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Abstract

We examine project adoption decisions of firms constrained in the number of projects

they can handle at once. Adoption requires a commitment for a period of uncertain du-

ration, restricting the firm in subsequent periods. Capacity constraints create a “fear

of commitment” — some positive return projects are not adopted. In the sequential

move dynamic game, the second mover sometimes adopts projects that were rejected

by the first, even when both firms are symmetric and equally informed. We study

the e§ects of competition on the fear of commitment, and compare the jointly optimal

adoption decision to the behavior of strategic non-cooperative firms.

We are grateful to Tal Cohen for insightful conversations and to Haim Bar for his detailed comments.

We also thank seminar participants at the 2011 International Industrial Organization Conference in Boston.
†Department of Economics and Finance, Montclair State University. 1 Normal Avenue, Partridge Hall

427, Montclair, NJ 07043; email: atalv@mail.montclair.edu.
‡Department of Economics, University of Connecticut. 365 Fairfield Way, Oak Hall Room 309C, Storrs,

CT 06269; e-mail: taliabar97@gmail.com.

§Department of Economics, Sciences Po, 28 rue des Saints-Pères, 75007 Paris, France; email:

sidartha.gordon@sciences-po.org.

1



Keywords: adoption, project selection, commitment, Markov perfect equilibrium

JEL Classification Codes: L10, L13, D21.

1 Introduction

Decision makers, such as researchers, firms and government agencies, often have to choose

whether to engage in projects that require committing limited resources. While resources are

committed to development or implementation of a project, they cannot be used in another

project; or a firm might need to put on hold its search for other projects. Projects may

include research, development or adoption of an invention, providing services to clients,

acquisition of an innovative start-up, and introduction of a new product to the market. Such

projects take time to complete, and tie a firm’s resources for a period of time. When making

a choice about a current project, the decision maker is typically not fully informed about

the duration of the commitment to the project or about future opportunities. Committing

limited resources (e.g., researchers’ and other employees’ time, physical space, lab equipment,

etc.) to one project may result in the need to forgo future, perhaps more profitable, projects.

In our infinite horizon model, new project opportunities arise every period. The decision

maker learns the expected return of the current period’s project, but is uncertain about

the return from future projects. We use dynamic programming to characterize the decision

maker’s adoption behavior. The optimal adoption policy is characterized by a reservation

value, so that a project is adopted if its expected return exceeds the reservation value.

Whereas unconstrained decision makers take on any project with a positive net expected

return, constrained decision makers are more prudent. They reject some projects that have
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positive returns, so as not to commit resources and risk missing out on better opportunities in

the future. We refer to this tendency to wait for better projects as the “fear of commitment.”

The optimal reservation values will be higher (the decision maker will be more likely to reject

a current project) when each project commitment is expected to last longer, and when the

decision maker is more patient. The optimal adoption threshold is also higher when project

returns are drawn from a more favorable distribution, because there is a higher probability

that the return from a future project exceeds the return from the current project.

Repeated adoption decisions are often taken in competitive settings. Consider, for ex-

ample, the companies Coca-Cola and PepsiCo. While best known for their cola drinks, each

of these companies repeatedly adopted many innovative drinks. Coca-Cola company’s page

on Facebook, for example, states that the company has “a portfolio of more than 3,300

beverages, from diet and regular sparkling beverages to still beverages such as 100 percent

fruit juices and fruit drinks, waters, sports and energy drinks, teas and co§ees, and milk-and

soy-based beverages, our variety spans the globe.1” Adopting a product requires a period of

intense e§ort for the company. It involves conducting market research, designing the bottle

and label, developing a marketing strategy, etc.

The sports drink Gatorade was developed in 1965 in the University of Florida for its

football team the Gators.2 In 1992, after gaining increased popularity, Gatorade approached

Coca-Cola about using Coke’s distribution system.3 In 2000, after considering acquiring

Quaker Oats, the company that owned Gatorade, Coca-Cola decided against the acquisition.

As a headline in the Chicago Sun Times from November 22, 2000 states, “Coke backs o§ bid

1See https://www.facebook.com/pages/Coca-Cola-Cafe/173169246041187?sk=info
2See http://www.gatorade.com/history/default.aspx
3See http://www.time.com/time/magazine/article/0,9171,975619,00.html
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to buy Quaker Oats - Company’s decision could open door for rival PepsiCo4,” in August

2001, PepsiCo acquired Quaker Oats for its Gatorade.

We study the optimal project adoption strategies of capacity constrained firms in a

dynamic duopoly game. Every period, one project opportunity arises. The expected return

from each period is randomly drawn from a known distribution. The first firm to consider

each project is selected at random. If it does not adopt the project, the other firm will

consider adopting it. When no commitment is required, the first firm to consider each project

adopts any project with a positive return, and the second firm never adopts a project that was

rejected by the first firm. But, when projects require commitment of resources for a certain

period of time, some positive return projects are not adopted by either firm. The first firm

will adopt projects that have a high enough return. Interestingly, there can be projects with

intermediate levels of return that are rejected by the first firm, yet adopted by the second

firm. This is true even though both firms are identical and have the same information

about project returns. The intuition for this result is that, for projects with intermediate

return, each firm prefers its rival to adopt the project, thus commit its resources leaving the

non-adopting firm with less competition over future, perhaps more profitable projects. This

result holds true whether the externality that the adopting firm imposes on the non-adopting

firm is positive or negative, provided that the magnitude of the externality is smaller than

the return from the project to the adopting firm.

To examine the e§ects of competition on the “fear of commitment,” we compare the

project adoption decisions of a firm who has no competition to that of a firm that faces a

strategic competitor. We find that adoption thresholds are lower under competition. That

4See http://www.highbeam.com/doc/1P2-4568251.html
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is, a duopolist adopts projects that this firm would not have adopted absent a competitor

in the market.

We consider also the project adoption decisions of a firm that has a less strict capacity

constraint and can adopt two projects at a time. When a single firm decides on project

adoptions, we show that the less constrained firm has lower adoption thresholds (less fear of

commitment) than the more constrained firm. Interpreting the two-projects capacity model

as that of a joint venture of two firms with one project capacity each, we find that in duopoly

competition, firms exhibit more fear of commitment than in a joint venture.

The rest of this paper proceeds as follows. In Section 2, we discuss related literature. In

Section 3, we describe the basic model with a single decision maker. In Section 4, we develop

the game between duopolists and analyze the strategic interaction between them. Section

5 studies the single decision maker with two-projects capacity constraint and compares the

choices made in a joint venture to the choices made in the non-cooperative duopoly game.

Section 6 concludes.

2 Related Literature

Our model contributes to the literature on sequential search, and more specifically, to the

much smaller branch that studies the strategic interaction between a small number of search-

ing agents. We consider first the decision maker version of our model, and its relation to job

search models, and then describe the relation of our model to models of strategic search.

In our model, once a firm adopts a project, it commits resources to the development of

the project until its random termination date. In early job search models (e.g., McCall, 1970;
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Mortensen, 1970), workers cannot search for a job while employed, and staying employed

is better than becoming unemployed. In recent years, Burdett and Mortensen (1998) and

Postel-Vinay and Robin (2002), have introduced models where workers continue searching

for a better job while employed. Thus in leading job search models, commitment is either

not binding or it is not assumed. In contrast, in our setting, the necessity to spend time and

other resources to developing the newly found projects is a natural source of commitment.

Binding commitments characterizes many situations firms face. For example, if a service

provider (e.g., a consulting firm) takes on a client, the firm is typically committed (legally or

to preserve his reputation) to complete the service promised; when adopting a project, firms

might enter binding agreements with its employees, clients, or suppliers; or, while working

on an existing project, the firms’ researchers might not observe new project opportunities.

Sometimes, at the start of a project, a large sunk investment is required which makes aban-

doning the project for another, even if it has a higher expected return, not worthwhile. In

labor search models, the worker alternates between spells of unemployment and employment.

Similarly, in our single firm model, the firm alternates between spells of search for a new

project and development of a project it recently found.

An important di§erence between our model and previous search models is that unlike

the job search case, the firm’s payo§ from a project is independent of the development

duration: one can interpret it as the present value of the project. The firm is stuck with

the development of a project until it is complete. Termination frees the firm to adopt an

additional profitable project without forgoing the returns of the earlier project. Whereas a

worker fears a layo§, our firm eagerly expects project completion. Being committed does

not allow the firm to engage in new project opportunities. This assumption is appealing for
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the applications we consider. For example, if the firm needs to use its resources to develop a

new product that it will then market, the firm is better o§ when development is completed

and the product can enter the market. When the project terminates, the firm’s resources

are free and can be used for other projects, and it will still benefit from the product that

was developed and introduced to the market.

In our analysis of strategic interactions, our model also contributes to a sparse (but

highly relevant to the field of industrial organization) literature that studies search behavior

and project selection by strategic firms. Whereas the analysis of search and adoption by

single decision makers is important in competitive settings (such as in labor markets) or for

understanding monopolies, in many markets firms act strategically. A firm would take into

account how its own search and adoption strategies would a§ect the opportunities available

and the behavior of rivals. Our contribution to strategic search models lies in the form of

the strategic interaction between our searching firms, which di§ers from other interactions

that have been studied, and better applies to some strategic situations.

In the context of a game, in one category of models, known as patent or R&D races

(Loury 1979, Lee and Wilde 1980, Reinganum 1983b), search intensity is the main strategic

variable. In these models, there is essentially one object to be found, so that selectivity is not

an issue. The firms’ payo§s depend on which firm finds it first and how long the race lasts.

The main insight from these models is that, in equilibrium, firms search more intensively

than joint profit maximization would require.

In a surprisingly small second category of models, selectivity is taken as the main strate-

gic variable. Our model belongs to this group. In these models, firms play reservation

strategies, and a firm’s selectivity is therefore measured by the threshold it uses for adop-
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tion.5 Reinganum (1982, 1983a) considers a game where sequential search for a technology

is undertaken simultaneously in a first stage. Firms do not observe the outcomes of the

other firms’ searches, but only their reservation thresholds. Once all firms have completed

their search, firms compete in the goods market. The dates at which the di§erent firms stop

searching and the order in which they complete the search play no role.6 Daughety and

Reinganum (2000) use a similar framework to study search for evidence by opposing parties

in a trial. Lippman and Mamer (1993) enrich Reinganum’s (1982) strategic search problem

by introducing a timing dimension. They assume an extreme form of first-mover advantage

whereby only the first adopter is rewarded. Hoppe (2000) extends the analysis to the case

where the loser of this race may benefit from second-mover advantages. Interestingly, a

firm’s best response threshold is nonincreasing in the other firm’s threshold in Reinganum

(1982), increasing in Lippman and Mamer (1993) and decreasing in Hoppe (2000) when the

second-mover advantage is strong enough. Our model di§ers from the ones discussed in this

paragraph in several important ways.

First, what all of these models have in common is that the agents search in di§erent

5Selectivity is also the decision variable in models of labor markets with many firms and workers, such as

Pissarides (1985). Firms’ and workers’ selectivity a§ect other agents through aggregate channels, but each

agent is infinitesimal and has no impact on any other agent. Also, because the rents of firm-worker matches

are independent across matches, being more selective has the same e§ect on other agents as searching less

intensively: it a§ects the hazard rate at which opportunities arrive, not the distribution of their flow value

conditional on arriving. In contrast, in our model, if one firm lowers its adoption threshold in some period

(it is less selective), the distribution faced by the other firm in the same period is modified.
6Taylor (1995) examines the planner’s optimal design problem of a search tournament: the planner chooses

the number of competing firms, the entry fee and the prize. The firms then engage in simultaneous search

as in Reinganum (1982, 1983a). The firm that finds the best innovation receives the prize.
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pools. The interaction comes from the e§ect that the other agent’s search outcome has in a

subsequent stage (competition on a goods market, trial, etc.) The value of what an agent

finds depends on what the other agents find. However, what an agent can find does not

depend on the other agent’s behavior. In contrast, in our model, the selectivity of a firm

at any point in time a§ects the distribution of projects faced by the other firm both in the

same period and in subsequent periods in complicated ways. If firm 1 is approached first by

an innovator in some period, and adopts his project, then on the one hand firm 2 will not

receive any o§er in the same period. But on the other hand, firm 1 might be committed for

a certain period of time, which will leave firm 2 as a temporary monopolist in the market for

innovation until either firm 1 completes developing its product or firm 2 adopts a project.

The second di§erence is that, in our model, what each firm has found and adopted is common

knowledge. Firms best respond not only to the other firm’s thresholds strategies, but also

to their current state. The third di§erence is that our firms alternate between periods of

search and periods of development. This is a common setting in job search models, but, to

the best of our knowledge, it has not been analyzed in a strategic search game.

In its application, our work relates to a literature in management and finance on capital

allocation. This literature considers mostly the decision to finance a single project, and much

of the work focuses on information asymmetry (see, for example, Harris and Raviv, 1996 and

Zhang, 1997). In our paper, information is symmetric, and the focus is on the need to commit

limited capacity. Hall and Lerner (2010) survey the literature on financing of innovation with

a focus on financial market reasons for under-investment. Our assumption on firms’ project

capacity constraint is di§erent from the standard capital financing constraint. It is not

enough for firms to be able to borrow at a reasonable interest rate. Firms can be limited
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in the number of projects they adopt even if they have cash reserves, or access to venture

capital. Capacity constraints could arise due to a limited number of skilled scientists and

engineers, limited physical space to run experiments, etc. The problem our paper analyzes

has also some similarity to the problem of dynamic assignment of a single durable object to

successive agents, considered by Bloch and Houy (2011). In their model, the firm prefers to

learn an agent’s type before assigning him an object. In our model, the type of the project

is known and the project immediately dies if it is not adopted. Our focus is on the e§ect of

competition and capacity constraints on the fear of commitment.

3 Basic Model

We begin by describing the model in the context of one decision maker — a single firm

repeatedly deciding whether to adopt projects that arise sequentially. In the next section,

we add strategic interactions between firms.

Consider a discrete time infinite horizon model. The decision maker maximizes the

discounted sum of expected payo§s. The discount factor is 0 <  < 1. A new project

opportunity arises every period. If the decision maker is not yet committed, he can decide

whether to adopt the project. A project requires a commitment of resources, which prevents

the firm from engaging in another project at the same time. The duration of a project is

random. To capture this, we assume that every period, conditional on being committed

in the previous period, the commitment ends with a probability p. The decision-maker has

resource constraints so that he can be committed to only one project at a time. Hence,

the decision maker can only adopt a project if he is not currently committed to an earlier
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project. If we think of a project as the acquisition of a start-up innovative firm, the duration

of the commitment can include the time it takes to transfer knowledge from the innovator

to the firm, time to develop the product, time to come up with a marketing strategy, etc.

A project’s return v is the expected discounted present value of benefits from the project

at the time it is adopted.7 Project returns are identically and independently drawn from

a known distribution. The cumulative distribution function for project returns is F (v) on

[v, v], with v  0, and a finite v > 0. For all v > 0, we assume F is di§erentiable with a

finite density f(v) > 0. There may be an atom (a discontinuity in F ) at zero, so as to allow

for a positive probability that no project arises. The payo§ in a period in which no project

is adopted is zero.

3.1 A Single Decision Maker’s Adoption Behavior

Let us denote the value function in any period for which the decision maker is not com-

mitted, before realization of the project’s return, by V0. Let V1 denote the value function

for the decision maker who is committed from an earlier period. If the decision maker is

not committed, then when a project has a payo§ of v, adopting a project has a payo§

v +  (pV0 + (1 p)V1) and not adopting the project has a payo§ V0. The decision maker

maximizes payo§ by choosing to adopt or not to adopt:

max

8
<

:v +  (pV0 + (1 p)V1)| {z }
adopt

, V0|{z}
don’t adopt

9
=

; .

7The assumption that the prize is obtained immediately simplifies the exposition, but the analysis will

be similar if the prize is obtained at the end of the commitment period.
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The project is adopted if v+ (pV0 + (1 p)V1)  V0. This decision rule defines a threshold

for adoption:

v0 =  (1 p) (V0  V1) . (1)

The value in the state without commitment is:

V0 =

v0Z

v

V0f(v)dv +

vZ

v0

[v +  (pV0 + (1 p)V1)] f(v)dv

= V0 +

vZ

v0

(v  v0) f(v)dv. (2)

The value in the committed state is:

V1 =  [pV0 + (1 p)V1] .

Re-arranging, we have:

V1 =
p

1  (1 p)
V0. (3)

Substituting (3) into (1) and then into (2), and re-arranging, we obtain the following implicit

definition of the adoption decision threshold v0:

1  (1 p)
 (1 p)

v0 =

vZ

v0

(v  v0) f(v)dv. (4)

Lemma 1 There exists a unique solution to (4) in the range (0, v) which defines the adoption

threshold.

Lemma 1 implies that an optimal threshold return exists and is unique. Unless p = 1,

this threshold is strictly positive, that is, when the decision maker can only commit to one

project at a time and a project’s expected duration is longer than one period, some positive

return projects are not adopted.
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The next proposition presents comparative statics results describing how the reservation

value depends on the parameters  and p.

Proposition 1 The reservation value v0 is lower the more likely is the project to end (the

higher p), i.e., the shorter is the expected commitment time and the more patient the decision

maker is (the higher ).

The proposition is proved by implicit di§erentiation of (4). Intuitively, the threshold is

higher when the commitment required for each project is expected to last longer, because

adopting the project is more costly in terms of missed future opportunities. In the phar-

maceutical industry, for example, where it takes about 10 years to bring a drug to market

(see Nicholas, 1994), we would expect higher adoption thresholds than in areas with short

duration projects, as perhaps is true in the context of software development. Conditional on

the project being adopted, project return is expected to be higher in an industry in which

project duration is longer.

The adoption threshold is also higher when the decision maker is more patient. This is

because waiting for a potentially better project in the future is less costly to him. Combining

the results for  and p, we also conclude that if project opportunities arise more frequently,

then the project adoption reservation value would be higher. This is because in a setting

with more frequent project opportunities, the discount factor is higher (as there would be

a lower discount rate per shorter period) and there is a smaller probability that the project

terminates by the following period. Comparing a decision maker (or firm) that is more

prolific or creative and can generate frequent projects to a less prolific one, we would expect

the more prolific decision maker to adopt higher return projects.
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We next compare the thresholds of adoption for two distributions of project returns, one

of which is either more favorable in terms of first order stochastic dominance, or a mean

preserving spread of the other. In the first case, the threshold for adoption is higher for the

dominating distribution, because there is a higher probability that a better project will arise

in the following periods. In the second case, the threshold for adoption is higher for the

spread, because the option value of waiting for a better project is higher, under the riskier

distribution.

Proposition 2 For a distribution of returns that either first order stochastically dominates

another one or is a mean-preserving spread of another one or if both of these statements

hold, the threshold level is at least as high.8

In research areas where projects tend to have higher values, decision makers will be less

likely to commit to projects of relatively lower value. Similarly, in research areas where

projects have the same expected values but more risky returns, decision makers will be less

likely to commit to projects of relatively lower value, because the option value of waiting for

a better project is higher.

4 Strategic Decision Makers

In this section, we examine the project adoption decisions in a duopoly setting. One firm’s

adoption decision can a§ect the payo§s of the other. We assume only one firm can adopt

8Equivalently, for any two cumulative distributions F 0 and F 1 such that any weakly increasing and convex

utility function u over returns we have
R
u (v) dF 0 

R
u (v) dF 1, the threshold level is higher under F 1 than

under F 0.
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each project. We examine project adoption strategies and the e§ects of competition on the

fear of commitment.

4.1 The Game

We consider competition between two firms A and B. Every period, a new project oppor-

tunity with a value v drawn from the distribution F (v) arises. One firm chosen at random

(each firm is chosen with a probability 1
2
) is the first to make a decision to adopt the project

or not. If the first firm adopts the project, the period ends. If the first firm does not adopt

the project, the other firm can decide whether to adopt it. As we assumed before, a firm

can adopt at most one project at a time and the commitment of resources ends each period

with a probability p. The adopting firm obtains rights to a patent, or a lead time advantage

resulting in the random return v. For a project with return v to the adopting firm, we denote

the return of the non-adopting firm by v, where  2 (1, 1) . When  < 0, a firm su§ers a

negative externality if its rival adopts the project. This can be the case for example if the

project results in an improvement of quality or reduction in cost for the adopting firm, which

reduces profits and market share for the non-adopting firm. When  > 0, a firm enjoys a

positive externality if the other firm adopts the project. A firm can benefit from its rival’s

adoption when there are network externalities, or technology spillover. The non-adopting

firm can also benefit if, for example, the project involves the introduction of a new product,

and the first adopting firm becomes a Stackelberg leader in the product market, while the

non-adopting firm becomes a follower. Either way, we assume the return for the rival firm

is smaller in magnitude than the return for the adopting firm, || < 1. If no firm adopts the
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project, payo§s are zero for each firm.

We restrict attention to Markov strategies. A firm’s decision will only depend on the

current state. States of the world are denoted by (i, j), where i, j 2 {0, 1}. In a state with

i = 0 firm A is not committed and in a state with i = 1 firm A is committed. Similarly, j

indicates the commitment of firm B.

We look for a symmetric Markov perfect equilibrium. The value function (before realiza-

tion of the project’s return and the choice of the first mover) in any state (i, j) is denoted by

V Ai,j for firm A and V
B
i,j for firm B. Because we focus on symmetric equilibria, V

A
i,j = V

B
j,i = Vi,j.

Equilibrium strategies are characterized by threshold levels of return. The threshold for the

non-committed firm in a state (0, 1) is denoted by v0,1. In state (0, 0) , the threshold for the

firm that was o§ered the project first is v10,0 and for the second firm (in case the first firm

rejected the project), we denote the threshold by v20,0.

4.2 Analysis

In state (1, 1) , both firms are committed and no firm can adopt a project. Next period’s

state depends on whether each of the firms is freed from its previous commitment or not.

The value in state (1, 1) is thus given by:

V1,1 = 

p2V0,0 + p (1 p)V1,0 + p (1 p)V0,1 + (1 p)

2 V1,1

. (5)

In state (0, 1), firm B is committed and it cannot adopt a project. Hence, if firm A does

not adopt, no firm adopts. If a project with return v arises, firm A can either adopt it and

immediately transition to the state (1, 1) where both firms are committed, or not adopt and

transition in the next period to one of the states where it is not committed. Hence, firm A
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will maximize:

max

8
><

>:
v + V1,1| {z }
adopt

,  (pV0,0 + (1 p)V0,1)| {z }
don’t adopt

9
>=

>;
.

The threshold return for adoption is:

v0,1 =  (pV0,0 + (1 p)V0,1) V1,1. (6)

Accounting for these thresholds of adoption for the non-committed firm, the value functions

in states (0, 1) and (1, 0) are:

V0,1 =

vZ

v0,1

vf (v) dv + (1 F (v0,1))V1,1 + F (v0,1)  (pV0,0 + (1 p)V0,1) , (7)

V1,0 =

vZ

v0,1

vf (v) dv + (1 F (v0,1))V1,1 + F (v0,1)  (pV0,0 + (1 p)V1,0) . (8)

In state (0, 0), one of the firms is chosen at random to consider the project first. If the

first firm does not adopt the project, then the second firm faces the choice:

max

8
><

>:
v +  (pV0,0 + (1 p)V1,0)| {z }

adopt

, V0,0|{z}
don’t adopt

9
>=

>;
.

The threshold level is:

v20,0 =  (1 p) (V0,0  V1,0) . (9)

Returning to the first firm’s decision, if v  v20,0 so that the second firm will adopt if it has

the opportunity to do so, then the first firm faces the choice:

max

8
><

>:
v +  (pV0,0 + (1 p)V1,0)| {z }

adopt

, v +  (pV0,0 + (1 p)V0,1)| {z }
don’t adopt ) rival adopts

9
>=

>;
.

The firm would adopt this project if the following condition holds:

v 
 (1 p)
(1 )

(V0,1  V1,0) := ev.
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If v < v20,0 so that the second firm will not adopt the project even if the first firm to consider

it did not, then the first firm faces essentially the same choice as that of the second firm

after the first firm rejected a project. Because we are considering the range v < v20,0, the first

firm does not adopt such project. Thus, for v < v20,0, neither firm adopts. The threshold of

adoption for the first firm is therefore:

v10,0 = max

v20,0, ev


 v20,0. (10)

For v  v10,0, the first firm adopts. If (V0,0  V1,0) < 1
(1) (V0,1  V1,0) , then there is a range

of project returns v20,0  v < v10,0 so that the first firm to be o§ered the project does not

adopt, but the second firm does. The equation that defines the value function in state (0, 0)

is given by:

V0,0 =

vZ

v20,0

(1 + )

2
vf (v) dv + F


v20,0

V0,0 + 


1 F


v20,0
 (1 p) (V0,1 + V1,0) + 2pV0,0

2
.

(11)

In the special case where p = 1, each project only lasts one period. The commitment of

resources is not a binding constraint. It follows immediately from the system of equations

above that the thresholds of adoption satisfy v20,0 = v0,1 = v
1
0,0 = 0. That is, when p = 1, a

firm will adopt any project that has a positive expected return. From now on, we consider

p < 1, when commitment is necessary.

Proposition 3 For p < 1, in a symmetric Markov perfect equilibrium, the thresholds for

adoption in state (0, 0) satisfy v10,0 > v
2
0,0, so that in the range v

1
0,0 > v  v20,0, the first firm

rejects the project, but the second firm adopts it. Additionally, v10,0  v0,1, (with a strict

inequality for p > 0), so that a firm is more selective when its rival is not committed.
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From (10) , we know that v10,0  v20,0. This means that the first firm to be o§ered a project

never accepts one that would have been rejected by the second firm. When project returns

are low, v < v20,0, the project is not adopted. When project returns are high, v  v10,0 the first

firm to be o§ered the project accepts it. Interestingly, Proposition 3 implies that there are

intermediate values of project returns for which the first firm to be o§ered the project passes

on the opportunity. Yet, the second firm who is o§ered the same project, adopts it. These

intermediate range project returns are high enough for the second firm to adopt, (knowing

that its rival already decided not to adopt the project), but not high enough to induce the

first firm to adopt. This is because the first firm knows that if it does not adopt the project,

its rival will adopt it, committing resources and leaving the first firm in a better position to

adopt projects in future periods.

To examine the e§ects of competition on the fear of commitment, we compare the adop-

tion rates when two firms compete to those of the single decision maker. We show that the

threshold return for a project to be adopted is lower when two firms compete than when

there is a single decision maker. Thus, competition reduces the fear of commitment.

Proposition 4 Competition reduces the fear of commitment: v10,0 < v0.

The comparison in Proposition 4 is done under the assumption that the project return

has the same distribution in the single decision maker’s problem and in the game. If the firm

enjoys a higher return from any project when it is alone in the market, the distribution of

returns in the decision maker’s problem may dominate that in the duopoly case. As we have

shown in Proposition 2, this would imply an even higher threshold of adoption. So the result

of Proposition 4 holds even if the decision maker earns more from each project compared to
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the duopolist.

5 Two Projects Capacity Constraint

We consider now a single decision maker’s project adoption rule when the decision maker

has enough resources to work on two, but not more, projects at the same time. We compare

the decision maker’s choice in the two projects capacity model to the single project capacity

constraint. Also, this version of the model allows us to compare project adoption decisions

of strategic non-cooperative firms with the decision of a joint venture. We first set up

the dynamic programming equations for the (single decision maker) two projects capacity

case. We assume that when a project of value w arises, its adoption results in a payo§ of

w (1 + ) to the decision maker. This payo§ is the sum of payo§s in the game we solved

in the previous section. We can then compare the equilibrium project adoption behavior

to the optimal adoption behavior of the joint venture. We think of this joint venture as

a coordinated adoption decision of the projects, but no collaboration among firms in the

product market. We also consider the special case  = 0 which can be interpreted as the

optimal decision for a single decision maker with two-projects capacity. Examining this case

allows us to compare the adoption thresholds of a single decision maker with one or two

projects capacity.

We denote the value functions of the decision maker with two projects capacity with

Wi, to distinguish from that of single project capacity values Vi. The index in the value Wi

refers to the number of projects to which the decision maker is committed, i 2 {0, 1, 2} . In

state 2, when committed to two projects, the decision maker cannot adopt a project. The
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optimal choices in states 0 and 1 are given by thresholds of adoption w0 and w1, respectively.

Similar to the analysis in the previous sections, we write the system of dynamic programming

equations that characterizes optimal decisions of the two-projects capacity decision maker.

In state 2, the decision maker is already committed to two projects. The value in state

2 is given by:

W2 = 

p2W0 + 2p (1 p)W1 + (1 p)

2W2


. (12)

In state 1, if a project with return w arises, the decision maker will maximize:

max

8
<

:w (1 + ) +W2| {z }
adopt

,  (pW0 + (1 p)W1)| {z }
don’t adopt

9
=

; .

The threshold return for adoption satisfies the following condition:

(1 + )w1 =  (pW0 + (1 p)W1)W2. (13)

The value functions in state 1 is:

W1 =

vZ

w1

v (1 + ) f (v) dv + (1 F (w1))W2 + F (w1)  (pW0 + (1 p)W1) . (14)

In state 0, the decision maker faces the choice:

max

8
<

:w (1 + ) +  (pW0 + (1 p)W1)| {z }
adopt

, W0|{z}
don’t adopt

9
=

; .

The threshold level satisfies:

(1 + )w0 =  (1 p) (W0 W1) . (15)

The equation that defines the value function in state 0 is given by:

W0 =

vZ

w0

(1 + ) vf (v) dv +  [1 F (w0)] ((1 p)W1 + pW0) + F (w0)W0. (16)
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Equations (12)-(16) define the solution to the optimal decision of the firm who can adopt at

most two projects.

We reduce the system to a system of two equations in only the thresholds w0 and w1.

We first show that the decision maker is less likely to adopt a project when she has already

committed resources to one project, i.e., w1 > w0.

Proposition 5 For a decision maker who can commit to adopt at most two projects, the

fear of commitment is greater when one project is underway than when it is not committed,

w1 > w0.

This result is intuitive, if the firm has not yet adopted any project, adopting the current

project will tie resources but still leave an opportunity to adopt another promising project

in the next period. However, for a firm that is already committed, adopting now means that

it cannot adopt until the commitment to one of the projects ends.9

In the next two subsections, we use the system derived above to examine how the decisions

of firms with di§erent capacity constraints compare (the case  = 0), and also how the

adoption decisions of strategic players compare to that of a joint venture.

5.1 Adoption Decision and Project Capacity Constraint

We compare the adoption strategy of a firm that has only one project capacity to that

of a less constrained firm that has a 2-projects capacity. In Section 3.1, we derived the
9Interestingly, the inequality w1 > w0 remains true in the limit where firms are infinitely patient ( ! 1),

when the firm is assumed to maximizes the expected payo§ per unit of time. The firm prefers to spend more

time in states 0 and 1 than in state 2 (where it is committed and cannot accept projects). Setting w1 > w0

is a way to steer the system back towards state 0, as it gets closer to state 2.
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adoption threshold v0 of the single project capacity firm. The analysis in the beginning of

this section, when specialized to the case  = 0, describes the adoption thresholds w1 and w0,

that a 2-projects capacity decision maker has when he is committed to one project, or when

he is not committed to any project, respectively. Our next proposition establishes that the

single project decision maker has a higher threshold of adoption compared to the threshold of

adoption of the 2-projects capacity firm, even when this firm has already committed resources

to one project. Intuitively, the reason for this is that for the two projects capacity firm, when

all its resources are committed, the expected time until at least one of the commitments is

relieved is shorter than for the single project capacity firm who has committed all of its

resources as the probability that one of two projects ends is larger than the probability that

one project ends.

Proposition 6 For a decision maker who has a capacity of one project, the fear of com-

mitment is greater than for a firm with two projects capacity, even when the two projects

capacity firm has already committed resources to one project, i.e., v0 > w1.

An implication of Proposition 6 is that the average return of adopted projects is larger for

a firm that has a more stringent project capacity constraint, because the fear of commitment

leads the constrained firm not to adopt some relatively low return projects that the less

constrained firm would adopt.

5.2 Joint Decision versus the Non-cooperative Game

The analysis in this section accounts for the payo§ externality parameter,  2 (1, 1) , as

in the game analyzed in Section 4. It allows us to compare the adoption strategies of firms
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in the non-cooperative game to the behavior of a decision maker that jointly decides on the

adoption rule of both firms. This joint decision maker has a 2-projects capacity. There are

two comparisons of interest. First, we compare w1 to v0,1. That is, we compare the adoption

threshold of the 2-projects capacity firm when it is committed to one project but is free to

adopt another to the adoption threshold of a firm that is not committed but has a rival that

is committed. Second, we compare w0 to v20,0. That is, we compare the threshold of the

2-projects capacity firm when it is free of commitments, to the adoption threshold above

which at least one of the competing firms in the game adopts when both firms are free of

commitment.

Proposition 7 A non-cooperatively competing duopolist has a stronger fear of commitment

(higher thresholds of adoption) compared to the jointly optimal decision maker, w1 < v0,1

and w0 < v20,0.

To prove this proposition, we first argue that the joint decision maker can obtain at least

as high a value in state 0 as the sum of values of both firms in the game in state (0, 0) ,

i.e., W0  2V0,0. This is true because the decision maker can mimic the adoption strategies

in the equilibrium of the game. We then derive the given inequalities on thresholds from

the systems of dynamic programming equations. Proposition 7 suggests that competition

between firms with capacity constraints on project adoptions results in firms setting too

high a bar for adoption, compared to what would be optimal for them under a joint decision

making.
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6 Concluding Remarks

Project adoption often requires firms to commit limited resources, preventing them from

adopting other projects while they are committed. Because more promising projects could

arise during the time a firm is committed to a project it adopted earlier, constrained firms

have a tendency not to adopt some profitable projects. We referred to this phenomenon as

a “fear of commitment.”

We first considered a single decision maker that could adopt at most one project at a

time. We characterized conditions under which the fear of commitment was stronger. The

constrained firm has a reservation value such that it adopts only projects that exceed this

value. The reservation value is higher when project commitment is expected to be longer,

when the firm is more patient, and if project opportunities arise more frequently. As a result,

in industries with long project durations, like the pharmaceutical industry, the expected

return from adopted projects would be higher compared to industries where projects do not

require long commitments. Also, a more prolific firm (that has frequent potential projects)

would adopt higher return projects. The reservation value is also higher for firms that face

a first order stochastically dominating distribution of project returns.

We compared firms with di§erent project capacities. Compared to a firm with one project

capacity, a less constrained, two-projects capacity firm has less fear of commitment even

during a period when it is already committed to one project and has resources available only

for one other project.

In a strategic environment, project adoption by one firm can change the profitability of

a rival, as well as the rival’s opportunity to adopt. Not adopting a project allows a rival
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to adopt it, while adopting a project will increase the rival’s opportunity to adopt future

projects. We show that firms sometimes prefer their rivals to adopt a project, so as to lessen

future competition on projects. Our analysis suggests that there is a range of project returns

for which the first firm to consider the project does not adopt it, but the second firm does.

This may explain why we sometimes observe firms adopting projects that rivals, who had

an opportunity to adopt before, did not.

Our analysis suggests that firms that face a strategic rival will tend to adopt projects of

lower expected value than firm who do not face competition: competition reduces the fear of

commitment. But had the firms been able to jointly make adoption decisions, their adoption

thresholds would have been lower than in the non-cooperative equilibrium.

In attempt to maintain tractability and a simple exposition, we made certain simplifying

assumptions. In our model, if the firm is committed to a project, it cannot adopt another

project until the commitment ends. In reality, it is likely that firms can at some cost be

released from a previous commitment. Another way to look at this is to think of the firm

making a fixed sunk investment every time it adopts a project. This cost needs to be incurred

again if the firm switches to another project. We analyzed the case in which these fixed costs

are high. More generally, when the fixed cost is not too high, if a new project of high enough

return arises, the firm might find it worthwhile to abandon an old project and adopt the new.

Thus, firms also have thresholds of adoption in states where their resources have already been

committed. Assuming it is su¢ciently costly to be released from a previous commitment,

the fear of commitment would still be present, and we expect the results to be qualitatively

similar.

In analyzing strategic interactions, our model assumes sequential decisions. One can make
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alternative assumptions on the nature of the game. For example, firms might simultaneously

decide on project adoption, or one firm might be a leading firm and always have the first

opportunity to decide on adoption, or the order of sequential move might be endogenous as

well. We expect that some of our results will carry over to such variations of the model,

but others will not. In particular, our result in Proposition 3 that the first firm may reject

projects that the second firm adopts, obviously relies on the sequential play assumption.

Instead, in the simultaneous game, in a symmetric equilibrium, there may be a range of

intermediate project returns for which firms randomize the decision to adopt.

We considered the strategic behavior of the adopting firms, but not of projects. If,

however, project opportunities arise when independent innovators propose them, they might

also act strategically so as to extract surplus from the adopting firms. The game played each

period might take the form of an auction or a bargaining game in such circumstances. These

extensions might be interesting to pursue in future work.

A Appendix: Proofs

Proof of Lemma 1. From (4) , we know that v0 is the solution to g(x) = 0 where g(.)

takes the following form:

g(x) =
[1  (1 p)]
 (1 p)

x
vZ

x

(v  x) f(v)dv. (17)

Evaluating g(x) at x = 0 and at x = v, we find that:

g(0) < 0 and g(v) > 0.
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Therefore a solution exists. Now, di§erentiating the function g (x), we find that:

g0 (x) =
[1  (1 p)]
 (1 p)

+ [1 F (x)] > 0.

This implies that there exists a unique solution to (17) in the range (0, v).

Proof of Proposition 1. Consider g(v0, , p) as defined in (4) only taking into account

the parameters  and p as arguments of the function. Implicit di§erentiation of g(v0, , p) = 0

shows that:

@g

@v0

dv0
dp

+
@g

@p
= 0)

dv0
dp

= 
@g

@p
/
@g

@v0
,

@g

@v0

dv0
d

+
@g

@
= 0)

dv0
d

= 
@g

@
/
@g

@v0
.

From the proof of Lemma 1, we know that @g
@v0
> 0. Hence,

sign


dv0
dp


= sign



@g

@p



= sign




v0

 (1 p)2


< 0.

We conclude that the reservation value is lower the higher the probability that the project

ends, or the shorter is the expected time the decision maker will be committed when taking

on a project.

Similarly,

sign


dv0
d


= sign



@g

@



= sign


v0

2 (1 p)


> 0.

Thus, the reservation value is higher the more patient the decision maker is.

Proof of Proposition 2. The threshold return level solves g(v0) = 0 which we defined

in (17) in the proof of Lemma 1. Using integration by parts, we rearrange the function g
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and write it as:

g (v0) =
[1  (1 p)]
 (1 p)

v0 
vZ

v0

[1 F (v)] dv. (18)

Consider two cumulative distribution functions F a and F b, defined on the interval (1,+1) ,

which contains their compact supports [va, va] and [vb, vb]. For all v < vi, let F i (v) = 0 and

for all v > vi, let F i (v) = 1. Let ga (v) and gb (v) be defined on (1,+1) as in (18) for the

corresponding distribution F a or F b. From Lemma 1, we know that these functions are both

increasing in v. Denote va0 and v
b
0 the solutions to ga (v) = 0 and gb (v) = 0, respectively.

First, consider the case where F b first order stochastically dominates F a, i.e., F b (v) 

F a (v) for all v 2 (1,+1) , with a strict inequality for at least some v. Then gb (v)  ga (v)

for all v, with a strict inequality for some v. In particular, gb (va0)  ga (v
a
0) = 0. Because

the function gb is increasing, this implies that va0  vb0, which is the desired conclusion. Note

that if the inequality F b (v)  F a (v) is strict for some v > va0 , we obtain a strict inequality

va0 < v
b
0. If F

b (v) = F a (v) for all v > va0 , then v
a
0 = v

b
0.

Second, consider the case where F b is a mean preserving spread of F a, i.e.

vZ

1


F b (v) F a (v)


dv  0 (19)

for all v (with a strict inequality for some v) and

+1Z

1


F b (v) F a (v)


dv = 0. (20)
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Then,

gb (v
a
0) = gb (v

a
0) ga (v

a
0)

=

+1Z

va0


F b (v) F a (v)


dv

=

+1Z

1


F b (v) F a (v)


dv 

va0Z

1


F b (v) F a (v)


dv

= 

va0Z

1


F b (v) F a (v)


dv  0.

The first equality holds by definition of va0 , the fourth by (20) and the final inequality by

(19) . Because the function gb is increasing, the inequality gb (va0)  0 implies that va0  vb0,

which is the desired conclusion. Note that if the inequality (19) is strict for some v > va0 , we

obtain a strict inequality va0 < v
b
0. If it holds as an equality for all v > v

a
0 , then v

a
0 = v

b
0.

Proof of Proposition 3. Let us define

ev =  (1 p)
(1 )

(V0,1  V1,0) . (21)

By (10) , we know that:

v10,0 = max

v20,0, ev


.

It immediately follows that v10,0  v20,0, and that v
1
0,0 > v20,0 i§ ev > v20,0. We need to show

ev > v20,0.

We first reduce the system (5)-(11) that defines the equilibrium to a system of three

equations in the three unknowns: ev, v0,1 and v20,0.

Lemma 2: In equilibrium, if p < 1, then the following three conditions hold:

[1  (1 p)]
 (1 p)

ev =
vZ

v0,1

(v  ev) f (v) dv. (22)
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[1  (1 p)] v0,1
 (1 p)

=

vZ

v0,1

(v  v0,1) f (v) dv +
p

v20,0  v0,1



 (1 p)2
(23)

[1  (1 p)]
 (1 p)

v20,0 =

0

BBBB@

vR

v20,0


v  v20,0


f (v) dv  (1)

2

vR

v20,0

(v  ev) f (v) dv


vR
v0,1

(v  v0,1) f (v) dv + (1 )
vR
v0,1

(v  ev) f (v) dv

1

CCCCA
(24)

Proof of Lemma 2:

From (7) and (6), we find that:

V0,1 =

vZ

v0,1

vf (v) dv + (1 F (v0,1))V1,1 + F (v0,1)  (pV0,0 + (1 p)V0,1) (25)

= V1,1 + v0,1 +

vZ

v0,1

(v  v0,1) f (v) dv.

From (8), (6) and (21), we have:

V1,0 =

vZ

v0,1

vf (v) dv + (1 F (v0,1))V1,1 + F (v0,1)  (pV0,0 + (1 p)V1,0)

= V1,1 +

vZ

v0,1

vf (v) dv + F (v0,1) [ (pV0,0 + (1 p)V1,0) V1,1]

= V1,1 +

vZ

v0,1

vf (v) dv + F (v0,1) [v0,1  (1 ) ev]

= V1,1 + v0,1 +

vZ

v0,1

(v  v0,1) f (v) dv  (1 )

2

64ev +
vZ

v0,1

(v  ev) f (v) dv

3

75 .

Combining with (25), we find that:

V1,0 = V0,1  (1 )

2

64ev +
vZ

v0,1

(v  ev) f (v) dv

3

75 .

Rearranging, and using (21)we obtain (22) :

[1  (1 p)]
 (1 p)

ev =
vZ

v0,1

(v  ev) f (v) dv.
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We substitute (5) into (6) to find that:

v0,1 =  (pV0,0 + (1 p)V0,1) V1,1

=  (1 p) [pV0,0  pV1,0 + (1 p)V0,1  (1 p)V1,1]

= p (1 p) (V0,0  V1,0) +  (1 p)
2 (V0,1  V1,1) .

Substituting (9) and (25),.we find that:

v0,1 = pv
2
0,0 +  (1 p)

2

2

64v0,1 +
vZ

v0,1

(v  v0,1) f (v) dv

3

75

Rearranging, we obtain (23) :

[1  (1 p)] v0,1
 (1 p)

=

vZ

v0,1

(v  v0,1) f (v) dv +
p

v20,0  v0,1



 (1 p)2
.

Next, we subtract  (1 p)V1,0 from both sides of (8) and rearrange using (6) and (21) to

find that:

[1  (1 p)]V1,0 = pV0,0 +

vZ

v0,1

(v  v0,1 +  (1 p) (V0,1  V1,0)) f (v) dv (26)

= pV0,0 +

vZ

v0,1

(v  v0,1) f (v) dv  (1 )
vZ

v0,1

(v  ev) f (v) dv.
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Lastly, we subtract V0,0 form both sides of (11) and substitute (9) and (21) to find that:

(1 )V0,0 =

0

BBB@

vR

v20,0

(1+)
2
vf (v) dv 


1 F


v20,0

V0,0

+

1 F


v20,0
 (1p)(V0,1+V1,0)+2pV0,0

2

1

CCCA

=

vZ

v20,0

(1 + )

2
vf (v) dv 


1 F


v20,0

 (1 p)


V0,0 

(V0,1 + V1,0)

2



=

vZ

v20,0

(1 + )

2
vf (v) dv 


1 F


v20,0

 (1 p)


(V0,0  V1,0)

(V0,1  V1,0)
2



=

vZ

v20,0


(1 + )

2
v  v20,0 +

(1 )
2

ev

f (v) dv

=

vZ

v20,0


v  v20,0


f (v) dv 

(1 )
2

vZ

v20,0

(v  ev) f (v) dv. (27)

Using (9) , we have:

[1  (1 p)]
 (1 p)

v20,0 = [1  (1 p)] (V0,0  V1,0)

= (1 )V0,0  [[1  (1 p)]V1,0  pV0,0] .

Substituting (27) and (26) , we obtain (24) :

[1  (1 p)]
 (1 p)

v20,0 =

0

BBBB@

vR

v20,0


v  v20,0


f (v) dv  (1)

2

vR

v20,0

(v  ev) f (v) dv


vR
v0,1

(v  v0,1) f (v) dv + (1 )
vR
v0,1

(v  ev) f (v) dv

1

CCCCA
.

This completes the proof of lemma 2. 

Lemmas 3 and 4 take care of the special cases p = 1 and p = 0. In Lemmas 5 and 6, we

consider intermediate values p 2 (0, 1) .

Lemma 3: In equilibrium, v20,0 = v0,1 = ev = v10,0 i§ p = 1.
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Proof of Lemma 3: If p = 1, then the system (5)-(11) immediately implies that

v20,0 = v0,1 = v
1
0,0 = 0, and by its definition, also, ev = 0.

Suppose, v20,0 = v0,1 = ev = v10,0 and p < 1. Then substituting v0,1 for v20,0 and ev into (24) ,

we have

[1  (1 p)]
 (1 p)

v0,1 =
(1 )
2

vZ

v0,1

(v  v0,1) f (v) dv

<

vZ

v0,1

(v  v0,1) f (v) dv =
[1  (1 p)]
 (1 p)

v0,1 from (22) ,

which is a contradiction. This completes the proof of Lemma 3. 

In the next lemma, we consider the case p = 0.

Lemma 4: When p = 0, we have ev = v0,1 > v20,0.

Proof of Lemma 4: Let us define the function g (.) as in equation (17) . When p = 0,

from (23) and (22) , we have

g (ev) = g (v0,1) = 0) ev = v0,1.

Substituting it into (24) , we have

g

v20,0

=

[1  (1 p)]
 (1 p)

v20,0 
vZ

v20,0


v  v20,0


f (v) dv

= 
(1 )
2

vZ

v20,0

(v  ev) f (v) dv 
vZ

v0,1

(v  v0,1) f (v) dv + (1 )
vZ

v0,1

(v  ev) f (v) dv

=



(1 )
2

 vZ

v20,0

(v  ev) f (v) dv  
vZ

ev

(v  ev) f (v) dv.

Because g is a strictly increasing function, if g

v20,0

= 0, then g


v20,0

= 0 = g (ev) implies

that ev = v0,1 = v20,0 which, as we showed earlier, holds i§ p = 1. A contradiction! If
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g

v20,0

> 0, then g


v20,0

> 0 = g (ev) implies that ev < v20,0, which in turn implies that:

vZ

ev

(v  ev) f (v) dv >
vZ

v20,0

(v  ev) f (v) dv.

Also, as  > 1, we have  >  (1)
2
. Hence, g


v20,0

< 0. A contradiction again! Therefore,

it must be the case that g

v20,0

< 0 = g (ev) , ev = v0,1 > v20,0. This completes the proof of

Lemma 4. 

Lemma 5: In equilibrium, for 0 < p < 1 it must be that ev 6= v0,1.

Proof of Lemma 5: Suppose ev = v0,1. By (22) and (23) , ev = v0,1 i§

[1  (1 p)]
 (1 p)

v0,1 =

vZ

v0,1

(v  v0,1) f (v) dv ,

p

v20,0  v0,1


= 0.

Therefore, if ev = v0,1 then, (because p > 0) it must be that v20,0 = v0,1 = ev = v10,0, which, by

Lemma 3, holds i§ p = 1, a contradiction! This completes the proof of lemma 5. 

We next rule out the possibility that ev < v0,1, establishing that ev > v0,1.

Lemma 6: If 0 < p < 1, then in equilibrium, ev > v0,1.

Proof of Lemma 6: We already know by Lemma 5 that ev 6= v0,1. Suppose, by contra-

diction, that ev < v0,1. By (22) and (23) , ev < v0,1 i§

[1  (1 p)]
 (1 p)

v0,1 >

vZ

v0,1

(v  v0,1) f (v) dv ,

p

v20,0  v0,1


> 0,

p > 0 and v0,1 < v20,0.

Because the function g is increasing, this implies g

v20,0

> g (v0,1) > g (ev) .
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However, by the definition of g, and from (23) and (24) , we have

g

v20,0

 g (v0,1)

=

0

BBBBB@

2

4 [1(1p)]
(1p) v

2
0,0 

vR

v20,0


v  v20,0


f (v) dv

3

5



"
[1(1p)]
(1p) v0,1 

vR
v0,1

(v  v0,1) f (v) dv

#

1

CCCCCA

=

2

4 (1)
2

vR

v20,0

(v  ev) f (v) dv 
vR
v0,1

(v  v0,1) f (v) dv + (1 )
vR
v0,1

(v  ev) f (v) dv

3

5



"
[1(1p)]
(1p) v0,1 

vR
v0,1

(v  v0,1) f (v) dv

#

=

0

BBBB@

 (1)
2

vR

v20,0

(v  ev) f (v) dv  
vR
v0,1

(v  ev) f (v) dv

+
vR
v0,1

(v  ev) f (v) dv  [1(1p)]
(1p) v0,1

1

CCCCA

=

0

BBB@

 (1)
2

vR

v20,0

(v  ev) f (v) dv  
vR
v0,1

(v  ev) f (v) dv

+ [1(1p)]
(1p) ev 

[1(1p)]
(1p) v0,1

1

CCCA
, from (22)

= 
(1 )
2

vZ

v20,0

(v  ev) f (v) dv  
vZ

v0,1

(v  ev) f (v) dv  [1  (1 p)]
 (1 p)

(v0,1  ev) .

The last term is positive (with a negative sign in the front) because ev < v0,1.We argued that

v0,1 > ev implies that v20,0 > v0,1 > ev, which in turn implies that:

vZ

v0,1

(v  ev) f (v) dv >
vZ

v20,0

(v  ev) f (v) dv.

Also,  >  (1)
2

always because  2 (1, 1) . Hence,
2

64


(1 )
2

 vZ

v20,0

(v  ev) f (v) dv  
vZ

v0,1

(v  ev) f (v) dv

3

75 < 0,
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which means that

g

v20,0

 g (v0,1)


< 0. A contradiction! Therefore, it cannot be the case

that v20,0 > v0,1 and thus v0,1 > ev is not possible. Therefore, for all p > 0, it has to be the

case that ev > v0,1. This completes the proof of Lemma 6. 

To complete the proof of Proposition 3, note that ev > v0,1 holds true i§ p > 0 and

v0,1 > v
2
0,0. To argue this, recall that ev is the solution to g (ev) (defined in (18)) which is an

increasing function. Therefore, ev > v0,1 if and only if g (v0,1) < 0 which holds true if and

only if:

[1  (1 p)]
 (1 p)

v0,1 <

vZ

v0,1

(v  v0,1) f (v) dv ,

p

v20,0  v0,1


< 0,

p > 0 and v0,1 > v20,0.

We know from Lemma 6 that for all 0 < p < 1, ev > v0,1, and we have just shown that

v0,1 > v
2
0,0, together these facts imply that v

1
0,0 = ev > v20,0.

Combining with our finding in Lemma 4 for the case p = 0, we conclude that, for all

0  p < 1, we have v10,0 = ev  v0,1 > v20,0.

Proof of Proposition 4. From the proof of Lemma 1, we know that v0 is the solution

to g(v0) = 0, where g (.) is an increasing function defined in (17).

From the proof of Proposition 3, we know that v10,0 = ev > v0,1 for all p 2 (0, 1) and hence

we can rewrite (22) as follows:

[1  (1 p)]
 (1 p)

v10,0 =

vZ

v0,1


v  v10,0


f (v) dv

or, g

v10,0

= 

v10,0Z

v0,1


v10,0  v


f (v) dv < 0 = g (v0) .
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This implies that v10,0 < v0.

Proof of Proposition 5. Note that when p = 1, we have w1 = w0 = 0.

Consider p < 1. Using (13) , we can re-write (14) as follows:

W1 = (1 + )

vZ

w1

(v  w1) f (v) dv +  (pW0 + (1 p)W1) . (28)

Similarly, using (15) , we can re-write (16) as follows:

W0 = (1 + )

vZ

w0

(v  w0) f (v) dv + W0. (29)

Substituting the two equations above into (15) and re-arranging, we get:

(1 + )w0 =  (1 p)

2

6664

(1 + )
vR
w0

(v  w0) f (v) dv

 (1 + )
vR
w1

(v  w1) f (v) dv + (1 + )w0

3

7775

or,
[1  (1 p)]
 (1 p)

w0 =

vZ

w0

(v  w0) f (v) dv 
vZ

w1

(v  w1) f (v) dv. (30)

Again, substituting (12) , (15) and (28) into (13) , we get:

(1 + )w1 =  (pW0 + (1 p)W1)


1  (1 p)2


p2W0 + 2p (1 p)W1



=
 (1 p)2

1  (1 p)2
 (1 )W0 

"
1

2p
1  (1 p)2


#
(1 + )w0

=
 (1 p)2

1  (1 p)2
 (1 + )

vZ

w0

(v  w0) f (v) dv 

"
1

2p
1  (1 p)2


#
(1 + )w0.

Substituting (30) and re-arranging, we get:

w1 =
 (1 p)2

1  (1 p)2

vZ

w1

(v  w1) f (v) dv +
p

1  (1 p)2
w0

or,

[1  (1 p)]
 (1 p)

w1 =

vZ

w1

(v  w1) f (v) dv +
p

 (1 p)2
(w0  w1) . (31)
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As we have done in the previous proofs, we can re-write (30) and (31) as follows:

g (w0) = 
vZ

w1

(v  w1) f (v) dv, (32)

g (w1) =
p

 (1 p)2
(w0  w1) , (33)

where g (.) is an increasing function defined as in (17) .

For all p < 1, if w0  w1, then g (w1)  0 > g (w0) which implies w1 > w0, a contradiction!

Hence, w1 > w0 for all p < 1.

Proof of Proposition 6. Note that we assume project values are drawn from the same

distribution in either the two projects or the single project capacity model. From the proof

of Lemma 1, we know that v0 is the solution to a strictly increasing function g (v0) = 0.

From the proof of Proposition 5, we know that w1 > w0 for all p < 1 and by (33) in the

proof of Proposition 5, we know that 0 > g (w1) . It follows that:

g (v0) = 0 > g (w1) > g (w0) .

This implies that v0 > w1 > w0.

Proof of Proposition 7. We follow three steps to prove this proposition.

Step 1: We argue that the optimal project adoption strategy of the 2-projects capacity

firm yields a value that is at least as large as the sum of equilibrium values of the two firms

in the game, W0  2V0,0. The reason why this is true is that the 2-projects capacity decision

maker can mimic the adoption behavior of the strategic firms by setting thresholds:

w0 = v
2
0,0 and w1 = v0,1.

Under this assumption, a project is implemented by the decision maker if and only if one of

the firms would have adopted the project in the game. Under this adoption strategy, it can
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be shown that: 8
>>>>>><

>>>>>>:

W1 = (V0,1 + V1,0)

W0 = 2V0,0

W2 = 2V1,1

solves the system of equations (12), (14) and (16) that defines values for given thresholds in

the 2-projects capacity problem. Because the 2-projects capacity decision maker can achieve

at least 2V0,0 in state 0, it must be that in the optimal strategy, W0  2V0,0.

Step 2: We have shown in Proposition 3 that v20,0 < v
1
0,0 = ev. This implies that,

vZ

v20,0


v  v20,0


f (v) dv >

vZ

v20,0

(v  ev) f (v) dv

and hence from (27) , we have:

(1 )2V0,0 = 2

vZ

v20,0


v  v20,0


f (v) dv  (1 )

vZ

v20,0

(v  ev) f (v) dv

> 2

vZ

v20,0


v  v20,0


f (v) dv  (1 )

vZ

v20,0


v  v20,0


f (v) dv

= (1 + )

vZ

v20,0


v  v20,0


f (v) dv.

Suppose, by contradiction, that w0  v20,0. Then,

(1)2V0,0 > (1 + )
vZ

v20,0


v  v20,0


f (v) dv  (1 + )

vZ

w0

(v  w0) f (v) dv = (1 )W0, by (29) .

But we argued that W0  2V0,0, a contradiction! Hence, it must be that w0 < v20,0.

Step 3: We argue that because v20,0 > w0, it must follow that v0,1 > w1. By contradiction,

if it was the case that v0,1  w1, then, using the definition of g (.) in (17) in the proof of
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Lemma 1, we have:

g (v0,1)  g (w1) because g (.) is increasing

)
p

v20,0  v0,1



 (1 p)2

p (w0  w1)
 (1 p)2

by (23) and (33)

)

v20,0  v0,1


 (w0  w1)

)

v20,0  w0


 (v0,1  w1)  0

) v20,0  w0, a contradiction!

Hence, it must be that v0,1 > w1.
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