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a b s t r a c t

The present paper tests a new model comparison methodology by comparing multiple
calibrations of three agent-based models of financial markets on the daily returns of 24
stock market indices and exchange rate series. The models chosen for this empirical
application are the herding model of Gilli and Winker (2003), its asymmetric version by
Alfarano et al. (2005) and the more recent model by Franke and Westerhoff (2011), which
all share a common lineage to the herding model introduced by Kirman (1993). In addi-
tion, standard ARCH processes are included for each financial series to provide a bench-
mark for the explanatory power of the models. The methodology provides a consistent
and statistically significant ranking of the three models. More importantly, it also reveals
that the best performing model, Franke and Westerhoff, is generally not distinguishable
from an ARCH-type process, suggesting their explanatory power on the data is similar.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The emergence of agent-based modeling as an alternative to the more traditional fully rational representative agent
approach has enabled the integration of many new mechanisms and behaviours into economic analysis. As pointed out by
Tesfatsion (2006), such models allow for bounded rationality, learning, switching, etc. and typically offer great flexibility for
investigating the emergence of aggregate equilibria from the interaction of often simple behaviours at the individual level.
This increase in modeling flexibility has come at a cost, however. Even as the methodology increased in popularity over the
last decade and a half, concerns were being voiced about the issue of calibrating and validating these models, as well as
comparing their predictions to more traditional approaches. Durlauf (2005, p. F241) for instance, finding weaknesses in the
existing empirical literature of the time relating to the analysis of complexity, warned that “it will not become a major
component of economic reasoning until a tight connection between theoretical work and empirics is developed. Unless such
a connection is achieved, even an open-minded complexity advocate will be justified in taking the Scottish legal option of
concluding that the importance of complexity in understanding socioeconomic phenomena is ‘not proven’.” Fagiolo et al.
(2007) and Dawid and Fagiolo (2008) also identify this issue of validation as the main open question facing the agent-based
simulation community.
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The first hurdle is the estimation of the parameters that govern the simulation from available data. This process is often
complicated by the presence of nonlinearity and/or emergence of complexity from simple rules, which makes the inference
of parameter values with traditional statistical methods difficult. Existing solutions to this problem rely on simulation
methods such as simulated maximum likelihood (SML) or the method of simulated moments (MSM), both reviewed in
Gouriéroux and Monfort (1993). More recently, Bianchi et al. (2007) advocate the use of the indirect inference approach of
Gouriéroux and Monfort (1996), which generalises MSM by using a binding function rather than directly selecting the
moments that need matching.

A second issue, the comparison of agent-based models against each other and against other approaches, still remains
somewhat of a problem today. As pointed out in Hommes (2011, p. 2), one of the problems with agent-based models is the
great number of degrees of freedom they offer for modeling agent behaviour, leading to a “wilderness” where a large
number of models can coexist that all seem to replicate the stylised facts.1 Addressing this issue requires not only estimation
methods but also dedicated model selection/comparison methods. Using the estimation methods mentioned above to
compare models is possible, as shown by the estimation in Winker et al. (2007) of the Gilli and Winker (2003) and Lux and
Marchesi (2000) models and their comparison to a GARCH process. Nevertheless, doing so can be potentially problematic, as
this often requires tailoring the model specification being estimated, thus making a direct comparison across specifications
difficult. For example, Franke and Westerhoff (2012, p. 1208) argue that one advantage of using the MSM to estimate models
it that “it is […] a very transparent method as it requires the researcher to make up his or her mind about the stylized facts
that a model should be able to reproduce, and to set up the precise summary statistics (the moments) by which he or she
wants to quantify them”. However, this requires deciding which moments to reproduce and complicates the problem of
comparison across models that have already been calibrated in previous works. A simple illustration of this is that while two
of the agent-based models of financial markets used in this paper, Gilli and Winker (2003) and Franke and Westerhoff
(2016), are estimated using the MSM, the former uses two moments, the latter nine, none of which are the same.2

More recently, dedicated model comparison methodologies have been developed in order to provide more reliable tools
for comparing and selecting amongst agent-based models. In particular, Barde (2016) and Lamperti (2015) argue that the
comparison of simulation models is best carried out with standardised criteria based on accepted information-theoretical
measures such as the Kullback and Leibler (1951) (KL) divergence between model and data. Their technical implementation
differ, however, given a data set and a simulated series produced by a model, both produce an information criterion which
scores the performance of the model on the data. The main advantage of these methods is that by relying on an information
measure such as the KL divergence one no longer needs to select which moments to match. This is because in both cases the
models are scored on the basis of their full, simulated, conditional densities. In addition to this, Barde (2016) possesses two
key benefits. Firstly, in line with the arguments of Mandes and Winker (2015), it allows the comparison of the candidate
models on the basis of their complexity, in addition to more standard goodness-of-fit considerations. This is done by
measuring the stochastic complexity of the simulated data series, following the minimum description length principle of
Grünewald (2007). The second benefit is that Barde (2016) scores each model at the level of individual empirical obser-
vations, which means that it integrates seamlessly with the model confidence set (MCS) approach developed by Hansen
et al. (2011). The central implication is that not only can models be formally ranked in terms of their explanatory power on
the data, this ranking can be tested statistically to determine the subset of best candidate models that cannot be rejected at a
chosen confidence level.

This paper aims to run a full-scale model comparison test of Barde (2016) in order to evaluate the methodology's
potential for model selection, illustrate its flexibility and provide further insights into how herding mechanisms explain the
features of financial data. The basic setting is similar to the recent model contest of Franke and Westerhoff (2012), however
the comparison exercise carried out here aims to go beyond that framework by integrating two key elements from Winker
et al. (2007). The first is that the analysis will directly incorporate models calibrated by different authors, the second is that
it will also include econometric ARCH/GARCH specifications to serve as a benchmark for explanatory power. The analysis
focuses on agent-based models of herding in financial markets due to the desirable characteristics this setting displays. First
of all, there is an established literature on herding mechanisms which crucially offers several recent models that have been
calibrated but not yet systematically compared. The second desirable characteristic is that because these models typically
attempt to explain financial market returns, they offer a univariate setting with plentiful data which simplifies the problem
of comparison. Finally, this focus on daily financial returns also means that standard econometric models of conditional
heteroscedasticity can be used to provide a reliable benchmark for comparison.

The three models selected for the comparison exercise are those of Gilli and Winker (2003), Alfarano et al. (2005) and
Franke and Westerhoff (2011, 2016), which will be referred to in the rest of the paper as GW, ALW and FW respectively. The
very thorough reviews of Hommes (2006) and Westerhoff (2009) show that the literature on agent-based models of
financial markets is extensive and contains many different behavioural mechanisms. The first reason for this specific
selection of models is that they have all been calibrated on empirical data using either SML or MSM. This means that the
1 Hommes (2011) refers to 1000 papers over 20 years on learning and bounded rationality mechanisms alone, one can only suppose that this problem
has since worsened.

2 Gilli and Winker (2003) match the ARCH(1) parameter estimate and the kurtosis of the raw simulated returns, Franke and Westerhoff (2016) use the
mean of the absolute returns, the first order autocorrelation of the raw returns, six lags of the autocorrelation function of the absolute returns and the Hill
estimator of the tail index of the absolute returns.
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robustness of each calibration can be evaluated and compared to the others. A second consideration is that all three share a
common theoretical lineage with the herding mechanism initiated by Kirman (1993), which should hopefully make it more
difficult to separate them empirically, thus offering the model comparison methodology a decent challenge.

The remainder of the paper is organised as follows. Section 2 starts by reviewing the three candidate models examined in
the comparison exercise and presents their respective herding mechanisms. Section 3 then details the econometric
benchmark, data and comparison protocol used to assess performance. The results of the comparison exercise are presented
in Section 4 and discussed in Section 5, while Section 6 draws the main conclusions.
2. Agent-based models of herding in financial markets

The three models in the comparison exercise share a common lineage with Kirman (1993), which sets up a basic
recruitment framework where two populations of agents coexist, and members of one category can recruit members from
the other. The framework assumes a population of NAN agents, divided into two strategy types: “fundamentalists” and
“chartists”. Describing the state of the system is simple: at any point in time, let nt be the number of fundamentalist agents
in the market, the remaining N�nt agents being the number of chartists. In the following discussion, it will be convenient to
refer to xt ¼ nt=N as the fundamentalist share of the population, with 1�xt ¼ ðN�ntÞ=N as the share of chartists.

As pointed out in Kirman (1993), agents can change strategy over time, either spontaneously or because they are
recruited by an agent using the other strategy. If ϵ is the probability of an agent spontaneously changing strategy and ρ the
probability of a successful recruitment following an encounter between agents using two different strategies, then the
dynamic evolution of the system is governed by the following transition probabilities, where superscripts fc and cf
respectively indicate the case where a fundamentalist agent switches to chartist strategies and the reverse case where a
chartist becomes a fundamentalist:

Pcf
t ¼ 1�xtð Þ ϵþρxtð Þ

Pfc
t ¼ xt ϵþρ 1�xtð Þð Þ

8<
: ð1Þ

It is important to point out that the notation used below has been harmonised and is somewhat different from that used
in each of the three papers. This has been done in order to facilitate the exposition of the mechanisms and their comparison
across models.

2.1. The Gilli and Winker (2003) model of herding

The Gilli and Winker (2003) model follows the literal interaction mechanism described by Kirman (1993) to produce a
systemwhose time-evolution is governed by the transition probabilities (1). Essentially, it directly simulates the interactions
of a population of N agents: at each point in time, three agents are randomly selected from the population, with the first
convincing the second to switch to his strategy with probability ρ and the third spontaneously switching strategy with
probability ϵ.

An important aspect of the model is that the current population share of fundamentalists is imperfectly evaluated by
agents, who receive a signal ~xt �N xt ; σ2x

� �
containing a measurement error. This reflects the fact that the beliefs of traders

and the strategies they use are likely to be private information and leads to the following expected population share:

ωt ¼ P ~xt4
1
2

� �
ð2Þ

Chartist and fundamentalist agents differ in the way they form price expectations, and therefore in their excess demand
functions. Fundamentalists expect future prices to correct to their fundamental value p at a given rate ϕ, while chartists
simply extrapolate from past price movements:

Ef Δpt
� �¼ dft ¼ ϕ p�pt�1

� �
Ec Δpt
� �¼ dct ¼ pt�1�pt�2

8<
: ð3Þ

Combining the expected share (2) with the excess demands (3) and adding an exogenous perturbation ut �N 0; σ2s
� �

provides the equation determining the evolution of the price at each point in time:

pt ¼ pt�1þωtϕ p�pt�1
� �þ 1�ωtð Þ pt�1�pt�2

� �þut ð4Þ

Gilli and Winker (2003) intend this process to describe the evolution of the price pt and agents share xt at the time scale
of individual interactions. In order to produce a daily series, which is the typical time frequency used for empirical appli-
cations, one must specify a parameter τ for the number of interactions per trading day, and sample each τth observation
from the raw interaction-level series (4).
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2.2. The Alfarano et al. (2005) model of asymmetric herding

The Alfarano et al. (2005) model of herding similarly embeds the Kirman (1993) mechanism, but describes the time
evolution of the state xt directly from the transition probabilities rather than simulating the agent-level interactions. The
transition probabilities for their model are given by:

Pcf
t ¼ N�ntð Þ ϵ1þntð Þρ

Pfc
t ¼ nt ϵ2þ N�ntð Þð Þρ

8<
: ð5Þ

While slightly different in appearance, this system is nevertheless broadly equivalent to (1), as redefining
ρ¼ ρ0=N2; ϵ� ¼ ðϵ0�NÞ=ρ0 and setting xt ¼ nt=N recovers the specification of the Kirman (1993) transition probabilities.3 The
first difference with Kirman (1993) and Gilli and Winker (2003) is the fact that Alfarano et al. (2005) allow for different
autonomous probabilities of switching, governed by ϵ1 and ϵ2, which may not be equal to each other, allowing for asym-
metry in the herding mechanism.

The second difference is that rather than simulating the agent interactions, Alfarano et al. (2005) provide an analytical
solution to the time evolution of the system by solving the Fokker–Plank approximation in continuous time to obtain the
Master equation generated by the transition probabilities (5) for large N. This results in the following time evolution of the
population share for an arbitrary time increment Δt:

xtþΔt ¼ xtþρ ϵ1þϵ2ð Þ x�xtð ÞΔtþλt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ 1�xtð ÞxtΔt

p
ð6Þ

The drift term of this time evolution depends on x ¼ ϵ1=ðϵ1þϵ2Þ, which is the mean population share of fundamentalists
over time, while the second part is a diffusion term determined by λt , which follows an i.i.d. standard normal distribution.

As is the case in Gilli and Winker (2003), the two types of agents differ in their demand functions. Fundamentalists are
defined similarly as expecting log prices pt to revert to their fundamental level p. Chartists, on the other hand, are essentially
noise traders whose demands are determined by a random variable ηt , which is uniformly distributed over [�1,1] and a
scaling parameter r0 which governs the expected size of the price fluctuations.4 Given population sizes nt and N�nt , the
excess demands are given by:

dft ¼ nt p�pt
� �

dct ¼ N�ntð Þr0ηt

8<
: ð7Þ

Setting the sum of excess demands (7) equal to zero directly leads to the following expression for the value of the log
returns rt:

rt ¼ r0
xt

1�xt
ηt ð8Þ

This results in a very elegant and parsimonious model, which only requires the two autonomous switching parameters
ϵ1; ϵ2 and the direct recruitment parameter ρ. Returns can be simulated by drawing a set of standard normal variables λt and
a set of uniformly distributed variables ηt and using them in Eqs. (6) and (8) with Δt ¼ 1.

2.3. The Franke and Westerhoff (2011) structural stochastic volatility model

The model proposed by Franke and Westerhoff (2011) also uses the basic herding mechanism of Kirman (1993), but
expresses that the state variable slightly differently. The population state is defined as x0t ¼ ð2nt�NÞ=N, leading to x0t ¼ �1 if
all the population is chartist (nt ¼ 0) and xt 0 ¼ 1 if all the population is fundamentalist (nt ¼N).5 This is done to facilitate the
exposition of the herding mechanism in the transition probabilities, which relies on the exponential of a switching pro-
pensity st:

Pcf
t ¼ νexp stð Þ

Pfc
t ¼ νexp �stð Þ

8<
: ð9Þ

The propensity to switch st is determined by several factors. The first is an exogenous effect α0, which aims to capture the
existence of autonomous switching, similar to the ϵ parameter of the previous models. The second term, which depends on
the population state xt 0, encapsulates the herding concept, increasing the probability of switching to a strategy based on the
3 Should one try to perform this reparametrisation with the values shown in Table 1 however, one would find they do not agree across models. This is
because of the different time scales involved: the Gilli and Winker (2003) parameters are calibrated for τ transitions per daily return, while the Alfarano
et al. (2005) model parameters embed a single transition per daily return.

4 Alfarano et al. (2005) offer two options for the chartist noise specification, “spin” noise, which takes values f�1; þ1g with equal probability, and
uniform noise, which is used here. They also show that choosing a scaling parameter r0 ¼ ðϵ2�1Þ=ϵ1 results in a unit-variance daily returns series.

5 The x0 notation is used to emphasise this difference from the other models. Setting xt ¼ ð1þxt 0Þ=2 in the model equations recovers the standard share
variable xt ¼ nt=N used in the previous two models.
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current popularity of that strategy. Should the two populations be balanced (nt ¼N=2), one has xt 0 ¼ 0 and there is no
herding effect. The final term, which depends on the squared deviation of the log price pt from its fundamental value p, is
designed to encourage switching to fundamentalism when the price deviates from the fundamental value. Given that such
deviations tend to occur mainly when a large share of the population uses chartist strategies, this feedback mechanism will
generate asymmetry in the switching process:

st ¼ α0þαxxt�1
0 þαm pt�1�p

� �2 ð10Þ

The transition probabilities (9) lead to the following population dynamics for the model:

xt 0 ¼ xt�1
0 þ 1�xt�1

0ð ÞPcf
t�1� 1þxt�1

0ð ÞPfc
t�1 ð11Þ

The excess demand functions of the fundamentalists and chartists, below, mirror (3) as used by Gilli and Winker (2003),
with two exceptions. First of all, the price expectations of chartists now also have an adjustment parameter χ, similar to the
ϕ controlling the fundamentalist adjustment. Secondly, both excess demands now incorporate a noise component
uf
t �N 0; σ2f

� �
and uc

t �N 0; σ2c
� �

:

dft ¼ ϕ p�pt
� �þuf

t

dct ¼ χ pt�pt�1
� �þuc

t

8<
: ð12Þ

Given the evolution of the population index (11) and the demand functions (12), the time evolution of log price is
described by the following equation:

pt ¼ pt�1þμ
1þxt�1

0ð Þ
2

ϕ p�pt
� �þ 1�xt�1

0ð Þ
2

χ pt�pt�1
� �þut

� �
ð13Þ

The noise term ut �N 0; σ2t
� �

forms the structural stochastic volatility component of the model, as the variance of this
noise is governed by the population-weighted average of the fundamentalist and chartist noise terms:

σ2t ¼ 1
2 1þxt 0ð Þ2σ2f þ 1�xt 0ð Þ2σ2c
� �

ð14Þ
3. The model comparison protocol

3.1. The ARCH family benchmark

As stated previously, a set of ARCH models is included as part of the model comparison exercise. The purpose of this is
twofold: firstly, to provide a reliable benchmark for the explanatory power of the agent-based models and secondly, to
demonstrate the ability of the methodology described in Section 3.2 to cope with a wide range of modeling approaches,
from agent-based simulations to more traditional regression methods.

Because the aim of the analysis is to compare model performance across a wide set of empirical data series, it is
important that this benchmark set be standardised in order to allow such a comparison. This means that although their
value will change from series to series, the number of estimated parameters (and therefore lags) in a given specification will
be the same for all data series. Similarly, given that each specification is estimated on all 24 data series, the lag order is
always set to p¼ q¼ r, thus ensuring that the total number of estimations to be carried out remains tractable.

All the ARCH-type models in the benchmark set have the same AR(2) mean equation (15) for the daily returns rt , and
only differ in the specification of the time-varying volatility σt in the error term εt ¼ σtzt , where zt is a standard normal
variable. While the second AR lag is insignificant for most series, it is significant at the 5% level for some and is therefore
included in the standard specification.6 A third AR lag was tested for in exploratory estimations of the mean equation but
was insignificant for all series, and therefore not included:

rt ¼ cþa1rt�1þa2rt�2þσtzt ð15Þ
Several specifications are included for the time-varying variance σt , in order to provide as wide a target as possible for

the comparison exercise. The first and most basic specification is the ARCH model (16). A single version is included with
p¼ 5 lags, corresponding to the length of the average working week. The AIC and BIC results from the estimations show that
this naive specification performs poorly for most of the data series compared to the more refined specifications below. The
intention, however, was to provide some “low hanging fruit” for the agent-based models in the comparison exercise:

σ2t ¼ σ0þ
Xp
i ¼ 1

αiε
2
t� i ð16Þ
6 This is most notably the case for the IPC, NASDAQ and DJ indices. For the latter, this can be seen in Table A6 in the appendix.
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The second basic specification included is a set of three standard GARCH models (17), with lags p¼ qAf1;2;3g. A
maximum of 3 ðp; qÞ lags are used, as preliminary analysis revealed that the lowest BIC values are reached with this range.
Setting the lag order to 4 or higher lead to systematic increases in the BIC for every series. As for the ARCH specification, this
is not expected to provide the best specification for the daily returns series, but instead to provide a reasonable target for the
agent-based models:

σ2t ¼ σ0þ
Xp
i ¼ 1

αiε
2
t� iþ

Xq
j ¼ 1

βjσ
2
t� j ð17Þ

An important consideration in choosing the benchmark specifications is that both the ALW and FW models allow for
asymmetry in herding. The preferred ARCH family specifications are therefore the three following models, which all include
asymmetry terms γk allowing positive and negative lags of the error term to have different effects on the volatility. These are
the threshold GARCH (TGARCH) specification (18), with negative lags identified by the indicator variable It�k, the expo-
nential GARCH (EGARCH) specification (19) and finally the power GARCH (PGARCH) specification (20):

σ2t ¼ σ0þ
Xp
i ¼ 1

αiε
2
t� iþ

Xq
j ¼ 1

βjσ
2
t� jþ

Xr

k ¼ 1

γkIt�kε
2
t�k ð18Þ

ln σ2t
� �¼ σ0þ

Xp
i ¼ 1

αi
εt� i

σt� i

				
				þ

Xq
j ¼ 1

βjln σ2t� j

� �
þ

Xr

k ¼ 1

γk
εt�k

σt�k
ð19Þ

σδt ¼ σ0þ
Xp
i ¼ 1

αi εt� ij j�γiεt� i
� �δþ Xq

j ¼ 1

βjσ
δ
t� j ð20Þ

As for the GARCH models (17) , three versions of specifications (18), (19) and (20) are estimated, with lags
p¼ q¼ rAf1;2;3g. As for the GARCH case, setting the ðp; q; rÞ lag order above 3 does not lead to an improvement in the BIC
values (with the exception of the Hang Seng and Straight Times indices), and in several cases leads instead to convergence
failures for the PGARCH estimates.

Combined with the ARCH (16) and the three GARCH (17) specifications, this results in 13 ARCH family models for each
data series, which were estimated in Eviews 9 using the “legacy” option. As shown in Table A4, the estimates converged
rapidly in the vast majority of cases, and only a few PGARCH and TGARCH estimations failed to achieve convergence. Three
examples of the estimation results are provided in Appendix A as an illustration, in Tables A5 and A6 for the DAX and DJ
indices respectively and Table A7 for the US dollar to Yen exchange rate.7

3.2. The model comparison methodology

Before discussing the data used to evaluate these agent-based models of herding, it is important to review briefly the
main aspects of the methodology that will be used for the model comparison exercise, as the purpose of the paper is as
much to evaluate the methodology as it is to evaluate the models themselves. The implementation details of the metho-
dology and a proof-of-concept are provided in Barde (2016) and its supplementary material.

The general spirit of the methodology is to map the data-generating processes of a set of candidate models
fM1;M2;…;Mmg to a corresponding set of standardised Markov processes (or equivalently finite state machines). Let us
assume for the moment that a discrete random variable Yt describes the time evolution of a system, and that the formal
structure of a model Mi enables the researcher to calculate the following conditional probabilities for every possible history
of the system yt�1; yt�2;…; yt�L. This full set of conditional probabilities forms the transition matrix of the Lth order Markov
process underlying Mi:

PMi
Yt jyt�1; yt�2;…; yt�L

� � ð21Þ

If a data series fy1; y2;…:yNg is available, the researcher can very easily obtain a score for each observation by taking the
logarithm of the reciprocal model probabilities (21) for the state configuration fyt�L;…; yt�2; yt�1; ytg corresponding to each
observation:

λi yt
� �¼ ln

1
PMi

Yt ¼ yt
		yt�1; yt�2;…; yt�L

� � ð22Þ

Barde (2016) shows that the mean value of the observation-level score (22) is an estimate of cross entropy of the real
data with the model Mi, providing a Markov information criterion (MIC) similar in spirit to the Akaike information criterion
7 The full set of 312 estimates corresponding to the 13 specifications on the 24 data series is not included here in the interest of brevity, however it is
available as supplementary material to the paper.
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or to a log-likelihood:

MICi ¼
1

N�L

XN
t ¼ Lþ1

λi yt
� � ð23Þ

Differences in (23) across models Mi;Mj directly reflect differences in the KL divergences between the models and data,
with the best model identified as the one with the lowest score, or equivalently (taking the negative) the highest log-
likelihood. Thus, while the method used to obtain the measurement (23) might be new or unfamiliar, the nature of the
measurement itself should not be.

The technical challenge resides in efficiently mapping the simulated data produced by the set of models fM1;M2;…;Mmg
to their underlying Markov process, i.e. efficiently obtaining the conditional probabilities (21) from the simulated data
produced by each model Mi. This is achieved by relying on a universal data compression algorithm, specifically the context
tree weighting (CTW) algorithm of Willems et al. (1995), which is designed to determine the Markov transition matrix of a
data generating process directly from the data. The central justification for choosing this technique is that the CTW algo-
rithm's mapping of the data to the transition matrix is optimal on all Markov processes of arbitrary order. Specifically, this
means that the inefficiency cost incurred by having to learn the transition matrix from the data is proven to achieve the
theoretical lower bound. As shown by Barde (2016), this central property, referred to as universality, allows for the correction
of the resulting measurement error in the observation score (22) and justifies this choice of the algorithm as the basis of the
model comparison methodology.

The CTW algorithm's proven optimal performance stems from the fact that it operates on a binary representation of the
data series fy1; y2;…:yNg, where each observation is treated as the result of a set of Bernoulli trials. The only variables that
need to be estimated are the set of Bernoulli parameters that determine the probability of a given observation bit being “1”
conditional on a particular system history. The CTW algorithm obtains these using the Krichevsky and Trofimov (1981)
estimator, which is proven to possess the tightest possible bound on its inefficiency.

Converting real-valued data to its binary representation requires a specific discretisation strategy. Given a choice of
bounds ½bl; bu� and resolution r, the real-valued observations are binned into 2r distinct states spanning the support
determined by the bounds. Each bin (or state) is identified with a distinct r-bit representation where each 1/0 value
indicates if the observation is in the top/bottom half of the subset of the support determined by the previous bits.8 Given an
additional choice of L lags of time dependence, this means that the CTW algorithm produces a standardised transition
matrix of size 2rL � 2r for each model Mi.

The crucial benefit of this binary representation is that even large state spaces, with relatively high values of the reso-
lution r, can be represented as a sequence of chained Bernoulli trials. In this setting the probability of an observation being
in any of the 2r states can be simply reconstructed by chaining the probabilities that each successive trial results in the value
given by the r-bit representation. Similarly, the score for a given observation (22) is simply the sum of the binary log scores
for each of the r bits that make up the observation. This produces an observation-level vector of scores, which sums up to
the aggregate score for the model, as can be seen from (23).

The availability of a vector of observation-level scores (22) has two crucial benefits compared to alternative methods of
evaluating models. The first is the ability to use the variance in scores at the observation level to test the statistical sig-
nificance of the aggregate criterion (23) in any model comparison exercise, using the data snooping procedure of White
(2000) or the model confidence set of Hansen et al. (2011). The second benefit is the ability to evaluate the relative
explanatory power of models over subsets of the data. Both these aspects are illustrated in the comparison exercise.

3.3. The stock market index data and comparison protocol

The data used for the model comparison exercise are the daily logarithmic returns for a set of 18 stock market indices and
6 exchange rates series.9 The stock market data covers the major time-zones of Asia, Europe and the Americas, with
6 indices selected from each of these zones. Furthermore, most series consist of over five thousand daily observations since
the mid-1980s, capturing key events such as the 1987 Black Monday crash, the Asian crisis of the late-1990s, the dot-com
bubble of the early 2000s up to the turmoil following the fall of Lehman Brothers in late 2008. In addition to this, because
both the Gilli and Winker (2003) and Franke and Westerhoff (2011) studies estimate their models on the US/Deutschmark
exchange rate as well as stock market data, the data set also includes the exchange rate series for the US dollar against six
major currencies. Because, as pointed out by Andersen et al. (2000), exchange rate returns are more symmetric than stock
market returns, this will also provide a test of the asymmetric herding mechanisms in the ALW and FW models.10

This wide geographical selection and long time period is intended to provide a broad test of the explanatory power of the
agent based models of herding by enabling evaluation of the models both at the aggregate level as well as on individual
8 As an example, a resolution r¼ 3 indicates observations can take 8 distinct values. Given an observation of “101”, the first bit indicates the obser-
vation is in bins 5, 6, 7 or 8, the second indicates that the observation is in either the 5th or 6th bin, and the final bit determines that the observation is in
the 6th bin.

9 The stock market indices used here are publicly available from the historical prices section of http://finance.yahoo.com while the exchange rate data
was taken from the Federal Reserve historical foreign exchange rate releases (H.10) at www.federalreserve.gov/econresdata.

10 The author is grateful to one of the referees for suggesting the use of exchange rate data as a way of checking the importance of asymmetry.

http://www.finance.yahoo.com
http://www.federalreserve.gov/econresdata


Table 1
Calibrated values of model parameters.

Param. Interpretation Value Bounds

Gilli and Winker (GW) – US - DM exchange rate
N Number of agents 100n – –

τ Number of interactions per trading day 50n – –

ϕ Adjustment speed in fundamentalist expectations 0.0225n – –

σs Standard deviation of price shocks 0.25n – –

σx Standard deviation noise in majority assessment 0.219 0.05 0.35
ϵ Probability of random switch 0.0001 0 0.0002
ρ Probability of direct recruitment 0.264 0.05 0.45

Alfarano, Lux and Wagner (ALW) – DAX index
ϵ1 Propensity for fundamentalist - chartist switch 16 2 18
ϵ2 Propensity for chartist - fundamentalist switch 4.9 2 18
ρ Herding tendency 0.0025 0.001 0.004

Franke and Westerhoff (FW) – S&P 500
ϕ Aggressiveness of fundamentalists 0.198 0.05 0.35
χ Aggressiveness of chartists 2.263 0.1 4.5
σf Noise in fundamentalist demand 0.782 0.1 1.5
σc Noise in chartist demand 1.851 1 6
μ Market impact factor of demand 0.01n – –

pn Log of fundamental value 0n – –

ν Flexibility in population dynamics 0.05n – –

α0 Predisposition parameter �0.155 �0.25 �0.05
αx Herding parameter 1.299 0.3 2.3
αm Misalignment parameter 12.648 10 15

Gilli and Winker (2003) is calibrated on the DM/US-$ exchange rate.
Alfarano et al. (2005) is calibrated on the DAX index.
Franke and Westerhoff (2016) is calibrated on the S&P500 index.

n The parameter value is assumed by the original authors, not calibrated.
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events. Tables A1 and A3 in the appendix provides greater detail such as the starting date, the number of observations and
the results of the diagnostic tests for each data series.

Because the model comparison methodology operates on discrete variables, the raw logarithmic returns are discretised
to an 8-bit resolution, i.e. grouped in 256 discrete bins, within the bounds ½�0:3;0:3�. Any observations falling outside of
those bounds are truncated to the bound itself, however as seen from the 5th column of Tables A1 and A3, there is only a
single out-of-bound observation, for the Hang Seng index.11 The more important aspect is the choice of resolution for the
data, i.e. 8 bits. While the discretisation of the returns is required by the methodology, the procedure inevitably discards
information and it is important to ensure that this does not affect the measurement. As explained in Barde (2016), the
resolution r should be large enough to ensure that the discretisation error is i.i.d. uniform and uncorrelated with the dis-
cretised variable. When this is the case, any extra bit of resolution will take value 0 or 1 with equal probability 0.5, regardless
of any conditioning on the past values of the variable. At that point, a larger choice of resolution r will simply increase the
resulting information criterion by a constant for all models in the comparison set and will therefore not affect comparisons
made by using differences in the information criterion across models.12

The discretisation diagnostics are reported in the last 3 columns of Tables A1 and A3 and show that the 8-bit dis-
cretisation of the data is sufficient for most series. Uniformity of the discretisation error is rejected for the HS, AEX and
S&P500 indices, but this is due to the presence of a relatively large number of zero returns (144, 180 and 207 respectively)
created by reported closing index values that are unchanged over two or more days. These exact zeros create a systematic
spike in the discretisation error, leading to the rejection of uniformity, but are not a major concern for the methodology. The
only slight concern is for the DJ industrial index, for which the autocorrelation in the error term cannot be rejected. The
discretisation error, however, seems uniform and uncorrelated with the discretised variable, which suggests that the pro-
blem is not critical.

The model comparison exercise is based on a sensitivity analysis of the GW, ALW and FW models around their calibrated
parameter values, shown in the third column of Table 1. This is motivated by two considerations: first of all, it is necessary to
allow flexibility in the parameter set, as the calibrated values in Table 1 were each obtained on a specific data series and will
not be optimal over all 24 series. Secondly, using a sensitivity analysis enables an evaluation of whether the MIC metho-
dology presented above can effectively pin down the best parameter values for the three models over the data series.
11 This corresponds to the Black Monday crash of 19/10/1987, where the logarithmic return for the day was �0.405. This is truncated to the �0.3
bound for the purposes of the analysis.

12 As a robustness check the analysis was also carried out using a lower resolution r¼ 7 on the ½�0:15;0:15� interval. This setting produces essentially
the same results, which are also available in the supplementary material.



Fig. 1. Two-way scatter plot of the 513�7 NOLH sampling matrix.
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In order to ensure that the sensitivity analysis is as efficient as possible, we follow the suggestion of Salle and Yildizoğlu
(2014) and use the Nearly Orthogonal Latin Hypercube (NOLH) approach of Cioppa and Lucas (2007) to generate 513 sample
points in the unit hypercube. A two-way scatter plot of the resulting 7-parameter sampling matrix is provided in Fig. 1. The
NOLH approach is chosen due to the two key benefits it possesses. First of all, because the resulting sample forms a Latin
hypercube in the parameter space, every sample point possesses unique values in each dimension. This ensures that the
design possesses both a high resolution and good space-filling properties, as is visible in Fig. 1. The second key property is
that the 7 resulting parameter vectors (labelled a–g in Fig. 1) are nearly orthogonal to each other. As pointed out by Salle and
Yildizoğlu (2014), combined with the space-filling characteristics, this enables an increase in efficiency of the design by
reducing the number of sampling points required to identify the relationships between the input parameters and the model
outputs. Finally, given that the number of sample points in the NOLH design is equal to 2nþ1 for integer n, the choice of a
sample size of 513 is a compromise between providing good coverage of the parameter space and keeping the overall
analysis tractable.

In order to provide model-specific parameter samples, the columns in the sampling matrix are mapped from the ½0;1�
interval to the parameter ranges in the last two columns of Table 1. For the GW and ALW models, only 3 parameters are
required therefore only columns a, b and c are used, while for FW the full sampling matrix is used.13 Similarly, 13 simulated
series are generated for the ARCH benchmark set using the specifications (15)–(20) and the parameter estimates corre-
sponding to each data series. This implies that the simulated data for the set of ARCH benchmarks is specific to each of the
24 data series, which is not the case of the agent-based models, where the parameterisation resulting from the combina-
tions in Table 1 are the same for all data series.
13 While Table 1 shows that the GW model has 7 parameters, the first 4 are assumed by the authors and not calibrated. The same procedure is used in
this analysis.



Table 2
MIC scores on financial data series.

Index GW ALW FW ARCH

min(MIC) id min(MIC) id min(MIC) id min(MIC) id

AOI 4.3077 11 3.9255 112 3.8885 432 3.8829n 5
NIKKEI 4.7543 248 4.6321 220 4.5294 470 4.5200n 7
KOSPI 4.7947 190 4.6055 54 4.5226 279 4.5193n 4
ST 4.5352 75 4.2617 54 4.2089n 88 4.2156 7
HS 4.9898 327 4.8677 54 4.7087 284 4.7031n 5
NIFTY 5.0210 327 4.8851 494 4.7555 284 4.7367n 6
DAX 4.7431 248 4.6003 75 4.4925n 470 4.4953 1
CAC 4.7528 248 4.6438 75 4.5142 470 4.5062n 6
FTSE 4.4579 248 4.1605 112 4.1084n 320 4.1095 2
IBEX 4.7786 453 4.6277 75 4.5219 470 4.5179n 4
AEX 4.6156 75 4.3607 112 4.2935n 288 4.2969 3
STOXX 4.6194 11 4.4183 54 4.3353n 243 4.3422 5
IPC 4.8886 190 4.7224 112 4.5968n 284 4.6073 5
DJ 4.4018 11 4.0871 112 4.0270n 246 4.0345 5
S&P 500 4.4536 248 4.1685 112 4.0839n 320 4.0996 3
NASDAQ 4.9563 418 4.8321 54 4.7014 284 4.6957n 12
OEX 4.4758 248 4.2270 112 4.1501 320 4.1495n 6
GSPTSE 4.2438 11 3.8396 220 3.8059 432 3.7958n 5

USD - GBP 3.7749 11 3.4136 315 3.3139n 37 3.3231 7
USD - EUR 3.9183 11 3.5638 124 3.4647 353 3.4580n 7
USD - YEN 3.9087 11 3.5542 220 3.4529n 109 3.4676 5
USD - CHF 4.0319 11 3.6552 120 3.5588n 28 3.5819 1
USD - AUD 4.1675 11 3.8178 177 3.7515n 145 3.7557 4
USD - MXN 3.6602 11 3.3549 104 3.3331 37 3.3160n 6

“id” identifies the sample in either the NOLH sampling matrix or the ARCH benchmark set.
Bold indicates that the best model is in the model confidence set at the 90% level.

n The best overall score on each series.
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With 513 candidate parameterisations for the GW, ALW and FW models and an additional 13 ARCH benchmark models,
this results in a total of 1552 candidate models for each data series. Each of the candidate models is used to produce a
simulated series with 500,000 observations, which is discretised to an 8-bit resolution on the ½�0:3;0:3� support in
accordance with the discretisation tests run on the data series and mentioned above. In the first stage of the methodology,
these discretised series are processed by the CTW algorithm using L¼ 3 lags of memory to recover their Markov transition
matrix, which scored against the 24 data series in the second stage of the methodology.
4. Results

The combination of NOLH sampling, MIC scoring and MCS testing in the design is intended to offer a large degree of
versatility for the analysis. This framework enables a ranking of the classes of models being compared both at the local and
aggregate levels, as well as an analysis of parameter sensitivity within each class of model. All three types of analysis can be
tested statistically and are illustrated here.

4.1. Relative aggregate performance of model classes

The aggregate MIC (23) is simply the mean of the observation-level vector of scores (22) obtained for each of the 1552
candidate models on the 24 series. Table 2 displays the identifier and value of the smallest MIC score for each data series and
model class. The main finding, which is consistent across all series, is that the best GW calibration displays the highest score
and is systematically beaten by the best ALW model, which in turn is systematically outperformed by the best FW cali-
bration. Interestingly, the results also reveal that the latter model is comparable to the best ARCH-type model in terms of
overall explanatory power. Because the parameters used for the ARCH simulations, obtained by estimation, are specific to
each series while the parameter values used for the three sets of agent-based simulations are fixed ex ante, it was reasonable
to expect the ARCH benchmark to outperform the agent-based models. It is therefore interesting to note that despite this
potential handicap the best FW calibration approaches, and in half the cases exceed, the performance of the ARCH
benchmarks. Even more significantly, looking at the exchange rate series suggests that the performance of the FW model
relative to the ARCH models is even better, as it performs best on four of the six series.

As explained in Section 3.2, the fact that the methodology returns an observation-level vector of scores (22) can be used
to test the statistical significance of the relative scores in Table 2. This is done by running the MCS procedure of Hansen et al.



Table 3
Size of model confidence set per class of model.

Index jM90j GW ALW FW ARCH

AOI 101 0 0 91 10
NIKKEI 55 0 0 47 8
KOSPI 81 0 0 74 7
ST 91 0 0 83 8
HS 18 0 0 12 6
NIFTY 18 0 0 13 5
DAX 99 0 0 91 8
CAC 72 0 0 60 12
FTSE 127 0 0 114 13
IBEX 77 0 0 66 11
AEX 131 0 0 121 10
STOXX 98 0 0 89 9
IPC 45 0 0 38 7
DJ 64 0 0 56 8
S&P 500 109 0 0 107 2
NASDAQ 74 0 0 64 10
OEX 109 0 0 100 9
GSPTSE 48 0 0 44 4

USD - GBP 104 0 0 95 9
USD - EUR 103 0 0 96 7
USD - YEN 27 0 0 27 0
USD - CHF 52 0 0 52 0
USD - AUD 199 0 0 191 8
USD - MXN 48 0 0 37 11

N° of models: 1552 513 513 513 13

Table 4
MCS model parameters.

Gilli and Winker (GW)
σx 0.298 0.200 0.308 0.316 0.330 0.326
ρ 0.069 0.250 0.056 0.083 0.114 0.051
ϵ 1.953e�4 1.000e�4 1.844e�4 1.586e�4 1.695e�4 6.133e�5
id 11 65 75 190 248 327
N° 10 0 2 2 6 2

Alfarano, Lux and Wagner (ALW)
ϵ1 15.750 2.250 17.375 16.375 15.813
ϵ2 3.875 16.750 5.375 4.500 4.188
ρ 3.906e�3 3.578e�3 3.953e�3 3.039e�3 3.637e�3
id 54 75 112 124 220
N° 5 3 7 1 3

Franke and Westerhoff (FW)
ϕ 0.066 0.347 0.321 0.285 0.257 0.287
χ 1.509 1.312 3.804 3.752 2.377 4.027
σf 0.111 1.104 0.841 0.349 0.901 1.065
σc 4.867 5.990 5.639 4.721 2.006 5.580
α0 �0.102 �0.239 �0.099 �0.117 �0.137 �0.213
αx 1.222 0.538 1.132 1.218 1.124 0.359
αm 12.617 11.533 11.143 10.420 11.943 14.893
id 37 284 320 432 451 470
N° 2 4 3 2 0 4

Bold indicates the model id corresponding to the calibrations of the original works.
“N°” counts a given “id” that occurs in Table 2.
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(2011) on each data series. Starting with the full set of 1552 candidate models, the procedure identifies a subset Mα

composed of the best-performing models whose aggregate scores cannot be distinguished at a given level of statistical
significance 1�α.14 The results, shown in Table 3, confirm that none of the ALW and GW calibrations make it into the
aggregate confidence set at the 90% confidence level, which is restricted to a subset of the FW calibrations and the ARCH
benchmarks only. More importantly, it also confirms that none of the ARCH models are included in the confidence set for
14 The MCS analysis carried out here used 1000 replications of the Politis and Romano (1994) block bootstrap. The optimal block length for each series
was determined by running the Politis and White (2004) algorithm on the scores prior to performing the bootstrapped analysis.



Fig. 2. Two way sensitivity scatter plots for GW and ALW. � is the original calibration, the best model, and lighter points perform worse.
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both the US dollar/Yen and Swiss franc exchange rates, suggesting that the FW model performs particularly well on the
exchange rate data.
4.2. Parameter sensitivity in calibrations

The parameter values corresponding to the calibrations identified in Table 2 are provided in Table A3 in the appendix. For
convenience, Table 4 displays only those calibrations identified as best at least twice in the exercise. Both tables also include
for purposes of comparison those calibrations that come closest to the original calibrations displayed in Table 1. Because the
model comparison design uses an ex-ante sampling of the parameter space rather than a full re-calibration, it is important to
check the sensitivity of these calibrations in order to evaluate their robustness.



Fig. 3. Two way sensitivity scatter plots for FW – Part 1. � is the original calibration, the best model, and lighter points perform worse.
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For each class of model, this is achieved by running the MCS analysis over the 513 candidate calibrations. Taking
advantage of the orthogonal structure and space filling properties of the NOLH sampling, one can use the resulting con-
fidence set Mα to identify those regions in the parameter space that provide good calibrations. Fig. 2 displays the results of
this analysis for the GW and ALW models for three of the series where FW is identified as the best model, while Fig. 3 does
the same for the FWmodel.15 Both figures show a scatter plot of those calibrations in the 90% confidence set and identify the
15 Due to space constraints, it is not possible to display here the full set of figures corresponding to the 3 model classes on the 24 data series. These are
however freely available as supplementary material.



Fig. 3. Continue.
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original and best calibrations with a cross (�) and a diamond (⋄) respectively. The greyscale is used to give information
about the ranking of the calibration within the confidence set, with darker points identifying higher performing calibrations.

For the GW model, first of all, it is interesting to note that the confidence set is typically very small and concentrated
around the best-performing calibration. For all six exchange rates it is even the case that jM90j ¼ 1, implying that the
confidence set is simply reduced to the best calibration. Combined with the fact that the location of the best calibration in
the parameter space is very consistent across series, this suggests that only a very narrow range of parameter values enable
good performance from the GWmodel and that the methodology is able to pin them down effectively. In terms of the values
themselves, the best calibrations deviate strongly from the values in Table 1, with higher values of σx and ϵ and a lower value
of ρ. This will be discussed further in Section 5.

For the ALW model, on the other hand, the sensitivity analysis suggests that the best calibrations identified are in line
with the original estimates from Table 1, especially for ϵ1 and ϵ2. Although the original value of ρ is often below the best-
fitting value, it is also often within or on the edge of the region of the parameter space containing the confidence set. The
fϵ1; ϵ2g scatter plots in particular reveal an interesting symmetry in the confidence set, as two “good” regions seem to
coexist. One is centred on the original calibration fϵ1 ¼ 16; ϵ2 ¼ 4:9g. The other is centred on a zone where these two values
are interchanged, as is the case in Fig. 2(b) for the best DAX calibration. While this second region does not provide the best
calibration for the DJ and Dollar/Yen series, Fig. 2(d) and (f) do show that it is included in the confidence set. At this stage, it
is important to point that this symmetry is in line with the original Alfarano et al. (2005) results for the DAX series. While
they do find fϵ1 ¼ 16; ϵ2 ¼ 4:9g when estimating the uniform noise model, the estimates flip over to fϵ1 ¼ 1:37; ϵ2 ¼ 14:0g
when estimating the spin noise model, which is in line with the values in Fig. 2(b). Crucially, the fact that the combination of
NOLH sampling, MIC comparison and MCS testing is able to identify this symmetry in the fϵ1; ϵ2g space suggests that this
protocol is capable of reliably identifying good parameterisations.

Finally the analysis for the FW model, shown in Fig. 3, shows that the spread of the M90 confidence set over the
parameter space is much wider than was the case for GW and ALW in Fig. 2. This is in line with the findings in Tables 2 and
A3, where the parameter values for the best-performing calibrations fluctuate quite widely around the original calibrations,
in bold. Overall, this suggests that parameter values for the FW model are much less tightly pinned down than for the other
two. As will be discussed below, this is probably due to the larger number of parameters available in the model, which
would also explain why the FW model is consistently ranked better than ALW and GE. Fig. 3 does show, nevertheless, that
for αx, σc and to a lesser extent σf , the methodology is able to exclude portions of the parameter space. For αx, the original
value identified by � is at the lower end of the range of the best-fitting values while for σc the opposite is true. Again, the
implications of this will be discussed below.



Fig. 4. Model scores relative to ARCH benchmark for DAX, DJ and USD - YEN.
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4.3. Local analysis

Another benefit of having an observation-level vector of scores is that the relative performance of models can also be
examined over relatively short time-lengths, as illustrated in Fig. 4, for the same three series as Figs. 2 and 3.16 The three line plots
show the relative scores Δλ i;archðrtÞ of the three agent based models against the ARCH benchmark, smoothed using a moving
average window of 200 observations. Using smoothed scores means that an MCS test can be carried out on the 200 individual
observation scores λiðrtÞ in the window to evaluate the significance of the resulting average λ iðrtÞ. In order to avoid complicating
the figures further and given the clear rankings in Table 2, the test is only carried out on the FW/ARCH head-to-head comparison
16 As for the sensitivity scatter plots 2 and 3, the complete set of plots covering all 24 series is not included here to save space, but is available in the
supplementary material.
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and the resulting MCS composition is displayed using the vertical banding. Dark grey bands reveal the time-periods for which the
FW model beats ARCH significantly and white bands show the reverse. The lighter grey identifies time periods where the
performance of the best FW and best ARCH specifications are statistically indistinguishable.

First of all, these observation-level plots confirm the relative rankings of the GW, ALW and FW models displayed in
Table 2, in particular that the best GW calibration performs poorly relative to ARCH for all series. More importantly, the
figures also reveal important features that are not discernable from the aggregate rankings in Table 2. A critical aspect from
the point of view of agent-based modelling is that the performance of the FW and ALW models is often very close and their
scores relative to the best ARCH model often co-move. This is most visible in Fig. 4(c) and suggests that they both explain
similar features of the data and capture similar mechanisms. A second important feature is the presence of clear spikes in
performance of all 3 models around turbulent events, in particular the 1929 and 2008 crashes for the DJ. These spikes, along
the vertical bands where the MCS is restricted to the FW model alone, indicate that over these time periods, the FW model
drastically outperforms the ARCH benchmark. Crucially, in most cases both the ALW and GW models also exhibit similar
spikes over the same periods, which suggests that even if they may not be the best model to fit the data, their structure can
capture the herding dynamics of turbulent periods just as well as the FW model relative to the benchmark.
5. Discussion

Let us discuss at this stage what these findings imply for the herding mechanisms discussed in Section 2. First of all, the
fact that the FW model can offer statistically equivalent performance to ARCH-like specifications is not, by itself, a validation
of these mechanisms. Instead, it is the spikes in relative scores around critical market events, identified in Fig. 4, which
strongly suggest that herding offers an important explanation for the dynamics of conditional heteroscedasticity. A key
aspect of this conclusion is the co-movement of GW and ALW with FW relative to ARCH on these events, regardless of the
relative ranking of the three models on the overall data. The most salient example of this is provided in Fig. 4(c) and (e),
where the performance of the GW model improves drastically at the same points in time as ALW and FW, despite a clearly
poor overall performance.

The question then turns to explaining the relative rankings of the three models, and what can be inferred from this in
terms of the design of their specific herding mechanisms. The poor performance of the GWmodel compared to ALW and FW
suggests that the basic herding mechanism (1) of Kirman (1993) is probably too simplistic. Two explanations are possible,
the first of which is the hypothesis of Alfarano et al. (2005) that asymmetry is an important part of the herding story.
Because the GW model lacks this component while the ALW and FW models possess it, this would explain the difference in
performance. However, the fact that the overall rankings on the exchange rate data are comparable to the stock market data
suggests that this is not the main explanation, even if it cannot be excluded completely.

A second, more probable, explanation is that the presence of noise in the chartist demand function improves the per-
formance of a model. In GW, the demand function of chartists (3) is purely momentum driven, with no specific noise
component other than the overall exogenous error in (4) controlled by σs. On the other hand, the chartist demand of the
ALW model (7) has no momentum component at all and is entirely driven by noise trading. Similarly, in the FW model the
chartist demand (12) contains both momentum and noise trading, with Table 4 suggesting a relatively large noise com-
ponent σc. This more flexible specification for chartist demand probably contributes to the higher performance of FW (and
to a lesser extent ALW) compared to the basic momentum trading of GW. As shown in Fig. 3, however, while this increased
parametric flexibility can help explain the better performance of FW relative to the other two models, it probably comes at
the cost of not being able to pin down the parameter values as effectively.

A final aspect to consider is the sensitivity of the parameter values obtained in Tables 2 and in Fig. 2 and how they relate
to the values obtained in the original studies. A key finding is that the methodology is able to narrow down effectively the
parameter values for the GW and ALW models, although it cannot do as well for the FW model, probably due to the higher
dimensionality. Interestingly, for the ALW model the parameter values obtained are in line with those of Alfarano et al.
(2005), which is not the case for the GW model parameter values, which deviate strongly from Gilli and Winker (2003). A
possible explanation for this discrepancy lies in the difference in estimation methods used by those two studies. As
mentioned in the introduction, Gilli and Winker (2003) use MSM and choose to match the ARCH(1) parameter estimate and
the kurtosis of the returns. Alfarano et al. (2005), instead, use maximum likelihood to estimate the parameters from the
analytical solution resulting from the Fokker–Plank equation. This is conceptually similar to the MIC methodology, which
produces a log score (22) of the conditional probability structure of a model. It is not entirely surprising, therefore, that the
best MIC parameterisations obtained here agree with the maximum likelihood estimates of Alfarano et al. (2005), but not
with the MSM estimates of Gilli and Winker (2003). A compounding factor is also the fact that Gilli and Winker (2003) only
use two moments in their MSM objective function, while by construction the MIC integrates the entire conditionally density.
This implies that if some moments of the conditional density left out by Gilli and Winker (2003) are informative for
parameter values, there will be a systematic deviation in the parameters between the two methodologies. This offers
support to the argument, mentioned in introduction, that the choice of methodology to be used when comparing models is
not neutral, and needs to be carefully investigated.
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6. Conclusion

The central aim of the paper was to test a new model comparison methodology for agent-based models by carrying out a
horse race on three agent-based models of herding in financial markets and evaluate their performance relative to standard
ARCH/GARCH benchmarks. The novelty of the approach stems from the ability of the MIC comparison methodology to
directly compare any class of model (agent based simulations or traditional regressions) on an equal footing, by relying on
their simulated output alone to produce a standardised criterion. The methodology first uses the simulated data to build a
Markov transition matrix for the model, and then uses the empirical data to produce a log score for the model on the data.
The rankings obtained can be tested statistically both at the aggregate and local level, thus providing a better understanding
of the relative strengths and weaknesses of the candidate models on the data.

Two types of conclusions can be drawn from the results obtained in this paper. The first relates to the methodology itself,
as the exercise demonstrates that it is indeed possible to compare effectively large numbers of agent-based simulation
models to more traditional regression models on the basis of their simulated output. In itself, this is not necessarily sur-
prising, as a body of work already exists using simulation-based estimation, however, this new methodology provides
several desirable characteristics not present in alternative methods. The first is that while the algorithms used to obtain the
measurement might seem unfamiliar, its nature – a log score of the conditional probability structure of a model – directly
links up with the standard literature on maximised likelihoods and information criteria, making the interpretation of the
results straightforward. The second, and most important, characteristic is the fact that the log score is produced at the
observation level, enabling model comparison over sub-sets of the data and allowing the use of the Hansen et al. (2011) MCS
methodology to provide statistical confidence when comparing models. This can be carried out across model classes, in
order to test the rankings obtained for them, or within a model class in order to test the sensitivity of the best performing
calibration. This latter analysis can be enhanced with a careful choice of sampling design. These aspects are all illustrated in
the comparison exercise and reveal much more information about the relative performance of the three models against the
benchmark than would be available from the set of aggregate rankings alone.

The second set of conclusions relates to the agent-based models of herding in financial markets that were being com-
pared. The results suggest that population switching is an important factor for explaining the stylised facts of financial
markets such as volatility clustering and fat tails. This is not only supported by the aggregate ranking of the models, but also
by the plots of sub-sample relative scores, which indicate that the performance of all three herding models improves against
ARCH-type models on key events where one would expect these stylised facts to be prominent. The results also suggest,
however, that the herding mechanism is more complex than the basic framework of Kirman (1993) and better captured by
richer mechanisms building in asymmetries in the propensity to switch, or feedback effects where the probability of
switching is also determined by the perceived deviation from the fundamentals. Similarly, the findings suggest that the
traditional division of population into “fundamentalists” driven purely by reversion to fundamentals and “chartists” driven
purely by momentum strategies is also over-simplistic. Indeed, the results support the idea that noise traders, either
independently or as a component of chartist demand, play a role in explaining the dynamics of these markets. The lim-
itations of the exercise, discussed below, mean that it is not really possible to identify whether the better performance of the
ALW and FW models compared to the basic GW model is due to the richer herding model or the noisier chartist demand,
leaving this as an open question for future research.

The methodology does possess some limitations, which should be the focus of future development work. The first, as
pointed out in Barde (2016) and mentioned in the introduction, is that in its current version the methodology is not
designed for estimation, but instead for comparison of models that already possess calibrated parameters, even if this
calibration is poor. This should be visible in the protocol used for comparison, as for each of the three models a preexisting
set of samples is used to test the sensitivity of parameters around existing calibrations. To some extent, this problem can be
mitigated by a careful choice of sampling design. This is illustrated here by using the NOLH design to provide a sample with
good coverage and orthogonality properties. The results obtained show that given this choice of sampling design, the
methodology can indeed perform some sensitivity testing for each model. Nevertheless, if the researcher's goal is simply to
calibrate a single model, it currently cannot compare with simulation-based estimation methods. An objective for future
development is therefore to investigate if the methodology can be used as the loss function in a more refined search
algorithm, for example along the lines of the Nelder–Mead simplex search used in Gilli and Winker (2003), which would
allow for more effective parameter calibration. The other current limitation of the methodology is its univariate nature,
which is perfectly appropriate for models of financial data, but is problematic if multivariate models need to be compared.
There is no theoretical hurdle stopping the CTW algorithm from being extended to multivariate settings, however, and
developing such an extension is a second important development goal for the future.
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Appendix A. Extended tables

See Tables A1–A7.
Table A1
Descriptive statistics and discretisation tests on financial series.

Index Start date Obs. Zeros =2 Test 1 Test 2 Test 3
[�0.3,0.3] KS Stat. LB Stat. LB Stat.

AOI 03/08/1984 7684 60 0 0.0081 27.5517 24.8426
(0.9632) (0.3289) (0.4712)

NIKKEI 04/01/1984 7619 22 0 0.0105 19.0253 23.1469
(0.7930) (0.7959) (0.5690)

KOSPI 04/01/1980 9511 36 0 0.0127 34.0359 23.0432
(0.4226) (0.1071) (0.5750)

ST 28/12/1987 6770 54 0 0.0134 20.3379 18.6876
(0.5709) (0.7289) (0.8118)

HS 02/01/1980 8734 144 1 0.0210nn 20.5453 11.9306
(0.0426) (0.7177) (0.9871)

NIFTY 03/07/1990 5891 17 0 0.0081 36.2685n 13.3362
(0.9894) (0.0676) (0.9721)

DAX 26/11/1990 6091 20 0 0.0099 24.4933 17.7300
(0.9279) (0.4910) (0.8536)

CAC 01/03/1990 6280 18 0 0.0116 26.5557 15.9344
(0.7877) (0.3784) (0.9168)

FTSE 02/04/1984 7756 19 0 0.0187 17.3303 36.0054n

(0.1315) (0.8695) (0.0715)
IBEX 06/09/1991 5863 16 0 0.0075 17.8435 18.3471

(0.9964) (0.8490) (0.8273)
AEX 25/11/1988 6757 180 0 0.0268nn 27.9252 19.2415

(0.0154) (0.3113) (0.7854)
STOXX 31/12/1986 7200 22 0 0.0069 26.4649 19.0646

(0.9949) (0.3831) (0.7940)
IPC 08/11/1991 5776 7 0 0.0083 34.1984 15.9858

(0.9881) (0.1037) (0.9152)
DJ 01/10/1928 21665 102 0 0.0059 45.4703nnn 25.2449

(0.8496) (0.0074) (0.4487)
S&P 500 31/12/1979 9020 207 0 0.0263nnn 26.3490 17.7093

(0.0039) (0.3892) (0.8545)
NASDAQ 01/10/1985 7363 9 0 0.0114 33.3841 25.6411

(0.7219) (0.1217) (0.4269)
OEX 02/08/1982 8164 28 0 0.0069 11.5033 13.4947

(0.9905) (0.9901) (0.9698)
GSPTSE 31/12/1976 9551 20 0 0.0065 35.9749n 30.2662

(0.9876) (0.0720) (0.2145)

Test 1 – Kolmogorov–Smirnov test on discretisation error.
H0: Discretisation error is uniformly distributed over [0,1].
Test 2 – Ljung–Box test on 25 lags of the discretisation error.
H0: Discretisation error is independently distributed (no autocorrelation).
Test 3 – Ljung–Box test of the discretisation error against 25 lags of the discretisation series
H0: Discretisation error is not correlated with discretised series.
P-values are in parenthesis, n indicates significance at the 10% level, nn at the 5% level and nnn at the 1% level.
The last observation, for all indices, is the 12 December 2014.



Table A2
Descriptive statistics and discretisation tests on exchange rate series.

Series Start date Obs. Zeros =2 Test 1 Test 2 Test 3
[�0.3,0.3] KS Stat. LB Stat. LB Stat.

USD - GBP 04/01/2000 4155 28 0 0.0094 19.2831 16.6553
(0.9928) (0.7833) (0.8939)

USD - EUR 03/01/2000 4156 36 0 0.0152 23.1126 31.4125
(0.7231) (0.5710) (0.1757)

USD - YEN 03/01/2000 4156 32 0 0.0262 36.0190n 26.3771
(0.1129) (0.0713) (0.3877)

USD - CHF 03/01/2000 4156 34 0 0.0154 28.8017 28.7722
(0.7048) (0.2723) (0.2735)

USD - AUD 04/01/2000 4155 41 0 0.0128 24.2354 39.3309nn

(0.8860) (0.5058) (0.0341)
USD - MXN 03/01/2000 4156 19 0 0.0185 20.4445 21.6351

(0.4701) (0.7231) (0.6567)

Test 1 – Kolmogorov–Smirnov test on discretisation error.
H0: Discretisation error is uniformly distributed over [0,1].
Test 2 – Ljung–Box test on 25 lags of the discretisation error.
H0: Discretisation error is independently distributed (no autocorrelation).
Test 3 – Ljung–Box test of the discretisation error against 25 lags of the discretisation series.
H0: Discretisation error is not correlated with discretised series.
P-values in parenthesis, n indicates significance at the 10% level, nn at the 5% level and nnn at the 1% level.
The last observation, for all exchange rate series, is the 15 July 2016.
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Table A3
MCS model parameters (full table).

Gilli and Winker (GW)
σx 0.298 0.200 0.308 0.316 0.330 0.326 0.320 0.327
ρ 0.069 0.250 0.056 0.083 0.114 0.051 0.196 0.096
ϵ 1.953e�4 1.000e�4 1.844e�4 1.586e�4 1.695e�4 6.133e�5 1.801e�4 1.457e�4
id 11 65 75 190 248 327 418 453
N° 10 0 2 2 6 2 1 1
Alfarano, Lux and Wagner (ALW)
ϵ1 15.750 2.250 12.875 17.375 14.875 16.375 14.438 15.813 15.469 17.281
ϵ2 3.875 16.750 2.875 5.375 7.000 4.500 6.938 4.188 3.531 3.469
ρ 3.906e�3 3.578e�3 3.742e�3 3.953e�3 3.812e�3 3.039e�3 3.332e�3 3.637e�3 3.643e�3 3.115e�3
id 54 75 104 112 120 124 177 220 315 494
N 1 5 3 1 7 1 1 1 3 1 1
Franke and Westerhoff (FW)
ϕ 0.348 0.066 0.289 0.162 0.164 0.201 0.346 0.265 0.347 0.211 0.321 0.187 0.285 0.257 0.287
χ 4.225 1.509 1.338 0.925 1.355 3.211 3.967 2.945 1.312 3.220 3.804 0.384 3.752 2.377 4.027
σf 0.177 0.111 0.275 0.570 0.816 0.926 0.346 0.114 1.104 1.180 0.841 0.146 0.349 0.901 1.065
σc 5.063 4.867 5.805 1.859 5.434 5.512 5.473 5.600 5.990 4.779 5.639 1.557 4.721 2.006 5.580
α0 �0.128 �0.102 �0.230 �0.098 �0.243 �0.165 �0.151 �0.175 �0.239 �0.236 �0.099 �0.077 �0.117 �0.137 �0.213
αx 1.316 1.222 0.706 1.112 1.464 0.667 1.198 0.554 0.538 1.085 1.132 0.835 1.218 1.124 0.359
αm 13.555 12.617 12.344 15.000 14.785 12.168 13.301 11.338 11.533 10.049 11.143 11.182 10.420 11.943 14.893
id 28 37 88 109 145 243 246 279 284 288 320 353 432 451 470
N 1 1 2 1 1 1 1 1 1 4 1 3 1 2 0 4

Bold indicates the model id corresponding to the calibrations of the original works.
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Table A4
Number of iterations required for convergence of ARCH models estimations.

Type ARCH GARCH TGARCH EGARCH PGARCH

Lags 5 1 2 3 1 2 3 1 2 3 1 2 3
id 1 2 3 4 5 6 7 8 9 10 11 12 13

AOI 85 89 104 208 39 31 74 175 187 189 76 111 242
NIKKEI 31 44 75 104 29 35 72 48 67 54 51 43 447
KOSPI 11 42 82 73 48 67 54 64 46 37 48 42 232
ST 30 40 32 31 51 50 182 60 52 173 50 81 128
HS 23 26 24 47 21 48 39 94 100 53 29 114 –

NIFTY 17 17 18 27 14 18 46 18 24 170 20 98 198
DAX 20 55 68 38 38 77 130 41 102 10 50 – 196
CAC 11 19 28 80 22 29 43 27 26 80 29 41 61
FTSE 9 12 53 32 12 37 27 22 36 31 13 52 164
IBEX 12 13 30 22 15 20 60 21 113 45 19 35 55
AEX 12 13 38 37 21 24 24 19 34 17 17 32
STOXX 16 45 59 60 29 34 192 36 10 36 52 59 –

IPC 11 13 22 34 14 16 36 16 11 27 15 25 41
DJ 16 24 39 76 19 33 34 44 101 75 31 61 291
S&P 500 13 11 20 17 12 23 34 24 50 45 16 44 58
NASDAQ 13 22 35 74 21 23 31 29 16 15 22 38 77
OEX 25 35 86 75 25 27 9 40 61 32 30 28 33
GSPTSE 18 28 68 46 38 24 36 42 45 124 41 87 67

USD - GBP 23 30 29 35 11 40 53 33 71 60 67 94 134
USD - EUR 11 12 14 192 16 32 87 21 11 81 23 – 143
USD - YEN 13 13 27 22 17 17 22 15 23 91 20 37 57
USD - CHF 83 138 235 139 123 – 16 117 111 242 273 22 26
USD - AUD 19 14 25 23 18 32 52 29 30 37 21 40 –

USD - MXN 17 13 11 36 14 21 – 22 26 28 18 34 30

“–” indicates that the estimation did not converge after 500 iterations.
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Table A5
ARCH models estimation for the Frankfurt Stock Exchange DAX index (DAX).

Type ARCH GARCH TGARCH EGARCH PGARCH

Lags 5 1 2 3 1 2 3 1 2 3 1 2 3
id 1 2 3 4 5 6 7 8 9 10 11 12 13

c 0.0696nnn 0.0651nnn 0.0621nnn 0.0647nnn 0.0344nn 0.0370nnn 0.0388nnn 0.0304nn 0.0304nn 0.0266n 0.0281n 0.0284nn 0.0320nn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0184) (0.0085) (0.0052) (0.0329) (0.0324) (0.0589) (0.0500) (0.0438) (0.0243)
a1 0.0058 �0.0009 0.0001 0.0004 0.0030 0.0040 0.0075 �0.0003 �0.0041 �0.0006 0.0016 �0.0022 0.0024

(0.6449) (0.9519) (0.9959) (0.9732) (0.8367) (0.7789) (0.5801) (0.9817) (0.7296) (0.9580) (0.9082) (0.8719) (0.8647)
a2 �0.0071 0.0020 0.0013 0.0013 0.0109 0.0150 0.0132 0.0029 �0.0047 �0.0001 0.0065 0.0001 0.0020

(0.5790) (0.8846) (0.9243) (0.9224) (0.4145) (0.2516) (0.3385) (0.8212) (0.7030) (0.9952) (0.6213) (0.9955) (0.8745)

σ0 0.5532nnn 0.0313nnn 0.0375nnn 0.0003nnn 0.0334nnn 0.0003nnn 0.0004nnn �0.0838nnn �0.0537nnn �0.0328nnn 0.0290nnn 0.0269nn 0.0153nnn

(0.0000) (0.0000) (0.0000) (0.0050) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0496) (0.0000)
α1 0.0459nnn 0.0824nnn 0.0190nn 0.0266nnn 0.0142nnn �0.0017 �0.0308nnn 0.1199nnn �0.0140 �0.0294 0.0662nnn 0.0500nn 0.0496

(0.0000) (0.0000) (0.0179) (0.0000) (0.0005) (0.7139) (0.0000) (0.0000) (0.4561) (0.1334) (0.0000) (0.0289) (0.3878)
α2 0.1917nnn 0.0727nnn 0.0317nnn 0.0031 0.0763nnn �0.1072 0.1705nnn 0.0154 �0.0517nnn

(0.0000) (0.0004) (0.0000) (0.4954) (0.0000) (0.0000) (0.0000) (0.8533) (0.0058)
α3 0.1879nnn �0.0570nnn �0.0437nnn �0.0955nnn 0.0413nnn

(0.0000) (0.0000) (0.0000) (0.0003) (0.0003)
α4 0.1642nnn

(0.0000)
α5 0.1599nnn

(0.0000)
β1 0.9006nnn 1.0769nnn 2.1913nnn 0.9101nnn 1.8660nnn 1.5825nnn 0.9799nnn 1.4357nnn 1.9144nnn 0.9234nnn 1.1426nnn 2.0695nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0048) (0.0000)
β2 �0.1885 �1.5170nnn �0.8676nnn �0.3471nnn �0.4480nnn �1.2042nnn �0.2175 �1.7604nnn

(0.2082) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.5543) (0.0000)
β3 0.3242nnn �0.2373nnn 0.2838nnn 0.6461nnn

(0.0000) (0.0000) (0.0018) (0.0000)
γ1 0.1099nnn 0.1608nnn 0.1387nnn �0.0801nnn �0.1983nnn �0.1701nnn 0.6707nnn 1.0000 1.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1667) (0.6159)
γ2 �0.1608nnn �0.0767nnn 0.1616nnn 0.1702nnn �1.0000 0.6296n

(0.0000) (0.0086) (0.0000) (0.0000) (0.9104) (0.0779)
γ3 �0.0624nnn �0.0201 0.1324

(0.0002) (0.5014) (0.5727)
δ 1.1790nnn 1.0886nnn 1.1300nnn

(0.0000) (0.0000) (0.0000)

AIC 3.2651 3.2272 3.2227 3.2188 3.2069 3.1922 3.1900 3.2060 3.1939 3.1914 3.2009 3.1982 3.1937
BIC 3.2750 3.2338 3.2315 3.2299 3.2146 3.2032 3.2043 3.2137 3.2049 3.2057 3.2097 3.2103 3.2091

P-values in parenthesis, n indicates significance at the 10% level, nn at the 5% level and nnn at the 1% level.
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Table A6
ARCH models estimation for the New York Stock Exchange Dow Jones Industrial Average (DJ).

Type ARCH GARCH TGARCH EGARCH PGARCH

Lags 5 1 2 3 1 2 3 1 2 3 1 2 3
id 1 2 3 4 5 6 7 8 9 10 11 12 13

c 0.0542nnn 0.0435nnn 0.0453nnn 0.0451nnn 0.0229nnn 0.0253nnn 0.0243nnn 0.0215nnn 0.0216nnn 0.0211nnn 0.0206nnn 0.0214nnn 0.0251nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0002) (0.0003) (0.0002) (0.0000)
a1 0.0917nnn 0.0856nnn 0.0880nnn 0.0863nnn 0.0903nnn 0.0884nnn 0.0884nnn 0.0873nnn 0.0871nnn 0.0879nnn 0.0894nnn 0.0866nnn 0.0876nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
a2 �0.0275nnn �0.0233nnn �0.0248nnn �0.0228nnn �0.0145nn �0.0193nnn �0.0192nnn �0.0125n �0.0119n �0.0125n �0.0129n �0.0149nn �0.0168nn

(0.0000) (0.0009) (0.0004) (0.0011) (0.0404) (0.0061) (0.0065) (0.0705) (0.0886) (0.0734) (0.0683) (0.0376) (0.0167)

σ0 0.2810nnn 0.0101nnn 0.0001nnn 0.0206nnn 0.0117nnn 0.0003nnn 0.0003nnn �0.1124nnn �0.2262nnn �0.3894nnn 0.0128nnn 0.0140nnn 0.0003
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4937)

α1 0.1303nnn 0.0824nnn 0.0947nnn 0.0833nnn 0.0281nnn 0.0040 �0.0009 0.1445nnn 0.1441nnn 0.1462nnn 0.0741nnn 0.0514 0.0734nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1516) (0.8380) (0.0000) (0.0000) (0.0000) (0.0000) (0.8878) (0.0000)
α2 0.1502nnn �0.0934nnn 0.0096nnn �0.0013 0.0098 �0.1072 0.2095nnn 0.0142 �0.0671

(0.0000) (0.0000) (0.0000) (0.6471) (0.2585) (0.0000) (0.0000) (0.9904) (0.6019)
α3 0.1708nnn 0.0827nnn �0.0063 0.1454nnn �0.0004

(0.0000) (0.0000) (0.1947) (0.0000) (0.9994)
α4 0.1855nnn

(0.0000)
α5 0.1656nnn

(0.0000)
β1 0.9103nnn 1.8547nnn 0.7938nnn 0.9149nnn 1.8166nnn 1.8017nnn 0.9867nnn �0.0098nnn �0.4477nnn 0.9219nnn 0.8167nnn 1.8082

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.2256)
β2 �0.8562nnn �0.8929nnn �0.8203nnn �0.7912nnn 0.9830nnn 0.4153nnn 0.0967 �0.7831

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.5759) (0.7754)
β3 0.9094nnn �0.0141nnn 0.9865nnn �0.0280

(0.0000) (0.0000) (0.0000) (0.9822)
γ1 0.0918nnn 0.1611nnn 0.1623nnn �0.0699nnn �0.0692nnn �0.0711nnn 0.4472nnn 1.0000 0.8970nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.9194) (0.0000)
γ2 �0.1596nnn �0.1605nnn �0.0716nnn �0.1019nnn �1.0000 0.9982

(0.0000) (0.0000) (0.0000) (0.0000) (0.9931) (0.3406)
γ3 �0.0005 �0.0704nnn �0.9966

(0.8052) (0.0000) (0.9996)
δ 1.4489nnn 1.4304nnn 1.2790nnn

(0.0000) (0.0000) (0.0000)

AIC 2.6517 2.5873 2.5818 2.5852 2.5704 2.5564 2.5566 2.5717 2.5718 2.5712 2.5681 2.5667 2.5526
BIC 2.6551 2.5895 2.5847 2.5889 2.5730 2.5601 2.5614 2.5743 2.5755 2.5760 2.5710 2.5708 2.5577

P-values in parenthesis, n indicates significance at the 10% level, nn at the 5% level and nnn at the 1% level.
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Table A7
ARCH models estimation for the Japanese Yen per US Dollar exchange rate (USD - YEN).

Type ARCH GARCH TGARCH EGARCH PGARCH

Lags 5 1 2 3 1 2 3 1 2 3 1 2 3
id 1 2 3 4 5 6 7 8 9 10 11 12 13

c 0.0062 0.0084 0.0084 0.0097 0.0052 0.0055 0.0067 0.0040 0.0078 0.0050 0.0038 0.0041 0.0054
(0.5101) (0.3300) (0.3363) (0.2636) (0.5633) (0.5445) (0.4601) (0.6406) (0.3479) (0.5597) (0.6576) (0.6405) (0.5305)

a1 �0.0161 �0.0152 �0.0153 �0.0142 �0.0144 �0.0140 �0.0126 �0.0157 �0.0185 �0.0151 �0.0162 �0.0162 �0.0153
(0.3437) (0.3425) (0.3388) (0.4095) (0.3741) (0.3797) (0.4628) (0.3218) (0.2272) (0.3594) (0.3101) (0.3056) (0.3504)

a2 �0.0087 �0.0129 �0.0129 �0.0111 �0.0123 �0.0115 �0.0150 �0.0095 �0.0130 �0.0152 �0.0096 �0.0091 �0.0118
(0.6153) (0.4178) (0.4251) (0.5098) (0.4418) (0.4813) (0.3829) (0.5432) (0.3957) (0.3111) (0.5420) (0.5690) (0.4863)

σ0 0.3046nnn 0.0045nnn 0.0091nnn 0.0056nnn 0.0057nnn 0.0105nnn 0.0073nnn �0.0923nnn �0.1830nnn �0.0122nnn 0.0098nnn 0.0183nnn 0.0161nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α1 0.0778nnn 0.0352nnn 0.0350nnn 0.0653nnn 0.0263nnn 0.0197n 0.0399nnn 0.1023nnn 0.1121nnn 0.1299nnn 0.0516nnn 0.0469nnn 0.0605nnn

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0594) (0.0026) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α2 0.0950nnn 0.0353nnn �0.0343nn 0.0280nn �0.0127 �0.1072 �0.2264nnn 0.0492nnn 0.0349nn

(0.0000) (0.0000) (0.0461) (0.0110) (0.5287) (0.0000) (0.0000) (0.0005) (0.0333)
α3 0.0173 0.0112 0.0047 0.1100nnn �0.0116

(0.1000) (0.3384) (0.7230) (0.0000) (0.3507)
α4 0.0253nn

(0.0104)
α5 0.0658nnn

(0.0000)
β1 0.9544nnn �0.0342 1.3689nnn 0.9494nnn 0.1539 1.1167nnn 0.9832nnn �0.0129nnn 2.2813nnn 0.9449nnn 0.1126 0.9230nnn

(0.0000) (0.5821) (0.0000) (0.0000) (0.6659) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.6542) (0.0000)
β2 0.9430nnn �1.1723nnn 0.7535nn �0.7530nnn 0.9804nnn �1.6956nnn 0.7848nnn �0.7487nnn

(0.0000) (0.0000) (0.0260) (0.0000) (0.0000) (0.0000) (0.0009) (0.0000)
β3 0.7483nnn 0.5728nnn 0.4121nnn 0.7367nnn

(0.0000) (0.0000) (0.0000) (0.0000)
γ1 0.0213nnn 0.0233nn 0.0455nnn �0.0258nnn �0.0212nnn �0.0747nnn 0.2611nnn 0.2357nn 0.4018nnn

(0.0000) (0.0347) (0.0082) (0.0000) (0.0000) (0.0000) (0.0000) (0.0432) (0.0008)
γ2 0.0162 0.0252 �0.0250nnn 0.1090nnn 0.2936nnn 0.1925

(0.2523) (0.3911) (0.0000) (0.0001) (0.0083) (0.4334)
γ3 �0.0427nn �0.0368nn 0.7736

(0.0278) (0.0136) (0.3685)
δ 1.1003nnn 1.0964nnn 1.0487nnn

(0.0000) (0.0000) (0.0000)

AIC 1.9416 1.8924 1.8934 1.8896 1.8910 1.8923 1.8878 1.8872 1.8818 1.8839 1.8871 1.8884 1.8838
BIC 1.9553 1.9016 1.9055 1.9049 1.9016 1.9075 1.9076 1.8978 1.8970 1.9037 1.8993 1.9052 1.9052

P-values in parenthesis, n indicates significance at the 10% level, nn at the 5% level and nnn at the 1% level.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jedc.
2016.10.005.
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