from the fact that (σT
0 σ0)

−1 is

definite positive and this is to be interpreted as an effect of higher precautionary savings, due to

the fact that risksharing is imperfect.

Total cost of capital. A decrease in τ causes both an increase in the riskless rate and a decrease

in the equilibrium excess returns. Therefore, the overall impact of financial integration on the cost

of capital is not clear-cut, depending on the relative strength of these two effects. There could be

non-monotonous effects.

4.4 Portfolios

We now turn to the extent of international portfolio diversification in our imperfectly integrated

financial markets. For that matter, we let πij ≡ αijSj

Xi
denote the share of equity j in the wealth of

investor i.

Proposition 6. To a first order, portfolio shares are given by

[
πHH

πHF

]
= σ−1

0 σD + τ
λ

1 + λ

(
σT

0 σ0

)−1

[
DH
SH0

− DF
SF0

]
+ εH + o(τ), (42)

[
πFH

πFF

]
= σ−1

0 σD + τ
1

1 + λ

(
σT

0 σ0

)−1

[
− DH

SH0
DF
SF0

]
+ εF + o(τ). (43)

Portfolios can be decomposed into three components. In (42) and (43), the sum of the first

two terms approximates σ−1θi =
(
σT σ

)−1 [µi − r], i.e., the standard portfolio composition of a
26Basak and Gallmeyer (2003) also note that asymmetric taxation impairs risksharing, which causes an increase in

the risk premium.
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logarithmic investor with financial wealth only. The first term, σ−1
0 σD, is the portfolio held by

both investors when τ = 0. For an investor in country H, τ reduces the demand for foreign stocks

by reducing after-tax expected returns on these stocks. Symmetrically, due to market clearing,

τ increases the domestic demand for domestic shares to compensate for the lower demand by

foreign investors.27 The third term εi comes from the redistribution of taxes: for instance, if eH is

positively correlated with DH , this will create a demand for foreign shares in order to hedge this

additional income risk. In the Appendix, we derive a first-order approximation for this term in the

case where ei = ταjiDi. But because this hedging component depends very much on the assumed

redistribution scheme and is small when the two countries are not too asymmetric, we neglect the

effect of this term in the following expressions.

Let the elements of the variance-covariance matrix of stock returns be denoted as

σT σ ≡
(

σ2
H

ηSσHσF

ηSσHσF

σ2
F

)
.

From (42), the portfolio shares of a domestic investor approximately satisfy

πHH ' SH0

SH0 + SF0
+ τ

ηS

1− η2
S

λ

1 + λ

1
σHσF

DF

SF
+

τ

1− η2
S

λ

1 + λ

1
σ2

H

DH

SH
, (44)

πHF ' SF0

SH0 + SF0
− τ

1− η2
S

λ

1 + λ

1
σ2

F

DF

SF
− τ

ηS

1− η2
S

λ

1 + λ

1
σHσF

DH

SH
. (45)

These expressions show explicitly how portfolios deviate from the frictionless world market portfolio.

The impact of the friction on portfolios goes through expected returns, both directly and indirectly

via market clearing. The size of the bias in portfolios is inversely related to (1− η2
S): when assets

are closer substitutes, the effect of the friction on equity holdings is amplified.

Comparative statics in a simple symmetric case. In the symmetric case where µDH
= µDF

and σH = σF ≡ σ, when δ = 1
2 , dividend yields under perfect integration are equal to ρ, so that

πHH ' 1
2

+ τ
λ

1 + λ

ρ

σ2(1− ηS)
and πHF ' 1

2
− τ

λ

1 + λ

ρ

σ2(1− ηS)
.

We can derive a number of comparative statics:

∂πHF

∂τ
= − λ

1 + λ

ρ

σ2(1− ηS)
< 0, (46)

∂πHF

∂ηS
= −τ

λ

1 + λ

ρ

σ2(1− ηS)2
< 0, (47)

27This general equilibrium effect is relevant empirically. Chan et al. (2005) find that countries imposing high
withholding taxes to foreign shareholders exhibit a higher home bias.
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and
∣∣∣∂πHF

∂τ

∣∣∣ is increasing in ηS . These expressions capture the impact of frictions, assets substi-

tutability and the interaction of the two on the extent of portfolio diversification. When investments

are riskier (higher σ), the motive for risksharing increases and portfolios are more diversified:

∂πHF

∂σ2
= τ

λ

1 + λ

ρ

σ4(1− ηS)
> 0. (48)

Finally, we get

∂πHH

∂λ
= τ

1
(1 + λ)2

ρ

σ2(1− ηS)2
> 0. (49)

A high λ means the relative wealth of foreign investors is high, which strengthens their influence in

the pricing of assets and increases the negative impact of the friction on the price of the domestic

asset. As a consequence, the larger λ, the lower the price of the domestic asset and the higher the

incentive for domestic investors to stay invested domestically.28

Level of home bias. For symmetric fundamentals and in the symmetric state δ = 0.5 and λ = 1,

Figure 3 illustrates the share of wealth invested abroad as a function of τ and as a function of the

fundamental correlation η, taking into account the endogeneity of stock returns first and second

moments. For τ = 10% and η = 0.65, we obtain πHF = 20%: a reasonable level of friction on

cross-border equity holdings, coupled with a high level of return correlation, can generate a realistic

level of domestic exposure of equity portfolios. In Section 5, we show that, in a setting with two

differentiated goods, one can generate high return correlation (and therefore a substantial level of

home bias) for a lower value of the fundamental correlation η. Note that our computation also

hinges on a low level of risk aversion, which implies a rather high elasticity of asset demands to

expected returns.29

[Figure 3 here]

A gravity equation for bilateral equity holdings. Our model can also be used to give some

theoretical ground to the use of gravity equations in empirical work on bilateral equity holdings.
28This prediction of our model that the home bias in portfolios should be larger in countries whose relative wealth

is smaller is consistent with scarce evidence in Chan et al. (2005). The lowest three values taken by their measure of
home bias are for US, UK and Japan, and the highest four are for New Zealand, Norway, Portugal and Greece.

29Assuming power utility with relative risk aversion higher than one would have two effects: (i) for given return
correlation, a higher risk aversion would imply more portfolio diversification; (ii) at the same time, decreasing the
elasticity of intertemporal substitution would increase return correlation by inducing more common discount factor
shocks (Dumas, Harvey and Ruiz (2003)). The latter effect would dampen the impact of higher risk aversion on the
extent of portfolio diversification.
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Indeed, when we turn from portfolio shares to the value of equity holdings, we have :

log(αHF SF ) = log XH + log (ρyF (δ))− τ
1

1− η2
S

λ

1 + λ

SH + SF

σF SF

(
1

σF

DF

SF
+ ηS

1
σH

DH

SH

)
, (50)

where the first two terms are the mass terms in the gravity equation.30 As shown by Portes and

Rey (2005), gravity equations give a good description of patterns of international asset holdings.

In their work, they use the market capitalizations of origin and destination countries as proxies

for the mass terms of the equation. Our model clarifies which variables should be used: for the

origin country, one should use the aggregate wealth, whereas for the destination country, market

capitalization can be used as a proxy for the present value of current and future foreign dividend

streams. Moreover, Portes and Rey (2005) propose to interact variables capturing financial frictions

between countries with the degree of substitutability between assets, which is measured here by
(
1− η2

S

)−1. Our model provides a theoretical foundation for this procedure.

5 Two-good extension

In this section, we extend our analysis to the case where the goods produced in each country are

imperfect substitutes. All the findings of Section 4 go through. Indeed, we show that the two-

good model is isomorphic to the case of perfect substitutability. However, this specification has

the potential to generate realistic portfolio predictions without requiring too high cross-country

correlations between endowments. When goods are imperfect substitutes, relative prices depend

on relative quantities: the relative price of a good is positively related to its relative scarcity, so that

a positive output shock in one country is accompanied by a counteracting relative price change.

This “terms of trade effect”makes asset cash flows and asset prices evolutions more synchronized.

This mechanism is emphasized in Pavlova and Rigobon (2007).

We assume that each country produces one (tradable) good and the representative agent in

each country consumes both goods. Endowments in each country, DH and DF , follow geometric

Brownian motions, as specified in (2). The two representative agents have the same log-CES

preferences. Let cij,t denote agent i’s consumption of goods from country j at date t. Agent i’s

consumption aggregate at time t is given by

Cit =
[
c

φ−1
φ

ii,t + c
φ−1

φ

ij,t

] φ
φ−1

. (51)

30yF (δ) = Et

hR∞
t

e−ρ(s−t) (1− δ(s)) ds
i

captures the present value of country F ’s contribution to world output.
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The parameter φ > 0 denotes the elasticity of substitution between Home and Foreign goods

(φ = ∞ corresponds to the one-good case). Agent i’s utility at time t is

Uit = Et

[∫ ∞

t
e−ρ(s−t) log(Cis)ds

]
. (52)

Let pH,t and pF,t denote the prices of the two goods, normalized by taking the consumption index

as numeraire:

[
p1−φ

H,t + p1−φ
F,t

] 1
1−φ = 1. (53)

Optimal (intra-temporal) consumption allocation implies

cij = p−φ
j Ci, for all (i, j). (54)

Resource constraints for the two goods are:

cHj + cFj = Dj , j = H, F. (55)

Eqs. (54) and (55) pin down the terms of trade as a function of relative quantities. The ratio

of outputs evaluated at market prices (i.e., the ratio of dividend cash-flows paid by the two risky

assets) is

pH(t)DH(t)
pF (t)DF (t)

=
(

DH(t)
DF (t)

)φ−1
φ

. (56)

The strength of the terms of trade effect increases as goods become less substitutable. For an

elasticity of substitution below one, the effect is so strong that, following a good domestic shock,

the cash-flows of domestic assets are lower than the ones of foreign assets. In the special case of

an elasticity of substitution equal to one (i.e., Cobb-Douglas preferences), the change in relative

prices exactly compensates the change in relative quantities, so that cash flows on domestic and

foreign assets are perfectly correlated. In that case, portfolios are indeterminate (Cole and Obstfeld

(1991)). We assume φ 6= 1 in our analysis.

We redefine the state variable D as the world endowment in the composite good:

D(t) ≡
[
D

(φ−1)/φ
H,t + D

(φ−1)/φ
F,t

]φ/(φ−1)
. (57)
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Eqs. (54) and (55) imply that, in equilibrium, CH(t) + CF (t) = D(t). Let λ(t) denote the relative

weight of agent F in consumption, so that

CH(t) =
1

1 + λ(t)
D(t) and CF (t) =

λ(t)
1 + λ(t)

D(t). (58)

We redefine the state variable δ as δ(t) ≡ pH(t)DH(t)
D(t) . In equilibrium, pHDH +pF DF = D. Together

with (56), this implies

δ(t) =
1

1 + (DF (t)/DH(t))
φ−1

φ

. (59)

Lemma 3. In the case of perfect integration with two differentiated goods, asset prices can be

expressed as in Cochrane, Longstaff and Santa-Clara (2007):

Si0(t) = D(t)yi(δ(t)), i = H,F, (60)

for newly defined hypergeometric functions yH and yF (see Appendix for the definition of the pa-

rameters of yH and yF as a function of φ).

From Lemma 3, we can derive the stochastic properties of asset returns for τ = 0. Figures 4 and

5 show return volatility and correlation in the symmetric case as a function of the elasticity of

substitution φ (for orthogonal fundamentals, keeping the same volatility as before). In particular,

due to the terms of trade adjustment, stock return correlations can be arbitrarily high for low

enough values of φ, despite zero fundamental correlation.31

[Figures 4 and 5 here]

Proposition 7. For τ > 0, the approximate expressions of Section 4 for asset prices and portfolios

remain valid, for redefined state variables D and δ and pricing functions yH and yF .

Due to the isomorphy with the case of perfect substitutability, portfolios can be described as in

Proposition 6. The key difference with the one-good case is that for small positive values of τ

a reasonable level of home bias can be obtained without requiring an unrealistically high level of

fundamental correlation. Figure 6 shows the level of foreign exposure increasing as a function of the

elasticity of substitution, under the assumption that fundamentals are uncorrelated. For reasonable

values of φ and τ , portfolios exhibit a very substantial degree of home bias.
31Standard estimates of φ in the international real business cycle literature are between 0.5 and 2.5 (see for instance

Backus, Kehoe and Kydland (1994) and Heathcote and Perri (2002))
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[Figure 6 here]

6 Conclusion

Thanks to an original application of approximation techniques, we provided a complete description

of equilibrium asset prices and holdings in a dynamic model of imperfectly integrated stock markets.

We characterized the effect of integration (understood as a decrease in τ) on asset prices. We showed

how the CCAPM is modified relative to the fully-integrated case and how the impact of integration

on the cost of capital depends on the respective size of opposite effects on the riskless rate and

on the risk premium. We exhibited a second-order effect of integration on asset returns second

moments, driven by the fact that impediments to cross-border equity holdings prevent risksharing

and make pricing kernels more volatile and less synchronized. In Section 5, we showed that higher

return correlation could be obtained, for a given level of fundamental correlation, by decreasing the

elasticity of substitution between home and foreign goods, leading to a more pronounced home bias

for a given level of financial friction. We find our setup appealing as it is all at once parsimonious

and able to account for various dimensions of the data. When attempting to assess the degree of

integration empirically, one gets a different impression by looking at different variables: domestic

biases in portfolios point to segmentation, whereas institutional measures of financial openness and

large capital flows point to a high degree of integration. Our model shades light on the different

facets of financial integration.
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FIGURES AND TABLE
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Figure 1: Stock return volatility as a function of τ when δ = 0.5 and λ = 1
(calibration : ρ = 0.04, µDH

= µDF
= 0.025, σDH ,1 = σDF ,2 = 0.145,σDH ,2 = σDF ,1 = 0.039).
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Figure 2: Stock return correlation as a function of τ when δ = 0.5 and λ = 1
(calibration : ρ = 0.04, µDH

= µDF
= 0.025, σDH ,1 = σDF ,2 = 0.145,σDH ,2 = σDF ,1 = 0.039).
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Figure 3: Share of domestic wealth invested abroad as a function of fundamental correlation, for
various τ , when δ = 0.5 and λ = 1 (calibration: ρ = 0.04, µDH

= µDF
= 0.025, σDH

= σDF
= 0.15)

ηS

ρ = 0.1 ρ = 0.05 ρ = 0.01
τ = 0 0.086 0.147 0.394

η = 0 τ = 5% 0.080 0.143 0.393
τ = 10% 0.060 0.130 0.391
τ = 0 0.313 0.358 0.544

η = 0.25 τ = 5% 0.305 0.353 0.542
τ = 10% 0.282 0.340 0.538
τ = 0 0.535 0.562 0.679

η = 0.5 τ = 5% 0.526 0.557 0.677
τ = 10% 0.501 0.543 0.672

Table 1: Stock return correlation ηS as a function of the fundamental correlation η and τ

when δ = 0.5 and λ = 1 (fundamental volatility = 0.15).
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Figure 4: Stock return volatility as a function of the elasticity of substitution φ when τ = 0 and
δ = 0.5 (calibration : ρ = 0.04, µDH

= µDF
= 0.025, η = 0, fundamental volatility = 0.15).
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Figure 5: Stock return correlation as a function of the elasticity of substitution φ when τ = 0 and
δ = 0.5 (calibration : ρ = 0.04, µDH

= µDF
= 0.025, η = 0, fundamental volatility = 0.15).
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Figure 6: Share of domestic wealth invested abroad as a function of the goods elasticity of substi-
tution, for three values of τ , when δ = 0.5 and λ = 1 (calibration: ρ = 0.04, µDH

= µDF
= 0.025,

η = 0, fundamental volatility 0.15)
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APPENDIX

A Hypergeometric function

Cochrane et al. (2007) show that

yH(δ) ≡ Et

[∫ ∞

t
e−ρ(s−t)δ(s)ds

∣∣∣∣ δ(t) = δ

]

=
1

ψ(1− γ)

(
δ

1− δ

)
F

(
1, 1− γ; 2− γ;

δ

δ − 1

)
+

1
ψθ

F

(
1, θ; 1 + θ;

δ − 1
δ

)
,

with F the standard (2,1)-hypergeometric function and

ψ =
√

ν2 + 2ρχ2,

γ =
ν − ψ

χ2
,

θ =
ν + ψ

χ2
,

where

ν = µDF
− µDH

−
σ2

DF,1
+ σ2

DF,2

2
+

σ2
DH,1

+ σ2
DH,2

2
, (A-1)

χ2 =
(
σ2

DH,1
+ σ2

DH,2

)
+

(
σ2

DF,1
+ σ2

DF,2

)
− 2(σDH,1

σDF,1
+ σDH,2

σDF,2
). (A-2)

In the same way

yF (δ) ≡ Et

[∫ ∞

0
e−ρ(s−t) (1− δ(s)) ds

∣∣∣∣ δ(t) = δ

]

=
1

ψ(1 + θ)

(
1− δ

δ

)
F

(
1, 1 + θ; 2 + θ;

δ − 1
δ

)
− 1

ψγ
F

(
1,−γ; 1− γ;

δ

δ − 1

)
.

B Two useful results

Lemma B-1. The functions h and f defined in Section 3.3 are solutions of the following PDE’s

ρh = (1 + λ) δ + δµδhδ + λµλhλ + 1
2δ2(σδ.σδ)hδδ + 1

2λ2(σλ.σλ)hλλ + δλ(σδ.σλ)hδλ, (B-1)

ρf = 1+λ
λ (1− δ) + δµδfδ + λµλfλ + 1

2δ2(σδ.σδ)fδδ + 1
2λ2(σλ.σλ)fλλ + δλ(σδ.σλ)fδλ, (B-2)

with µδ, σδ, µλ and σλ defined in (5)-(6) and (27)-(28).
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Proof: We apply Feynmac-Kac formula to h and f .

Lemma B-2. σH and σF must verify

hσH = hσD + λ

(
hλ − h

1 + λ

)
σλ + δhδσδ, (B-3)

fσF = fσD + λ

(
fλ +

f

λ(1 + λ)

)
σλ + δfδσδ. (B-4)

Proof: We apply Itô’s lemma to SH(t) = D(t)
1+λ(t)h(δ(t), λ(t)) and SF (t) = D(t) λ(t)

1+λ(t)f(δ(t), λ(t)),

and we identify the diffusion terms.

C Proofs

Proof of Lemma 1: We use the stochastic discount factor of investor H to price asset H and

respectively for asset F . We obtain:

SH(t) = Et

[∫ ∞

t
e−ρ(s−t) cH(t)

cH(s)
DH(s)ds

]
=

D(t)
1 + λ(t)

Et

[∫ ∞

t
e−ρ(s−t) [1 + λ(s)] δ(s)ds

]
,

SF (t) = Et

[∫ ∞

t
e−ρ(s−t) cF (t)

cF (s)
DF (s)ds

]
=

λ(t)D(t)
1 + λ(t)

Et

[∫ ∞

t
e−ρ(s−t) 1 + λ(s)

λ(s)
(1− δ(s))ds

]
.

The conditional expectations that appear in these two equations can be written as two functions h

and f of δ(t) and λ(t).

Proof of Lemma 2: The outline of the proof is as follows: start from first-order condition (17)

and apply Itô’s lemma to identify individual consumption volatility. Then use market clearing

for goods to identify aggregate consumption volatility and derive an equilibrium condition on the

market prices of risk.

Applying Itô’s lemma on both sides of (17) implies

−ρe−ρt 1
ci(t)

dt− e−ρt 1
ci(t)2

dci + e−ρt 1
ci(t)3

dc2
i = −Ψiξi(t)[r(t)dt + θ

T

i (t)dW (t)]. (C-1)

We define µci and σci such that

dci

ci
= µcidt + σT

ci
dW , i = H, F. (C-2)
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Identifying diffusion terms in (C-1) implies

−e−ρt 1
ci(t)

σci(t) = −ΨHξi(t)θi(t) (C-3)

⇒ −e−ρt 1
ci(t)

σci(t) = −e−ρt 1
ci(t)

θi(t) (using Eq. (17)) (C-4)

⇒ σci(t) = θi(t), i = H, F. (C-5)

Market clearing (cH + cF = D) implies

cHσcH + cF σcF = DσD (C-6)

⇒ cH(t)θH(t) + cF (t)θF (t) = D(t) [δ(t)σDH
+ (1− δ(t))σDF

] . (C-7)

Solving Eqs. (15) and (C-7) for θH and θF , we obtain the expressions given in Lemma 2.

Proof of Proposition 1: From dλ/λ = µλdt + σT
λ dW , we obtain for s > t

λ(s) = λ(t) exp
{∫ s

t

[
µλ − 1

2
σλ.σλ

]
du +

∫ s

t
σT

λ dW u

}
.

Let Γ(δ) ≡ (σT
0 )−1

[
− DH

SH0

DF
SF0

]T
. This two-dimensional vector can be obtained as a function of

δ using the hypergeometric function. We can rewrite (29) and (30) as

µλ = τΓ(δ).σD(δ) + o(τ),

σλ = τΓ(δ) + o(τ).

Lemma C-1. The first-order approximation of µλ can be written as µλ = τρ(1− 2δ) + o(τ).

Proof: From the definition of Γ, we have

Γ.σD =
[
−

(
DH

SH

)

0

(
DF

SF

)

0

]
σ−1

0 σD.

The vector σ−1
0 σD is exactly the vector of stock holdings of a representative agent in an equilibrium

without frictions, which in turn must be equal to the market portfolio. Therefore:

Γ.σD =
[
−

(
DH

SH

)

0

(
DF

SF

)

0

] 


(
SH

SH+SF

)
0(

SF
SH+SF

)
0


 .
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Then, using (SH + SF )0 = (XH + XF )0 = D
ρ , we get Γ.σD = ρ(1− 2δ). ¤

Therefore, introducing g(δ) = ρ(1− 2δ), we can write

λ(s) = λ(t) exp
{

τ

[∫ s

t
g(δu)du +

∫ s

t
Γ(δu).dW u

]
+ o(τ)

}

⇒ λ(s) = λ(t)
[
1 + τ

∫ s

t
g(δu)du + τ

∫ s

t
Γ(δu).dW u

]
+ o(τ)

⇒ h(δ(t), λ(t)) = Et

{∫ ∞

t
e−ρ(s−t)

[
1 + λ(t) + τλ(t)

∫ s

t
g(δu)du + τλ(t)

∫ s

t
Γ(δu).dW u + o(τ)

]
δsds

}

= (1 + λ(t))Et

[∫ ∞

t
e−ρ(s−t)δsds

]
− τλ(t)H(δ(t)) + o(τ)

= (1 + λ(t))yH(δ(t))− τλ(t)H(δ(t)) + o(τ), (C-8)

with H(t) ≡ −Et

[∫∞
t e−ρ(s−t)

[∫ s
t g(δu)du +

∫ s
t Γ(δu).dW u

]
δsds

]
. Therefore,

SH(Dt, δt, λt; τ) = Dt

[
yH(δt)− τ

λt

1 + λt
H(δt)

]
+ o(τ).

In the same way, we get SF as

SF (Dt, δt, λt; τ) = Dt

[
yF (δt)− τ

1
1 + λt

F (δt)
]

+ o(τ).

Lemma C-2. The functions H and F must satisfy the following boundary value problems

ρH − δµδH
′ − 1

2
δ2(σδ.σδ)H ′′ = δ

H(0) = 0

H(1) = 1/ρ

ρF − δµδF
′ − 1

2
δ2(σδ.σδ)F ′′ = 1− δ

F (0) = 1/ρ

F (1) = 0.

Proof: We can substitute (C-8) in Eq. (B-1). At the same time, Feynmac-Kac formula applied to

yH implies ρyH = δ + δµδy
′
H + 1

2δ2(σδ.σδ)y′′H . By difference, we obtain:

ρH(δ)− δµδH
′(δ)− 1

2
δ2(σδ.σδ)H ′′(δ) = −ρ(1− 2δ)yH(δ)− δ (σδ(δ).Γ(δ)) y′H(δ).
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The first boundary condition follows from the fact that given the nature of the dividend process

SH(D, 0, λ) = 0.

The second boundary condition follows from the fact that

lim
λ→∞

SH(D, 1, λ) =
(1− τ)D

ρ
.

Indeed, when δ goes to 1 and λ goes to infinity, the economy tends to an economy with one tree

only (D = DH) and one investor located in the foreign country, thus facing an after-tax dividend

stream (1 − τ)D. In the same way, we characterize the foreign asset price through a function F

solution of the PDE

ρF − δµδF
′ − 1

2
δ2(σδ.σδ)F ′′ = ρ(1− 2δ)yF + (σδ.Γ) y′F ,

with analogous boundary conditions.

We now prove that the non-homogenous terms in the above PDEs can be rewritten as

−ρ(1− 2δ)yH − δ (σδ. Γ) y′H = δ,

ρ(1− 2δ)yF + δ (σδ. Γ) y′F = 1− δ.

We start from (31)-(32) to write

σ−1
0 σH0 = σ−1

0 σD + δ
y′H
yH

σ−1
0 σδ

=




(
SH

SH+SF

)
0(

SF
SH+SF

)
0


 + δ

y′H
yH

σ−1
0 σδ,

where the second equality follows from the fact that in the equilibrium without frictions σ0
−1σD

is exactly the vector of stock holdings of a representative agent, which must be equal to the market

portfolio. Symmetrically,

σ−1
0 σF0 =




(
SH

SH+SF

)
0(

SF
SH+SF

)
0


 + δ

y′F
yF

σ−1
0 σδ.

Then, since σ0 = [σH0 σF0], we have

σ−1
0 σ0 =




(
SH

SH+SF

)
0(

SF
SH+SF

)
0

(
SH

SH+SF

)
0(

SF
SH+SF

)
0


 +

[
δ
y′H
yH

σ−1
0 σδ δ

y′F
yF

σ−1
0 σδ

]
= I2.
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Pre-multiplying both sides by
[
− DH

SH0

DF
SF0

]
and using the definition of Γ, we get

[ρ(1− 2δ) ρ(1− 2δ)] +
[
δ (σδ.Γ)

y′H
yH

δ (σδ.Γ)
y′F
yF

]
=

[
−DH

SH0

DF

SF0

]

⇒ [
ρ(1− 2δ)yH + δ (σδ.Γ) y′H ρ(1− 2δ)yF + δ (σδ.Γ) y′F

]
=

[
−DH

SH0
yH

DF

SF0
yF

]

= [−δ 1− δ] .

¤

It is immediate that yH and yF are solutions of the boundary value problems stated in Lemma C-2.

Therefore,

SH(D, δ, λ; τ) = Dt

[
1− τ

λ

1 + λ

]
yH(δ) + o(τ),

SF (D, δ, λ; τ) = Dt

[
1− τ

1
1 + λ

]
yF (δ) + o(τ).

Proof of Proposition 2: Let Ω ≡ 1
1+λ

(
σT

0

)−1
[
− DH

SH0

DF
SF0

]T
. We first show that

µλ = τρ(1− 2δ) + τ2

[
ρ

1 + λ
− ρδ +

1
1 + λ

(Γ.Γ)
]

+ o(τ2), (C-9)

σλ = τΓ + τ2Ω + o(τ2). (C-10)

First-order approximations for dividend yields are

DH

SH
=

DH

D

D

SH
=

DH

D

1(
1− τ λ

1+λ

)
yH(δ) + o(τ)

=
DH

D

1
yH(δ)

1
1− τ λ

1+λ + o(τ)

=
DH

DyH(δ)

(
1 + τ

λ

1 + λ
+ o(τ)

)

=
DH

SH0

(
1 + τ

λ

1 + λ

)
+ o(τ),

and in the same way

DF

SF
=

DF

SF0

(
1 +

τ

1 + λ

)
+ o(τ).
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We therefore obtain the second-order approximation of σλ, Eq. (C-10):

σλ = τ
(
σT

)−1

(
−DH

SH
DF
SF

)

= τΓ + τ2Ω + o(τ2),

as well as the second-order approximation of µλ:

µλ ≡ σλ.σD +
1

1 + λ
σλ.σλ

= τ(Γ.σD) + τ2 ( Ω.σD) + τ2 1
1 + λ

(Γ.Γ) + o(τ2).

(C-9) follows from the last equation by substituting in Γ.σD = ρ(1− 2δ) and Ω.σD = ρ
1+λ − ρδ.

Like in the proof of Proposition 1, we can now use (C-9) and (C-10) in the computation of the

conditional expectation E
[∫∞

t e−ρ(s−t) [1 + λ(s)] δ(s)ds |δ(t) = δ, λ(t) = λ
]
. Then, it appears that

h can be written as follows, for some function ΦH to be determined:

h(δ, λ; τ) = (1 + λ) yH(δ)− τλyH(δ) + τ2λΦH(δ, λ) + o(τ2). (C-11)

We can substitute (C-11) in Eq. (B-1). By equalizing terms in τ2, we obtain a PDE for ΦH :

ρΦH − δµδ
∂ΦH

∂δ
− 1

2
δ2(σδ.σδ)

∂2ΦH

∂δ2
=

1
1 + λ

δ +
1

1 + λ
(Γ.Γ) yH . (C-12)

To obtain the non-homogenous term in (C-12), we used:

−ρ(1− 2δ)yH − δ(σδ.Γ)y′H = δ,

(
ρ

1 + λ
− ρδ

)
yH + δ(σδ.Ω)y′H = − λ

1 + λ
δ.

From (C-12), using the fact that ρyH = δ + δµδy
′
H + 1

2δ2(σT
δ σδ)y′′H , one can infer that there exists

a function ϕH such that ΦH(δ, λ) = 1
1+λ [yH(δ) + ϕH(δ)], with the function ϕH verifying:

ρϕH − δµδϕ
′
H − 1

2
δ2(σδ.σδ)ϕ′′H = (Γ.Γ) yH .

Respectively for f , we can show that

f(δ, λ; τ) =
1 + λ

λ
yF (δ)− τ

λ
yF (δ) +

τ2

λ
ΦF (δ, λ) + o(τ2), (C-13)
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with ΦF satisfying the following PDE

ρΦF − δµδ
∂ΦF

∂δ
− 1

2
δ2(σδ.σδ)

∂2ΦF

∂δ2
= (1− δ)

λ

1 + λ
+

λ

1 + λ
(Γ.Γ) yF .

Furthermore, we can show that ΦF (δ, λ) = λ
1+λ [yF (δ) + ϕF (δ)], where ϕF is solution of the ODE

ρϕF (δ)− δµδ(δ)ϕ′F (δ)− 1
2
δ2(σδ(δ).σδ(δ))ϕ′′F (δ) = (Γ(δ).Γ(δ))yF (δ).

Therefore, at this stage, we can write

SH(D, δ, λ; τ) = D

[
yH(δ)

(
1− τ

λ

1 + λ
+ τ2 λ

(1 + λ)2

)
+ τ2 λ

(1 + λ)2
ϕH(δ)

]
+ o(τ2),

SF (D, δ, λ; τ) = D

[
yF (δ)

(
1− τ

1
1 + λ

+ τ2 λ

(1 + λ)2

)
+ τ2 λ

(1 + λ)2
ϕF (δ)

]
+ o(τ2).

We now turn to the determination of boundary conditions for ϕH and ϕF . The conditions

ϕH(0) = ϕF (1) = 0 are required since the price of assets yielding zero payoff must be null. The

derivation of the other two boundary conditions (ϕH(1) and ϕF (0)) is more subtle. When δ → 1,

SH(t) tends to

DH(t)
1 + λ(t)

E
[∫ ∞

t
e−ρ(s−t) [1 + λ(s)] ds

∣∣∣∣λ(t)
]

.

Let V (λt; τ) ≡ E [∫∞
t e−ρ(s−t) [1 + λ(s)] ds |λ(t)

]
, so that limδ→1 SH(D, δ, λ; τ) = D

1+λV (λt; τ). Ap-

plying the Feynman-Kac formula to V gives:

ρV (λ) = (1 + λ) + λµ̄λV ′(λ) +
1
2
λ2σ̄λ.σ̄λV ′′(λ), (C-14)

where µ̄λ = lim
δ→1

µλ = −τρ + τ2

[
− λρ

1 + λ
+

1
1 + λ

(Γ(1).Γ(1))
]

,

σ̄λ = lim
δ→1

σλ = τΓ(1) + τ2Ω(1).

We know that up to the second order in τ :

h(δ, λ) = (1 + λ) yH(δ)− τλyH(δ) + τ2 λ

1 + λ
[yH(δ) + ϕH(δ)] . (C-15)

Taking the limit when δ goes to 1, we get

lim
δ→1

h(δ, λ) = V (λ) =
1
ρ

[
1 + λ− τλ + τ2 λ

(1 + λ)
+ τ2 λ

(1 + λ)
ρϕH(1)

]
.
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From this, we can compute V ′(λ) and V ′′(λ) and plug the expressions for V and its derivatives in

(C-14). Then, identifying terms in τ2, we get:

ϕH(1) =
1
ρ2

(Γ(1).Γ(1)).

In the same way, we obtain the boundary condition ϕF (0) = 1
ρ + 1

ρ2 (Γ(0).Γ(0)).

Proof of Proposition 3: We start from the expression for σH given in Lemma B-2

σH = σD + δ
hδ

h
σδ + λ

(
hλ

h
− 1

1 + λ

)
σλ.

From (C-15), we get the following second-order approximations:

1
h

=
1

(1 + λ)yH

[
1 + τ

λ

1 + λ
− τ2 λ

(1 + λ)2

(
1 +

ϕH

yH

)]
+ o(τ2),

hδ = (1 + λ) y′H − τλy′H + τ2 λ

1 + λ

(
y′H + ϕ′H

)
+ o(τ2),

hλ = yH − τyH + τ2 ϕH + yH

(1 + λ)2
+ o(τ2).

Using (C-10), we obtain the second-order approximation for σH :

σH = σH0 + τ2 λ

(1 + λ)2

{
−Γ +

[
ϕ′H
yH

− λ
y′H
yH

− ϕHy′H
(yH)2

]
δσδ

}
+ o(τ2).

We derive the second-order approximation for σF in the same way.

Proof of Proposition 4: Let µi − r denote the vector of after-tax expected returns from the

perspective of investor i. By definition of θi in (14), we have µi − r = σT θi. Then, Lemma 2

implies:

µH − r = σT σD + τ
λ

1 + λ

(
DH
SH

,

−DF
SF

)

µF − r = σT σD + τ
1

1 + λ

(
−DH

SH
DF
SF

)
.

The before-tax risk premia are given by the upper element of µH − r and by the lower element of

µF − r. The Taylor expansions follow immediately.
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Proof of Proposition 5: We apply Itô’s lemma to both sides of (17) and equalize the drift

coefficients (the notations µci and σci were introduced in (C-2)). We obtain

−ρ
1

ci(t)
− 1

ci(t)
µci(t) +

1
ci(t)

(σci(t).σci(t)) = − 1
ci(t)

r(t).

Using σci = θi, this can be written

r(t) = ρ + µci(t)− θi(t).θi(t), i = H, F. (C-16)

Summing over i = H,F , we get:

r(t) = ρ +
1
2

(µcH (t) + µcF (t))− 1
2

(θH(t).θH(t) + θF (t).θF (t)) .

Next, we obtain an expression for µcH by applying Itô’s lemma to cH = D/(1 + λ) and we use the

market clearing condition µcH cH + µcF cF = µDD to get:

r = ρ + µD +
1
2

λ− 1
1 + λ

(
−µλ +

λ

1 + λ
σλ.σλ − σλ.σD

)
− 1

2
[θH .θH + θF .θF ] .

The last term can be rewritten using the expressions for θH and θF given in Lemma 2. Finally,

using (27) and (28), a bit of algebra yields the following (exact) expression for the riskfree rate:

r(t) = ρ + µD − σD.σD − τ2 λ

(1 + λ)2

[
DH

SH
− DF

SF

]
(σT σ)−1

[
DH
SH

−DF
SF

]
.

The Taylor expansion follows immediately.

Proof of Proposition 6: We start from the intertemporal budget constraint of agent i at time t

ξi(t)Xi(t) = Et

[∫ ∞

t
ξi(s)(ci(s)− ei(s))ds

]

⇒ Xi(t) = Et

[∫ ∞

t

ξi(s)
ξi(t)

(ci(s)− ei(s))ds

]

= Et

[∫ ∞

t
e−ρ(s−t) ci(t)

ci(s)
(ci(s)− ei(s))ds

]

= ci(t)Et

[∫ ∞

t
e−ρ(s−t)

(
1− ei(s)

ci(s)

)
ds

]

= ci(t)
[
1
ρ
− Et

∫ ∞

t
e−ρ(s−t) ei(s)

ci(s)
ds

]
, i = H, F. (C-17)
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Since lump-sum transfers are proportional to τ , we can introduce uH such that

XH(t) = cH(t)
[
1
ρ
− τuH(t)

]

=
1
ρ

D(t)
1 + λ(t)

[1− τρuH(t)] .

Itô’s lemma implies that, if we write dXH/XH = µXH
dt + σXH

dW , we have

σXH
= σD − λ

1 + λ
σλ + τσe,

where σe is related to the redistribution term uH . This allows us to identify the diffusion term in

(9) and to deduce the composition of investor H’s portfolio:

[
αHHSH

XH
αHF SF

XH

]
= σ−1σD − λ

1 + λ
σ−1σλ + τσ−1σe︸ ︷︷ ︸

≡εH

= σ−1σD + τ
λ

1 + λ

(
σT σ

)−1

[
DH
SH

−DF
SF

]
+ εH

= σ−1θH + εH .

We obtain investor F ’s portfolio in the same way and the Taylor approximations follow immediately.

In the case eH = ταFHDH , we approximate the hedging component εH as follows. We write

eH = ταFHDH = τ
DH

SH
αFHSH

= τ
DH

SH0

SH0

SH0 + SF0
XF + o(τ)

= τ
DH

SH0 + SF0
XF + o(τ)

= τ
DH

D

D

SH0 + SF0
XF + o(τ)

= τδρXF + o(τ).

Therefore, (C-17) becomes

XH(t) = cH(t)
[
1
ρ
− τEt

∫ ∞

t
e−ρ(s−t)δ(s)

ρXF (s)
cH(s)

ds

]
+ o(τ)
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Since XF = λXH + o(1) and cH = ρXH + o(1), we have ρXF
cH

= λ + o(1). Besides, for s > t,

λ(s) = λ(t) + o(1). Therefore, we get

XH(t) = cH(t)
[
1
ρ
− τλtEt

∫ ∞

t
e−ρ(s−t)δ(s)ds

]
+ o(τ)

=
D(t)
1 + λt

[
1
ρ
− τλtyH(δ(t))

]
+ o(τ).

This expression allows us to identify the wealth diffusion and to deduce the portfolio composition

from (9). We obtain

εH = τλ
yHyF

(yH + yF )2

[ −1
1

]
.

Respectively, εF = τ 1
λ

yHyF

(yH+yF )2

[
1
−1

]
.

Proof of Lemma 3: The domestic asset price is

SH(t) = Et

[∫ ∞

t
e−ρ(s−t) D(t)

D(s)
pH(s)DH(s)ds

]
(C-18)

= D(t)Et

[∫ ∞

t
e−ρ(s−t)δ(s)ds

]
. (C-19)

As recalled in Appendix A, the above expectation can be written as yH(δ(t)), for some hyperge-

ometric function yH . However, because the drift and diffusion of δ as defined in Section 5 differ

from those given in (5)-(6), the parameters of the hypergeometric function have to be modified

accordingly. This is done by setting

ν =
φ− 1

φ

[
µDF

− µDH
−

σ2
DF,1

+ σ2
DF,2

2
+

σ2
DH,1

+ σ2
DH,2

2

]
,

χ2 =
(

φ− 1
φ

)2 [(
σ2

DH,1
+ σ2

DH,2

)
+

(
σ2

DF,1
+ σ2

DF,2

)
− 2(σDH,1

σDF,1
+ σDH,2

σDF,2
)
]
.

The price of the foreign asset can be written as SF (t) = D(t)yF (δ(t)), where yF (δ) = 1
ρ − yH(δ).
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Proof of Proposition 7: Asset prices are

SH(t) = Et

[∫ ∞

t
e−ρ(s−t) CH(t)

CH(s)
pH(s)DH(s)ds

]

=
D(t)

1 + λ(t)
Et

[∫ ∞

t
e−ρ(s−t) (1 + λ(s)) δ(s)ds

]
, (C-20)

SF (t) = Et

[∫ ∞

t
e−ρ(s−t) CF (t)

CF (s)
pF (s)DF (s)ds

]

=
λ(t)D(t)
1 + λ(t)

Et

[∫ ∞

t
e−ρ(s−t)

(
1 +

1
λ(s)

)
(1− δ(s))ds

]
. (C-21)

Therefore, our approximations of the pricing functions h and f (defined in Lemma 1) allow us to

characterize the equilibrium of the two-good version of the model.
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