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1 Introduction

Tariffs, never completely absent, rose to the foreground of US economic policy again in
2018. The US imposed safeguard tariffs on washing machines and solar panels, followed
by national security tariffs on steel and aluminum. The US president threatened Canada,
Mexico, and Germany with national security tariffs on imported autos. Intensified tariff
use led to renewed efforts by economists to quantify the impact of trade policies. The
2018 tariffs also reinforce the point that most trade policy is imposed at the industry level.
This creates a dilemma for researchers. Trade economists have developed a toolkit for
tariff counterfactuals that imposes minimal data and estimation requirements. Indus-
trial organization economists have an even more established framework for conducting
industry-level counterfactuals. It differs from the approach favored by trade economists
in almost every important respect, but the most emphasized feature is rich substitution.
Berry et al. (2004) state the main IO critique that applies to CES as well as other models of
monopolistic competition used in trade: “Models without individual differences in pref-
erences for characteristics generate demand substitution patterns that are known to be a
priori unreasonable (depending only on market shares and not on the characteristics of
the vehicles).”

The IO structure promises greater realism at the cost of more onerous data and esti-
mation requirements. What can be said, systematically, about the suitability of the trade
approach when the data are generated by the assumptions of the IO approach? This
paper starts with the premise that IO economists have correctly specified the data gener-
ating process (DGP). That DGP presents several distinct challenges for the simpler repre-
sentation of CES-monopolistic competition offered by trade economists. After analyzing
those problems, we investigate whether the CES method can be viewed as an acceptable
approximation. To do so, we use both the data and the parameter estimates from the
seminal paper in the literature, Berry et al. (1995). Then we impose 10% tariffs on foreign
varieties and solve the model to obtain the new equilibrium. We then use the method
of Exact Hat Algebra—relying solely on initial market shares and on an estimate of the
elasticity of substitution—to obtain a CES prediction of ex post equilibrium market shares.

In this first simulation, the CES prediction is astonishingly accurate, undershooting
the target by only one quarter of a percentage point (8.00 vs 7.73). To understand this re-
markable success, we proceed to a second set of simulations. Those are intended to inves-
tigate each of the methodological differences (errors) between the CES approximation and
the BLP DGP. Trade economists typically estimate the CES as a constant price elasticity
when BLP features own price elasticities that vary across firms. Within the single-market
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setup of the original data, we cannot easily estimate the CES parameter. A first change
is therefore to augment the original model to consider multiple markets, each imposing
import tariffs. Once we base the CES prediction on an estimated parameter rather than
calibration, the central case performs a little less well but alternative settings are more
robust. Another unsatisfying element of the first simulations is that the issue functional
form of demand (logit vs CES) obscures the role of consumer heterogeneity in preferences
over attributes. To remedy this, we include in our second set of simulations a mixed CES
version of the original BLP data generating process. This DGP nests CES as a polar case so
it clarifies the role of random coefficients as opposed to the functional form of demand.1

The main takeaway is that rich substitution is not nearly as pivotal in determining the
performance of the CES approximation as is the amount of pass-through from tariffs into
prices. When CES gets pass-through (close to) right, it tends to hit the aggregate target ac-
curately. But there is no guarantee, nor any universal fixes, when the approximation does
not match pass-through patterns in the data. A related conclusion of those “dissection”
simulations is that the CES success at approximating BLP in aggregate outcomes turns
out to be a case of offsetting errors: assuming CES monopolistic competition, rather than
logit oligopoly, overestimates the pass-through of tariffs into consumer prices. However,
random coefficients on prices generates a selection effect that pushes in the opposite di-
rection: As established in Nakamura and Zerom (2010), heterogeneous price sensitivity
raises pass-through. In our context, when tariffs rise, the households who keep buying
foreign varieties are the ones with low price responsiveness. This lowers the demand
elasticity and increases the pass-through elasticity.

The large literature employing the Berry et al. (1995) framework motivates the use of
the random coefficients demand by critiquing systems that fail to incorporate rich substi-
tution. In prominent surveys carried out a decade apart, the authors point to the same
crucial flaw:

“[W]hile the [CES] functional form is convenient, it imposes a very strong re-
striction on the demand system. The simplicity of the model and its analytic
tractability make it a popular choice in theory and it is also heavily used in

1Mixed CES versions of random coefficient modeling have been recently used by Björnerstedt and Ver-
boven (2016), Adao et al. (2017), Redding and Weinstein (2019), and Piveteau and Smagghue (2021). Several
well-known models can be thought of as special cases of mixed CES. As the variance across households of
price elasticity and preference for characteristics goes to zero, mixed CES can reach three different limiting
cases. First, with many single-variety firms it becomes the Dixit-Stiglitz model which we have also referred
to as CES-MC. Second, with a small number of single-variety firms, the limiting case is a version of Atke-
son and Burstein (2008) with the upper level CES set to one. Finally with several large multiproduct firms,
MCES converges on models used by Hottman et al. (2016) and Bernard et al. (2018).
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trade and in macro, but it is not appropriate to explain micro data and is essen-
tially never used in empirical IO.” Nevo (2011), italics added

“[O]ne can go too far in the pursuit of parsimony. Some of the simplest de-
mand specifications (e.g. the CES, multinomial logit, multinomial probit) im-
pose strong a priori restrictions on demand elasticities—and therefore on markups,
pass-through and other key quantities of interest—that are at odds with com-
mon sense and standard economic models.” Berry and Haile (2021)

Emphasis on the need to incorporate rich substitution, combined with multi-product
oligopoly is particularly strong in the literature devoted to the car industry, an emblem-
atic case studied from the beginning of the demand-centered IO literature (Berry et al.
(1995, 1999), Goldberg (1995), Verboven (1996), Goldberg and Verboven (2001), Petrin
(2002), Train and Winston (2007), Reynaert and Verboven (2014), and Coşar et al. (2018)
for instance). Because of our use of the BLP structure, data, and parameters, we speak to
this literature “on its playground,” assessing when and why the approximation fails to
predict aggregate outcomes. Using the same data and parameters as Berry et al. (1995,
1999) addresses the potential concern that an ad hoc DGP might not exhibit sufficiently
rich substitution patterns or strong enough market power.

Notwithstanding the valid critiques made by IO economists, CES-MC has advantages
that may not have been fully recognized. In addition to the tractability/parsimony point
conceded in the quotes above, CES allows for Exact Hat Algebra, a method that allows the
researcher to do without detailed lists of product attributes and price data. It also does not
require the inference of marginal costs from first order conditions. Relatedly, the IO liter-
ature has acknowledged that the random-coefficients models present serious challenges
in computation (Knittel and Metaxoglou, 2014), identification (Gandhi and Houde, 2016),
sensitivity to the choice of instruments (Reynaert and Verboven, 2014), data requirements,
and transparency of estimation. Conlon and Gortmaker (2020) present a very complete
coverage of the various practical challenges in BLP estimation, with different fixes to the
original framework that have been proposed by the IO literature. Salanié and Wolak
(2019) also note the estimation challenges of the BLP-based framework and propose an
alternative estimation strategy, consisting in an approximation where consumer’s tastes
dispersion parameters can be estimated in a simple 2SLS procedure. Their Monte Carlo
simulations show that their approximation result can be used to at least give very close
starting values to a more elaborate but more challenging estimation technique. Our paper
is also centered around Monte Carlo simulations, but we sidestep entirely the estimation
of issues related to the BLP model. Instead, our Monte Carlos assess the ability of the CES
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approximation to predict aggregate outcomes of BLP-generated data.
Our paper proceeds as follows. We first describe the BLP data and model structure in

section 2. We then explain our two extensions to the Exact Hat Algebra method in section
3. After analyzing the three main causes of concern for the CES approximation in section
4, we assess in section 5 the relative importance of these issues using simulations that
treat them one at a time.

2 The BLP data generating process

Berry et al. (1995, 1999) describe the data generating process (DGP) in detail, but here we
review the key equations and provide the necessary details on how we implement it in
our simulations, together with some key statistics of the original data set used in both
articles.

The key components of the BLP DGP are heterogeneous consumer choice probabilities
and multi-product firms. The demand side consists of a large number, N , of households,
with each h having its own indirect utility umh for varietym. The preferences of the house-
holds are unobserved in BLP but we have data on the fraction, sm, of the N consumers
that select each model m within the set of new cars available for purchase, along with the
fraction who purchase the outside good s0 (no purchase, second-hand car, etc.). With unit
demand, the market share of variety m is2

sm =

∑
h Pmh
N

where Pmh = Prob(umh > um′h,∀m′) (1)

Assuming Gumbel-distributed additive shocks in umh, the choice probabilities are

Pmh =
exp(

∑K
k=0 β

k
hx

k
m − αhpm + ξm)

1 +
∑

j exp(
∑K

k=0 β
k
hx

k
j − αhpj + ξj)

. (2)

We will refer to β heterogeneity as the feature of the model that households value the
physical characteristics (other than price) differently. There are K = 4 characteristics
plus a constant (x0

h = 1). Since the indirect utility of the outside good is normalized
to one, the coefficient β0

h tells how much the household prefers a new car relative to the
outside good. The mean of these coefficients, β̄0 determines the share of the outside good.

2Here we deviate slightly from the convention of expressing market shares as integrals over a continuum
of consumers. Our summations over a finite number of consumers lead naturally to expressions of demand
elasticities in terms of variances and covariances of household probabilities. The averages in equation (1)
can also be thought of as a Monte Carlo integration, the method used in our simulations.
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Reflecting the fact that only 9% of households buy new cars, Berry et al. (1995) estimate
β̄0 to be −7.1. The standard deviation of β0

h is 3.6, suggesting considerable dispersion
in appeal of new cars. The four other xkm are (1) acceleration(horsepower/weight), (2)
fuel economy (miles per dollar), (3) space (width × length), and (4) air conditioning (as a
standard feature). When we speak of β heterogeneity, we refer to the variance in the βkh .
The means and standard deviations for each of these βkh are all obtained from Berry et al.
(1995) and reported in the first column of Table 1.

Variance in the price responsiveness parameter αh will be referred to as α heterogene-
ity. There are two important points. First, α heterogeneity is large because we follow
Berry et al. (1999) in setting αh = α/yh where ln yh ∼ N (2.21, 1.72) in 1990.3 While this
specification imposes a negative relationship between income and price sensitivity (αh),
subsequent papers, such as Nevo (2001) and Nakamura and Zerom (2010), estimate the
relationship using more flexible specifications. Second, as our simulations will illustrate,
α heterogeneity changes the curvature of demand, leading to market outcomes that are
qualitatively different from those generated by β heterogeneity.

Table 1: BLP data: estimated parameters and key statistics

Estimated parameters Auto industry statistics in 1990
Variable Mean Std. dev. Statistic Value

Constant -7.061 3.612 Outside good share (%) 91
HP/WT 2.883 4.628 Domestic share 68
Air con. 1.521 1.818 Concentration (CR5) firms 86
Miles/USD -0.122 1.050 Concentration (CR5) models 18
Size 3.460 2.056 Number of firms 20
Price 43.501 91.906 Number of models 131
Note: Estimated parameters obtained from Table IV of Berry et al. (1995), with
the exception of the standard deviation of the price parameter, calculated as
α
√

(exp(σ2)− 1) exp(−2µ+ σ2) with µ = 2.18 and σ = 1.72, being the mean and
standard deviation of log incomes in the United States in 1990 used by BLP. The
Andrews et al. (2017) replication package provides these parameters as well as the
data for our calculated statistics in the second column.

In contrast to the monopolistic competition assumption of one variety per firm, multi-
variety firms were important in the US car industry in 1990. The Big 3 firms made half
the 131 varieties sold in 1990. The five largest firms accounted for 86% of new car sales.

3We follow the recent literature that replicates the original BLP results by using the Berry et al. (1995)
data and parameter values, combined with the Berry et al. (1999) approach to consumer-level hetero-
geneity in price sensitivity (αh). Our approach follows Andrews et al. (2017) (with details contained
in their replication package) and Conlon and Gortmaker (2020) (with code tutorial accessible at https:
//pyblp.readthedocs.io/en/stable/_notebooks/tutorial/blp.html).
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While in principle the BLP framework takes into account the importance of large firms
in many industries, the 91% share for the outside good means that actual market shares
for new car models are very small. Including the outside good, the mean sm in 1990 are
0.07% and the maximum is 0.44%. Table 1 summarizes some important industry statistics
that guide our counterfactual experiments of sections 4.5 and 5.

Let each firm f own a set of varieties denoted Jf . The union of these sets is J which
we also partition into sets of domestic, JH and foreign JF varieties.4 The total number of
varieties, |J |, is taken as fixed. The firm’s profit maximization problem chooses prices for
each model accounting for the impact a rise in m’s price would have on the profits earned
for the other models (j 6= m) ∈ Jf . The first order condition is

pm = cm −
sm +

∑
(j 6=m)∈Jf (pj − cj) ∂sj∂pm

∂sm
∂pm

. (3)

The own- and cross-price derivatives of sm are shown in Appendix B. Having data on {sm,
pm, Jf} and having estimates of the mean and standard deviation of {α, β}, we can infer
ξm (via the contraction mapping). Then cm can be obtained by moving cm to the left hand
side of equation (3). On the right hand side, sm is known, ∂sm/∂pm is implied by the pa-
rameters and price data, leaving only the summation term as a function of the unknown
cm. Starting with cm = pm, we iterate until reaching a stable vector of marginal costs. At
this stage, we have knowledge on all relevant characteristics of each car modelm, and can
use those combined with the parameters of consumer preferences to run counterfactual
experiments.

3 Counterfactual calculations: true BLP vs CES hat algebra

The counterfactual policy we use to motivate this paper are new tariffs of 10% on im-
ported varieties. Berry et al. (1999) consider quantitative restrictions on imports, but
tariffs are much easier to model and recent experience demonstrates that tariffs remain
relevant. Because the tariff imposed on model m depends on the model’s origin country,
i(m), and the market n where it is sold, we now move to a multi-market setup. Following
convention, we model tariffs as shocks to delivered marginal costs of model m to mar-
ket n. In the counterfactuals, marginal costs rise from cmn = cmτmn to cmτ ′i(m)n = cmnτ̂i(m)n,
where τ̂i(m)n = 1.1 for all foreign models (i(m) 6= n) and τ̂i(m)n = 1 for domestic models
(i(m) = n). The true new equilibrium is obtained by iterating equation (3) until a fixed

4In the BLP data, domestic models constitute 68% of new car sales.
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point in new prices, p†mn is reached.5 Then we substitute the prices into demand to obtain
the new market shares, denoted s†mn, which we aggregate to obtain the true change in the
domestic share of new car production.

∆SBLP
n =

∑
m∈JH

(
s†mn

1− s†0n
− smn

1− s0n

)
. (4)

In contrast to the true BLP market shares, the CES predictions are not obtained by solv-
ing the model in terms of its structural parameters. Rather, hat algebra methods predict
new market shares using only the initial market shares smn and the single CES demand
parameter, denoted η.

The CES market share for model m is given by6

smn =

(
pmn

AmnPn

)−η
, where Pn ≡ (1 +

∑
j

(pjn/Ajn)−η)−1/η,

and where Amn is the demand shifter. Prices are given by pmn = µmncmτi(m)n, where µmn
is the markup (defined here as price divided by marginal costs). Defining ϕmn ≡ Amn/cm,
we can re-express equilibrium market shares as

smn =

(
µmnτi(m)n

ϕmnPn

)−η
, where Pn ≡

[
1 +

∑
j

(µjnτi(j)n/ϕjn)−η

]−1/η

. (5)

The standard approach to Exact Hat Algebra since Dekle et al. (2007) imposes constant
markups, and calculates counterfactual market shares as

ŝmn =
s′mn
smn

=
τ̂−η̆i(m)n

s0n +
∑

j sjnτ̂
−η̆
i(j)n

, (6)

where η̆ is an estimate of η. We will consider two potential sources of η̆. The first is the
average own price elasticity implied by BLP data and estimated parameters (4.05).7 The
second estimate comes directly from a regression of log market shares on an ad valorem
cost shifter such as the log of one plus the tariff rate.

5The fixed point iteration usually requires “dampening” to converge. Thus if the new price implied by
kth iteration of the first order condition is p(k)mn we instead use νp(k)mn + (1− ν)p

(k−1)
mn , with ν < 1.

6As BLP work with quantity shares, we use the modification of the CES employed by Head and Mayer
(2019), where η is the own-price elasticity holding constant the price index, Pn.

7This estimate, obtained from the 1990 data, hardly differs from the 3.928 pooled 1971–1990 estimate
reported in the Conlon and Gortmaker (2020, Table 8) replication.
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We derive an equation for estimating η by first noting that µmn is constant in CES
under monopolistic competition and hence cancels from equation (5). Taking logs of this
equation yields a firm-level version of the gravity equation:

ln smn = −η ln τi(m)n + FEm + FEn + υmn. (7)

Here we have modeled η lnϕmn as the sum of a model-specific fixed effect—capturing
production cost (cm) and the way the average consumer values the attributes of the car—
and an idiosyncratic term, υmn. The latter is modeled as if it were a well-behaved error
term capturing variation in Amn across markets. In practice, it also contains the specifica-
tion error from assuming CES when the underlying data comes from a BLP process. The
last element of the specification is a market specific fixed effect capturing −η lnPn.

The estimation of (7) provides η̆, which is the only parameter needed (besides ob-
served market shares and changes in trade costs) to compute the counterfactual outcome
in (6). Because of mis-specification, η̆ does not estimate the underlying price elasticity of
demand as it would have if the data were really generated by a CES-MC process. Instead
η̆ recovers a rough estimate of the average elasticity of market shares with respect to cost
shocks, building in non-unitary pass-through. Thus if the underlying pass-through is less
than one, η̆ will be smaller than the price elasticity, which can compensate in part for the
mis-specified functional form.

The major defect of EHA at this stage is its reliance on constant markups and the
associated assumption of unitary pass-through. Within the homogeneous logit model,
pass-through elasticities are much lower than one, even under monopolistic competition.
In appendix D we show how to conduct Exact Hat Algebra in a logit model with non-
negligible market shares. Here we maintain CES demand but show two ways that CES
counterfactuals can be adjusted to allow for non-unitary pass-through.

We first generalize EHA to allow for markups determined inside a CES multi-product
oligopoly such as that studied in Hottman et al. (2016) and Nocke and Schutz (2018). The
optimal markup in this CES-OLY approximation varies over both models and markets.
Assuming, as in BLP, that firms compete in prices (Bertrand), the markup equation at the
model level depends on market shares at the firm level:

µmn = µfn =
η(1− sfn) + 1

η(1− sfn)
, ∀m ∈ Jf , with sfn =

∑
m∈Jf ,

smn. (8)

The markup converges to (η + 1)/η as firm-level market shares go to zero. Except in that
limit case, there is no closed-form solution to the market share equation and estimation
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requires an iterative procedure to estimate η. Start with a guess of η0. Since we observe
firm market share sfn, we can compute the equilibrium markup µ0

fn using equation (8).
This markup is passed to the left-hand-side, and combined with the log of market shares
to yield the following regression for the kth iteration

ln smn + ηk lnµkfn = −ηk+1 ln τi(m)n + FEm + FEn + υmn, (9)

The coefficient on trade costs provides a new estimate ηk+1, with which we can recalculate
markups. The process iterates from k = 0 until ηk+1 = ηk (within tolerance) at which point
we have an estimate η̌, consistent with Bertrand oligopoly pricing.

Once the estimate η̌ is obtained, one can also work with Exact Hat Algebra to compute
counterfactual market shares that account for changes in markups. The changes in market
shares for the inside goods (m > 1) are

ŝmn =
(µ̂mnτ̂i(m)n)−η̌

s0n +
∑

j sjn(µ̂jnτ̂i(j)n)−η̌
. (10)

The change in markup is computed as

µ̂mn = µ̂fn =
1

µfn

η̌[1− ŝfnsfn] + 1

η̌[1− ŝfnsfn]
, ∀m ∈ Jf , with ŝfn =

∑
m∈Jf , ŝmnsmn

sfn
, (11)

We have all the elements to iterate over the EHA predictions. Start with ŝmn = 1, aggre-
gate to obtain the firm-level market shares ŝfn. Using initial markup (8), one can retrieve
its change from (11). The new vector of market share changes is finally obtained with (10).
The process stops when the vector of ŝmn stops changing.

The CES-OLY approach just described computes pass-through of cost changes into
prices based on strong assumptions about conduct. We also consider a third approach to
counterfactuals in CES that is agnostic on market structure and instead relies on empirical
estimates of the pass-through elasticity. Let ρ̆ = |JF |−1

∑
m∈JF ∂ ln pmn/∂ ln cmn, be an

estimate of the average rate at which foreign varieties pass through increases in their
marginal costs. What we refer to as “approximate” hat algebra (AHA) computes the
counterfactual as

ŝmn =
s′mn
smn

=
[1 + (τ̂i(m)n − 1)ρ̆]−η̆

s0n +
∑

j sjn[1 + (τ̂i(j)n − 1)ρ̆]−η̆
. (12)

This is not exact since almost any model of imperfect pass-through will have differential
pass-through across models and markets, rather than the scalar ρ̆ used here.

Regardless of whether we use the MC, OLY, or AHA methods, the CES counterfactuals
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aggregate the new market shares obtained from hat algebra, s′mn = smnŝmn, to obtain the
change in the domestic share of the new car market:

∆SCES =
∑
m∈JH

(
s′mn

1− s′0n
− smn

1− s0n

)
, (13)

where s′0n = 1−
∑

m∈J s
′
mn.

In the next section we analyze three features of an equilibrium in the BLP model that
the CES counterfactuals cannot match. Before continuing, we should acknowledge that
Exact Hat Algebra’s parsimony in terms of data requirements may come at a cost. Dingel
and Tintelnot (2021) note that the method is equivalent to calibrating |J | unobserved
parameters (here ϕmn) based on |J | market shares. When those market shares are based
on small numbers of choosers (N in the model), granularity can lead to an overfitting
problem. In the context of large consumer goods markets, like the US new car market, we
do not see this as a major concern, given that millions of American households buy new
cars each year.

4 Implications of the BLP data generating process

What behavioral predictions of the DGP used by Berry et al. (1995) present difficulties for
the CES model? We have identified three main concerns. The first, rich substitution, is
well known but we offer a new way of quantifying its importance in the data. The second,
local monopoly, is probably familiar as well but we have a new analytic result and quan-
tification. We believe the third result—on pass-through—has not received the attention
it deserves, especially as we find it is the best indicator of when the CES approximation
may be expected to miss the mark widely.

4.1 Rich substitution

Implication 1. Positive covariance in household choice probabilities raises cross-price demand
elasticities.

With heterogeneous α and β, the cross-price elasticity of demand is8

∂ ln sj
∂ ln pm

=

∑
h
∂Pjh

∂pm

N

pm
sj

=

[∑
h αhPmhPjh

N

]
pm
sj
. (14)

8Computation details to be found in Appendix B.
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Similarity in the attributes of models m and j will make Pmh and Pjh covary positively, a
feature that cannot be captured if all consumers value attributes identically. This implica-
tion of BLP arises from both α and β heterogeneity but as it does not require the former, it
is easier to explain by focusing on β heterogeneity alone. Removing income variation by
setting yh = 1, the price coefficient is α and the factor in brackets is linear in the covariance
of h probabilities, yielding a cross-price elasticity of

εβhet
jm ≡

∂ ln sj
∂ ln pm

∣∣∣∣
αh=α

=
αpm
sj

∑
h

PjhPmh
N

= αpmsm

[
1 +

cov(Pjh,Pmh)
sjsm

]
.

Dividing εβhet
jm by εlogit

jm ≡ αsmpm, the cross-price elasticity with homogeneous consumers,
the ratio of cross-price elasticities is

εβhet
jm

ε
logit
jm

= 1 +
cov(Pjh,Pmh)

sjsm
. (15)

The cross-price elasticity of BLP (with only β heterogeneity) therefore depends on whether
probabilities of buying varietiesm and j covary positively or negatively across consumers.
Two products with similar characteristics have similar attractiveness for each of the con-
sumers, leading to positive covariance and therefore higher cross-price elasticity than
under homogeneous logit.

What about the comparison with the CES cross elasticity that operates in the CES
counterfactuals? Since the cross-price elasticity under CES is ηsm, the β heterogeneity vs
CES cross elasticity ratio is given by

εβhet
jm

εCES
jm

=
αpm
η
×
[
1 +

cov(Pjh,Pmh)
sjsm

]
. (16)

When quantifying the above expression, we run into the problem that the parameters
α and η come from two different models. We resolve this by calibrating them both to
match the average own-price elasticity implied by the BLP parameter estimates, that
is ε̄BLP = 4.05. Inverting the formula for the homogeneous logit own price elasticity
(εlogit
m ≡ αpm(1 − sm)), we isolate α = ε

logit
m

pm(1−sm)
. Our calibration sets both ε̄logit and η

equal to ε̄BLP, implying that the ratio αpm
η

equals 1
(1−sm)

. With the very small sm associated
with a 91% outside good share, the average value of αpm/η is close to one. As a conse-
quence, the β heterogeneity cross elasticity compared with both types of homogeneous
tastes assumptions has the same sign and is roughly proportional to the covariance of
probabilities. A further implication of the calibration equating average own price elas-
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ticities is that the average of the ratio of cross-price elasticities in the two homogeneous
consumer models, εlogit

jm /εCES
jm , will also be close to one.

4.2 Local monopoly

The first implication relates to cross-price elasticities, and how models with homogeneous
consumers will fail to account for the fact that the response in the demand for “proximate”
varieties will be stronger for a given variety’s increase in price. Introducing consumer
heterogeneity in their preference for characteristics however presents a further challenge:
it also changes the own price elasticity for each model m.

Implication 2. Variance in household probabilities lowers own-price elasticities.

Heterogeneity in the coefficient on product attributes and prices leads to consumers
differing in their probabilities of choosing a model. The divergence in probabilities in turn
gives rise to more local monopoly than in simple logit (or CES). Own-price elasticities in
mixed logit are

∂ ln sm
∂ ln pm

= −pm
sm
×
∑

h αhPmh(1− Pmh)
N

(17)

Again this implication of the BLP DGP is a consequence of both dimensions of consumers’
heterogeneity, but exposition is simpler when restricting to the β heterogeneity case. Set-
ting αh = α, we obtain

∂ ln sm
∂ ln pm

∣∣∣∣
αh=α

= −αpm
(

1−
∑

h(Pmh)2/N

sm

)
Let Vm ≡

∑
h(Pmh − sm)2/N =

∑
h(Pmh)2/N − s2

m be the variance, for a given m of the
household choice probabilities (Vm = 0 if βh = β). Now the own price elasticity simplifies
to

∂ ln sm
∂ ln pm

∣∣∣∣
αh=α

= −αpm(1− sm − Vm/sm).

This result is not specific to logit and the equation above holds for mixed CES as well
(with the Vm redefined as the income-share weighted variance of Pmh).

Dividing by −αpm(1 − sm), the homogeneous counterpart of own price elasticity, the
shrinkage of the own price elasticity due to β heterogeneity is given by

εβhet
m

ε
logit
m

= 1− Vm
sm(1− sm)

≤ 1, (18)
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with εβhet
m and εlogit

m being defined as−∂ ln sm/∂ ln pm, under β heterogeneity and logit cases
respectively.

4.3 Non-unitary pass-through

The last, and quantitatively most important, implication relates to pass-through of cost
changes into prices. Indeed, even assuming that the researcher can overcome Implica-
tion 2 and estimate the correct own price elasticity, the final effect on sales also depends
on how the policy experiment translates into prices. Trade economists mainly work with
functional forms that guarantee a unitary pass-through of costs into delivered prices, and
therefore do away with this issue. However, if the DGP is mixed logit, true pass-through
deviates from this simple case.

Implication 3. Logit demand without random coefficients has pass-through elasticity strictly less
than one but random coefficients on prices can raise the pass-through elasticity over one. CES with
monopolistic competition constrains the pass-through elasticity to be one.

With multi-product firms, the calculation for the pass-through elasticity (PTE) is too
messy to be informative. Fortunately, in the single-product firms case, there is a very
compact result, similar to one shown by Bulow and Pfleiderer (1983), that provides intu-
ition on how demand curvature matters. Let ε and E be the own price elasticity (εm ≡
− ln sm/∂ ln pm > 0) and super-elasticity (Em ≡ ∂ ln εm/∂ ln pm). Then the PTE is given by

∂ ln pm
∂ ln cm

=
εm − 1

εm − 1 + Em
. (19)

Since εm > 0 pass-through elasticities exceed one if and only if Em < 0. Homogeneous
logit has Em = 1 + αpmsm = 1− εmsm/(1− sm) > 0 and hence ∂ ln pm/∂ ln cm < 1. As the
sm become small (for example when the outside good has a high share), Em → 1 and PTE
→ (εm − 1)/(εm) < 1 that is the inverse of the markup formula. On the other hand in CES
monopolistic competition Em = 0, so the PTE is one.

In mixed logit, the super-elasticity is given by

Em = 1 + εm − pm
∑

h α
2
hPmh(1− Pmh)(1− 2Pmh)∑

h αhPmh(1− Pmh)
, (20)

which is ambiguous in sign. With levels of α-heterogeneity across households implied by
BLP estimates, we will see that the super-elasticity is negative and pass-through elastici-
ties are greater than one (in the single product case).
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4.4 Three implications illustrated

Figure 1 and Table 2 illustrate the quantitative relevance of the three implications in the
context of the data set and parameter estimates of Berry et al. (1995, 1999). The figure and
table contents are generated from one run of the BLP Data Generating Process drawing
100,000 consumers and using the parameters and data for 1990 described in Table 1.

Panels (a) and (b) of figure 1 display the rich substitution patterns involved in Implica-
tion 1. Equation (14) shows that the cross-price elasticity, ∂ ln sj

∂ ln pm
, is proportional to pricem,

and inversely proportional to market share sj . We remove those effects by first computing
the cross elasticities using the original data and estimated parameters and then regressing
the log cross elasticity on fixed effects to capture the j and m terms. The residual from
this regression is graphed against the dissimilarity in the characteristics vector, measured
with the Mahalanobis distance in terms of the four xk characteristics and price. As with
the log cross-price elasticity, we purge the Mahalanobis distances of m and j effects by
taking residuals from a fixed effects regression. The scatter plot reveals a striking fit: the
within R2 is 77%.

Figure 1: Cross and own price elasticities in BLP data

(a) Cross elasticity and similarity (b) Cross elasticities compared (c) Own elasticities
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Table 2 reports the coefficients of this regression in the third column, each of the rows
corresponding to different degrees of consumer heterogeneity. With all sources of het-
erogeneity active, the coefficient is−0.98, while the relationship between cross elasticities
and the distance in varieties’ characteristics less steep at −0.53, but with an even larger
fit at 90%. Since homogeneous logit predicts a zero slope and therefore a zero R2, we see

15



this regression as a useful way to quantify the amount of rich substitution conditional on
a set of attributes and parameter estimates.

Table 2: BLP Data Generating Process: Key moments

Elasticities Rich substitution
εm Em Maha. cov(Pjh,Pmh)

sjsm
Vm

sm(1−sm)

Setting Avg. Avg. Coef. Avg. Avg.

BLP 4.05 -0.49 -0.98 10.36 0.017
Logit 4.05 1.00 0.00 0.00 0.000
β het. 4.02 1.03 -0.53 7.09 0.010
Note: εm is the (opposite of) the own price elasticity andEm is
the super-elasticity (the elasticity of εm wrt pm, with formula
given by 20). Maha. Coef. is the slope in a regression of the
log of ∂ ln sm

∂ ln pj
on Dmj , the Mahalanobis distance between char-

acteristics of car models m and j. Logit has αh = α (holding
avg own price elas constant) and βh = β.

Depending on the sign of the covariance between household choice probabilities,
equation (16) shows that the β heterogeneity cross-price elasticity can be higher or lower
than the CES corresponding elasticity. Figure 1(b) illustrates the cross-elasticity compari-
son using the full BLP model including α heterogeneity. The intuition from equation (16)
carries through, with BLP elasticities distributed on both sides of the 45-degree line repre-
senting equality with the CES approximation. An example of model pairs with an order
of magnitude higher cross-elasticity than the CES is the Geo Metro and the Ford Escort.
In the reverse direction, an increase in the price of the Yugo GV Plus has a tiny fraction
of the cross elasticity with the Mercedes 560 under BLP as it does in CES (though both
elasticities are very small due to the small share of the Yugo). The fourth column of Ta-
ble 2 reports average value of the scaled covariance term cov(Pjh,Pmh)

sjsm
as 10, with all types of

heterogeneity, and 7, when considering physical attributes only. The high scaled covari-
ances imply, via (15), that cross elasticities average 8 to 11 times larger with heterogeneous
consumers than for logit.9

Panel (c) of Figure 1 investigates the quantitative importance of Implications 2 and 3,
involving own price elasticities. We start by selecting one car model and compute how
the theoretical price elasticity varies with the price. The car model chosen (the 1989 Volvo
240) is one that has a benchmark own price elasticity quite close to the average variety
in the original BLP settings (4.05 as stated in the first column of Table 2). Starting with

9The same is true when compared to CES: As explained in section 4.1, when parameters α and η are
calibrated to yield the same average own-price elasticity, the two versions of homogeneous consumer cross-
price elasticities have approximately the same average values.
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those settings, we then evaluate the own-price elasticity (17), varying the price of this
car model by a range of from −25% to +25% of the actual 1990 price. This evaluation
involves recomputing household probabilities to buy each variety and therefore all car
models’ market shares. The result is represented in the figure with the downward-sloping
orange line. We see that the log of own price elasticity falls with the log of price, implying
a negative super-elasticity. More generally than for this precise car model, the second
column of Table 2 shows an average negative super elasticity of −0.49. Equation (19)
tells us that in a single-product world, the Em < 0 will lead to super-pass-through (PTE
> 1). Our counterfactual results displayed in Table 3 establish that the single-product
prediction holds in the multi-product firm data of BLP (with a PTE of 1.13), corroborating
the concern raised in Implication 3.

The solid blue line in panel (c) illustrates the own-elasticity versus price relationship
for the case of simple logit demand, i.e. canceling all sources of consumer heterogeneity
(and adjusting α such that the average own price elasticity is the same as in the full BLP
setup). The slope is positive as predicted by theory (where Em = 1 + αpmsm) and close
to one, the limiting value as market shares go to zero. The dashed blue line adds β-
heterogeneity to consumer behavior, which illustrates Implication 2: own price elasticities
are systematically smaller in that case due to the local monopoly effect. However, because
market shares are so small in the BLP data (since the outside good share is 91%), the
difference is quantitatively negligible.10 Table 2 confirms that super-elasticities that are
positive and very close to one are a feature of the logit model, even when allowing for
heterogeneous tastes for attributes other than price.

Lastly, we illustrate the two CES approximations used in the paper. First, the CES-
MC case, with its continuum of negligible firms, gives a constant elasticity (η) chosen
here to be at the average level of the BLP data (4.05). This is represented in solid red.
In dashed red, we account for the fact that, with non-negligibly sized firms, the CES
elasticity is η(1−sm), i.e. declining with the market share of modelm. With low prices, this
share increases and the own price elasticity falls. This is true in panel (c)’s representation,
although the effect is very small quantitatively, again because of the very small market
shares of all varieties in the data. Even without rich substitution, the positive super-
elasticity implies that logit will have a very different pass-through from CES, a feature
which will prove important in our simulations’ results.

10This generalizes the result of equation (18), where the ratio of β heterogeneity over logit own price
elasticities is driven by Vm

sm(1−sm) , which has an average value of 0.01 (Table 2).
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4.5 Benchmark counterfactual, known CES parameter

The first experiment we conduct asks a simple question: Would a CES monopolistic com-
petition approximation of the US car industry be able to predict the response to a change
in trade policy for data generated by mixed logit multi-product oligopoly? To pinpoint
the role of functional forms, we first sidestep the issue of how to estimate the CES and
simply assume we already know it to be 4.05 (the average own price elasticity coming
from the BLP parameter and data). Keeping all parameters and data as in the original
Berry et al. (1995) study, we then impose a 10% tariff on the foreign models, solve for the
new BLP equilibrium and compare changes in outcomes to changes predicted by the CES
approximation.

Table 3: Counterfactual 10% tariff using the BLP data

Quantity shares Pass-through
Agg. ∆S rate elasticity

Setting True EHA AHA Avg. Avg. # 1

BLP 8.00 7.73 8.57 1.57 1.13 1.12
Logit 3.85 7.73 5.39 1.00 0.67 0.62
β het. 3.33 7.73 5.27 0.98 0.65 0.57
Note: CES EHA uses η = 4.05. AHA (approximate hat
algebra) uses η = 4.05 and the average pass-through elas-
ticity as in equation (12). ∆S is the change in aggregate
share of domestic models in new car market. PT rate
= ∂pm/∂cm. Logit has αh = α (holding avg own price
elas constant), and βh = β.

The first line of Table 3 implements this counterfactual increase in tariffs imposed on
all foreign cars. The “true” change in the domestic firms’ collective share of the market
for new cars is reported in the first column. The 10% tariff increases the domestic share
by 8.00 percentage points (to 76%). As the CES approximation predicts a change of 7.73,
the error is about one quarter of one percent. This extremely close fit is surprising in
several respects. The CES approximation makes three deviations from the true DGP: 1)
monopolistic competition rather than oligopoly, 2) a wrong functional form of demand
(CES versus logit), 3) homogeneous consumers. We investigate the two first deviations
(market structure and functional form) in the next section and focus here on the role of
heterogeneity.

The second line of Table 3 (Logit) imposes homogeneity in consumer tastes. We cal-
ibrate α such that all consumers have the same price elasticity as the average one in the
first line (BLP). The CES prediction remains the same (7.73 pp) since it still works with a
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price elasticity of 4.05. However, the true counterfactual falls drastically to 3.85pp. This
comes from the fact that while the logit demand system implies a unitary pass-through
rate, the pass-through elasticity, being the rate divided by the markup (p/c), is substan-
tially lower: Every percent increase in costs by foreign firms triggers a price increase of
0.67 percent. Domestic firms therefore gain much less market share than in the first line
(the BLP case), where the pass-through elasticity is close to 1—the value predicted by the
CES-monopolistic competition model.

We further investigate the role of heterogeneity in the third line (β heterogeneity).
This is a hybrid case, as it imposes a single own-price effect α, but lets the βkh coefficients
on the four physical car characteristics (as well as preference for the outside good) vary
across households. The presence of β heterogeneity leads to a slight deterioration of the
accuracy of the CES approximation as compared to logit. The pass-through elasticity is
slightly lower (0.65 vs 0.67) than in the logit case and therefore exacerbates the deviation
from CES. The rise in the bias from 3.88 to 4.40 also highlights Implication 1: the impo-
sition of symmetric substitution patterns damages the quality of the CES approximation.
This occurs because under β heterogeneity, the rising price of foreign cars leads to less
substitution towards the outside good.11 Thus, the new car market shrinks less under β
heterogeneity because the foreign varieties do not fare as badly. The net result is a smaller
increase of the share of domestic varieties as a share of new cars (the inside good).

The accuracy of the fit in the benchmark (BLP) case comes from a countervailing effect
of α heterogeneity. When the price sensitivity of consumers is heterogeneous enough, a
rise in prices triggers selection of consumers, such that only the less price sensitive ones
continue to buy the most expensive varieties. This raises the incentive to pass more of the
tariff increase into final prices. This effect is so strong in the BLP data and estimates that
the average pass-through elasticity, 1.13, is slightly larger than one, bringing it closer to
the CES-MC assumption.

The pass-through issue suggests a relatively easy way to improve the counterfactu-
als assuming the CES model is true. Supposing one has a good estimate of the average
pass-through elasticity, equation (12) shows how to incorporate this moment to give an
approximation to a more complex model of variable markups. These counterfactuals ap-
pear in the AHA column, showing the mean change in domestic market share and the
average bias. As expected, AHA reduces the bias for the logit and for β heterogeneity.
The halving of bias we see in those cases is not replicated in the BLP setting. Since EHA
was already very accurate, AHA’s increase in pass-through leads to overshooting the tar-

11The fact that random coefficients make consumers much less likely to switch to the outside good than
in a homogeneous logit model is quantified in (Berry et al., 1995, Table VII).
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get.
In the next section we proceed to a more complete investigation of the surprisingly

good fit of CES, where we vary all the relevant dimensions in sequence. Another impor-
tant difference is that the counterfactuals we report in Table 3 assume the researcher has
estimated the correct average own price elasticity. In contrast, counterfactuals in the next
section take the standard approach of trade economists, and use tariff variation to estimate
the elasticity of market shares to cost shocks.

5 Dissection via simulation: what makes CES work?

Our dissection exercises set up a simulated version of the BLP data generating process
that is sufficiently close to be a valid representation of the original version, while having
the flexibility needed to dig into the causes of the failures or successes of the CES approx-
imation. Another important component of our approach is to bring it closer to the actual
questions and methods of trade economists that estimate the key cost elasticity parameter
required to run counterfactuals on trade costs variation.12

5.1 Benchmark settings and four variations

Our benchmark simulations involve the following steps:

1. Sample 90 varietiesm from the original BLP data with their four observed attributes
xm, together with their unobserved quality, ξm, and marginal cost, cm, that we backed
out using the inversion methods described in section 2.

2. Assign ten varieties to nine firms, with three firms in each of three countries.

3. Trade costs consist of an initial 10% tariff and an ad-valorem equivalent of distance
between countries, dAVE.

4. We calibrate three parameters to comply with three moments of the BLP data.

(a) α is chosen to set the average own price elasticity to 4,

(b) dAVE sets the domestic share equal to 68% (the domestic variety share of the
new car market in 1990 in the BLP data),

(c) β̄0 is adjusted so that the outside good share is 90%.
12Head and Mayer (2014) review a large number of such papers, recent examples include Boehm et al.

(2020).
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5. Compute the initial BLP equilibrium. This starts with using the first order condition
(3) to solve for prices, followed by (2) and (1) to obtain equilibrium market shares
smn in each country n.

6. Estimate the tariff elasticity, η̆, using equation (7).

7. We then raise the tariff on foreign cars by 10 percentage points and compute new
prices and ensuing s†mn, i.e. the new market shares for all firm-destination combina-
tions in the new equilibrium.

8. Compute s′mn, the EHA counterfactual prediction, using equation (6). Then aggre-
gate over the domestic varieties in one country to compute ∆SCES, which we com-
pare to the true changes ∆SBLP.

We repeat the steps above 1000 times, reporting averages and standard deviations in the
next subsection.

To investigate which features of the BLP initial setup make the CES approximation
succeed or fail, we consider four deviations from the benchmark simulation described
above:

Monopolistic competition: While our benchmark follows the data by having large multi-
product firms, Figure 2(b) and Table 4(b) of our dissection displays a setting that
approximates monopolistic competition: Each of the 90 varieties is owned by a dif-
ferent firm. This allows us to see the effect of market structure, while holding the
features of the demand system constant.

Reduced outside good share: Figure 3(a) and panels (a), (b) and (c) of Table 5 increase
the mean β0

h to generate smaller shares (50%, 10%) of the outside good. This leads
to higher market shares for the nine “inside” firms.

Mixed CES: We display results using mixed CES in Figure 2(c) and Table 6, altering the
data generating process in two ways. Each household spends yh on a preferred
vehicle, with household choice probabilities being the same as equation (2) except
−αhpm is replaced by −αh ln pm. In this specification sm is measured in values in-
stead of quantities. In the enumerated list describing the DGP, the same steps are
involved except the two computations of equilibrium (steps 5 and 7) use the mixed
CES equations to solve for the equilibrium. Appendix section A gives a complete
description of this setup.
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Oligopoly estimation and EHA: Even without random coefficients, standard EHA is in-
correct because it does not capture the variable markups of oligopolists. This can be
fixed by modifying estimation to equation (9) and adjusting EHA to the oligopoly
case shown in equation (10). Figure 3(b) and the lower frame of Table 6 reports the
results.

5.2 Results of dissection simulations

The benchmark results, depicted in Figure 2(a) and the third line of Table 4(a), show that,
under BLP heterogeneity settings, EHA continues to predict tariff counterfactuals very
accurately. The CES approximation overpredicts the change in domestic market share by
one third of a percentage point.13 A fundamental difference from the simulation reported
in Table 3 is that we now estimate η rather than assuming the average own-price elasticity
is known. The cross-country tariff variation in equation (7) estimates η̆ = 4.29 on average.
This is larger than the own-price elasticity (4) because α heterogeneity causes firms to pass
on to consumers more than 100% of their costs increases. The average pass-through rate
and elasticity reported in the last two columns of Table 4 are 1.65 and 1.14, respectively.
This is because α heterogeneity creates a force that selects consumers according to their
individual elasticity, raising the pass-through elasticity from around two thirds to a level
just over unity.

Figure 2: Consumer heterogeneity and market structure assumptions
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(a) 9 firms with 10 models each (b) 90 firms with 1 model each (c) Mixed CES
share of top 5 firms = 84% share of top 5 firms = 34% (otherwise as a)

Note: As in the BLP data, the share of outside goods is calibrated to 90%, the share of domestic cars is 68%, and we
set average εm to 4. The error bars are 1.96 standard deviations of the simulation outcomes for 1000 repetitions.

13Even though this simulation samples from the underlying car models and allocates them to nine firms
in three countries, it still retains the market structure of the original data: the average concentration ratio
(an untargeted moment) is 84% on average in our simulations, just below the 86% in the original data.
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As in Table 3, we see as a consequence that the CES approximation works better with
the BLP full dimensions of consumer heterogeneity than in cases of no heterogeneity or
only β heterogeneity (first two lines of Table 4(a)). However, the bias in our simulations
is now reduced to be smaller than one percentage point as opposed to about four in the
BLP data counterfactuals of Table 3. The primary reason is that the estimated η̆ (shown in
the fourth results column) falls to 2.64 and 2.26 in those cases respectively. By capturing
the much lower pass-through implied by logit demand, the estimation step gives the CES
approximation greater flexibility to fit the underlying true data generating process. Rich
substitution under the form of β heterogeneity lowers the fit of the approximation but the
first order issue is the functional form of demand.

Table 4: The role of heterogeneity and market structure assumptions
Setting Agg. ∆S Passthrough

True Approx η̆ rate elas

Panel (a): 9 firms with 10 models each
Logit 2.15 2.89 2.64 0.99 0.68
β heterogeneity 1.29 2.02 2.26 0.98 0.66
Mixed Logit 5.81 6.14 4.29 1.65 1.14

Panel (b): 90 firms with 1 model each
Logit 2.16 2.88 2.65 1.00 0.69
β heterogeneity 1.53 2.44 2.55 1.00 0.68
Mixed Logit 6.54 6.96 4.87 1.72 1.21

Panel (c): 9 firms with 10 models each
CES 4.42 4.42 3.96 1.25 1.00
β heterogeneity 3.64 4.07 3.77 1.23 0.98
Mixed CES 4.03 4.95 4.10 1.45 1.04
Note: As in the BLP data, the share of outside goods is calibrated to
90%, the share of domestic cars is 68%, and we set average εm to 4
for 1000 repetitions.

Of the two key features of the BLP setup, rich substitution and multiproduct oligopoly,
we have so far emphasized the former. How detrimental to the CES approximation is it to
assume Dixit-Stiglitz market structure? In the first line of panel (b) of Table 4, we assign
each of the 90 models to an individual firm. Hence, the market structure moves close to
monopolistic competition for the “true” prediction. Note that the pass-through rate is 1,
as predicted by monopolistic competition under logit demand. The pass-through elastic-
ity equals the pass-through rate divided by markup µ, hence smaller than 1 (it averages
at 0.69 over our 1000 replications). The CES-MC prediction of unitary elasticity implies
an overprediction of the reaction of foreign firms and of domestic market share increase.
In the second line of panel (b), the local monopoly effect created by β-heterogeneity rein-
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forces that overestimation of the change in market share.
So far we have seen that CES-MC can approximate the aggregate predictions of BLP

DGP quite precisely. However this good fit is to a large extent a happy coincidence of
countervailing effects. To see this, we go to panel (c), where we change demand of con-
sumers to be mixed CES. An advantage of this specification, is that, unlike mixed logit,
mixed CES contains the CES model as a special case. In the first line, the CES-MC approx-
imation is almost perfect (up to rounding). This is because a market share of 90% for the
outside good leaves little room for oligopoly to make a noticeable difference. As before,
adding β-heterogeneity worsens the prediction, but now instead of improving the fit, α-
heterogeneity exacerbates the problem. However the main takeaways from panel (c) of
Figure 2 are the stability of the BLP outcomes and the accuracy of the CES approximation
across all three heterogeneity settings.

Figure 3: The role of the outside good and the CES oligopoly correction
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Note: 1000 repetitions. As in the BLP data, the share of outside goods is calibrated to 90%, the share of
domestic cars is 68%, and we set average εm to 4. The error bars in panel (a) are 1.96 standard deviations of
the simulation outcomes, but those in panel (b) are standard errors of the bias.

Intuitively, the 90% outside good share in the BLP data should contribute to the good
performance of the monopolistic competition assumption used in the CES-MC counter-
factuals. Would CES-MC work as well for industries dominated by “inside” goods? Fig-
ure 3(a) shows that as we decrease the outside good share (from 90% on the left to 10% on
the right), there is a greater increase in domestic market share, both for the true (gray) and
approximated (blue) outcomes. In the case of BLP this is because more oligopoly power
induces firms to adjust markups more, thus passing through a higher multiple of the tar-
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Table 5: Decreasing the share of the outside good
OG Agg. ∆S Passthrough
(%) True Approx η̆ rate elas

90 5.81 6.14 4.29 1.65 1.14
50 6.88 7.04 4.78 1.78 1.19
10 7.90 7.72 5.14 1.90 1.21
Note: 1000 repetitions. The demand system is
mixed logit with both dimensions of heterogene-
ity in all 3 lines.

iff increase.14 The pass-through elasticity can be seen to rise in Table 5 from 1.14 to 1.21.
In the Exact Hat Algebra, the higher change comes from a larger estimated η; the tariff
elasticity rises from 4.29 to 5.14. The true outcome rises faster than the approximation,
with CES first over-predicting and then under-predicting, but never more than a fifth of
a percentage point.

Table 6: Adapting estimation & EHA to oligopoly helps
Agg. ∆S Setting Passthrough

True Approx η̆ rate elas

Monopolistic competition approximation
CES 3.74 4.04 3.64 1.23 0.97
β heterogeneity 3.48 4.02 3.62 1.23 0.97
Mixed CES 8.41 7.47 4.95 1.98 1.28

Oligopoly approximation
CES 3.75 3.75 4.00 1.23 0.97
β heterogeneity 3.52 3.73 3.96 1.23 0.97
Mixed CES 8.41 7.59 5.75 1.98 1.28
Note: 1000 repetitions. The outside good share is calibrated to 10%
(instead of the 90% in the BLP data). All settings are calibrated to
hold the average brand-level own price elasticty at 4.

Our last dissection investigates whether CES can predict BLP outcome better if the es-
timations and Exact Hat Algebra calculations are modified to account for oligopoly.15 We
use the lowest setting for the outside good, 10%, so as to maximize the role of oligopoly
forces. To avoid confounding functional form with market structure, we use the mixed
CES setup for demand. Figure 3(b) shows the average bias (the difference between the

14The higher amount of markup adjustment as the inside good market shares increase is a general feature.
However, without α heterogeneity, the adjustments would be downward, leading to less complete pass-
through and lower aggregate changes.

15Specifically, we estimate equation (9) and use equations (10) and (11) for Exact Hat Algebra.
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blue and gray lines in the preceding figures) in each heterogeneity setting.16 The CES-OLY
counterfactual predicts perfectly with homogeneous consumers, correcting the upward
bias in monopolistic competition. With β heterogeneity, the oligopoly adjustments on the
estimation and counterfactual calculation reduce bias without fully eliminating it. The
oligopoly adjustment offers the lowest improvement in the setting with α heterogeneity.
As seen in Table 6, the reason for this is that CES-OLY estimates a larger η̆ (5.75 instead
of 4.95), which is going in the right direction because the pass-through elasticity exceeds
one. The EHA partially undoes this by imposing a change in markups that entails incom-
plete pass-through (since it assumes CES under oligopoly). Thus, the “mistake” that the
monopolistic competition version of CES makes (omitting oligopoly markup adjustment)
is actually helpful in the presence of large amounts of α heterogeneity.

6 Conclusion

Let us now summarize the potential problems facing the CES monopolistic competition
approach to industry-level trade counterfactuals in light of the theory and simulation re-
sults in this paper. The first problem, that real world industries are often multi-product
oligopolies, leads to incomplete pass-through of tariff changes. We offer two simple ad-
justments to the CES toolbox that take into account variable markups in both the 1) es-
timation of the tariff elasticity, 2) computation of counterfactuals via Exact Hat Algebra.
As long as demand is in fact CES, these modifications completely resolve the oligopoly
problem. The second problem arises when consumers buy just one unit of their preferred
variety (rather than allocating a constant fraction of their income to it). This changes the
functional form of demand to be logit, again implying pass-through elasticities well be-
low one—even under monopolistic competition. In principle, one could address this by
using Exact Hat Algebra for logit, as described in appendix D. That approach lies outside
of the scope of the current paper since it has not been taken yet in either trade or IO.

The third problem that confronts CES models relates to the changes in substitution pa-
rameters that come from random coefficients. Consumer heterogeneity changes the own-
and cross-price elasticities. Unlike the oligopoly issue, the discrepancy in substitution
patterns is aggravated by a large share for the outside good. This is because homoge-
neous CES and logit model predict large reallocations to the outside good when it has
a high share. There is a further problem unique to heterogeneity in price responsive-
ness. Namely, when tariffs raise costs, the ensuing price increases drive away the cost-

16Another change is that the error bars in this figure correspond to standard errors for the mean rather
than standard deviations of outcomes as in the previous figures.
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conscious consumers, leading firms to raise markups and thus pass along a higher share
of their costs increases. The net outcome of all the various effects pushing in different
directions is hard to predict in general. Using BLP data and parameters, the remarkable
finding is that they broadly cancel each other, leading CES to predict a counterfactual
change that is off by just a quarter of a percentage point.

The approach we have taken here offers broader insights. Every useful model ab-
stracts from elements of reality. The BLP framework, for example, leaves out the house-
hold’s dynamic decision of when to replace their car, as well as suppressing the price
mechanism operating in the used car market. Rather than treat a model as inadmissible
because of its simplifications, we suggest evaluating its ability to approximate a richer
truth. One case, seen here, where an approximation can perform surprisingly well is
when the model’s “mistakes” offset each other. But a more reliable case is when the ap-
proximation estimates a parameter that captures a near-sufficient statistic for conducting
the desired counterfactual. In this paper the tariff elasticity plays that role, but the idea is
much more general.
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Appendix

A Mixed CES

The most common setup for random coefficients models is the unit demand mixed logit
introduced in Berry (1994). More recently Björnerstedt and Verboven (2016), Piveteau
and Smagghue (2021), Adao et al. (2017), Redding and Weinstein (2019) have worked
with what the latter two papers refer to as mixed CES.17 The model assumes individual
consumers have CES utility but that their price elasticity is heterogeneous. It is micro-
founded by starting with the variable consumption discrete choice model of Anderson
et al. (1992) (section 3.7), before extending it to include heterogeneity in the price re-
sponsiveness parameter. As in the mixed logit, the MCES also allows for random co-
efficients on the consumers’ indirect utility derived from product attributes. The key
difference is that households spend constant income shares rather than buying a single
unit. Björnerstedt and Verboven (2016) report that the mixed CES “turns out to be more
appropriate than the unit demand specification in our application: it results in a more
plausible range of elasticities, more reasonable markups, and yields more realistic aver-
age predicted price effects for the merging firms.”

Denoting household income with with yh, the (indirect) utility of household h is given
by

Umh = ln yh − α̃h ln pm +
K∑
k=0

β̃khx
k
m + ξ̃m + εmh. (21)

With an outside good whose indirect utility is normalized to zero and εmh distributed
Gumbel with scale parameter 1/η, the choice probability of household h for model m
takes the form:

Pmh =
exp(

∑K
k=0 β

k
hx

k
m − αh ln pm + ξm)

1 +
∑

i exp(
∑

k β
k
i x

k
i − αh ln pi + ξi)

. (22)

where αh = ηα̃h, βh = ηβ̃h, and ξm = ηξ̃m. Note that the specification of the random
coefficients does not impose a relationship between αh and βh but it does imply that all
buyers view the unobserved quality ξm in the same way. We adopt this approach to paral-
lel the one taken by IO economists in the mixed logit models. An alternative, considered
by Redding and Weinstein (2019), places the household heterogeneity in the η parameter.
This has the consequence of making consumers who are more price sensitive also more

17Björnerstedt and Verboven (2016) refer to the model using the descriptive, but unwieldy “random co-
efficients specification of the constant expenditure logit.”
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sensitive to differences in quality, both observed and unobserved. This approach is attrac-
tive in many respects but we have not pursued it in this version so as to limit the number
of permutations to consider.

Each individual spends yh on their preferred variety. Total expenditures on m are
therefore smY , where Y ≡

∑
h yh and sm is the variety’s market share—defined in value.

This market share is given by the expenditure-weighed average of the individual proba-
bilities from equation (2):

sm =

∑
h Pmhyh
Y

, (23)

In the CES and β-heterogeneity cases, α̃h = 1 ∀h, and therefore αh = η. With both types
of heterogeneity active, α̃h = 1/yh where, as in BLP yh is log-normally distributed using
the distributional parameters from the BLP replication file. As before, we calibrate η to
match the average own-price elasticity of 4.

The multi-product firm’s profit maximization problem is very similar to that used in
the mixed logit case, but it is important to note that the market shares, sm are all measured
in values, rather than in units. Letting the own price elasticity be denoted with εm ≡
− ∂ ln sm
∂ ln pm

and recalling that the Lerner index is Lm = (pm− cm)/pm, the first order condition
implies a price rule of

pm = cm ×
(εm + 1)[

εm − 1
sm

∑
(j 6=m)∈JF

∂ ln sj
∂ ln pm

Ljsj

] . (24)

The formulas for own and cross price elasticities needed to compute prices are in section
B of this appendix. This computation is done with the same fixed point iteration as for
the mixed logit case.

B Derivatives and elasticities with random coefficients

B.1 Mixed logit

Since the individual partial effect of a change in pm is

∂Pmh
∂pm

= −αhPmh(1− Pmh),
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we obtain the partial derivative of market share with respect to price:

∂sm
∂pm

=

∑
h
∂Pmh

∂pm

N
= −

∑
h αhPmh(1− Pmh)

N
.

The own price elasticity is:

∂ ln sm
∂ ln pm

= −pm
sm
×
∑

h αhPmh(1− Pmh)
N

= −pm
∑
h

ωmhαh(1−Pmh), with ωmh ≡
Pmh∑
h Pmh

.

Model m’s own elasticity therefore is a weighted average of the individual household
elasticities, which write

∂ lnPmh
∂ ln pm

= −αh(1− Pmh)pm.

The weight ωmh applied to each of those elasticities is the share of each household in
total sales of the model. Note that in the individual elasticity, a low pm will be associated
with a high purchasing probability Pmh, both contributing to a lowering of ∂ lnPmh

∂ ln pm
. The

individual response to price increases is therefore unambiguously concave, getting more
and more pronounced as the price goes up. At the model level, however, a composition
effect enters the picture. Low price models are preferred by low income individuals which
are assumed to have a larger sensitivity for prices (a high αh). Those low price models
therefore face high αh households with larger weight ωmh, which raises the overall price
elasticity. This introduces an element of convexity, which can dominate the individual-
level concavity.

Let us turn to cross-price effects: the impact of an increase in the price of model m on
demand for j. The partial effect of m’s price on Pjh is

∂Pjh
∂pm

= αhPjhPmh,

which yields

∂sj
∂pm

=

∑
h
∂Pjh

∂pm

N
=

∑
h αhPjhPmh

N
.

The cross-price elasticity is then

∂ ln sj
∂ ln pm

= pm
∑
h

ωjhαhPmh, with ωjh ≡
Pjh∑
h Pjh

.
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Again, this is a weighted average of the individual choice probability cross elasticities,

∂ lnPjh
∂ ln pm

= αhPmhpm.

B.2 Mixed CES

The individual partial effect of a change in pm is

∂Pmh
∂pm

= −αh
pm

Pmh(1− Pmh),

The partial derivative of market share with respect to price is

∂sm
∂pm

=

∑
h
∂Pmh

∂pm
yh

Y

The own price elasticity is:

∂ ln sm
∂ ln pm

= −
∑
h

ωmhαh(1− Pmh), with ωmh ≡
Pmhyh∑
h Pmhyh

. (25)

Model m’s own elasticity therefore is a weighted average of the individual elasticities,

∂ lnPmh
∂ ln pm

= −αh(1− Pmh),

where the weight ωmh is the share of each household in total sales of the model.
Turning to cross-price effects: the impact of an increase in the price of model m on

demand for j. The partial effect of m’s price on Pjh is

∂Pjh
∂pm

=
αh
pm

PjhPmh,

which yields a partial derivative of market share as

∂sj
∂pm

=

∑
h
∂Pjh

∂pm
yh

Y
=

∑
h αhPjhPmhyh

pmY
.

Lastly, multiplying by pm/sj , where sj = (
∑

h Pjhyh)/Y , the cross price elasticity is

∂ ln sj
∂ ln pm

=

∑
h αhPjhPmhyh

sjY
=
∑
h

ωjhαhPmh with ωjh ≡
Pjhyh∑
h Pjhyh

. (26)
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Again, this is a weighted average of the individual choice probability cross-elasticities,

∂ lnPjh
∂ ln pm

= αhPmh.

C Pass-through rates and elasticities

The derivation of theoretical pass-through starts from FOC for model m:

sm + (pm − cm)
∂ ln sm
∂ ln pm

= pm − (pm − cm)εm = 0,

with εm ≡ − ∂ ln sm
∂ ln pm

> 0 being the own price elasticity. Implicit differentiation gives

∂pm
∂cm

=
−εm

−εm + 1− (pm − cm) ∂εm
∂pm

.

Using the first order condition to replace (pm − cm) = pm/εm, the pass-through rate sim-
plifies to

∂pm
∂cm

=
εm

εm − 1 + Em
, where Em ≡

∂ ln εm
∂ ln pm

.

Em is the super-elasticity of demand, i.e. the elasticity of own price elasticity with respect
to a change in own price.18 Under CES demand and monopolistic competition, εm is a
constant. Hence, Em = 0, and the pass-through rate is a constant equal to ε/(ε − 1). The
pass-through elasticity is

∂ ln pm
∂ ln cm

=
εm

εm − 1 + Em
× cm
pm

=
εm − 1

εm − 1 + Em
. (27)

The sign of Em is therefore the determinant of whether the pass-through elasticity is
greater or smaller than one. In the Dixit-Stiglitz case, Em = 0 implies a unitary pass-
through elasticity.

Under homogeneous logit, εm = αpm(1 − sm), and Em = [1 + αpmsm] . Since α > 0,
the super-elasticity is positive (greater than one, its value when the market share of m
approaches 0) and pass-through is incomplete.

The mixed logit case is more complex. Recall that BLP demand at the household-

18Bulow and Pfleiderer (1983) appear to have been the first to show, in their equation (3’), the relationship
between the pass-through rate and this measure of the curvature of the demand curve; Mrázová and Neary
(2017) consider the role of curvature in many different families of demand curves.
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model level implies ∂Pmh

∂pm
= −αhPmh(1− Pmh), and therefore the following own elasticity:

εm =
pm
sm
Xm, with Xm ≡

∑
h αhPmh(1− Pmh)

N
= −∂sm

∂pm
.

Taking the derivative of εm with respect to price,

∂εm
∂pm

=
Xm

sm
+
∂Xm

∂pm

pm
sm
− pmXm

s2
m

∂sm
∂pm

.

Using ∂sm
∂pm

= −Xm, one can re-write

∂εm
∂pm

=
Xm

sm

[
1 +

∂Xm

∂pm

pm
Xm

+
pmXm

sm

]
=
Xm

sm

[
1 +

∂ lnXm

∂ ln pm
+ εm

]
.

Hence the super-elasticity is

Em =
∂εm
∂pm

pm
εm

=

[
1 + εm +

∂ lnXm

∂ ln pm

]
,

where ∂ lnXm

∂ ln pm
is the elasticity of the slope of demand to a change in price. One therefore

needs to study how Xm varies with pm

∂ lnXm

∂ ln pm
=

∑
h
∂Pm

∂pm
αh(1− 2Pmh)
N

pm
Xm

= − pm
Xm

∑
h α

2
hPmh(1− Pmh)(1− 2Pmh)

N

hence,
∂ lnXm

∂ ln pm
= −pm

∑
h α

2
hPmh(1− Pmh)(1− 2Pmh)∑

h αhPmh(1− Pmh)
,

and the super-elasticity is

Em =

[
1 + εm − pm

∑
h α

2
hPmh(1− Pmh)(1− 2Pmh)∑

h αhPmh(1− Pmh)

]
,

D Exact Hat Algebra for logit

The derivation starts from an adapted version of the equation in Anderson et al. (1992,
p. 45). Let us first state the market share equation for m in n under logit (no consumer
heterogeneity):

smn =
exp(

∑K
k=0 β

kxkm − αpmn + ξmn)

1 +
∑

j exp(
∑

k β
kxkj − αpjn + ξjn)

. (28)
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Denote the change in m’s price in n as ∆pmn = p′mn−pmn, the counterfactual market share
of m is

s′mn =
smn(exp(−α∆pmn))

s0n +
∑

j sjn(exp(−α∆pjn))
.

Denoting the proportional change x̂ = x′/x and with the additive markups pmn = cmn +

µmn implied by logit demand, we obtain

ŝmn =
exp(−α[∆cmn + ∆µmn])

s0n +
∑

j sjn[exp(−α[∆cjn + ∆µjn])]
. (29)

The most natural counterfactual tariff change under logit demand is a specific duty of d
dollars per unit, in which case ∆cmn = di(m)n, i being the country where firm m is located.
In the monopolistic competition case, the markup is constant, and equation (29) is enough
to compute the new equilibrium based on three requirements: initial market shares, the
structural parameter driving price response (α), and the policy change d. With ad valorem
tariff rate of t per dollar, the change in unit costs becomes ∆cmn = ti(m)ncm. This makes
the cost change variety-specific. With price, characteristics, and market share data, cm can
be obtained by inversion of the first order condition (and assuming there is an estimate
of α). This increases the informational requirements relative to the CES case or the logit
case with specific duties.

With non-atomistic varieties, we have to account for endogeneous markup adjust-
ment. Under Bertrand oligopoly, the additive markup of m only depends on the market
share of firm f to which m belongs (Nocke and Schutz, 2018, study more generally the
properties under which the market share of a multi-product firm is sufficient to compute
its markup and ensuing market power):

µmn = µfn =
1

α(1− sfn)
, ∀m ∈ Jf , with sfn =

∑
m∈Jf ,

smn. (30)

The change in markup is computed as

∆µmn =
1

α̌

[
1

1− ŝfnsfn
− 1

1− sfn

]
, ∀m ∈ Jf , with ŝfn =

∑
m∈Jf , ŝmnsmn

sfn
. (31)

Combining (29) with (31), the elements needed to compute ŝm are the initial observed
initial market shares s, the policy change d, and α. With these formulae for ŝmn and
µ̂mn in hand, the rest of the Exact Hat Algebra algorithm proceeds as with the CES case,
iterating until a fixed point is reached.

We can estimate α with an iterative procedure following the logic of the mixed CES
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case in the main text. We start by taking logs of (28) in the case of specific tariffs where
pmn = µfn + cm + di(m)n:

ln smn = −αdi(m)n − αµfn + FEm + FEn + ξmn,

where the structural interpretation of fixed effects are FEm =
∑K

k=0 β
kxkm−αcm, and FEn =

− log
[
1 +

∑
j exp(

∑
k β

kxkj − αpjn + ξjn)
]
. Start with a guess called α0. With firm market

share sfn, we can compute the equilibrium markup µ0
fn using equation (30). This markup

is passed on the left-hand-side, and combined with the log of market shares to yield the
following regression for the lth iteration

ln smn + αlµlfn = −αl+1di(m)n + FEm + FEn + ξmn. (32)

The coefficient on per-unit trade costs d provides a new estimate αl+1, with which we can
recalculate markups. The process iterates from l = 0 until αl+1 = αl (within tolerance) at
which point we have an estimate α̌, consistent with Bertrand oligopoly pricing.
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