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The Rise and Fall of R&D Networks

Mario V. Tomasello∗, Mauro Napoletano†, Antonios Garas‡and Frank Schweitzer§

August 30, 2013

Abstract

Drawing on a large database of publicly announced R&D alliances, we track the evolution
of R&D networks in a large number of economic sectors over a long time period (1986-
2009). Our main goal is to evaluate temporal and sectoral robustness of the main statistical
properties of empirical R&D networks. By studying a large set of indicators, we provide
a more complete description of these networks with respect to the existing literature. We
find that most network properties are invariant across sectors. In addition, they do not
change when alliances are considered independently of the sectors to which partners belong.
Moreover, we find that many properties of R&D networks are characterized by a rise-and-
fall dynamics with a peak in the mid-nineties. Finally, we show that such properties of
empirical R&D networks support predictions of the recent theoretical literature on R&D
network formation.

1 Introduction

This work investigates the properties of empirical R&D networks across many sectors and over

time. In several industries, and especially in those with rapid technological growth, innovation

relies on general and abstract knowledge often built on scientific research (Powell et al., 1996).

This has allowed for a division of innovative labor and fostered collaboration across firms (Arora

and Gambardella, 1994a,b). Accordingly, the last three decades have witnessed a significant

growth in the number of formal and informal R&D collaborations (e.g. Hagedoorn, 2002; Powell

et al., 2005).

Several works have tried to shed light on the structural properties of R&D networks. These

empirical studies have shown that R&D networks are typically sparse and characterized by
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heavily asymmetric degree distributions (e.g. Hanaki et al., 2010; Powell et al., 2005; Rosenkopf

and Schilling, 2007). Furthermore, R&D networks display the “small world” property (e.g.

Fleming et al., 2007; Fleming and Marx, 2006). In other words, they are characterized by

short average path length and high clustering (Watts and Strogatz, 1998). At the same time, it

has been observed that some R&D network properties may change over time. One prominent

example is the rise and fall of small world properties that Gulati et al. (2012) found in the R&D

network of the global computer industry.

The above empirical studies have greatly contributed to the understanding of empirically

observed R&D networks. However, they have often focused only on a small number of industries

or have rarely considered the properties of the networks at different time periods. Finally, they

have focused on a limited set of network measures (e.g. size, degree heterogeneity, small world

property).

The increasing importance of R&D collaborations for industrial innovation has also origi-

nated theoretical research on R&D networks. In these theoretical works, R&D collaboration al-

lows innovation either via resource sharing (Goyal and Joshi, 2003; Goyal and Moraga-Gonzalez,

2001; Westbrock, 2010) or via the recombination of firm’s knowledge stock with those of its part-

ners (Cowan and Jonard, 2004; König et al., 2011, 2012). One key prediction of these models is

that – under non-negligible costs of collaboration – R&D networks should be organized as core-

periphery architectures, i.e. they should display a core of densely connected firms, in turn linked

with a periphery of firms having few alliances among them. Nevertheless, to the best of our

knowledge no empirical study has tried so far to confirm or deny the presence of core-periphery

architectures in R&D networks.

Our work contributes to the foregoing empirical and theoretical literature along several

dimensions. First, we analyze the R&D networks in a large number of manufacturing and service

sectors. After analyzing the pooled R&D network, i.e. the network containing all alliances

independently of the sectors to which the partners belong, we study a series of R&D networks

for several industrial sectors at a 3-digit SIC level. Via this disaggregated analysis, we are able

to check whether the network properties that have been analyzed by the current literature for

sectors like computers (e.g. Hanaki et al., 2010) or pharmaceuticals (e.g. Powell et al., 2005) are

robust across different sectors of activity. In addition, by comparing the properties at the pooled

and at the sectoral levels, we are able to check for the presence of universal properties of R&D

networks that hold irrespectively of the scale of aggregation at which they are observed. Second,

we perform a longitudinal analysis of empirical R&D networks. In particular, we consider

the network dynamics in the period from 1986 to 2009. This procedure allows us to check

whether network properties are robust over time, or if instead they exhibit different trends

in different time-periods. Third, we investigate a broad set of network properties. We start
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our analysis by studying the basic network measures that have so far been considered in the

empirical literature (size, degree heterogeneity, small world property). In addition, we study

measures related to more complex features of the network, such as assortativity (i.e. the presence

of positive correlation in the number of alliances among firms, see also Newman, 2003), the

existence of communities (e.g. Newman and Girvan, 2004) as well as the presence of core-

periphery architectures. This way, we extend the existing knowledge on R&D networks by adding

new stylized facts to the already existing ones. Furthermore, the analysis of core-periphery

architectures allows a fresh test of the predictions of the recent theoretical models on R&D

networks.

We find that both the pooled and the sectoral R&D networks exhibit the same patterns for

a wide set of network properties, like the fraction of firms in the largest connected component,

the shape of degree distributions or the presence of small world properties. In addition, both

the pooled and the sectoral R&D networks are organized into core-periphery architectures of

the type predicted by the theoretical literature on R&D networks (e.g. König et al., 2012). In

contrast, pooled and sectoral networks differ with respect to the presence of assortativity. In the

pooled R&D network firms with many alliances tend to collaborate with partners involved in

many alliances as well, whilst the opposite is found at the sectoral level, where firms with many

alliances tend to collaborate with firms having fewer alliances. Furthermore, we find that most

of the above properties display a rise-and-fall dynamics over time. For instance, both network

size and connectivity of the pooled network have first increased over time, reaching a peak in the

period 1994-1997, and then they have significantly decreased until the end of our observation

period. Interestingly, the above non-monotonic dynamics is very pervasive, as we observe it in

most of the sectoral R&D networks we study. More precisely, two distinct phases can be found

both in the pooled and in the sectoral R&D network dynamics. The first phase (from 1990 to

2001) is characterized by a significant growth in the size of the network components wherein

firms are directly or indirectly connected. As we show in Section 3, this dynamics was driven

by a growth in the number of firms participating in R&D alliances rather than by the change in

the number of alliances among firms already involved in previous collaborations. In the second

phase (from 2001 to 2009) this trend reverses. The network breaks down into several small

connected components, involving firms with few alliances.

The above results have several implications for the literature. First, the existence of

network properties that are invariant with respect to the scale of aggregation is analogous to

previous findings in the industrial dynamics literature (e.g. Bottazzi and Secchi, 2003; Lee et al.,

1998) and favors the idea that some of the laws governing the evolution of R&D networks

can be analyzed independently of the characteristics of the sector to which the firms belong.

Second, the finding that both the pooled and the sectoral R&D networks are characterized

3



by core-periphery structures confirms the predictions of the recent theoretical literature on

R&D networks. Finally, our results show that the rise-and-fall dynamics, which has so far

been emphasized only in relation to network size and small worlds (see Gulati et al., 2012),

is also displayed by more sophisticated topological network properties (e.g. assortativity, core-

periphery and nested architectures). In turn, the rise-and-fall dynamics could be explained by

the dynamics of knowledge recombination associated with the R&D networks (see Section 8 for

more discussion).

The paper is organized as follows. Section 2 describes the data and the methodology

used to build the networks of R&D alliances. In Section 3 we discuss results about the basic

properties of R&D networks, such as network size, network density and the emergence of a giant

component. Section 4 analyzes the characteristics of the degree distributions. In Sections 5 and

6 we study more sophisticated network properties, such as assortativity, and the presence of

small worlds and communities in the network. Section 7 studies the presence of core-periphery

architectures. In Section 8 we discuss the implications of our results in light of the existing

theoretical and empirical literature on R&D networks. Finally, Section 9 concludes.

2 Data and Methodology

A R&D network is a representation of the research and development alliances occurring between

firms in one or more industrial sectors in a given period of time. Every network consists of a set

of nodes and links connecting pairs of nodes. In our representation, each node of the network

is a firm and every link represents a R&D alliance between two firms. By R&D alliance, we

refer to an event of partnership between two firms, that can span from formal joint ventures to

more informal research agreements, specifically aimed at research and development purposes.

To detect such events, we use the SDC Platinum database, provided by Thomson Reuters, that

reports all publicly announced alliances, from 1984 to 2009, between several kinds of economic

actors (including manufacturing firms, investors, banks and universities). We then select all the

alliances characterized by the “R&D” flag; after applying this filter, a total of 14829 alliances

are listed in the dataset.

Information in the SDC dataset is gathered only from announcements in public sources,

such as press releases or journal articles. Nevertheless, despite the bias that could be introduced

by such a collection procedure, Schilling (2009) shows that the SDC Thomson dataset provides

a consistent picture with respect to alternative alliance databases (e.g. CORE and MERIT-

CATI) in terms of alliance activity over time, geographical location of companies and industry

composition.

Because the SDC Platinum dataset does not have a unique identifier for each firm, all
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the associations between alliances and firms (i.e. the construction of the network itself) are

based only on the firm names reported in the dataset. Thus, it could happen that two or

more entries are listed with different names, because they appear in two distinct alliance events,

even though they correspond to the same firm. For this reason, we check all firm names and

control for all legal extensions (e.g. “ltd”, “inc”, etc.) and other recurrent keywords (e.g. “bio”,

“tech”, “pharma”, “lab”, etc.) that could affect the matching between entries referring to the

same firm. We decide to keep as separated entities the subsidiaries of the same firm located in

different countries. The raw dataset contains a total of 16313 firms, which are reduced to 14561

after running such an extensive standardization procedure.

In our network representation, we draw a link connecting two nodes every time an alliance

between the two corresponding firms is announced in the dataset. An alliance is associated with

an undirected link, as we do not have any information about the initiator of the alliance. When

an alliance involves more than two firms (consortium), all the involved firms are connected in

pairs, resulting into a fully connected clique. Following this procedure, the 14829 alliance events

listed in the dataset result in a total of 21572 links. Similarly to Rosenkopf and Schilling (2007),

the R&D network we consider in our study is unipartite, as we only have one set of actors (“the

firms”), whose elements may be connected – or not – by publicly announced alliances.1

Multiple links between the same nodes are in principle allowed (two firms can have more

than one alliance on different projects). Nevertheless, as we aim at studying the connections

between firms, and not the number of alliances a firm is involved in, we discard this information

and use unweighted links in our network representation. For this reason, we define the degree

of a node as the number of other nodes to which it is linked, i.e. the number of partners that a

firm has – not the number of alliances. Furthermore, a firm appears in the R&D network only

if it is involved in at least one alliance. Our study is focused exclusively on the embeddedness

of firms into an alliance network. For this reason, isolated nodes are not part of our network

representation.

Both the links and the nodes of the R&D network are characterized by an entry/exit

dynamics. Alliances between firms have a finite duration (see Deeds and Hill, 1999; Phelps,

2003). This causes some firms to disappear from the network, after they no longer participate in

any alliance. Likewise, many new firms that were not listed in any previous alliance may enter

the network at the beginning of a new year. Our longitudinal study clearly requires precise

temporal information about the formation and the deletion of alliances. The SDC Platinum

dataset contains the beginning date of every alliance, but there is no information about any

1Our work differs from previous empirical studies (e.g. Cantner and Graf, 2006; Hanaki et al., 2010; Lissoni
et al., 2013) which construct the network through the association of firms with patents and/or inventors. Those
studies use patent data to build the network and associate elements in the set “firms” to the elements in the set
“patents”. This way, the network they obtain is bipartite.
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of the ending dates (firms do usually not organize press releases to announce the end of an

alliance). We are thus forced to make some assumptions about the alliance durations. We

start by drawing the duration of every alliance from a normal distribution with mean value

from 1 to 5 years and standard deviation from 1 to 5 years, and we find that all our results

remain qualitatively unchanged by changing the mean value and the standard deviation within

these ranges. More precisely, the variation of the standard deviation has nearly no influence

on the patterns exhibited by of all measures we compute on the networks. The variation of

the mean alliance duration changes the absolute values of the network indicators, but it does

not affect their time-evolution and peak positions. Given the strong robustness of the R&D

network to the variation of alliance lengths, we take a conservative approach and assume a fixed

3-year length for every partnership, consistently with previous empirical work (e.g. Deeds and

Hill, 1999; Phelps, 2003; Rosenkopf and Schilling, 2007). More precisely, we link two nodes

when an alliance between the corresponding firms occurs and we delete this link 3 years after

its formation. In this way, we are able to build 26 snapshots of the R&D network – one for

every year – from 1986 to 2009. From now on we call the network containing all companies,

irrespective of their industrial sector, the pooled R&D network.

Every firm listed in the SDC Platinum dataset is associated with its SIC (Standard Indus-

trial Classification), a US-government code system for classifying industrial sectors. This allows

us to build the sectoral R&D networks for the several sectors that we identify in the dataset. A

sectoral R&D network centered around a given sector contains only alliances in which at least

one of the partners has a three-digit SIC code matching the selected sector (see also Rosenkopf

and Schilling, 2007, for a similar approach). The rules for link deletion are the same as in the

pooled R&D network. More precisely, we select for our study the 30 largest industrial sectors,

in terms of number of firms engaged in alliances in 1995 (the year in which the pooled R&D

network reaches its maximum size). This list includes manufacturing and service sectors. It has

to be noticed that the latter includes also sectors like “laboratories and testing companies” and

“universities”. Table 1 provides the list of the different sectors we consider in our study.

We study both the pooled R&D network and the sectoral R&D networks by computing

a set of network indicators along the whole observation period. All the results are presented

below. We group our analysis into five sections: basic network statistics, heterogeneity in alliance

behavior, assortativity, small world and communities, core-periphery structures.

3 Basic Network Statistics

Fig. 1 shows six snapshots of the pooled R&D network. The plots are produced using the

library igraph for the R package, and the networks are displayed using the Fruchterman-Reingold
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algorithm (cf. Fruchterman and Reingold, 1991). This is a force-based algorithm for network

visualization which positions the nodes of a graph in a two-dimensional space so that all the

edges are of similar length and there are as few crossing edges as possible. The result is that the

most interconnected nodes are displayed close to each other in the two-dimensional plot. The ten

largest industrial sectors are depicted with different colors. The figure shows that two clusters

always dominate the pooled R&D network: a cluster centered on pharmaceutical companies and

a cluster centered on ICT -related companies.

1989 1993 1997

2001 2005

Pharmaceuticals
Computer Software
R&D, Lab and Testing
Electronic Components
Computer Hardware
Medical Supplies
Communications Equipment
Investment Companies
Telephone Communications
Universities

Figure 1: Pooled R&D network snapshots in 1989, 1993, 1997, 2001 and 2005. We plotted – in different colours
– only the ten largest sectors, in order to ease visualisation.

Fig. 1 denotes the presence of different phases in the evolution of the R&D network. More

precisely, the plots suggest the presence of a significant network growth until 1997, and a reversal

of this trend in the last periods of our sample. To shed more light on this phenomenon, we report

in Table 1 the network size, in terms of number of firms taking part in the R&D network – i.e.

companies involved in at least one alliance. The observation period 1986-2009 is divided into

six sub-periods of 4 years each and we average the network size within each sub-period. Table
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1 confirms the presence of a rise-and-fall dynamics in the pooled network. More precisely, the

number of companies involved in R&D alliances increases to a peak in the mid-nineties and

then shrinks again, both at the pooled and the sectoral level (see Table 1). In each sector, the

number of firms involved in R&D alliances has a peak in the years 1994-1997. Interestingly, only

the Pharmaceutical sector, besides the peak in the period 1994-1997, has an additional peak of

slightly larger size in the period 2006-2009. The presence of a peak in the period 1994-1997 is a

characteristic of many further network measures considered in this study and leads us to define

that period as the “golden age” of R&D networks.

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 280 2515 4918 2626 2219 1829

Manufacturing Sectors

Pharmaceuticals (283) 77 645 935 682 825 949
Computer Hardware (357) 51 385 744 202 92 29
Electronic Components (367) 54 328 581 253 222 165
Communications Equipment (366) 17 207 475 181 113 60
Medical Supplies (384) 10 164 280 122 119 123
Laboratory Apparatus (382) 10 139 243 116 94 87
Motor Vehicles (371) 6 108 190 97 85 78
Aircrafts and parts (372) 8 83 136 60 40 26
Inorganic Chemicals (281) 15 108 152 50 45 31
Household Audio-Video (365) 9 110 164 90 65 30
Plastics (282) 11 97 121 44 36 18
Electrical Machinery NEC (369) 2 54 96 26 24 37
Special Machinery (355) 2 33 82 34 17 11
Crude Oil and Gas (131) 3 42 72 62 35 27
Naut./Aeronaut. Navigation (381) 1 49 82 21 16 12
Organic Chemicals (286) 5 44 60 18 23 18

Service Sectors

Computer Software (737) 69 560 1488 549 284 122
R&D, Lab and Testing (873) 26 477 848 534 596 500
Universities (822) 3 192 374 166 152 83
Telephone Communications (481) 12 184 350 132 82 22
Investment Companies (679) 14 138 298 232 207 125
Professional Equipment Wholesale (504) 4 64 142 26 8 8
Engineer.,Architec.,Survey (871) 2 74 129 62 26 16
Radio and TV Broadcasting (483) 2 26 88 22 7 4
Electric Services (491) NaN 50 78 38 26 15
Electrical Goods Wholesale (506) NaN 26 84 19 10 8
Cable and TV Services (484) NaN 18 78 8 6 3
Motion Picture Production (781) NaN 15 91 14 4 1
Business Services (738) 1 15 66 37 30 5
Management,Consulting,PR (874) 1 28 96 61 64 28

Table 1: Network size for the pooled and the sectoral R&D networks (SIC codes are in brackets). The values are
averages within each sub-period. Note: missing values refer to sectors with not enough observations.

A deeper investigation shows that the growth in size of the R&D network in the mid-

nineties corresponds to a decrease in its density (defined as the number of existing links divided

by the number of all possible links in the network). This is shown in Fig. 2, where the density of
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the pooled R&D network, (and its mid-nineties decline), is compared to the network size (and

its mid-nineties peak). This means that the expansion of the R&D network was not generated

by an increase of the alliances among the firms that were already part of the network. Instead,

it was mainly the result of new alliances created by entrant firms. After the “golden age”, the

shrinking of the network is associated with a decrease in the number of nodes. This fall in the

number of firms participating into alliances has however no effect on the density of the network,

which remains constant until the end of the observation period (cf. Fig. 2).
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Figure 2: Time-evolution of size (solid line, left axis) and density (dashed line, right axis) of the pooled R&D
network.

Next, we compute the fraction of nodes belonging to the largest connected component of

the network. A connected component is defined as a set of nodes which are connected to each

other by at least one path (i.e. a sequence of links). We refer to the largest connected component

as the giant component of the network. The giant component size to the overall network size

ratio (or giant component fraction) is a rough indicator of the network connectedness. Our

results are reported in Table 2. This measure has been computed for every year from 1986 to

2009 and then averaged within six sub-periods of 4 years each. Similarly to the network size, the

giant component fraction displays a non-monotonic trend at the pooled level, reaching a peak in

the mid-nineties and then shrinking again. The emergence of a giant component in the network

is of particular interest, as different theoretical works (e.g. Goyal and Joshi, 2003; König et al.,

2012) have stressed the importance of the relation between high network connectedness and

efficiency in terms of aggregate profits. We also find that the emergence of such non-monotonic

dynamics in the giant component is very robust to sectoral disaggregation. Indeed, we observe
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it in almost all the sub-networks representing the different industrial sectors (see Table 2).

More precisely, 19 out of the 30 sectoral R&D networks show a giant component peak either in

the 1990-1993 or in the 1994-1997 period. The sectors that do not have a peak show a more

volatile evolution of their giant component. Among these, only 4 are manufacturing industries

(Inorganic Chemicals, Household Audio-Video, Special Machinery, Organic Chemicals), while

the other sectors are related to services or sales.

Furthermore, Fig. 3 shows the time-evolution of the number of all connected components

of the network and of their average size.2 Both indicators have a peak in the years around 1995

(i.e. the ones corresponding to the 1994-1997 sub-period). This is indicative of the tendency of

firms to form more (and larger) connected components until 1995. Afterwards, a fragmentation

process takes place. The average size of network components starts to decrease; the number of

the components remains stable for two more years, but eventually declines as well (cf. Fig. 3).

As a result, the large R&D network of the “golden age” period 1994-1997, dominated by a giant

component, is replaced by a network with less (and smaller) components. The same results

hold for sectoral R&D networks.3 Fig. 1 visualizes this dynamics: the pooled R&D network is

characterized by the presence of a giant component that expands until 1997 and subsequently

leaves space to a growing periphery of disconnected dyads (pairs of allied firms).

The above analysis reveals the existence of patterns that are invariant to the scale of

aggregation or the sector where they are observed. Namely, both the pooled and sectoral R&D

networks experience a robust growth in both size and connectedness until 1997. In particular,

the years between 1994 and 1997 (the “golden age” of R&D networks), witness not only a higher

number of alliances, but also the emergence of a significantly large giant component. This robust

growth is then replaced by a decline phase, characterized by both a reduction in the number of

alliances and the breaking-up of the network into smaller components. In the next section, we

will go into more detail on how these alliances are organized, by studying the degree distributions

of the pooled and sectoral R&D networks.

2The distribution of the size components is extremely right skewed and fat-tailed. This is due to the fact that
one or few large components co-exist with many disconnected pairs of connected firms. Even though the aritmetic
mean is not entirely meaningful or predictive for heavy-tailed distributions, we still report it not only because it
is fully computable (we have finite size networks), but also because it gives an idea about the evolution of the
component sizes over the period we study. Same remarks apply to the analysis of the average degree that we
discuss in Section 4.

3Because of space constraints the sectoral plots are not shown. However, they are available from the authors
upon request.

10



1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.10 0.53 0.53 0.33 0.26 0.20

Manufacturing Sectors

Pharmaceuticals (283) 0.08 0.58 0.68 0.49 0.36 0.32
Computer Hardware (357) 0.27 0.59 0.67 0.51 0.28 0.13
Electronic Components (367) 0.15 0.53 0.61 0.49 0.38 0.13
Communications Equipment (366) 0.18 0.42 0.55 0.25 0.25 0.15
Medical Supplies (384) 0.21 0.04 0.05 0.05 0.06 0.05
Laboratory Apparatus (382) 0.26 0.15 0.13 0.08 0.08 0.07
Motor Vehicles (371) 0.79 0.52 0.39 0.15 0.21 0.10
Aircrafts and parts (372) 0.65 0.47 0.38 0.23 0.20 0.16
Inorganic Chemicals (281) 0.30 0.26 0.17 0.15 0.12 0.29
Household Audio-Video (365) 0.61 0.57 0.61 0.63 0.60 0.28
Plastics (282) 0.23 0.25 0.20 0.23 0.15 0.19
Electrical Machinery NEC (369) 1.00 0.36 0.22 0.20 0.15 0.11
Special Machinery (355) 0.88 0.25 0.13 0.19 0.27 0.26
Crude Oil and Gas (131) 0.67 0.15 0.14 0.10 0.11 0.15
Naut./Aeronaut. Navigation (381) 1.00 0.38 0.26 0.21 0.22 0.24
Organic Chemicals (286) 0.73 0.13 0.17 0.25 0.13 0.22

Service sectors

Computer Software (737) 0.33 0.54 0.54 0.23 0.11 0.06
R&D, Lab and Testing (873) 0.13 0.19 0.27 0.11 0.10 0.07
Telephone Communications (481) 0.43 0.61 0.58 0.25 0.26 0.28
Universities (822) 0.90 0.17 0.25 0.10 0.08 0.05
Investment Companies (679) 0.21 0.36 0.27 0.23 0.28 0.10
Professional Equipment Wholesale (504) 0.69 0.13 0.16 0.23 0.37 0.28
Engineer.,Architec.,Survey (871) 1.00 0.12 0.15 0.11 0.12 0.20
Motion Picture Production (781) NaN 0.39 0.24 0.22 0.62 0.50
Management,Consulting,PR (874) 1.00 0.23 0.07 0.09 0.09 0.11
Radio and TV Broadcasting (483) 1.00 0.40 0.17 0.16 0.42 0.61
Cable and TV Services (484) NaN 0.35 0.16 0.31 0.53 0.75
Business Services (738) 1.00 0.48 0.08 0.11 0.14 0.65
Electrical Goods Wholesale (506) NaN 0.29 0.12 0.15 0.25 0.34
Electric Services (491) NaN 0.35 0.11 0.15 0.24 0.21

Table 2: Fraction of the giant component for the pooled and the sectoral R&D networks (SIC codes are in
brackets). The values are averages within each sub-periods. Note: missing values refer to sectors with not enough
observations.
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Figure 3: Time-evolution of number of connected components (solid line, left axis) and average size distribution
of connected components (dashed line, right axis) in the pooled R&D network.

4 Heterogeneity in alliance behavior

A large part of literature has analyzed the properties of the degree distributions in R&D net-

works. Empirical studies have shown that degree distributions in R&D networks tend to be

highly skewed. Moreover, some studies find exponential distributions (Riccaboni and Pammolli,

2002), while others find power-law distributions (Powell et al., 2005). The presence of a power-

law distribution would indicate the existence of an underlying multiplicative growth process

(Reed, 2001; Simon, 1955). In the context of R&D networks this means that firms which have

many collaborations already attract more new partners than firms with only few collaborations.

This idea underlies the “preferential attachment” model by Barabasi and Albert (1999), which

predicts the emergence of a power-law degree distribution. However, this model assumes that

all firms (even the new entrants) know how many collaborations every other firm in the net-

work has. This may become unrealistic, especially in large networks or situations in which this

information is not publicly available. More realistic models assume that firms have only local

information about the network. The network formation model introduced by König et al. (2013)

assumes that firms search for the most central partner in their local neighborhood. Their model

generates exponential degree distributions with power-law tails. In the model of Jackson and

Rogers (2007), agents also form links locally, which can result in power-law degree distributions

as well as exponential degree distributions, depending on various parameters. We extend the

existing discussion about the degree distributions in R&D networks by studying their evolution

over time and comparing the results between different sectors. Given the small size of many

of our networks, we did not test or validate any functional form, but we rather measured the
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statistical properties of the degree distributions, in order to assess their main features and get

insights into the underlying network formation process.

As already mentioned in Section 2, we define the degree as the number of partners of a

firm, and not the number of alliances. For this reason, we count multiple alliances between

the same two firms as one, and we count all the firms participating in the same consortia as

distinct partners. Furthermore, like in Section 3, the whole observation period is divided into

six sub-periods lasting 4 years. All the measures we present are computed by aggregating firm

degree data relative to the same sub-period. Fig. 4 shows the degree distributions of the pooled

R&D network in the six analyzed sub-periods. More precisely, given each degree distribution,

we report its complementary cumulative distribution function P (x), defined as the fraction of

nodes having degree greater than or equal to x:

P (x) =

∫ ∞

x

p(x′)dx′. (1)

where p(x′) is the probability density function, defining the fraction of nodes in the network

with degree x. The complementary cumulative distribution function is more robust than the

probability density function against fluctuations due to finite sample sizes, particularly in the

tail. We find that the degree distribution of the pooled R&D network is very broad and skewed,

in all periods. Moreover, the shape of the degree distribution is independent of the network size.

For instance, the degree distributions of the pooled R&D network in the “golden age” 1994-

1997 (maximum degree ∼ 200) has a very similar shape to that of the early period 1986-1989

(maximum degree ∼ 20). In addition, most of the sectoral R&D networks (not shown here)

exhibit this kind of degree distribution, during the whole observation period.

Table 3 shows the first four moments of the degree distribution of the pooled network in

each sub-period. In all periods, the degree distribution displays high variance associated with

high right-skewness and excess kurtosis. In addition, the p-values of the Kolmogorov-Smirnov

test show that the degree distributions of the pooled network are extremely far from the Normal

benchmark. Moreover, Table 3 shows that all the four moments of the degree distribution

increase in the first years of the sample, reaching a peak either in the 1990-1993 or in the

1994-1997 period, and then decrease again. The mean degree has a value of 1.51 partners per

firm in the early period 1986-1989; it then exhibits a peak value in 1990-1993 (2.52 partners

per firm), which remains almost unchanged in 1994-1997 (2.51 partners per firm), showing that

firms have on average more alliance partners in the “golden age” of alliance formation. The

average number of partners per firm eventually decreases again, reaching a value of 1.49 in the

late period 2006-2009.

As we discussed above, the degree distribution in the pooled R&D network is highly
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Figure 4: Complementary cumulative degree distributions of the pooled R&D network.

dispersed, as shown by standard deviation values that are always comparable or even larger than

the mean values. This holds especially for the 1994-1997 period, when the standard deviation

has a peak at 4.98, while the mean value is 2.51 partners per company. Same considerations

apply to the evolution of the skewness and kurtosis coefficients over time. In particular, the

very high values of the kurtosis coefficient (especially in the period 1994-1997) are indicative of

heavy tails in the R&D networks degree distributions, which in turn imply the presence in the

networks of “hubs” concentrating a high number of alliances.

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Mean 1.51 2.52 2.51 1.87 1.70 1.49
SD 1.22 4.30 4.98 2.77 2.11 1.45
Skewness 4.90 9.35 11.28 9.26 10.56 7.92
Kurtosis 47.30 158.40 206.69 133.70 200.25 104.84

KS test p-Value < 10−15 < 10−15 < 10−15 < 10−15 < 10−15 < 10−15

Table 3: Degree distribution statistics and p-values of Kolmogorov-Smirnov (KS) test for the pooled R&D network.

The degree distributions of the sectoral R&D networks display patterns that are similar
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to those of the pooled R&D network.4 In particular, all sectoral degree distributions are char-

acterized by high variance associated with significant skewness and kurtosis in all sub-periods.

We report in Table 4 the values of the average degree for the pooled and the sectoral R&D

networks in the six sub-periods, clearly confirming such a cross-sector similarity. In all sectoral

networks, firms have on average more collaborators during the “golden age” of alliance activity

(1994-1997). The only two exceptions are represented by two manufacturing industries, motor

vehicles (having a peak in 1986-1989) and organic chemicals (that has a first peak in 1986-1989

and a second one in 1994-1997).

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 1.51 2.52 2.51 1.87 1.70 1.49

Manufacturing Sectors

Pharmaceuticals (283) 1.22 2.09 2.22 1.82 1.57 1.55
Computer Hardware (357) 1.50 2.10 2.45 2.30 1.55 1.09
Electronic Components (367) 1.32 2.18 2.38 2.15 1.81 1.44
Communications Equipment (366) 1.10 1.82 2.03 1.57 1.48 1.34
Medical Supplies (384) 1.00 1.26 1.31 1.21 1.20 1.16
Laboratory Apparatus (382) 1.00 1.41 1.36 1.24 1.20 1.19
Motor Vehicles (371) 2.31 1.89 1.78 1.40 1.49 1.29
Aircrafts and parts (372) 2.00 2.25 2.00 1.68 1.41 1.40
Inorganic Chemicals (281) 1.28 1.48 1.53 1.23 1.17 1.27
Household Audio-Video (365) 1.44 2.11 2.61 2.32 2.20 1.58
Plastics (282) 1.07 1.54 1.55 1.46 1.29 1.11
Electrical Machinery NEC (369) 1.00 1.45 1.52 1.26 1.11 1.10
Special Machinery (355) 1.00 1.34 1.37 1.24 1.21 1.07
Crude Oil and Gas (131) 1.09 1.70 1.68 1.51 1.28 1.11
Naut./Aeronaut. Navigation (381) 1.33 1.49 1.49 1.23 1.13 1.09
Organic Chemicals (286) 1.26 1.17 1.26 1.14 1.09 1.12

Service Sectors

Computer Software (737) 1.70 2.16 2.21 1.52 1.27 1.13
R&D, Lab and Testing (873) 1.08 1.68 1.81 1.40 1.43 1.27
Telephone Communications (481) 1.19 2.84 2.53 1.42 1.57 1.28
Universities (822) 1.27 1.66 1.76 1.51 1.35 1.11
Investment Companies (679) 1.04 1.74 1.62 1.53 1.63 1.35
Professional Equipment Wholesale (504) 1.22 1.24 1.42 1.22 1.09 1.00
Engineer.,Architec.,Survey (871) 1.00 1.36 1.40 1.17 1.07 1.09
Motion Picture Production (781) NaN 1.38 1.36 1.02 1.00 1.00
Management,Consulting,PR (874) 1.00 1.20 1.20 1.19 1.16 1.06
Radio and TV Broadcasting (483) 1.33 1.69 1.31 1.15 1.11 1.11
Cable and TV Services (484) NaN 1.34 1.51 1.03 1.17 1.00
Business Services (738) 1.00 1.17 1.22 1.15 1.16 1.05
Electrical Goods Wholesale (506) NaN 1.35 1.34 1.06 1.05 1.07
Electric Services (491) NaN 1.57 1.38 1.22 1.22 1.25

Table 4: Average degree (number of partners) for the pooled and the sectoral R&D networks (SIC codes are in
brackets). Note: missing values refer to sectors with not enough observations.

The previous analysis indicates the presence of heavy tails in both the pooled and sectoral

4These results are not shown here, but are available from the authors upon request.
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degree distributions. In order to get an estimate of the “heaviness” of those tails from a non-

parametric point of view, we compute the Hill Estimator (Hill, 1975), a tool commonly used to

study the tails of economic data. If n is the number of observations (in our case, the number of

nodes in the R&D network) and k is the number of tail observations (k ≤ n), the inverse of the

Hill estimator (HE) is defined as:

ĥ−1 = k−1
k

∑

i=1

[log(xi)− log(xmin)] , (2)

where xmin represents the beginning of the tail and xi, i = 1 . . . k are the tail observations, i.e.

the degree values such that xi ≥ xmin. The smaller the HE value, the “heavier” the tail of

the degree distribution is. In particular, the degree distributions of most biological, social and

economic systems display values of the HE between 2 and 4 (see Clauset et al., 2009). A value of

the HE lower than 2 indicates an extremely heavy-tailed distribution (“super heavy-tailedness”).

At the other extreme, a value higher than 4 is indicative of degree distributions whose fat-tail

property is not very pronounced (“sub heavy-tailedness”). Finally, the theoretical HE value

predicted by the preferential-attachment model of Barabasi and Albert (1999) is 3.

Table 5 reports the values of the Hill estimator for both the pooled and the sectoral R&D

networks in all the time periods. Let us start with the pooled network. The table shows that the

HE first decreases, reaching a minimum in the golden-age period 1994-1997 and then increases

again. This indicates that the degree of tail-heaviness undergoes a rise-and-fall dynamics similar

to the other network measures discussed so far. Moreover, the table shows that in all sub-periods

the HE ranges between 2 and 4. This rules out both super and sub heavy-tailedness. However,

in all sub-periods but the first and the last one the values of the HE is significantly below 3,

and the minimum is achieved in the golden age period 1994-1997 (2.34). This indicates that

in those periods the degree distribution of the pooled R&D network cannot be predicted by

the preferential-attachment model. In particular, our results show that the tails of the degree

distribution of the pooled R&D network are fatter than what will be predicted by that model.

The values of the HE computed on the sectoral R&D networks reveal a rise-and-fall pattern

similar to the one detected in the pooled network (see Table 5). In particular, most sectors

display fatter tails in the periods of higher alliance activity. Moreover, HE values of most

manufacturing sectors are comparable to those of the pooled network. In contrast, HE values

are in general higher in service sectors. This indicates that the concentration of alliances among

few hubs is less marked in this type of sectors.
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 3.04 2.31 2.34 2.61 2.78 3.05

Manufacturing Sectors

Pharmaceuticals (283) 5.19 2.91 2.45 2.58 2.89 3.02
Computer Hardware (357) 2.70 2.37 2.22 2.75 2.88 4.59
Electronic Components (367) 3.36 2.43 2.43 2.25 2.59 3.57
Communications Equipment (366) NaN 2.66 2.50 2.43 2.71 2.65
Medical Supplies (384) NaN 3.71 3.25 4.50 3.58 3.95
Laboratory Apparatus (382) NaN 2.69 2.73 3.70 3.22 4.04
Motor Vehicles (371) 3.69 2.18 2.46 2.87 3.72 3.98
Aircrafts and parts (372) 5.07 2.24 2.47 3.77 3.43 3.06
Inorganic Chemicals (281) 3.07 2.31 2.50 3.23 3.71 2.35
Household Audio-Video (365) 3.49 2.48 2.10 2.04 2.09 2.89
Plastics (282) 3.48 3.79 2.34 2.22 3.50 4.36
Electrical Machinery NEC (369) NaN 3.04 2.89 3.61 4.38 3.29
Special Machinery (355) NaN 2.89 3.35 3.82 4.44 NaN
Crude Oil and Gas (131) NaN 3.39 4.08 4.16 6.22 3.59
Naut./Aeronaut. Navigation (381) NaN 2.53 2.45 4.19 4.10 NaN
Organic Chemicals (286) 3.08 3.86 4.88 4.58 NaN 4.00

Service Sectors

Computer Software (737) 2.71 2.41 2.30 2.70 3.31 4.24
R&D, Lab and Testing (873) NaN 2.77 2.69 3.65 3.23 3.60
Telephone Communications (481) 4.63 2.81 2.69 2.94 3.07 3.25
Universities (822) NaN 2.96 2.72 3.14 3.10 6.01
Investment Companies (679) NaN 2.86 2.85 2.79 2.85 3.09
Professional Equipment Wholesale (504) NaN 4.09 3.05 2.60 NaN NaN
Engineer.,Architec.,Survey (871) NaN 2.74 2.58 3.14 5.33 NaN
Motion Picture Production (781) NaN 3.24 3.24 NaN NaN NaN
Management,Consulting,PR (874) NaN 2.91 3.11 3.38 4.43 NaN
Radio and TV Broadcasting (483) NaN 3.49 3.48 5.17 NaN NaN
Cable and TV Services (484) NaN 4.08 3.23 NaN 4.10 NaN
Business Services (738) NaN 4.59 3.59 4.01 3.59 NaN
Electrical Goods Wholesale (506) NaN 2.50 2.44 NaN NaN NaN
Electric Services (491) NaN 2.97 3.81 4.01 3.71 NaN

Table 5: Hill estimator (HE) for degree distributions in the pooled and the sectoral R&D networks (SIC codes
are in brackets). Note: missing values refer to sectors with not enough observations.
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5 Assortative and Disassortative R&D Networks

Assortativity is a network measure that identifies correlations between the centrality of a node

and the centrality of its neighbors. Assortativity can be computed by using any measure of node

centrality (see e.g. Borgatti, 2005, for a survey of centrality measures). However, in this study

we use degree correlation, or average nearest-neighbor connectivity (Newman, 2002; Pastor-

Satorras et al., 2001) as assortativity measure. A network is assortative if it is characterized

by a positive correlation across the degrees of linked nodes. This implies that nodes tend to be

connected to nodes with similar degree. At the other extreme, dissassortative networks have

negative node degree correlation, i.e. nodes tend to be connected to nodes with dissimilar degree.

Newman (2003) found that technological networks, such as the internet, are disassortative while

social networks, such as the network of scientific co-authorships, are assortative. However,

R&D networks can be assortative or disassortative, depending on the underlying topology of

the network. For instance, Ramasco et al. (2004) develop models wherein agents establish

links with most central actors in the network, and show that such a mechanism gives rise to

disassortative networks. However, König et al. (2010) show that the same mechanism of search

for high centrality can give rise to assortative networks if agents face limitations in the number

of collaborations a firm they are able to maintain.

To investigate assortativity-disassortativity in our R&D networks, we use the assortativity

mixing coefficient r proposed by Newman (2002). This quantity, as described by Eq. 3, is the

Pearson correlation coefficient of the degrees at both ends of all links in the network:

r =
4M−1

∑

i jiki − [M−1
∑

i (ji + ki)]
2

2M−1
∑

i (j
2
i + k2i )− [M−1

∑

i (ji + ki)]2
, (3)

where ji, ki are the degrees of the firms at the ends of the i-th link, with i = 1, ...,M . The

coefficient r ranges between −1 for a totally disassortative network to 1 for a totally assortative

network; a network in which links are formed randomly would exhibit r = 0. We compute the

assortativity mixing coefficient r on both the pooled and the sectoral R&D sub-networks. We

follow the same procedure as in the previous section. The whole observation period is again

divided into six sub-periods of 4 years each and all the observations of every firm’s degree are

taken together within each sub-period. The degree correlation coefficients are then computed

for each sub-period. The results are reported in Table 6.

The pooled R&D network is assortative, as indicated by the low but positive assortativity

mixing coefficient during the whole observation period (see Table 6). This means that, on

average, high-centrality (low-centrality) firms tend to connect to other high-centrality (low-

centrality) firms. Moreover, and differently from the network indicators studied in Sections 3

and 4, the assortativity coefficient does not reveal any rise-and-fall dynamics over time.
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.167 0.110 0.119 0.195 0.170 0.035

Manufacturing Sectors

Pharmaceuticals (283) 0.005 0.172 0.119 -0.049 -0.047 -0.043
Computer Hardware (357) -0.188 -0.179 -0.192 -0.133 -0.103 -0.145
Electronic Components (367) -0.174 -0.151 -0.194 -0.094 0.023 0.267
Communications Equipment (366) -0.233 -0.149 -0.147 -0.143 -0.077 -0.312
Medical Supplies (384) NaN -0.165 -0.155 0.106 -0.184 -0.108
Laboratory Apparatus (382) NaN -0.199 -0.134 -0.153 -0.159 0.018
Motor Vehicles (371) -0.174 -0.309 -0.099 -0.071 -0.023 0.078
Aircrafts and parts (372) -0.132 0.054 -0.182 0.035 0.019 0.804
Inorganic Chemicals (281) -0.445 -0.228 -0.243 -0.188 -0.146 -0.239
Household Audio-Video (365) -0.467 -0.368 -0.306 -0.329 -0.287 -0.342
Plastics (282) -0.105 -0.249 -0.351 -0.437 -0.265 -0.151
Electrical Machinery NEC (369) NaN -0.250 -0.184 -0.283 -0.032 -0.134
Special Machinery (355) NaN -0.206 -0.223 -0.153 -0.214 -0.143
Crude Oil and Gas (131) NaN 0.489 -0.017 0.383 0.255 -0.160
Naut./Aeronaut. Navigation (381) NaN -0.297 -0.318 -0.333 -0.217 -0.190
Organic Chemicals (286) -0.458 -0.242 -0.206 -0.191 -0.190 -0.170

Service Sectors

Computer Software (737) -0.103 -0.074 -0.067 -0.029 -0.002 -0.105
R&D, Lab and Testing (873) -0.024 -0.032 0.011 0.132 0.185 0.025
Telephone Communications (481) -0.273 -0.178 -0.097 -0.035 -0.036 -0.279
Universities (822) NaN -0.133 -0.102 0.026 0.152 0.078
Investment Companies (679) -0.057 -0.210 -0.193 -0.219 -0.187 -0.182
Professional Equipment Wholesale (504) NaN -0.128 -0.066 -0.168 -0.200 NaN
Engineer.,Architec.,Survey (871) NaN -0.275 -0.208 -0.130 -0.116 -0.207
Motion Picture Production (781) NaN -0.154 -0.081 -0.037 NaN NaN
Management,Consulting,PR (874) NaN -0.288 -0.200 -0.221 -0.177 -0.135
Radio and TV Broadcasting (483) NaN -0.537 -0.173 -0.266 -0.250 -0.250
Cable and TV Services (484) NaN 0.006 -0.101 -0.063 -0.287 NaN
Business Services (738) NaN -0.296 -0.247 0.382 0.087 -0.100
Electrical Goods Wholesale (506) NaN NaN -0.305 -0.139 -0.100 -0.143
Electric Services (491) NaN -0.007 -0.235 -0.127 -0.107 0.664

Table 6: Assortativity mixing coefficient in the pooled and the sectoral R&D networks (SIC codes are in brackets).
Note: missing values refer to sectors with not enough observations.

In contrast to the pooled R&D network, the sectoral R&D networks are disassortative: for

most sectors and in most of the analyzed sub-periods, the assortativity coefficient is negative.

For instance, when considering the 1990-1993 and the 1994-1997 periods, only 4 sectors out of 30

exhibit a non-negative assortativity coefficient (Pharmaceuticals, R&D-Lab-Testing, Aircrafts

and Parts, Cable and TV Services). This indicates that in a sectoral R&D network, i.e. centered

around a given industry, low-degree firms increase their tendency to connect to high-degree firms,

and viceversa.

Thus, R&D networks seem to have features of both technological and social networks, as

they display both assortativity and disassortativity depending on the scale at which they are

studied. To shed more light on the determinants of this phenomenon, we study the “local degree

correlations” in the pooled R&D network. More precisely, Fig. 5 shows the average neighbors’
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Figure 5: Local degree correlations (mean neighbors’ degree VS degree) in the pooled R&D network. The
error bars represent the standard error of the mean. Note: on the top-right corner of each plot we report the
corresponding value of the assortativity mixing coefficient in the sub-period under analysis.

degree as a function of firms’ degree, for the pooled R&D network, and for each of the six

sub-periods considered in our analysis.

The plots show that the relation between average neighbors degree and node degree is

strongly non linear in all the considered sub-periods. More precisely, node degree predicts quite

well average degree of partners until high-degree nodes are taken into account. Then, a sharp

decay occurs. This indicates that – when considering the pooled R&D network – firms with

low and intermediate degree levels tend to connect with firms having similar degree, whilst

high-degree firms display negative degree correlation. Moreover, the position of the maximum

of these curves on the x -axis (i.e. the firm’s degree) varies during the observation period and is

positively correlated to the network size. Such a tipping point in the firm’s degree is equal to

5 in the early period 1986-1989 and in the late sub-period 2006-2009, and it ranges between 10

and 20 in the other sub-periods. Interestingly, we find that the inverted U-shaped pattern of the

local degree correlation curve holds for the sectoral R&D networks as well. The sharp decay in
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the local correlation curve is stronger in the sectoral R&D networks than in the pooled one.5.

The above findings indicate that the transition from disassortativity to assortativity is the result

of a composition effects of a non-linear relationship between the number of alliances of a firm

and the one of its partners. In the pooled network sectoral hubs are poorly connected among

them as indicated by the low average degree of their partners. In contrast, firms occupying

low and intermediate positions in the sectoral degree distributions tend to form alliances with

firms having similar degree in other sectors. This does not occur within sectors, where low- and

intermediate-degree firms form alliances mainly with the sector hubs.

6 Small Worlds and Communities

Similarly to degree heterogeneity (cf. Section 4) the presence of small worlds in R&D networks

has been analyzed by a large amount of theoretical and empirical works (see e.g. Cowan and

Jonard, 2004, 2009; Fleming et al., 2007; Gulati et al., 2012; Uzzi et al., 2007). A network is a

small world if it is characterized by two key features: high local clustering and low average path

length (Watts and Strogatz, 1998). Local clustering measures the extent to which the neigh-

bors of a node are in their turn connected among themselves. It is defined as the number of

existing links between the neighbors of a focal node, divided by the number of all possible links

between these neighbors; the measure is subsequently averaged over all nodes in the network.

Average path length is defined as the average of all shortest distances, i.e. the lowest number

of links that must be traversed to connect every pair of nodes in the network. In our R&D

network representation, the first measure shows the extent to which a company’s partners tend

to be connected among themselves, while the second measure quantifies how long the average

alliance chain from a firm to any other firm in the network is. Small world networks exhibit

high clustering and short average path length, combining the qualities of both regular networks

(typically characterized by high clustering and high average path length) and random networks

(characterized by low clustering and low average path length). Previous empirical works have

pointed out that the R&D network structure may follow a rise-and-fall dynamics. More specif-

ically, Gulati et al. (2012) show that in the computer industry the excessive formation of ties

can lead to the formation of a small world and then to its own decline.

Small world properties in a network are often associated with the presence of community

structures (Newman, 2004b), reflecting the tendency of nodes to divide into groups or modules.

In a modular network, dense connections and high clustering are observed within each group,

with only a few links connecting the different groups (Newman, 2004a). In inter-firm networks,

5We do not show here the local degree correlations for the sectoral R&D networks, but data and plots are
available upon request from the authors.
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dense groups are shown to facilitate information exchange among similar firms and support trust

and cooperative behavior, while bridging ties connecting different groups favour information

recombination between distant positions in the knowledge space (e.g. Granovetter, 1973, 1983;

Tiwana, 2008).

In this section we analyze both the presence of small worlds and community structures

in R&D networks. According to Watts and Strogatz (1998), the small world properties of a

network have to be evaluated using a corresponding random network as the baseline. If the

examined network is both large and sparse, i.e. N ≫ 〈k〉, where N is the network size and 〈k〉

is the average degree, the basic requirement for small world is satisfied. Under this assumption,

the values of clustering coefficient C and average path length L for the baseline random network

will tend to: CR = 〈k〉 /N and LR = ln(N)/ ln(〈k〉). The small world quotient QSW we use for

our analysis is defined as:

QSW =
(C/CR)

(L/LR)
. (4)

In our study, the condition of sparse network is always fulfilled for the pooled and the

sectoral R&D networks (the average degrees are always smaller than 3, and much smaller than

the corresponding network sizes, as reported in Table 4). Some of the sectoral R&D networks

have relatively small sizes in the first (1986-1989) and in the last (2006-2009) observation periods

(as can be seen from Table 1), but in these cases they exhibit an even smaller average degree 〈k〉,

still validating the assumption of sparse networks. When computing the observed to random

ratios, a small world network will show C/CR ≫ 1 and L/LR ≃ 1, which is the case for all the

R&D networks we analyze. The results of our computations are listed in Table 7. Once again,

results are presented for six different sub-periods.

The small world quotient is computed separately for every year during the whole obser-

vation period, in both the pooled and the sectoral R&D networks, and then averaged within six

sub-periods lasting 4 years each.6 The evolution of this quotient over time reveals the presence

of a rise-and-fall dynamics of the small world properties, in both the pooled and the sectoral

R&D networks. The small world quotient rises to a peak in the “golden age” period and then

decreases again. Moreover, this feature is common across sectors, generalizing the results of the

work by Gulati et al. (2012), that was limited to the computer industry. With the exception of 6

sectors out of 30 (Medical Supplies, Universities, Aircrafts and Parts, Business Services, Crude

Oil and Gas, Eletric Services), the small world quotient has a peak either in the 1990-1993 or

in the 1994-1997 period. It should also be noticed that five industrial sectors (Motion Picture

Production, Management-Consulting-P.R., Electrical Goods Wholesale, Nautical/Aeronautical

6We do not aggregate the observations inside every time period, because the small world quotient is a global
network measure, and not an ego-network measure centered around single nodes.
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 1.410 85.814 154.560 57.085 28.640 5.596

Manufacturing Sectors

Pharmaceuticals (283) 0.000 23.434 34.030 14.241 5.468 2.628
Computer Hardware (357) 0.129 4.757 16.864 6.397 0.635 0.000
Electronic Components (367) 0.000 7.082 12.414 6.691 5.450 2.290
Communications Equipment (366) 0.000 2.278 5.545 1.283 1.688 0.000
Medical Supplies (384) NaN 0.000 0.368 0.000 0.000 0.000
Laboratory Apparatus (382) NaN 0.976 0.534 0.000 0.000 0.933
Motor Vehicles (371) 1.740 2.924 4.134 0.669 1.863 0.840
Aircrafts and parts (372) 1.313 4.319 4.021 1.748 1.323 1.738
Inorganic Chemicals (281) 0.000 0.410 0.000 0.000 0.000 0.000
Household Audio-Video (365) 0.000 1.746 5.316 3.475 1.924 0.000
Plastics (282) 0.000 0.380 0.080 0.000 0.000 0.000
Electrical Machinery NEC (369) NaN 0.000 0.000 0.000 0.000 0.000
Special Machinery (355) NaN 0.000 0.000 0.000 0.000 0.000
Crude Oil and Gas (131) 0.000 2.004 0.775 1.269 2.002 0.000
Naut./Aeronaut. Navigation (381) 0.000 0.000 0.000 0.000 0.000 0.000
Organic Chemicals (286) 0.000 0.000 0.000 0.000 0.000 0.000

Service Sectors

Computer Software (737) 0.769 13.584 33.514 5.242 0.669 0.000
R&D, Lab and Testing (873) 0.000 4.155 12.404 0.864 1.668 0.636
Telephone Communications (481) 0.000 7.521 10.110 1.448 1.222 0.000
Universities (822) 0.000 1.456 4.489 0.863 2.135 0.594
Investment Companies (679) 0.000 0.884 0.452 0.126 0.400 0.576
Professional Equipment Wholesale (504) 0.000 0.594 1.131 0.000 0.000 NaN
Engineer.,Architec.,Survey (871) NaN 0.450 0.000 0.000 0.000 0.000
Motion Picture Production (781) NaN 0.000 0.000 0.000 NaN NaN
Management,Consulting,PR (874) NaN 0.000 0.000 0.000 0.000 0.000
Radio and TV Broadcasting (483) 0.000 0.000 0.000 0.000 0.000 0.000
Cable and TV Services (484) NaN 0.320 1.454 0.000 0.000 NaN
Business Services (738) NaN 0.000 0.000 0.778 0.389 0.000
Electrical Goods Wholesale (506) NaN 0.000 0.000 0.000 0.000 0.000
Electric Services (491) NaN 0.429 0.000 0.000 0.594 2.377

Table 7: Small world quotient of pooled and sectoral R&D networks (SIC codes are in brackets), for the giant

component. The values are averages within each sub-period. Note: missing values refer to sectors with not enough
observations.

Navigation, Organic Chemicals) display constant zero values for their small world quotients,

meaning that there is no observed clustering in the corresponding networks. The sectors that

deviate the most from the non-monotonic small world dynamics are mostly service sectors, which

indeed tend to create more inter-sectoral alliances, rather than forming their own intra-sectoral

network.

We now want to assess whether such emergence of small world properties in R&D networks

is associated with the presence of modular structures. The standard approach to quantify this

phenomenon, described by Newman (2004b), is to perform a partition of the network into

communities, i.e. assigning a label to every node, in order to maximize the so called modularity

coefficient. Such indicator of modularity is maximum if the chosen network partition perfectly
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reflects the positioning of links in the network, with all links occurring within communities and

no links occurring between different communities. We do not intend to test several partitions

to maximize the modularity coefficient of the network. We rather assume that a community

corresponds to an industrial sector. Next, we partition the pooled R&D network by assigning

every firm to its sector. Finally, we study the time evolution of the modularity coefficient in

the pooled R&D network, computed by considering the sectors as communities. This way, we

are able to evaluate the extent to which alliances are concentrated among firms belonging to

the same sector. We call the modularity coefficient QM and define the relative connectivity cij

between two industrial sectors i and j as follows:

cij = eij/aij , (5)

where eij is the fraction of links in the network connecting any firm belonging to sector i to any

firm belonging to sector j. The quantities eij (and consequently aij and cij) can be thought of

as elements of a symmetric n× n matrix, where n is the number of sectors into which the R&D

network is partitioned.7 The row (or column) sums ai =
∑

j eij represent the fraction of links

(alliances) involving at least one company in sector i. We then define aij = aiaj as the expected

fraction of links connecting firms in sector i to firms in sector j in a benchmark network having

the same density and sector populations as the real network, but where alliances occur randomly

between firms, independently of the sector they belong to. This way, cij is the ratio between the

observed and the expected fraction of alliances connecting a firm in sector i to a firm in sector

j. Values of cij greater than 1 suggest that the alliance probability between a firm in sector i

and a firm in sector j is higher than one would expect with a random partner choice. On the

contrary, when cij is smaller than 1, a firm in sector i forms alliances with firms in sector j with

a smaller probability than a random partner choice.

Next, following Newman (2004b), we define the modularity coefficient QM as:

QM =
∑

i

(eii − a2ii)/(1 −
∑

i

a2ii), (6)

where the index i spans all industrial sectors in the R&D network. The coefficient QM is equal

to 1 in case of a perfect modular network, where alliances occur only intra-community and never

inter-community. Likewise, QM is equal to −1 for a perfect anti-modular network, having only

inter-community links, without any intra-community links. QM is equal to zero for a network

where links are formed at random. The time evolution of the modularity coefficient QM of the

pooled R&D network is reported in Table 8.

7To make sure that every alliance is counted once in the matrix eij , every link connecting sectors i and j is
split in half between the elements eij and eji.
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.237 0.220 0.228 0.220 0.218 0.277

Table 8: Modularity coefficients for the pooled R&D network (SIC codes are in brackets). The values are averages
within each sub-period.

The coefficient QM ranges between 0.21 and 0.28, indicating the presence of a moderate

modularity if compared to other examples of real networks (see Newman and Girvan, 2004).

Furthermore, the modularity coefficient exhibits only small changes over the observation period

and does not have a peak in accordance with the peak of the small world quotient. The rise-

and-fall of the small world structure detected above is thus not associated to any rise-and-fall

in the modular structure of the network.

To conclude, our results generalize the previous findings of Gulati et al. (2012). The rise-

and-fall of small worlds is not a feature limited to few industries, but it is instead a general

feature of sectoral R&D networks. Moreover, this property emerges also when alliances are

considered independently of the sector to which the firms belong to. However, small worlds are

not associated with the presence of a strong community division of the network when industrial

sectors are used as communities. The emergence of small worlds might thus have other reasons,

which will be further investigated in the next section.

7 Core-Periphery Architectures

Core-periphery networks are dominated by one group of highly inter-connected nodes (the core

of the network), that have few connections to secondary nodes (the periphery of the network).

In addition, the peripheral nodes are strongly connected to the core nodes, but poorly inter-

connected between each other. Borgatti (2005) points out that such kind of networks are efficient

because they can spread information quickly. A generalization of the concept of core-periphery

architecture is the one of nested networks. A network is nested if the neighbors of a node with

degree m are contained in the neighborhoods of all nodes with degree m′ > m. The difference

with core-periphery networks is that graphs with a nested neighborhood structure can feature

not only two groups (the core and the periphery), but several densely connected groups of nodes,

with increasing degree. In addition, each group is connected to the group of higher degree nodes.

König et al. (2012) show that efficient R&D networks (i.e. networks maximizing industry profits)

have a nested architecture, when marginal costs of collaborations are high. Interestingly, both

core-periphery and nested networks can exhibit short path length and high clustering features

that are typical for small worlds. In our case, given the absence of correlation between the
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emergence of small worlds and modular architectures in the R&D networks, the formation of

core-periphery architectures could be the true reason for the emergence of small world properties

reported in Section 6.

To quantify the presence of core-periphery architectures in our R&D networks we employ

a slightly modified version of the core-periphery coefficient Ccp suggested by Holme (2005).8

More precisely, we define the core-periphery coefficient Ccp of a network G as follows:

Ccp =
cc [G

core] /cc [G]

cc
[

Gcore
R

]

/cc [GR]
, (7)

where cc[·] indicates the closeness centrality of a network9 and Gcore is a subgraph10 of the

network G that maximizes this value of closeness centrality. The ratio between the closeness

centrality of Gcore and the closeness centrality of G is then divided by the mean value of the

same measure mean value computed on 500 random networks of the same size and density as

the network G. The values of the core-periphery coefficients Ccp for the pooled and the sectoral

R&D networks are shown in Table 9. Values are reported – as usual – for the different 6 sub-

periods. We do not pool the observations inside each of the 6 selected sub-periods, but we

compute the value of the core-periphery coefficient separately for every year and then average

over the duration of every sub-period.11

We clearly observe a rise-and-fall trend for the core-periphery coefficient, in both the

pooled and the sectoral R&D networks, with a peak positioned either in the 1990-1993 or in the

1994-1997 period. The presence of core-periphery structures in the “golden age” is a common

characteristic across all industrial sectors. One notable exception is the Pharmaceutical sector,

whose core-periphery coefficient has a peak in the period 2002-2005. In addition, four small

industrial sectors (Management-Consulting-PR, Business Services, Electrical Goods Wholesale

and Organic Chemicals) exhibit core-periphery coefficients that are not peaked neither in 1990-

1993 nor in the 1994-1997 periods.

The above results confirm that – both at pooled and sectoral level – the small world prop-

8The difference is that we do not calculate the core-periphery coefficient only on the largest connected com-
ponent of the network, but we take into account the whole network.

9The closeness centrality of a network is defined as the inverse of the sum of all shortest paths between any pair
of nodes in the network. The idea behind this measure is to quantify how connected a network is. See Sabidussi
(1966) for a more rigorous definition.

10There are many ways to divide a network G into subgraphs and then select the subgraph Gcore with the
maximal closeness centrality. Usually, one uses the computationally cheapest algorithm, which is a k−core
decomposition of the network. Gcore is then assumed to be the k-shell of the network with maximal closeness
centrality. For the sake of brevity, we do not provide here any description of the k−core decomposition procedure,
See Sabidussi (1966) for a detailed explanation, and Garas et al. (2012) for an extension to weighted networks.

11Similarly to the small world quotient, the core-periphery coefficient is not an ego-, but a global network
measure (see Section 6).
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 8.37 23.53 28.51 20.13 18.46 16.34

Manufacturing Sectors

Pharmaceuticals (283) 0.97 11.41 7.59 12.69 12.88 3.81
Computer Hardware (357) 0.80 5.04 12.38 8.43 2.33 0.12
Electronic Components (367) 1.20 7.17 11.63 6.87 4.39 2.49
Communications Equipment (366) 0.19 3.13 11.05 4.11 2.30 0.77
Medical Supplies (384) 0.30 0.86 3.25 0.98 1.67 1.93
Laboratory Apparatus (382) 0.34 3.95 3.62 2.57 0.04 2.27
Motor Vehicles (371) 0.69 3.25 8.48 2.20 0.91 0.36
Aircrafts and parts (372) 1.87 5.75 9.12 3.18 1.01 1.88
Inorganic Chemicals (281) 0.17 3.60 1.89 0.06 0.07 0.09
Household Audio-Video (365) 0.50 2.98 10.12 5.43 2.96 1.95
Plastics (282) 0.28 2.37 3.80 0.07 0.08 0.16
Electrical Machinery NEC (369) 1.00 2.12 4.24 0.10 0.14 0.09
Special Machinery (355) 0.89 0.93 1.60 0.08 0.24 0.28
Crude Oil and Gas (131) 0.65 3.45 4.20 2.59 1.03 0.11
Naut./Aeronaut. Navigation (381) 1.00 0.78 1.20 0.14 0.19 0.24
Organic Chemicals (286) 0.63 0.11 0.06 0.15 0.13 0.16

Service Sectors

Computer Software (737) 4.62 8.48 16.38 4.34 5.44 0.03
R&D, Lab and Testing (873) 0.16 4.01 11.36 10.69 5.47 0.49
Telephone Communications (481) 0.39 10.85 14.21 3.12 0.96 0.70
Universities (822) 0.81 0.95 8.47 2.35 1.93 2.35
Investment Companies (679) 0.26 5.75 7.84 7.68 4.91 2.33
Professional Equipment Wholesale (504) 0.58 1.94 2.75 0.15 0.38 0.35
Engineer.,Architec.,Survey (871) 1.00 3.12 2.85 0.05 0.15 0.19
Motion Picture Production (781) NaN 0.78 1.45 0.30 0.66 0.55
Management,Consulting,PR (874) 1.00 0.19 0.03 0.05 0.05 0.12
Radio and TV Broadcasting (483) 1.00 2.40 2.62 0.13 0.45 0.64
Cable and TV Services (484) NaN 0.81 4.43 0.36 0.48 0.78
Business Services (738) 1.00 0.46 0.04 1.25 0.72 0.67
Electrical Goods Wholesale (506) NaN 0.23 0.04 0.18 0.29 0.38
Electric Services (491) NaN 3.51 1.37 1.42 1.37 2.27

Table 9: Core-periphery coefficients for the pooled and the sectoral R&D networks (SIC codes are in brackets).
The values are averages within each sub-period. Note: missing values refer to sectors with not enough observations.

erties detected in Section 6 are correlated to the presence of strongly centralized (core-periphery)

architectures. Across sectors, firms show the tendency to organise their R&D collaborations in

a core of densely connected companies and a periphery of companies that are linked to the core,

but only weakly interconnected among themselves.

Next, we study whether the presence of core-periphery is related to the presence of a more

general type of centralized architecture, i.e. nested architectures. In this way we also provide a

test to some of the key predictions of the recent theoretical literature on R&D networks. There

are several measures quantifying the extent to which a given network’s neighborhood structure

is nested. In this study, we use the measure generated by an algorithm called BINMATNEST 12.

12The BINMATNEST algorithm, proposed by Rodriguez-Girones and Santamaria (2006), uses the unweighted
adjacency matrix of the network to compute its nestedness score. The algorithm rearranges the adjacency matrix
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.977 0.997 0.999 0.997 0.996 0.996

Manufacturing Sectors

Pharmaceuticals (283) 0.960 0.989 0.996 0.994 0.995 0.996
Computer Hardware (357) 0.960 0.992 0.995 0.984 0.950 0.940
Electronic Components (367) 0.981 0.984 0.993 0.984 0.969 0.926
Communications Equipment (366) 0.943 0.962 0.990 0.973 0.944 0.962
Medical Supplies (384) 0.998 0.944 0.963 0.954 0.946 0.947
Laboratory Apparatus (382) 0.961 0.943 0.965 0.930 0.951 0.924
Motor Vehicles (371) 0.938 0.961 0.964 0.950 0.962 0.946
Aircrafts and parts (372) 0.945 0.942 0.969 0.973 0.953 0.974
Inorganic Chemicals (281) 0.930 0.978 0.951 0.951 0.943 0.977
Household Audio-Video (365) 0.951 0.945 0.981 0.964 0.957 0.963
Plastics (282) 0.977 0.940 0.966 0.951 0.975 0.949
Electrical Machinery NEC (369) 0.939 0.947 0.950 0.962 0.961 0.987
Special Machinery (355) NaN 0.927 0.940 0.984 0.931 0.953
Crude Oil and Gas (131) 0.939 0.922 0.950 0.945 0.960 0.936
Naut./Aeronaut. Navigation (381) 0.939 0.938 0.948 0.936 0.982 0.998
Organic Chemicals (286) 0.956 0.938 0.961 0.922 0.939 0.956

Service Sectors

Computer Software (737) 0.981 0.992 0.997 0.985 0.950 0.946
R&D, Lab and Testing (873) 0.961 0.969 0.992 0.986 0.986 0.975
Telephone Communications (481) 0.945 0.954 0.981 0.950 0.947 0.976
Universities (822) 0.961 0.971 0.973 0.952 0.948 0.958
Investment Companies (679) 0.956 0.973 0.979 0.961 0.962 0.940
Professional Equipment Wholesale (504) 0.911 0.930 0.930 0.952 0.921 0.998
Engineer.,Architec.,Survey (871) NaN 0.924 0.917 0.962 0.957 0.998
Motion Picture Production (781) NaN 0.935 0.925 0.923 0.937 NaN
Management,Consulting,PR (874) NaN 0.932 0.933 0.954 0.959 0.939
Radio and TV Broadcasting (483) 0.939 0.941 0.969 0.942 0.967 0.958
Cable and TV Services (484) NaN 0.930 0.925 0.975 0.973 NaN
Business Services (738) 0.901 0.926 0.952 0.954 0.972 0.998
Electrical Goods Wholesale (506) NaN 0.951 0.940 0.953 0.935 0.998
Electric Services (491) 0.956 0.918 0.969 0.977 0.957 0.939

Table 10: Nestedness coefficients for the pooled and the sectoral R&D networks (SIC codes are in brackets). The
values are averaged in six sub-periods. Note: missing values refer to sectors with not enough observations.

For every analyzed network, the algorithm returns a nestedness score Tn, ranging from 0 (for a

totally nested network) to 100 (for a completely random, non-nested network). In order to have

a benchmark, the algorithm also builds and analyzes 500 random networks having the same size

and density as the considered network. Instead of directly using the value generated by the

in such a way that all the “ones” (existing links) are concentrated in the top-left side of the matrix, and the
“zeros” (missing links) in the bottom-right side. It then computes the optimal theoretical isocline separating the
“ones” from the “zeroes” and counts the number of holes in these regions of the matrix – i.e. how many “zeroes”
are in the region of the “ones”, and viceversa. The number of such holes is proportional to the nestedness score
computed by the algorithm: the more holes, the higher the nestedness score of the network. Note: the lower this
score, the more nested the network is (and viceversa).
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algorithm, we use a normalized nestedness coefficient C ′
n, defined as:

C ′
n =

100− Tn

100
, (8)

where Tn is the nestedness score generated by the BINMATNEST algorithm. Our normalized

nestedness coefficient C ′
n spans thus from 0, for a for a totally non-nested network, to 1, for

a totally nested network. We calculate the coefficients C ′
n throughout the whole observation

period, for the pooled and the sectoral R&D networks, and average the results within six sub-

periods lasting 4 years each. Results are shown in Table 10.

The values of the nestedness coefficients C ′
n we report are extremely close to 1, during the

whole observation period, both for the pooled and the sectoral R&D networks. This is surprising,

if we compare such values with other studies of nestedness in real networks (e.g. Bascompte et al.,

2003). All the values found in our R&D networks are significantly different from the average

values of the random networks used as benchmark in the BINMATNEST algorithm. Moreover,

the nestedness coefficient has a peak during the “golden age” for the pooled R&D network, as

well as 9 out of 16 manufacturing sectors and 6 out of 14 service sectors. These results confirm

not only that the pooled and the sectoral R&D networks are significantly nested throughout all

the observation period, but also that their nestedness tends to increase during the “golden age”,

in correspondence to the emergence of the small world properties.

8 Implications

Three main implications arise from the evidence discussed in the previous sections.

First, our results provide strong support to the claim that several properties of R&D

networks robustly hold across several manufacturing and service sectors. In addition, these

properties are invariant across different scales of aggregation. In other words, they are the same

if one considers the R&D alliances irrespectively of the sectors to which the firms belong (pooled

network), or if one considers only alliances centered on a sector (sectoral networks). These

properties do not only relate to basic characteristics of the networks like size, density, degree

distributions. They also involve more complex features such as the presence of the small worlds

and core-periphery architectures. From an empirical perspective, our results thus generalize

previous findings in the literature, that were limited to the analysis of few sectors. From a

theoretical perspective, the fact that many properties of the network hold irrespectively of the

sector and of the scale of aggregation opens up the fascinating possibility that the same universal

mechanism can be responsible for the emergence of those features. In this respect, our results also

show that such a mechanism is probably different and more sophisticated than the preferential
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attachment described by Barabasi and Albert (1999). This is because the characteristics of the

degree distribution observed in our R&D networks (cf. Section 4) can be hardly reconciled with

the predictions of that model. Nevertheless, our results also show that not all properties of the

network are invariant across different scales of aggregation. Sectoral networks are disassortative,

i.e. characterized by a negative correlation across nodes degree, whereas the pooled network is

assortative. This transition from disassortative to assortative networks is a fresh new stylized

fact that should be taken into account in the theoretical explanations of R&D networks. It

is important to remark that the contrast between disassortative and assortative networks has

been so far stressed in relation to networks belonging to different domains (e.g. technological vs.

social networks, cf. Newman, 2003). Our results suggest instead that the same type of network

(network of R&D alliances) can be disassortative or assortative depending on the scale at which

it is observed (i.e. taking into account the sectoral characteristics of the partners or not).

Second, the result that both the pooled and sectoral networks are organized into core-

periphery architectures, and nested structures in particular, militates in favor of the predictions

of the recent theoretical literature on R&D networks (e.g. Goyal and Joshi, 2003; Westbrock,

2010), and more precisely of the knowledge-recombination model of König et al. (2012). In

this model, the efficient network structure is shown to critically depend on the marginal cost of

R&D collaborations. In case of relatively costly partnerships, the resulting efficient R&D net-

work exhibits a strongly nested neighborhood structure, as we observe empirically. Moreover,

the presence of core-periphery architectures is also able to explain two network properties that

received a lot of attention in the literature, namely the emergence of fat-tailed degree distribu-

tions and of small worlds. These properties are indeed the result of the organization of the R&D

networks into core-periphery structures and cannot be instead related to other types of network

characteristics (e.g. the presence of communities for small worlds, as we show in Section 6).

Third, our evidence indicates that the last three decades have witnessed a rise and fall of

R&D networks. The foregoing rise-and-fall dynamics was previously emphasized in relation to

the presence of small worlds in the computer industry (Gulati et al., 2012). We show that it is

instead a general property of the R&D network dynamics (both sectoral and pooled ones). In

addition, it concerns most network properties, even the more complex ones (presence of core-

periphery and nested architectures).13 Our results also show that the rise and fall of R&D

networks was mainly driven by the entry and exit of firms participating into alliances rather

than by the more or less intense activity of the incumbents (see Section 3). Moreover, during

the growing phase, R&D alliances gave rise to network components of large size displaying the

complex features discussed above. In the descending phase, the number of firms participating

13Indeed, the only exception to this general dynamics is represented by the assortativity (resp. disassortativity
for sectors), that does not display any particular trend over time.
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into alliances plummeted and the networks broke up into several components of small size.

Overall, the above facts suggest that theoretical explanations of the dynamics of the net-

work should account for a significant role of the entry/exit of firms. In addition, they should

be able to explain the ability of the network to self-organize into components having complex

characteristics and the eventual breaking-up of them. Finally, as it is argued in Gulati et al.

(2012), the rise and fall of R&D networks could be the sheer outcome of the knowledge recom-

bination process associated with alliances embedded into a network. Indeed, the possibility of

knowledge recombination fuels the growth of the network, either by combining heterogeneous

knowledge bases (e.g. Cowan and Jonard, 2004; Gulati et al., 2012) or by granting access to mul-

tiple paths through which knowledge can reach the firm (König et al., 2011). The same process

of knowledge recombination may however set the the premises for the subsequent breaking-up

of the network. This is because recombination brings homogeneity into knowledge bases, conse-

quently reducing the incentive for knowledge exchange and thus for alliance formation (Cowan

and Jonard, 2004; Gulati et al., 2012). Likewise, in a large network, the number of additional

paths to which a firm gets access with an alliance is higher if the alliance is created with a

firm which is already part of its component (i.e. if the potential partner is already indirectly

connected to the firm). In a situation where alliances are costly, this reduces the incentives to

maintain bridging ties, thus contributing to the fragmentation of the network into many clusters

which are sparsely connected among themselves (see König et al., 2011, for a model generating

a similar dynamics).

9 Concluding Remarks

In this study we empirically investigated the dynamics and the properties of networks of R&D

alliances in the period from 1986 to 2009. We studied both the pooled network, i.e. the network

wherein alliances are considered independently of the sectors of the partners, as well as sectoral

networks for a large number of manufacturing and service sectors. We show that many properties

of the network robustly hold across different sectors. In addition, they are invariant at different

levels of aggregation, i.e. when moving from the pooled R&D network to the sectoral ones.

In particular, both pooled and sectoral R&D networks are organized into nested architectures

displaying small world properties and fat-tailed degree distributions. However, not all R&D

network properties are invariant across aggregation scales. In particular, we show that the

pooled network is assortative, i.e. characterized by a positive correlation between the number

of alliances of a firm and the one of its partners, whereas the opposite (disassortativity) occurs

at the level of sectoral networks. Finally, we show that both the pooled and the sectoral R&D

networks are characterized by a “rise-and-fall” dynamics. More precisely, during the period we
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analyzed, R&D networks showed a growing phase (1989-1997), where an increasing number of

firms gave rise to network components having complex features, and then a decline (1998-2009)

characterized by a breaking-up of the networks into smaller components.

Our work could be extended at least in two ways. First, one could track the evolution

of the creation/destruction of single R&D alliances and test whether this can be predicted

based on some topological properties of the existing networks, according to theoretical models

of strategic network formation. Second, one could augment our data with information about

firms’ patenting. This would allow one to measure the evolution of firm technology portfolios as

a consequence of R&D alliance formation.
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