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I Introduction

Informal safety nets play a major role in helping people cope with negative shocks, even

in high income economies. Informal transfers generally flow through family and social

networks1 and are motivated, to a large extent, by altruism. Individuals give support to

others they care about.2 Thus, informal insurance provided by networks appears to be

mediated by altruistic transfers.

We provide the first analysis of the risk-sharing implications of altruism networks. We

introduce stochastic incomes into the model of altruism in networks analyzed in Bourlès,

Bramoullé & Perez-Richet (2017). Agents care about each other and the altruism network

describes the structure of social preferences. For each realization of incomes, agents play

a Nash equilibrium of the game of transfers. Our objective is to understand how altruistic

transfers affect the risk faced by the agents. Do altruism networks help smooth consump-

tion and how does this depend on the structure of the network?

We find that altruism networks have a first-order impact on risk and generate specific

patterns of consumption smoothing. In line with Becker (1974)’s intuition, altruistic trans-

fers often mimick classical insurance schemes.3 Altruistic agents tend to give to others

when rich and receive from others when poor, which reduces the variability of consump-

tion. These effects depend on the shape of the network, however. Our analysis unfolds in

three stages.

We first identify two important benchmarks where equilibrium transfers generate effi -

cient insurance à la Townsend (1994). They yield effi cient insurance for any random incomes

if and only if the network of perfect altruistic ties is strongly connected. Every agent must

give another agent’s utility as much weight as she gives her own utility and these strong

caring relationships must indirectly connect everyone. All agents then have equal Pareto

weights. Perhaps more suprisingly, altruistic transfers also generate effi cient insurance for

small shocks when the network of transfers is weakly connected. This happens, for instance,

1See, e.g., Fafchamps & Gubert (2007), Fafchamps & Lund (2003), De Weerdt & Dercon (2006).
2See, e.g., Foster & Rosenzweig (2001), Leider et al. (2009), Ligon & Schechter (2012).
3In a context of household decision-making, “The head’s concern about the welfare of other members

provides each, including the head, with some insurance against disasters.”, Becker (1974, p.1076).
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in the presence of a rich benefactor in a connected community. Pareto weights then reflect

individuals’positions in the transfer network. In either case, noncooperative transfer ad-

justments in response to shocks operate as if agents were following the directives of a social

planner.

We next look at the general case. For utilities satisfying Constant Absolute Risk Aver-

sion (CARA) or Constant Relative Risk Aversion (CRRA), we are able to bound the

expected deviation between equilibrium and effi cient consumption for arbitrary shocks.

We find, in particular, that bridges play a major role under altruism and that informal in-

surance tends to be better when the average path length in the altruism network is shorter.

As discussed below, these features appear to be specific to the model of altruism in net-

works and may help identify the motives behind informal transfers. We then characterize

what happens for small shocks, leaving the structure of giving relationships invariant, and

for arbitrary utilities. We show that altruistic transfers yield effi cient insurance within the

weak components of the network of transfers. Moreover, the reverse property holds gener-

ically: If altruistic transfers generate effi cient insurance within groups, the structure of

giving relationships must be invariant and these groups must be the weak components of

the network of transfers. For small shocks, the extent of informal insurance thus critically

depends on the number and sizes of the weak components of the transfer network.

Third, we study how informal insurance depends on the network’s structure, with the

help of numerical simulations. We consider a network of informal lending and borrowing

relations in a village in rural India, from the data of Banerjee et al. (2013). Under iid

incomes, we find that various measures of an agent’s centrality are negatively correlated

with consumption variance. Thus, a more central agent in the altruism network tends

to have less variable consumption. We then show, analytically, that altruistic transfers

generate positive correlation in consumption streams across agents. Shocks propagate in

the altruism network. We find, numerically, that these correlations tend to decrease as the

distance in the altruism network decreases. Finally, we look at the impact of adding a link

within the network. A new link connecting two agents generally reduces their consumption

variance. By contrast, it can decrease or increase the consumption variance of indirect
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neighbors.

Our analysis contributes to a growing literature studying informal transfers in net-

works.4 With stochastic incomes, Ambrus, Mobius & Szeidl (2014) characterize Pareto-

constrained risk-sharing arrangements under network capacity constraints. In a recent pa-

per, Ambrus, Milan & Gao (2017) adopt a similar approach, focusing on local informational

constraints. By contrast, with non-stochastic incomes, Bourlès, Bramoullé & Perez-Richet

(2017) characterize the Nash equilibria of a game of transfers where agents care about oth-

ers’well-being. We introduce stochastic incomes to this setup and analyze the risk sharing

implications of altruism networks. This allows us to connect the analysis of altruism in

networks with the study of informal insurance.

We notably show that there are important differences between the anatomy of risk

sharing in a model of altruism in networks and in models of network-constrained risk-

sharing arrangements. Structurally important links, like bridges or long-distance connec-

tions, have a strong impact on risk sharing under altruism but not in the other models.

Predictions on the effect of shock size also differ. Starting from a situation with similar

incomes, small shocks generate no transfer under altruism but are perfectly insured under

capacity-constrained risk sharing, as in Ambrus, Mobius & Szeidl (2014). By contrast, ar-

bitrarily large shocks yield arbitrarily large transfers under altruism but saturate capacity

constraints. These findings could help empirically distinguish between the different models

and motives.5

Our analysis further advances the economics of altruism, pioneered by Becker (1974)

and Barro (1974). With the exception of Bernheim & Bagwell (1988) and Laitner (1991),

this literature has abstracted away from the complex structures of real family networks.

Economic studies of altruism consider either small groups of completely connected agents

(e.g. Alger & Weibull (2010), Bernheim & Stark (1988), Bruce & Waldman (1991)) or

linear dynasties (e.g. Altig & Davis (1992), Galperti & Strulovici (2017), Laitner (1988)).

4One branch of this literature looks at network formation and stability, see e.g. Bloch, Genicot & Ray
(2007), Bramoullé & Kranton (2007a, 2007b).

5In an unpublished PhD dissertation, Karner (2012) derives differential implications of altruism and
informal insurance on transfers and tests these implications on data from Indonesia. We thank Dilip
Mookherjee for bringing our attention to this interesting work.
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These structures are irrealistic. As is well-known from human genealogy, strong family ties

form complex networks. Bourlès, Bramoullé & Perez-Richet (2017) introduce networks into

a model of altruism à la Becker, for non-stochastic incomes. We build on this previous

analysis and look at whether and how altruism networks help agents smooth consumption.

Despite the key role played by altruistic support in helping real-world agents cope with

shocks, there has been surprisingly little work on altruism and risk, even in simple struc-

tures.6 Our analysis represents a leap forward for the literature, filling this gap: we analyze

the combined effect of risk and complex networks on transfers and consumption.

The remainder of the paper is organized as follows. We introduce the model of altruism

in networks under stochastic incomes in Section 2. We analyze large shocks in Section 3

and characterize what happens with small shocks in Section 4. We investigate structural

effects in Section 5 and conclude in Section 6.

II Setup

We introduce stochastic incomes into the model of altruism in networks analyzed in Bourlès,

Bramoullé & Perez-Richet (2017). Society is composed of n ≥ 2 agents who can care

about each other. Incomes are stochastic. Once incomes are realized, informal transfers are

obtained as Nash equilibria of a non-cooperative game of transfers. We first describe how

transfers are determined conditional on realized incomes. We then introduce risk and the

classical notion of effi cient insurance.

A Transfers conditional on incomes

Agent i has income y0i ≥ 0 and can give tij ≥ 0 to agent j. By convention, tii = 0.

The collection of bilateral transfers T ∈ Rn2+ defines a network of transfers. Income after

6Foster & Rosenzweig (2001) introduce altruism in a model of risk-sharing arrangements under limited
commitment between two agents. They derive predictions through simulations and test these predictions
on data from rural South Asia.
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transfers, or consumption, yi is equal to

yi = y0i −
∑
j

tij +
∑
k

tki (1)

where
∑

j tij represents overall transfers made by i and
∑

k tki overall transfers received by

i. Private transfers redistribute income among agents and aggregate income is conserved:∑
i yi =

∑
i y
0
i .

Agent i chooses her transfers to maximize her altruistic utility:

vi(y) = ui(yi) +
∑
j 6=i

αijuj(yj) (2)

under the following assumptions. Private utility ui : R → R is twice differentiable and

satisfies u′i > 0, u′′i < 0 and limy→∞ u
′
i(y) = 0. Coeffi cient αij ∈ [0, 1] captures how

much i cares about j’s private well-being. By convention αii = 1. The altruism network

α = (αij)
n
i,j=1 represents the structure of social preferences.

7 In addition, we assume that

∀i, j,∀y, u′i(y) ≥ αiju
′
j(y) (3)

which guarantees that an agent’s transfer to a friend never makes this friend richer than

her.

In a Nash equilibrium, each agent chooses her transfers to maximize her altruistic utility

conditional on transfers made by others. Transfer network T ∈ Rn2+ is a Nash equilibrium

if and only if the following conditions are satisfied:

∀i, j, u′i(yi) ≥ αiju
′
j(yj) and tij > 0⇒ u′i(yi) = αiju

′
j(yj) (4)

In particular under CARA utilities ui(y) = −e−Ay, equilibrium conditions become: ∀i, j, yi ≤

yj − ln(αij)/A and tij > 0⇒ yi = yj − ln(αij)/A.

Our analysis builds on equilibrium properties established in our previous paper.8 In par-

7These preferences could be exogenously given, or could be generated by primitive preferences where
agents care about others’private and social utilities, see Bourlès, Bramoullé & Perez-Richet (2017, p.678).

8Our assumptions differ slightly from the assumptions made in Bourlès, Bramoullé & Perez-Richet
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ticular, an equilibrium always exists, equilibrium consumption is unique, and the network

of equilibrium transfers is generically unique and has a forest structure. Formally, T has a

forest structure when it contains no non-directed cycle, i.e., sets of agents i1, i2, ..., il = i1

such that ∀s < l, tisis+1 > 0 or tis+1is > 0.

Proposition 1 (Bourlès, Bramoullé & Perez-Richet 2017) A Nash equilibrium exists.

Equilibrium consumption y is unique and continuous in y0 and α. Generically in α,

the network of equilibrium transfers is unique and is a forest.

B Stochastic incomes

We now consider stochastic incomes. Following each income realization, agents make equi-

librium transfers to each other. Proposition 1 ensures that there is a well-defined mapping

from incomes to consumption. Let ỹ0 denote the stochastic income profile and ỹ the re-

sulting stochastic consumption profile.9

To illustrate how altruistic transfers affect risk, consider the following simple example.

Two agents care about each other with α12 = α21 = α. They have common CARA

utilities u(y) = −e−y. Let c = − ln(α). Agents’incomes are iid with binary distribution:

y0i = µ − σ with probability 1
2
and y0i = µ + σ with probability 1

2
, with σ > c/2. When

one agent has a positive shock and the other a negative one, the lucky agent makes a

positive transfer to the unlucky one. Altruistic transfers lead to the following stochastic

consumption: (y1, y2) = (µ − c/2, µ + c/2) with probability 1
4
, (µ + c/2, µ − c/2) with

probability 1
4
, (µ− σ, µ− σ) with probability 1

4
, (µ+ σ, µ+ σ) with probability 1

4
.

In this example, consumption ỹ is less risky than income ỹ0 for Second-Order Stochastic

Dominance. The reason is that altruism entails giving money when rich and receiving

money when poor. Altruistic transfers in this case mimick a classical insurance scheme.

While informal insurance provided by altruistic transfers is generally imperfect, ỹ becomes

less and less risky as α increases and idiosyncratic risks are fully eliminated when α = 1. In

(2017), to cover situations where altruism may be perfect and αij = 1. We describe in Appendix how our
previous results generalize to this extended setup.

9Throughout the paper, we denote random variables with tilde and specific realizations of these random
variables without tilde.
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the rest of the paper, we study how these effects and intuitions extend to complex networks

and risks.

Our analysis relies on the classical notion of effi cient insurance, see e.g. Gollier (2001).

Definition 1 Informal transfers generate effi cient insurance if there exist Pareto weights

λ ≥ 0, λ 6= 0 such that consumption ỹ solves

max
y∑

i yi=
∑
i y

0
i

∑
i

λiEui(yi)

Effi cient insurance is a central notion, describing the ex-ante Pareto frontier with respect

to private utilities. It provides the conceptual foundation of a large empirical literature,

following Townsend (1994), which attempts to assess the extent of actual insurance in real

contexts. Note that
∑

i µiEvi =
∑

i(
∑

j αjiµj)Eui. Therefore, a Pareto optimum with

respect to expected altruistic utilities always generates effi cient insurance. The converse

may not be true, however, and effi cient insurance situations may not constitute altruistic

Pareto optima.10

Let us next recall some well-known properties of effi cient insurance. When λ > 0,

effi cient insurance is such that u′i(yi)/u
′
j(yj) = λj/λi for every income realization y0. The

ratio of two agents’marginal utilities is constant across states of the world. Define ȳ0 =

1
n

∑
i y
0
i . When agents have common utilities and equal Pareto weights λi = λj = λ, this

leads to equal income sharing yi = ȳ0. When agents have CARA utilities and
∑

k ln(λk) =

0, this yields yi = ȳ0 + 1
A

ln(λi). An agent’s consumption is then equal to the average

income plus a state-independent transfer. In general, an agent’s consumption is a function

of average income depending on Pareto weights and utilities.

10This concerns the extreme parts of the private Pareto frontier. If i is altruistic towards others, the
dictatorial private Pareto optimum where λj = 0 if j 6= i is not an altruistic Pareto optimum. In general if
det(αT ) 6= 0, a private Pareto optimum with weights λ is an altruistic Pareto optimum iff (αT )−1λ  0.
In the literature on welfare evaluation, some researchers argue that social preferences should not be taken
into account when evaluating welfare, see e.g. Section 5.4 in Blanchet & Fleurbaey (2006).
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III Large shocks

A Perfect altruism

We first identify a natural benchmark where altruistic transfers generate effi cient insurance

for any random incomes. Say that agent i is perfectly altruistic towards agent j if αij = 1.

The network of perfect altruism is the subnetwork of α which contains perfect altruistic

ties. The network of perfect altruism is strongly connected if any two agents are connected

through a path of perfect altruistic ties. Formally, for any i 6= j there exist a set of l

agents i1 = i, i2,..., il = j such that ∀s < l, αisis+1 = 1. Detailed proofs are provided in the

Appendix.

Proposition 2 Informal transfers generate effi cient insurance for every stochastic income

if and only if the network of perfect altruism is strongly connected. In this case, agents

have equal Pareto weights.

To prove suffi ciency, we show how to combine equilibrium conditions to obtain the first-

order conditions of the planner’s program. To prove necessity, we assume that the network

of perfect altruism is not strongly connected. We build instances of income distribution

for which altruistic transfers do not generate effi cient insurance.

Proposition 2 complements earlier results on equal income sharing, see Bloch, Genicot

& Ray (2008) and Proposition 1 in Bramoullé & Kranton (2007a).11 Consider, for example,

common utilities and suppose that any altruistic link is perfect αij ∈ {0, 1}. Agent i’s best

response is to equalize consumption with her poorer friends. Proposition 1 shows that when

all agents seek to equalize consumption with their poorer friends and when the altruism

network is strongly connected, private transfers necessarily lead to overall equal income

sharing, i.e., yi = ȳ0.

This result is straightforward when the network of perfect altruism is complete, as

all agents then seek to maximize utilitarian welfare. Proposition 2 shows, however, that
11Bloch, Genicot & Ray (2008) show that equal sharing in components is the only allocation consistent

with the social norm of bilateral equal sharing. Bramoullé & Kranton (2007a) show that if linked pairs meet
at random and share income equally, consumption converges to equal sharing in components. By contrast,
Proposition 2 identifies conditions under which equal sharing in components emerges as the unique Nash
equilibrium of a game of transfers.
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perfect altruism also generates effi cient insurance in sparse networks such as the star and the

line or when two communities are connected by a unique bridge. In these cases, agents’

interests are misaligned. Agents potentially care about distinct subsets of people. Still,

under connectedness, the interdependence in individual decisions embedded in equilibrium

behavior leads noncooperative agents to act as if they were following a planner’s program.

B Imperfect altruism

We next look at imperfect altruism. In general, how far can informal insurance induced

by altruistic transfers move away from effi cient insurance with equal Pareto weights? And

how does this depend on the structure of the altruism network?

To answer these questions, we consider common utilities and introduce a measure of dis-

tance from equal income sharing, DISP , as in Mobius, Ambrus & Szeidl (2014). Formally

given income realization y0,

DISP (y) =
1

n

∑
i

|yi − ȳ0|

where DISP (y) ≥ 0 and DISP (y) = 0⇔ ∀i, yi = ȳ0. We can then compute the expected

value over all income realizations EDISP (ỹ) = E 1
n

∑
i |yi − ȳ0| such that EDISP (ỹ) =

0⇔ ∀y0,∀i, yi = ȳ0.

Next, we extend the notion of network distance to altruism networks. Following Bourlès,

Bramoullé & Perez-Richet (2017), introduce cij = − ln(αij) if αij > 0 as the virtual cost

of the altruistic link. Stronger links have lower costs. Define the cost of a path as the sum

of the costs of the links in the path. If i and j are connected through a path of altruistic

links in α, define ĉij as the lowest virtual cost among all paths connecting i to j. For

instance when all links have the same strength αij ∈ {0, α}, then ĉij = − ln(α)dij where

dij is the usual network distance between i and j, that is, the length of a shortest path

connecting them. When links have different strengths, ĉij is a measure of altruism distance

between i and j accounting for the strength of altruistic ties in indirect paths connecting

the two agents. In particular, ĉij = 0 if and only if there is a path of perfect altruistic links
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connecting i to j.

In our next result, we show that under CARA utilities and for any income realization,

distance to equal income sharing is bounded from above by a simple function of distances

in the altruism network.

Proposition 3 Assume that agents have common CARA utilities. If the altruism network

is strongly connected, then for any income realization:

DISP (y) ≤ 1

An2

∑
i

max(
∑
j

ĉij,
∑
j

ĉji)

For every altruism network which is not strongly connected, EDISP (ỹ) can take arbitrarily

large values.

We prove this result by combining, in different ways, inequalities appearing in equilib-

rium conditions (4). In the Appendix, we show how to obtain similar bounds for other

measures of distance to equal income sharing and for other utility functions. For CRRA

utility functions, we show that the ratio DISP (y)/ȳ0 is bounded from above by a simple

function of the altruism network. Note that for CARA utilities, the first part of Proposi-

tion 2 follows directly from Proposition 3. When the network of perfect altruism is strongly

connected, ∀i, j, ĉij = 0 and hence ∀y0, DISP (y) = 0.

Proposition 3 identifies specific structural features governing the extent of informal

insurance provided by altruistic transfers. It shows, in particular, that bridges play a critical

role. Suppose that the altruism network is formed of two separate, strongly connected

communities. Community-level shocks are not insured, and expected distance from equal

sharing can be arbitrarily large. Next, add a single link between the two communities. Ex-

post distance from equal sharing is now bounded from above and this bound is independent

of the size of the shocks. A large negative shock in one community generates large transfers

flowing through the bridge. Both bridge agents play the role of transfer intermediaries and

help ensure that informal support from the rich community reaches the poor community.

More generally, Proposition 3 says that the quality of informal insurance depends on

the average altruism distance in the network. For instance if links are undirected and

10



have the same strength αij = αji ∈ {0, α}, the upper bound becomes 1
A
n(n−1)
n2

d̄ where d̄ is

the average path length in the network, d̄ = 2
n(n−1)

∑
i<j dij. In general,

1
n

∑
j ĉij measures

the average altruism distance from i to other agents, while 1
n

∑
j ĉji measures the average

altruism distance from other agents to i. Then, 1
n

∑
i max( 1

n

∑
j ĉij,

1
n

∑
j ĉji) is a measure

of average altruism distance in the network. This notably implies that informal insurance

induced by altruism is subject to small-world effects, see Watts & Strogatz (1998). Starting

from a spatial network with long average path length, adding a few long-range connections

leads to a strong drop in average path length and hence to a potentially strong increase in

the quality of informal insurance.

These structural effects may help distinguish altruism from network-constrained risk

sharing. In the social collateral model (Ambrus, Mobius & Szeidl (2014)), adding a bridge

to separate communities does not have much impact. A large negative shock on one com-

munity saturates the bridge’s capacity constraint, and the distance to equal income sharing

can be arbitrarily large. Similarly, a few long-range connections have little impact.12 Rather,

the extent of informal insurance in that model depends on the expansiveness of the net-

work, i.e., how the number of connections a group has with the rest of society varies as

group size increases. Average path length and expansiveness capture different aspects of a

network’s geometry, indicating the profoundly different effects the network structure can

have on informal insurance.

Proposition 3 applies to any income distribution. The bound’s tightness may vary,

however, and tighter bounds can be obtained through other arguments or by making spe-

cific assumptions on income shocks. In the Appendix, we show that when α is strongly

connected, DISP (y) ≤ 1
A
1
2

maxi,j ĉij. For undirected binary networks, maxi,j ĉij = cdmax

where dmax is the network’s diameter, i.e., the length of the longest shortest path. This

improves on Proposition 3 in some cases.

Alternatively, consider a strongly connected altruism network and income distributions

where a single agent i is subject to large shocks. If the shock is positive, the agent’s transfers

irrigate the whole community. Money flows, directly or indirectly, from i to any other agent.

12Bridges and long-distance connections also have little impact on overall informal insurance in a model
of risk sharing under local information constraints, see Ambrus, Gao & Milan (2017).
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Conversely if the shock is negative, money flows, directly or indirectly, from any other agent

to i. Consider a binary and undirected network and introduce d̄i = 1
n

∑
j dij, a measure

of the average distance between i and other agents in society. In this case we can show

that under CARA, DISP (y) = c
A
1
n

∑
j |d̄i − dij|, see the Appendix. When a single agent

is subject to large shocks, the quality of informal insurance depends on the dispersion in

network distances to this agent.13

IV Small shocks

In this section, we characterize what happens with small shocks. More precisely, we con-

sider shocks that do not affect transfer relationships - who gives to whom. Formally, given

equilibrium transfers T, introduce the directed binary graph of transfers G such that

gij = 1 if tij > 0 and gij = 0 if tij = 0. In Bourlès, Bramoullé & Perez-Richet (2017), we

showed that generically in α and in y0 there exists η > 0 such that if ||ŷ0 − y0|| ≤ η then

the unique equilibrium T̂ for incomes ŷ0 has the same graph of transfers as the equilibrium

T for incomes y0, and this graph is a forest. Thus, income variations which are relatively

small in magnitude generically leave G unchanged.14 They affect, of course, the amounts

transferred and we next characterize the insurance properties of these transfer adjustments.

To present our main result, we need to introduce some additional notions and notations.

A weak component of G is a component of the undirected binary graph where i and j are

connected if gij = 1 or gji = 1. When i and j belong to the same weak component of forest

graph G, define

c̄ij =
∑

s:gisis+1=1

cisis+1 −
∑

s:gis+1is=1

cis+1is

for the unique path i1 = i, i2,..., il = j such that ∀s, gisis+1 = 1 or gis+1is = 1. Note that

c̄ij is generally distinct from ĉij. While the altruism distance ĉij is greater than or equal

to zero and only depends on the altruism network α, the parameter c̄ij can take negative

13We see, again, the differences in insurance patterns between altruism and social collateral. Under social
collateral, large shocks on one agent saturate all transfer capacities, leading to arbitrarily large departures
from equal income sharing.
14Note that some large income variations also leave G invariant. For instance with 2 agents and CARA

utilities, i gives to j in equilibrium iff y0i ≥ y0j +
cij
A .
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values and also depends on who gives to whom.15 The interior of a set is the largest open

set included in it.

Theorem 1 (1) Let ỹ0 be an income distribution and G a forest graph such that, for

any supported income realization, there exists a Nash equilibrium of the transfer game

with transfer graph G. Then altruistic transfers generate effi cient insurance within weak

components of G. If agent i belongs to weak component C of size nC, his Pareto weight λi

is such that ln(λi) = 1
nC

∑
j∈C c̄ij under normalization

∑
j∈C ln(λj) = 0.

(2) Consider an income distribution whose support’s interior is non-empty. Generically in

α, if society is partitioned in communities and altruistic transfers generate effi cient insur-

ance within communities, then the graph of transfers is constant across income realizations

in the support’s interior and these communities are equal to the weak components of the

transfer graph.

To prove the first part of Theorem 1, we compare equilibrium conditions with the first-

order conditions of the planner’s program. When i makes transfers to j in equilibrium,

the ratio of their marginal utilities is equal to the altruistic coeffi cient: u′i(yi)/u
′
j(yj) = αij.

Under effi cient insurance, we would have u′i(yi)/u
′
j(yj) = λj/λi. We thus look for Pareto

weights such that λj/λi = αij. This equality can of course generally not be satisfied for all

pairs of agents. We show in the Appendix how to exploit the forest structure of equilibrium

transfers to find appropriate Pareto weights. Our proof is constructive and based on the

explicit formulas provided in the Theorem. Note that the Pareto weights only depend on

α and G and hence do not depend on the specific income realization. Since money flows

within but not between weak components, this leads to effi cient insurance within weak

components.

In the second part of Theorem 1, we show that small shocks are, generically, the only

situations where altruistic transfers generate constrained effi cient insurance. We provide a

sketch of the proof here. The main idea is to exploit the first part of the Theorem: locally

around some income profile, altruistic transfers generate constrained Pareto effi ciency with

15In fact, ĉij = c̄ij iff i is connected to j in G via a path of giving relationships: gii2 > 0, gi2i3 > 0,...,
gil−1j > 0.
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known features (communities and Pareto weights). These features must then be consistent

with the original assumed pattern of constrained effi ciency, and we show that this can only

happen when the graph of transfers is invariant. An important step in the proof is to show

that generically in α, the Pareto weight mapping G → λ(G) is injective. Overall, this

result provides a generic characterization of situations of constrained effi cient insurance.

The first part of Theorem 1 extends Theorem 3 in Bourlès, Bramoullé & Perez-Richet

(2017). It characterizes the income-sharing functions uncovered in that result and shows

that the transfer graph’s weak components actually form endogenous risk-sharing commu-

nities.

Theorem 1 shows that, following small shocks, adjustments in altruistic transfers satisfy

a property of constrained effi ciency. Within a weak component of G, agents act as if they

were following a planner’s program. The quality of informal insurance provided by altruistic

transfers then depends on the connectivity of the transfer graph. Informal insurance is

effi cient if G is weakly connected. This happens, for instance, when one agent is much

richer or much poorer than all other agents. By contrast, agents fully support their income

risks when G is empty. This happens when ∀i, j, αij < 1 and ỹ = ỹ01+ ε̃ for ε̃ small

enough. When differences in incomes among agents are small in all realizations, agents make

no altruistic tranfers in equilibrium. By contrast, such small shocks would be effi ciently

insured in the social collateral model.

More generally, the extent of informal insurance depends on the number and sizes of

G’s weak components. Under common CARA utilities, the equilibrium consumption of

agent i in component C is equal to yi = ȳ0C + 1
A

ln(λi). Under iid income shocks, this

implies that V ar(yi) = 1
nC
V ar(y0i ) and an increase in components’sizes leads to a decrease

in consumption variance for all agents.16

The Pareto weights capture how the private preferences of an agent are represented in

the equivalent planner’s program. They reflect agents’positions in the graph of transfers

16Effects are more complex when shocks are not iid. When shocks are independent but not identi-
cal, V ar(yi) = 1

n2C

∑
j∈C V ar(y

0
j ). Consumption variance may be greater than income variance for an

agent with relatively low income variance. Note, however, that
∑

i∈C V ar(yi) = 1
nC

∑
i∈C V ar(y

0
i ) <∑

i∈C V ar(y
0
i ). Increases in variance for some agents would be more than compensated by decreases in

variance for others.

14



and depend on the graph’s full structure. For instance, a giving line where ti1i2 > 0, ti2i3 > 0,

..., tin−1in > 0 yields λ1 > λ2 > ... > λn. More generally an agent’s preferences tend to

be well-represented in the equivalent planner’s program when this agent has a relatively

“higher”position in the network of transfers. This happens when he tends to give to others

towards whom he is not too altruistic, inducing higher c’s.

A further implication is that local changes may have far-reaching consequences. Sup-

pose, for instance, that gij = 1 and consider a small increase in αij that does not change

the pattern of giving relationships. Let C be the weak component of i and j and define

Ci as the weak component of i in the graph obtained from G by removing the link ij,

and similarly for Cj. Note that C = Ci ∪ Cj and Ci ∩ Cj = ∅. Informally, Ci represents

agents indirectly connected to the giver while Cj represents agents indirectly connected to

the receiver.

Proposition 4 Suppose that gij = 1 and consider a small increase in αij leaving G unaf-

fected. Then, λk decreases if k ∈ Ci and increases if k ∈ Cj.

Therefore the normalized Pareto weights of the giver and of agents indirectly connected

to her decrease, while the normalized Pareto weights of the receiver and of agents indirectly

connected to her increase. This implies that the consumption of agents in Ci decreases while

the consumption of agents in Cj increases, and hence Proposition 4 extends the first part

of Theorem 4 in Bourlès, Bramoullé & Perez-Richet (2017).

V Network structure and informal insurance

In this Section, we study the impact of the network structure on consumption smoothing.

How is the position of an agent in the altruism network related to her consumption vari-

ance? How do altruistic transfers affect the correlation structure of consumption streams

across individuals? How does a new link between two agents affect their consumption vari-

ance? How does it affect the consumption variance of other agents in the network? We

uncover some complex effects, which we analyze through a combination of analytical results

and numerical simulations.
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As a preliminary remark, note that altruistic transfers generally affect all moments

of the consumption distribution. Expected consumption may thus differ from expected

income. While these redistributive aspects are potentially interesting, we wish to focus

here on the risk-sharing implications of altruistic transfers. To do so, we identify a natural

benchmark where expected consumption is invariant. Altruistic ties are undirected when

∀i, j, αij = αji. Say that the distribution of stochastic income ỹ0 is symmetric if individuals

have the same expected income and if the whole profile is distributed symmetrically around

its expectation. Formally, ỹ0 = µ1 + ε̃ with E(ε̃) = 0 and f(ε) = f(−ε) where f is the

pdf of ε̃. This covers iid symmetric distributions as well as distributions with income

correlation.

Proposition 5 Suppose that agents have common CARA utilities, that altruistic ties are

undirected, and that income distribution is symmetric. Then ∀i, Eyi = Ey0i .

To prove this result, we prove that if equilibrium transfersT are associated with shock ε,

then reverse transfers Tt are equilibrium transfers for shock −ε.17 Symmetry assumptions

then guarantee the absence of redistribution in expectations.

We present results of numerical simulations based on the following parameter values.

We consider a real network of informal lending and borrowing relationships, connecting

111 households in a village in rural India drawn from the data analyzed in Banerjee et

al. (2013). The network is depicted in Figure 1. Altruistic links have strength α and

agents have CARA utilities ui(y) = −e−Ay with − ln(α)/A = 3. Incomes are iid binary:

y0i = 0 with probability 0.5 and 20 with probability 0.5. We consider 10, 000 realizations

of incomes and, for each realization, we compute equilibrium transfers and consumption.

The analysis was replicated with lognormal incomes with the same mean and variance, and

all the results reported below were found to be robust.

17We thank Adam Szeidl for having first made the connection between this property and the result of
no redistribution in expectation.
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Figure 1. A Network of Informal Risk Sharing

We start by looking at the relation between the network structure and the consump-

tion variance - covariance matrix. Are more central agents better insured? We compute

correlation coeffi cients between consumption variance and different measures of centrality

(degree, betweenness centrality, eigenvector centrality), see Table 1. Correlation is clearly

negative and both quantitatively and statistically significant.

Simulation Result 1: More central agents tend to have lower consumption variance.

On this dimension, the model of altruism in networks generates predictions similar to

those of the model of social collateral. It differs from the model of local information con-
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straints, which generates positive correlation between consumption variance and centrality,

see Ambrus, Gao & Milan (2017).

We next look at correlations in consumption streams across individuals. We show that,

starting from independent incomes, altruistic transfers necessarily induce weakly positive

covariance in consumption across agents. This holds for any pair of agents, any altruism

network and any utility functions.

Proposition 6 Suppose that incomes are independent across agents. ∀i, j, cov(ỹi, ỹj) ≥ 0.

We obtain this result by relying on the global comparative statics of consumption with

respect to incomes, see Theorem 3 in Bourlès, Bramoullé & Perez-Richet (2017). This

result says that yi is weakly increasing in y0j for any i, j. A positive shock on any agent’s

income thus induces weakly positive changes in the consumption of every agent in society,

and conversely for negative shocks. To prove the result, we then combine this property

with two classical properties of the covariance operator.

Altruistic transfers thus tend to generate positive correlation across individuals’con-

sumption streams. We next explore through simulations how these correlations depend on

the network distance between agents. Figure 2 depicts the correlogram of consumption

correlation between yi and yj as a function of network distance between i and j. We con-

sider all pairs at given distance d and compute the average correlation coeffi cient (plain

line) as well as the 5th and 95th percentiles of the correlation distribution (dashed lines).

We see that consumption correlation is generally positive, consistentl with Proposition 6.

Furthermore,

Simulation Result 2: Consumption correlation tends to decrease with network distance.

Consumption correlation can reach very high levels for direct neighbors and then tends

to decrease at a decreasing rate as network distance increases.
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Figure 2. Consumption Correlation as a Function of Network

Distance

Finally, we study the impact of adding one altruistic link on agents’consumption vari-

ances. We ran extensive numerical simulations for a variety of income distributions and

network structures. With iid incomes and under the assumptions underlying Proposition

5, the consumption variance of the two agents becoming connected generally drops.18 This

is consistent with Simulation Result 1: acquiring more links, or a better position, in the

network allows agents to reduce consumption variability in this framework. By contrast,

the new link may increase or decrease the consumption variance of other agents in the

network. Two opposite forces are at play here. On the one hand, the new link provides a

source of additional indirect support, which can help further smooth consumption. On the

other hand, the new neighbor is also a competitor for the support of the existing neighbor,

which can reduce the consumption smoothing.

For instance, with 3 agents, iid binary incomes and CARA utilities, we can show the

18We provide a simple example in the Appendix showing that if incomes are correlated, obtaining a new
connection may lead to an increase in consumption variance.
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following result (proof in Appendix). Start from a situation where agent 1 is connected to

agent 2 but not to agent 3. Add the connection between 2 and 3 to form a line, and V ar(y1)

drops. Next, close the triangle by adding the connection between 1 and 3, and V ar(y2)

increases. Connecting the two peripheral agents of a 3-agent line leads to an increase in

consumption variance for the center.

We next look at the impact of adding a link to a complex, real-world network, as shown

in Figure 3. We depict the new link in bold and focus on the region of the network close

to the new link. No change in variance is detected outside this region. Nodes for which we

detect a change in consumption variance are depicted in grey, with a symbol describing

the direction of the change.19 We observe both increases and decreases in consumption

variance for indirect neighbors.20 To sum up,

Simulation Result 3: Connecting two agents generally leads to a decrease in their con-

sumption variance and can lead to a decrease or an increase in the consumption variance

of other agents.

Figure 3. Impact of a New Link on Consumption Variances
19Because of numerical variability, we set a relatively high detection threshold t and only report variance

changes ∆V ar(yi) such that |∆V ar(yi)| ≥ t. Thus, Figure 3 likely does not report false positives (detected
changes are likely true changes) and may report false negatives (some true changes may not be detected).
20In unreported simulations, we also detected simultaneous decreases and increases in consumption

variance due to adding a new link in simple networks, such as when connecting the two peripheral agents
of a 5-agent line.
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VI Conclusion

We analyze the risk-sharing implications of altruism in networks. We find that altruistic

transfers have a first-order impact on risk. When the network of perfect altruistic ties

is strongly connected, altruistic transfers generate effi cient insurance with equal Pareto

weights for any shock. More generally, the distance to equal income sharing tends to

decrease with the average path length of the network, revealing a disproportionate impact of

bridges and long-distance connections. We then show that for shocks leaving the structure

of giving relationships unchanged, altruistic transfers generate effi cient insurance within

the weak components of the transfer network. Conversely, we show that generically these

are the only situations where altruistic transfers generate constrained effi cient insurance.

Finally, we uncover and investigate complex structural effects.

We establish a connection between the analysis of altruism networks and the literature

on informal insurance. There are many interesting lines of research to be pursued in future

investigations. For instance, how do altruism networks affect agents’ incentives to take

risks, see Alger & Weibull (2010)? How do altruism networks interact with classical risk-

sharing motives, see Foster & Rosenzweig (2001)? How can network data be exploited

empirically to identify motives behind informal transfers? More generally, how can network

models of informal transfers be applied to data?
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APPENDIX

Extension of previous results to perfect altruism. Bourlès, Bramoullé & Perez-
Richet (2017) assume that αij < 1 and u′i(y) > αiju

′
j(y). We relax these assumptions

slightly here by assuming that αij ≤ 1 and u′i(y) ≥ αiju
′
j(y), allowing for perfect altruism.

Perfect altruism gives rise to unbounded Nash equilibria, caused by cycles in transfers. For
instance if two agents are perfectly altruistic towards each other α12 = α21 = 1 and have
the same utility functions and incomes, Nash equilibria are transfer profiles of the form
(t12 = t, t21 = t), leaving incomes unaffected. Theorems 1-4 in Bourlès, Bramoullé & Perez-
Richet (2017) then still hold under the new assumptions with two caveats. (1) Equilibrium
transfers are now not necessarily acyclic. An acyclic Nash equilibrium still exists, however.
To see why, suppose that there is a cycle in transfers: ti1i2 > 0,..., tili1 > 0. This implies
that u′i1(yi1)/u

′
i2

(yi2) = αi1i2 ,... , u
′
il
(yil)/u

′
i1

(yi1) = αili1 . Multiplying all equalities yields
1 = αi1i2 ...αili1 and hence αili1 = ... = αili1 = 1. Cycles in transfers can only happen
in cycles of perfect altruistic ties. Then, let t = min(ti1i2 , ..., tili1). Removing t from all
transfers in the cycle yields another Nash equilibrium, and repeating this operation leads
to an acyclic Nash equilibrium. (2) The genericity condition in α must be supplemented
by the condition that α does not contain directed cycles of perfect altruistic ties. This then
guarantees that Nash equilibria are acyclic.

Proof of Proposition 2. We will make use of the following properties established in
Bourlès, Bramoullé & Perez-Richet (2017). Define α̂ij = e−ĉij if ĉij < ∞ and α̂ij = 0
otherwise. Then, ∀i, j, u′i(yi) ≥ α̂iju

′
j(yj) and u

′
i(yi) = α̂iju

′
j(yj) if there is a directed path

connecting i to j in T. Next, suppose that i is much richer than everyone else. Then
money indirectly flows from i to every other agent j such that α̂ij > 0 and ∀i, j : α̂ij >
0, u′i(yi) = α̂iju

′
j(yj).

Observe that the network of perfect altruistic ties is strongly connected if and only if
∀i, j, α̂ij = 1. If this holds, then ∀i, j, u′i(yi) ≥ u′j(yj) and hence u

′
i(yi) = u′j(yj). These are

the first-order conditions of the problem of maximizing utilitarian welfare. Next, suppose
that there exist i and j such that α̂ij < 1. Define y0 such that y0i = Y and ∀k 6= i, y0k = 0.
If α̂ij = 0, money cannot flow from i to j. As Y increases, consumption yi tends to∞ while
yj = 0. If Y is large enough, u′i(yi) < u′j(yj). If α̂ij > 0, then u′i(yi) = α̂iju

′
j(yj) < u′j(yj)

if Y is large enough. Similarly, define ỹ0 such that ỹ0j = Y and ∀k 6= j, ỹ0k = 0. Since
α̂ji ≤ 1, u′j(ỹj) ≤ u′i(ỹi) if Y large enough. Under effi cient insurance, we would then have
λj < λi and λj ≥ λi, a contradiction. Therefore, altruistic transfers do not generate effi cient
insurance. QED.

Proof of Proposition 3. Recall; ∀i, j, u′i(yi) ≥ α̂iju
′
j(yj). This is equivalent to:

(u′j)
−1( 1

α̂ij
u′i(yi)) ≤ yj. Summing over j leads to:∑

j

(u′j)
−1(

1

α̂ij
u′i(yi)) ≤ nȳ0
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We also have ∀i, j, u′j(yj) ≥ α̂jiu
′
i(yi) and hence yj ≤ (u′j)

−1( 1
α̂ji
u′i(yi)), leading to

nȳ0 ≤
∑
j

(u′j)
−1(

1

α̂ij
u′i(yi))

Under common CARA utilities, this yields

1

An

∑
j

ĉji ≤ yi − ȳ0 ≤
1

An

∑
j

ĉij

and hence |yi−ȳ0| ≤ 1
An

max(
∑

j ĉij,
∑

j ĉji). Finally,DISP (y) ≤ 1
An2

∑
i max(

∑
j ĉij,

∑
j ĉji).

Next, we illustrate how to compute similar bounds for other measures of distance and
other utility functions. Introduce SDISP (ỹ) = [E 1

n

∑
i(yi− ȳ0)2]1/2 as in Ambrus, Mobius

& Szeidl (2014). We obtain:

SDISP (ỹ) ≤ 1

A

1

n3/2
[
∑
i

max(
∑
j

ĉij,
∑
j

ĉji)
2]1/2

When the network is binary and undirected, the bound becomes − ln(α)
A

1
n3/2

[
∑

i,j d
2
ij]
1/2.

Then, 1
n(n−1)

∑
i,j d

2
ij = d̄2+V (d) where V (d) is the variance of path lengths. Thus, SDISP

tends to be lower when average path length and path length variance are lower.
Alternatively, consider common CRRA utilities: u(y) = y1−γ/(1 − γ) if γ 6= 1 and

u(y) = ln(y) if γ = 1. This yields

(
1

n

∑
j

α̂
1/γ
ji − 1)ȳ0 ≤ yi − ȳ0 ≤ (

1
1
n

∑
j α̂

1/γ
ij

− 1)ȳ0

and hence
DISP (y) ≤ 1

n

∑
i

max(1− 1

n

∑
j

α̂
1/γ
ji ,

1
1
n

∑
j α̂

1/γ
ij

− 1)ȳ0

which simplifies to DISP (y) ≤ 1
n

∑
i(

1
1
n

∑
j α

dij/γ
− 1)ȳ0 for undirected, binary networks.

Finally, consider common CARA utilities and suppose that the network of altruism is
not strongly connected. Then, there exists a set S such that S 6= ∅, N − S 6= ∅, there
exists a path between any two agents in S in α, and no agent in S cares about an agent not
in S. Consider the income distribution such that y0i = Y > 0 if i ∈ S and y0i = 0 if i /∈ S.
Then, there is no transfer in equilibrium and y = y0. This yields DISP (ỹ) = n−nS

n
Y .

QED.

Proof of alternative bound on p.11. Denote by ĉmax = maxi,j ĉij. Since ∀i, j, u′i(yi) ≥
α̂iju

′
j(yj), ∀i, j, yi ≤ yj + ĉij/A ≤ yj + ĉmax/A. This implies that ymax − ymin ≤ ĉmax/A

where ymax = maxi yi and ymin = mini yi. Consider the problem of maximizing DISP (y)
under the constraint that ymax − ymin = ∆ where ∆ is some arbitrarily fixed value. The
solution to this problem is to set yi = ymax for n/2 agents if n is even and for (n + 1)/2
agents if n is odd and yi = ymin for n/2 agents if n is even and for (n− 1)/2 agents if n is
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odd. This yields DISP (y) = 1
2
∆ if n is even and = (1

2
− 1

2n2
)∆ if n is odd. This implies

that, in general, DISP (y) ≤ 1
2
(ymax − ymin) ≤ 1

2
ĉmax/A. QED.

Proof of computations on p.11. Suppose agent i is subject to large shocks. If the shock
is positive, ∀j, u′i(yi) = α̂iju

′
j(yj). This yields yi = yj+

c
A
dij. Taking the average over j yields

yi = ȳ0 + c
A
d̄i and yj = ȳ0 + c

A
(d̄i − dij). If the shock is negative, ∀j, u′j(yj) = α̂jiu

′
i(yi)

and hence yj = yi + c
A
dij and yi = ȳ0 − c

A
d̄i and yj = ȳ0 + c

A
(dij − d̄i). This leads to

1
n

∑
i |yi − ȳ0| = c

nA

∑
i |d̄i − dij|. QED.

Proof of Theorem 1

Lemma A1 Fix a transfer graph G. For any i, j, k, we have: c̄ji = −c̄ij, c̄ij + c̄jk = c̄ik
and ln(λi)− ln(λj) = c̄ij. Further,

∑
i ln(λi) = 0.

Proof: (1) The path leading from j to i reverses all directions from the path leading from
i to j, leading to the first property. (2) Suppose that j lies on the path connecting i to
k. By definition, c̄ik = c̄ij + c̄jk. If k lies on the path connecting i to j, we then have
c̄ij = c̄ik+ c̄kj = c̄ik− c̄jk. Next, suppose that l is the last agent lying both on the path from
i to k and on the path from i to j. Then, c̄ik = c̄il + c̄lk and c̄ij = c̄il + c̄lj. Moreover, the
path from k to j is formed of the path from k to l and of the path from l to j. Therefore,
c̄kj = c̄kl + c̄lj. This yields: c̄ik + c̄kj = c̄il + c̄lk + c̄kl + c̄lj = c̄il + c̄lj = c̄ij. (3) Applying
these two properties, we obtain:

ln(λi)− ln(λj) = 1
nC

∑
k∈C(c̄ik − c̄jk) = 1

nC

∑
k∈C(c̄ik + c̄kj) = 1

nC

∑
k∈C c̄ij = c̄ij

(4). Finally, note that
∑

i ln(λi) = 1
nC

∑
i,j c̄ij = 1

nC

∑
i<j(c̄ij + c̄ji) = 0. QED.

Lemma A2 Consider an income realization y0, equilibrium transfers T with transfer graph
G. Let C be a weak component of G. Then, equilibrium consumption profile yC on C
solves the planner’s program: maxỹC

∑
i λiui(ỹi) under the constraint

∑
i∈C ỹi =

∑
i∈C y

0
i

and with λi such that ln(λi) = 1
nC

∑
j∈C c̄ij.

Proof: Consider i and j in C, connected through the path i1 = i, i2,..., il = j. If gisis+1 = 1,
then equilibrium conditions imply that ln(u′is(yis))−ln(u′is+1(yis+1)) = −cisis+1. If gis+1is = 1,
then ln(u′is(yis))− ln(u′is+1(yis+1)) = cis+1is . Summing over all agents in the path yields

ln(u′i(yi))− ln(u′j(yj)) = −c̄ij = ln(λj)− ln(λi)

by Lemma A1. These correspond to the first-order conditions of the planner’s program.
In addition, no money flows from C to N −C or from N −C to C. Therefore,

∑
i∈C y

0
i =∑

i∈C yi and aggregate income is preserved within C. QED.

Suppose that for any income realization, there is a Nash equilibrium with transfer graph
G. Then, the λi’s do not depend on the income realization and the first part of Theorem
1 follows directly from Lemma A2.

For the second part, consider an altruism network α satisfying the following property.
Consider an undirected cycle, that is, a binary graph U connecting l agents i1,..., il = i1
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such that either uisis+1 = 1 or uis+1is = 1 and uij = 0 if i and j are not two consec-
utive agents in the set . Then,

∑
s:uisis+1=1

cisis+1 −
∑

s:uis+1is=1
cis+1is 6= 0 . In Bourlès,

Bramoullé & Perez-Richet (2017), we showed that such networks are generic and that
they always have a unique Nash equlibrium. Given a binary directed forest G, define
Y0(G) = {y0 ∈ Y0 : the transfer graph of the Nash equilibrium is G} the set of income re-
alizations leading to G and Y̊0(G) its interior. Observe that the non-empty sets Y0(G)
define a finite partition of Y0. Define λ(G) the profile of Pareto weights as defined in the
first part of Theorem 1. This mapping satisfies the following useful property.

Lemma A3 Consider two binary directed trees G and H. Then, λ(G) = λ(H)⇒ G = H.

Proof: Let λ = λ(G) = λ(H) and suppose that G 6= H. There exists i, j such that
gij = 1 and hij = 0. Since gij = 1, ln(λi) − ln(λj) = cij. Since λ = λ(H), ln(λi) −
ln(λj) = c̄ij =

∑
s:hisis+1=1

cisis+1−
∑

s:his+1is=1
cis+1is for an undirected path connecting i to

j. The set i, i2, ..., il = j, i then defines an undirected cycle satisfying
∑

s:uisis+1=1
cisis+1 −∑

s:uis+1is=1
cis+1is = 0, which is impossible given our assumptions on α. QED.

Suppose first that there is only one community in the partition. In other words, altruistic
transfers generate effi cient insurance for Pareto weights µ. This implies that there exist
functions fi such that ∀y0 ∈ Y0, yi = fi(

∑
j y

0
j ). Let G be any graph such that Y̊0(G) 6= ∅.

Such a graph exists by the assumption that Y̊0 6= ∅. Suppose that G is disconnected.
Then by the first part of Theorem 1, there exist functions gi such that ∀y0 ∈ Y̊0(G), yi =
gi(
∑

j∈C y
0
j ) = fi(

∑
j∈C y

0
j +

∑
j∈N−C y

0
j ). This implies that ∀y0 ∈ Y̊0(G),

∑
j∈N−C y

0
j = L

which contradicts the fact that Y̊0(G) is a non-empty open set.
Therefore, G is connected and hence is a tree. By the first part of Theorem 1, there

is effi cient risk sharing on Y̊0(G) for Pareto weights λ(G). ∀i, j, u′i(yi)/u′j(yj) = λj/λi =
µj/µi. This implies that there exists t > 0 such that µ = tλ(G). Next consider another
graph H for which Y̊0(H) 6= ∅. By the same reasoning, there exists t′ > 0 such that
µ = t′λ(H). Since λ(G) and λ(H) satisfy the same normalization

∑
j ln(λj) = 0, then

λ(G) = λ(H). By Lemma A3, G = H. Therefore, Y̊0 = Y̊0(G).
Finally, suppose that the partition is composed of several communities. Apply, first, the

previous reasoning to each community C considered separately. There exists a tree graph
GC connecting agents in C and such that µC = tCλ(GC) for tC > 0 and µC Pareto weights
within C and GC describes the pattern of giving relationships within C. Next, let us show
that for any income realization in the support’s interior, an agent in one community cannot
give to an agent in another. Constrained effi ciency implies income conservation within
communities: ∀C,

∑
i∈C yi =

∑
i∈C y

0
i . Suppose that for some y

0 ∈ Y0, there are some
intercommunity transfers. The graph connecting communities is also a forest. Therefore,
there exists a community connected to other communities through a single link. Formally,
there exists C 6= C ′ such that i ∈ C, j ∈ C ′ and tij > 0 or tji > 0 and where there is no
other giving link connecting C and N −C. If tij > 0, this implies

∑
i∈C yi =

∑
i∈C y

0
i − tij.

If tji > 0, this implies
∑

i∈C yi =
∑

i∈C y
0
i + tij. In either case,

∑
i∈C yi 6=

∑
i∈C y

0
i , which

contradicts the original assumption. QED.
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Proof of Proposition 4 If αij increases, cij decreases. Then, c̄kl decreases if the link ij
lies on the path connecting k to l. By contrast, c̄kl increases if the link ji lies on the path
connecting k to l. Agents in Ci are connected through agents in Cj through the link ij, and
this link does not appear on the path connecting agents in Ci. This implies that

∑
l∈C c̄kl

decreases if k ∈ Ci. Similarly,
∑

l∈C c̄kl increases if k ∈ Cj. QED.

Proof of Proposition 5. Given transfers T, observe that Tt represent reverse transfers
with identical amounts flowing in opposite directions. We first establish that reverse trans-
fers form an equilibrium for the opposite shock. Denote by y0(ε) = µ1 + ε and by y(ε)
the associated equilibrium consumption.

Lemma A4 Let T be a Nash equilibrium for incomes y0(ε) leading to consumption y(ε).
Then, Tt is a Nash equilibrium for incomes y0(−ε) and y(ε)− y0(ε) = y0(−ε)− y(−ε).

Proof: Note that y = µ1+ ε−T1+Tt1. Denote by y′ the consumption associated with
transfers Tt when incomes are µ1− ε. Then, y′ = µ1− ε−Tt1+T1. Comparing yields:
y − µ1− ε = µ1− ε− y′ and hence y(ε)− y0(ε) = y0(−ε)− y′. Equilibrium conditions
on T are: (1) ∀i, j, yi − yj ≤ cij/A, and (2) tij > 0 ⇒ yi − yj = cij/A. Next, let us check
that Tt satisfy the equilibrium conditions for incomes y0(−ε). We have: y′i = 2µ−yi. This
implies that y′i−y′j = yj−yi. Therefore, ∀i, j, y′i−y′j = yj−yi ≤ cji/A = cij/A since the ties
are undirected. In addition, (Tt)ij = tji and tji > 0 ⇒ yj − yi = cji/A ⇒ y′i − y′j = cij/A.
QED.

We have: E(yi−y0i ) =
∫
ε
[yi(ε)−y0i (ε)]f(ε)dε. In the integral, the term associated with

no shock is equal to 0, yi(0) = y0i (0). The term associated with shock ε is equal to [yi(ε)−
y0i (ε)]f(ε)dε. The term associated with shock −ε is equal to [yi(−ε)− y0i (−ε)]f(−ε)dε =
[y0i (ε) − yi(ε)]f(ε)dε by Lemma A4 and by shock symmetry. The sum of these terms is
then equal to 0 and the integral aggregates such sums. QED.

A new connection can increase consumption variance under income correlation.
Consider agents 1, 2 and 3 with incomes (12, 0, 0) with probability 1/2 and (0, 12, 12) with
probability 1/2. Note that this satisfies the symmetry assumption of Proposition 5. Agents
have common CARA utilities with − ln(α)/A = 2. In the original network, 1 and 2 are
connected and 3 is isolated. Consumption is (7, 5, 0) with proba 1/2 and (5, 7, 12) with
proba 1/2. Next, connect 2 and 3. Consumption becomes (6, 4, 2) with proba 1/2 and
(6, 8, 10) with proba 1/2. Agent 2 faces a more risky consumption profile. Here, the
income streams of agent 2 and 3 are perfectly positively correlated. Agent 2’s consumption
becomes lower when poor and higher when rich, due to this new connection.

Variance computations on p.20. With 3 agents, there are 8 states of the world.
Consider, first, the network where 1 and 2 are connected and 3 is isolated, see the example
in Section 2.1. Since c < 2σ, the variance of y1 and y2 drops from σ2 to 1

2
σ2 + 1

4
c2.

Next, connect agents 2 and 3 to form a line. We assume that altruism is high enough
to induce transfer paths of length 2 in situations where a single peripheral agent has
a positive or a negative shock. This is satisfied iff c < 2

3
σ. Computing transfers and
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consumption for each state of the world, we find, V ar(y1) = V ar(y3) = 1
3
σ2 + 1

18
σc+ 19

36
c2

and V ar(y2) = 1
3
σ2 − 1

9
σc + 1

9
c2. All variances drop. Finally, connect agents 1 and 3 to

form the triangle. Consumption variance for any agent is now equal to 1
3
σ2 + 1

6
c2. V ar(y2)

increases while V ar(y1) = V ar(y3) decreases. QED.

Proof of Proposition 6. Our proof makes use of the following classical properties
of the covariance operator, see e.g. Gollier (2001). First, if f and g are non-decreasing
functions and X̃ is some random variable, then, cov(f(X̃), g(X̃)) ≥ 0. Second, the law
of total covariance states that if X̃, Ỹ , Z̃ are three random variables, then cov(X̃, Ỹ ) =
E(cov(X̃, Ỹ |Z)) + cov(E(X̃|Z), E(Ỹ , Z)).
Given set of agents S, denote by y0−S the vector of incomes of agents not in S.

Apply the law of total covariance to variables ỹi, ỹj and ỹ0−1. This yields cov(ỹi, ỹj) =
E(cov(ỹi, ỹj|y0−1)) + cov(E(ỹi|y0−1), E(ỹj|y0−1)). Note that conditional on y0−1, yi and yj are
deterministic, non-decreasing functions of y01 by Theorem 3 in Bourlès, Bramoullé & Perez-
Richet (2017). By the property of the covariance of monotone functions, this implies that
∀y0−1, cov(ỹi, ỹj|y0−1) ≥ 0 and hence E(cov(ỹi, ỹj|y0−1)) ≥ 0. Next, let f1 denote the pdf of
ỹ01. By independence,

E(ỹi|y0−1) =

∫
yi(y

0
1,y

0
−1)f1(y

0
1)dy

0
1

Since yi(y01,y
0
−1) is non-decreasing in y

0
2, this implies thatE(ỹi|y0−1) is also non-decreasing in

y02. We can therefore repeat the argument: cov(E(ỹi|y0−1), E(ỹj|y0−1)) = E(cov(ỹi, ỹj|y0−1,2))+
cov(E(ỹi|y0−1,2), E(ỹj|y0−1,2)) where E(cov(ỹi, ỹj|y0−1,2)) ≥ 0 by monotonicity. Dimension-
ality is reduced at each step, and all terms are non-negative. QED.
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