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Abstract

We develop a finite-mixture framework for nonparametric difference-in-difference
analysis with unobserved heterogeneity correlating treatment and outcome. Our
framework includes an instrumental variable for the treatment, and we demon-
strate that this allows us to relax the common-trend assumption. Outcomes can
be modeled as first-order Markovian, provided at least 2 post-treatment observa-
tions of the outcome are available. We provide a nonparametric identification proof.
We apply our framework to evaluate the effect of on-the-job training on wages, us-
ing novel French linked employee-employer data. Estimating our model using an
EM-algorithm, we find small ATEs and ATTs on hourly wages, around 1%.
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1 Introduction

Differences-in-differences (DiD) is a widely used method to estimate treatment effects
in applied economics. The conventional approach compares the average outcome of a
treatment group to the average outcome of a control group before and after the program
of interest is implemented. For the DiD estimator to identify the causal effect of the
program, researchers need to assume that in the absence of treatment, the outcome of
both groups would have followed parallel trends over time (common trend assumption).
However, in practice, the common trend assumption is often violated. Recent papers
have relaxed this assumption to allow it to hold only conditional on observable pre-
treatment covariates (see Sant’Anna and Zhao, 2020, for an analysis of the properties of
DiD estimators in this case). While conditioning on observables makes the common trend
assumption less restrictive, researchers do not necessarily observe all the variables needed
to capture all possible confounders and apply this framework plausibly.

In this paper, we suggest a novel extension to the aforementioned approach by allowing
for unobserved heterogeneity in a DiD framework. Borrowing from a method traditionally
used in structural modeling, we relax the canonical common trend assumption to allow it
to hold conditional on latent types that capture any possible sources of heterogeneity. We
demonstrate that nonparametric identification is achieved by using an excluded variable
that affects the treatment probability without directly affecting outcomes, similar to an
instrumental variable. However, while finding an instrument that satisfies the standard
exclusion restriction is typically challenging, in our framework, this exclusion restriction
needs to hold only conditional on the latent types. Further, we show that the conventional
monotonicity assumption is not needed in our model. Our framework thus allows for
a broad set of candidates to be considered for the excluded variable and offers wide
applicability.

Leveraging linked employee-employer survey data matched with administrative data
on wages, we apply our model to the estimation of the impact of job training on wages.
Our instrument is whether or not the worker has received information about training
opportunities. It is a variable that affects the treatment probability for each type, poten-
tially in a different way. As we observe wages more than twice, we allow for the outcome
process to be autoregressive by modeling it as a Markovian process.

The availability of repeated observations of the outcome variable is crucial for identifi-
cation, all the more so depending on the assumed dynamics. The benefits of panel data in
difference-in-difference contexts are studied in Bonhomme and Sauder (2011); Freyalden-
hoven et al. (2019) and in Callaway and Li (2019); Li and Li (2019); Sant’Anna and Zhao
(2020). These papers maintain a common trend assumption, except for the first one. As
far as we know, Bonhomme and Sauder (2011) is the only paper that replaces a standard
common trend assumption by a structural assumption on the way unobserved heterogene-
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ity determines outcomes. Specifically, they assume a linear factor structure and solve the
(semiparametric) identification problem using nonparametric deconvolution techniques.1

Freyaldenhoven et al. (2019) share the factor structure of Bonhomme and Sauder’s frame-
work and some identification ideas.2 We depart from the linear factor structure, allowing
for instance unobserved heterogeneity to condition outcome variances. Some restriction
on the distribution of latent types is however necessary. We assume that there exist a
finite number of groups and that outcomes and treatments are drawn from a distribution
that is specific to each group. By giving up continuity,3 we gain more flexibility and also
a simpler method of identification based on standard matrix algebra.

Under the assumptions about discrete heterogeneity and the instrument described
above, we prove identification of Average Treatment Effects (ATEs) that are conditional
on the unobserved types, as well as heterogeneous treatment probabilities. We also show
that each standard difference-in-difference estimator obtained by applying OLS or IV
estimation procedures to the wage panel equations is the sum of different weighted means
of conditional average treatment effects (ATT and LATE), plus a bias reflecting the
violation of the common trend assumption.

After proving identification, we estimate a flexible parametric specification using the
(sequential) Expectation-Maximization (EM) algorithm. Standard errors are obtained by
bootstrap. The results show that treatment effects vary with type, but once aggregated
they are very small and insignificant. All three ways of aggregating conditional ATEs
(aggregate ATE, ATT, and LATE) yield similar estimates of around 1%. We conclude
that on-the-job training has no or a very limited effect on wages. The biases resulting
from heterogeneous trends are found to be of a similar order of magnitude to the aggregate
treatment effects. We also find a sizable share of the bias on the IV estimator of around
1%-2% that reflects small-sample deviations from assumed restrictions in the population.

The rest of this paper proceeds as follows. We first end the introduction with a
discussion of the literature on training. Then, section 2 presents the model, the associated
nonparametric identification result as well as the links between our model’s estimates
and ATT, ATE, and other parameters of interest. Section 3 describes our dataset and
presents a preliminary econometric analysis using standard econometric methods. Section
4 presents and discusses the estimation results. We conclude in section 5.

1More precisely, the special case studied in Section II.B does satisfy the common trend assumption,
since, by taking differences in outcomes, the fixed effect disappears. In Section II.C, they allow for
different factor loadings on the latent factor, but these factor loadings are assumed independent of the
treatment, which comes close to a common trend assumption.

2The pre-treatment periods of Freyaldenhoven et al. play a similar role as the “instrument” of Bon-
homme and Sauder, as far as the identification of factor loadings is concerned.

3As for example in Hu and Schennach (2008); Allman et al. (2009); Kasahara and Shimotsu (2009a);
Hu and Shum (2012); Shiu and Hu (2013); Henry et al. (2014); Hu (2015); Sasaki (2015); Bonhomme
et al. (2016a,b, 2017a,b, 2019).
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Literature on training. The literature on the effect of training (and active labor mar-
ket programs) is huge. Fialho et al. (2019) provide the most recent survey and exhaustive
evaluation of the different forms of adult learning — informal (on the job), non-formal
and formal (depending on whether the institution providing training is public or not) —
for various countries. The effect of non-formal training on wages is estimated between
13% and 30%, with and without controls. When a control-function estimator is used,
the estimated effect of training remains high, around 11% on average, but with a wide
range across countries. Before Fialho et al. (2019), several other authors had reviewed
this literature (see Heckman et al. (1999); McCall et al. (2016) and the meta-analyses
of Card et al. (2010, 2018) and Haelermans and Borghans (2012)). See also the classic
paper by LaLonde (1986). The estimated impacts of training on wages and productiv-
ity are generally found to be positive; the effects on the risk of unemployment are often
ambiguous.

Many of the contributions devoted to training programs are based on non-experimental
data with a panel structure and rely on fixed-effects estimators. Fixed-effects approaches
are used in the pioneering work of Ashenfelter (1978), in the contributions of (among
many others) Lynch (1992), on NLSY data; Booth (1993); Blundell et al. (1999), both on
British data; Krueger and Rouse (1998), on American firm-level data; Pischke (2001), on
German GSOEP data; Schoene (2004), on Norwegian data.

Few papers rely on instrumental variables, maybe because it is difficult to find con-
vincing instruments for participation in training programs (yet, see Bartel (1995); Parent
(1999); Abadie et al. (2002)). Some contributions controlled for selection in training using
Heckman’s two-stage estimator (e.g. LaLonde (1986); Booth (1993); Goux and Maurin
(2000)). A behavioral approach to training participation is explored in Caliendo et al.
(2016). Other contributions use matching estimators (Brodaty et al., 2001; Gerfin and
Lechner, 2002; Kluve et al., 2012).

A number of recent papers follow Abadie et al. (2002) and use randomized trials; see
e.g. Lee (2009), Attanasio et al. (2011); Grip and Sauermann (2012); Ba et al. (2017),
Sandvik et al. (2021). The importance of the comparison group construction is illustrated
by Leuven and Oosterbeek (2008). They narrow down their comparison group to pick only
“workers who [were] willing to undertake training and whose employers [were] prepared
to provide it, but did not attend the training course they wanted, due to some random
event” (Leuven and Oosterbeek, 2008, p. 426). This strict choice of comparison group
reduces the estimated coefficient on training to almost zero, down from between 5–15%
for less restrictive choices.4

Most papers consider the impact of training on wages and productivity. Human capital
theory suggests that, under conditions of perfect competition, employers should refuse to
pay for training. At least, they would refuse to finance general training, which is typically

4On this point, see also Sandvik et al. (2021).
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portable, and would allow workers to quit the firm and find a job with a higher wage. But
under imperfectly competitive conditions, in particular, under asymmetric information
about workers’ abilities, it can be shown that the firm should be willing, either to subsidize
training, or to share the benefits of training with the worker, (see Acemoglu and Pischke,
1998, 1999). A number of papers use wage equations and production functions to test
this prediction and do indeed find positive effects on both productivity and wages.5

There also exists a literature on transition and duration models, studying the effects of
training on the duration of employment and unemployment spells (see Ridder (1986), on
Dutch data; Gritz (1993), on NLSY data; Bonnal et al. (1997), on French data; Crepon
et al. (2009), using methods developed in Abbring and Berg (2003)).

Finally, an important question is to assess the importance and effects of unobserved
heterogeneity, as well as the dynamic structure of the treatment effects of training (for
recent progress on these two fronts, see Rodriguez et al. (2018)). Our paper addresses
these questions within a nonparametric DiD framework that we describe below.

2 The model

We frame the model in terms of the application we are interested in (the effect of training
on wages) but the methodology could be used in many other setups.

We study a population of N workers indexed by i. The outcome variable is the
worker’s nominal hourly wage (in logs). It is denoted wit and is observed at the end of
three consecutive years indexed by t = 1, 2, 3. Some workers engage in a training session
after the first wage observation, in which case di = 1, and di = 0 otherwise. Wage
wi1 is observed before training, and wi2, wi3 are observed after training (if training takes
place at all). Our method works with more wage observations before training and just
one observation after training. As we shall later explain, we use three wage observations
instead of two in order to identify autoregressive wage dynamics.

Our goal is to measure the causal impact of training on wages in periods t = 2, 3.
We assume that treatment di is a binary variable, although the model and the proof
of identification encompass the case of a treatment variable with any finite number of
values. Specifically, we could allow for different types of training, for example by duration.
Moreover, there are two observations of the outcome variable after treatment because we
want to allow for the possibility that the outcome is a Markovian (autoregressive) process.

We single out, from all potential control variables, a variable zi ∈ {0, 1}, indicating if
the worker reports receiving information about the availability of training sessions through
any of the following channels: hierarchy, human resources, coworkers, or unions. This
variable will be used as an instrument for the selection into treatment.

5See Ballot et al. (2006), Dearden et al. (2006); Konings and Vanormelingen (2015).
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We assume that workers can be clustered into a finite number H of unobserved groups:
h ∈ {1, ..., H}. The distribution of all variables wit, zi and di, including the instrument,
potentially varies across latent groups. We think of these latent groups as embodying all
the heterogeneity, such as education, health, experience, that is observed and unobserved
and which conditions wages and training. However, it is of course possible to first cluster
the data, say by education, and run the study separately within each education group.6

Semi-parametric versions of our model can also easily be worked out, at the cost
of restrictions on the interaction between observed and unobserved characteristics. In
the application, we will classify workers from observations (wit, di, zi) and examine the
correlations between the estimated classification h and a set of available controls, ex post.

We start by making the following assumption on wages.

Assumption 1 (Wage process). The wage process is first-order Markov and bounded,
and is independent of the instrument given type and treatment.

As already noted, it is not necessary at all that the outcome process be dynamic. If
wages are iid, then a single wage observation after treatment is sufficient for identification.
However, if the outcome process is dynamic given unobserved heterogeneity, then even
two wage observations are not enough (i.e. one before and one after treatment). This is
expected; see for example Kasahara and Shimotsu (2009b); Hu and Shum (2012). Three
wage observations are the minimum amount of data that we require for identification.
More observations will always be better — though this might introduce complications
regarding the timing of treatment. These three wage observations can be such that one
is observed before treatment and two are observed after, as in our empirical setup; or
we could observe two wages before treatment and one after. Lastly, it is easy to extend
the framework and allow for an autoregressive process of higher degree; but the Markov
property is essential. So, we cannot for the moment allow for a non-Markovian process
such as the sum of a random walk and an iid innovation. Without the bounded support
assumption, our identification method will only allow us to identify parameters up to any
given error.

Assumption 1 is also the first restriction imposed on the special variable zi. The
variable zi is a valid instrument for training insofar as it does not affect wages once
heterogeneity and training are controlled for. This exclusion restriction is fundamental
for our identification result. In our empirical application, the instrument is whether the
worker had access to information on training. Conditional on all worker heterogeneity,
it seems reasonable to assume that training information has no causal effect on wages.
Testing this exclusion restriction is difficult because individual types are latent variables,
which will be recovered only under this (and other) assumptions.

6We tried pre-clustering the data along a number of observed dimensions (age, education, gender, firm
size) to little effect. Our final estimation strategy does pre-cluster the data, though only on wages to
capture observed and unobserved heterogeneity.
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Let Ft(wit|h, d) denote the distribution function for the marginal distribution of wages
wit given treatment and type. We use a lower-case f to denote the corresponding prob-
ability mass or density functions. Let Ft|s(wit|wis, h, d) denote the distribution function
for the conditional distribution of wit given wis (we use s = t ± 1). Let W2(h, d) be
the support of f2(w2|h, d) (i.e. the set of wages w such that f2(w2|h, d) > 0) and let
W2(d) = ⋃

hW2(h, d) be the joint support (different types may have different supports).
Lastly, let π(h, z, d) denote the probability mass of workers of type h ∈ {1, ..., H}, with
values of the instrument z ∈ {0, 1} and of treatment d ∈ {0, 1}.

Our framework relates to the standard difference-in-differences model, since we com-
pare pre- and post-treatment wages. It can also be interpreted as a version of the Roy
model used by Carneiro, Heckman and Vytlacil in a number of papers (see Heckman and
Vytlacil, 2005; Carneiro and Lee, 2009; Carneiro et al., 2010, 2011 for example). The main
difference is that we explicitly model the dependence between error terms via the latent
factor h. Specifically, a possible interpretation of our model combines an outcome and
a choice (or selection) equation as follows. Let y(0), y(1) denote the potential outcomes
(i.e., post-treatment wages) for d = 0 or d = 1 and let c(h, z) + v be a random training
cost depending on h and z. Then, a standard Roy model would have d = 1 if and only if
the expected return E[y(1)− y(0) |h] is greater than the cost c(h, z) + v.

2.1 Identification

In this section, we describe the conditions under which our model is identified.
All the relevant information is in the likelihood of the information available at the

individual level, namely the instrument z, the treatment d, and the three wages w1 (before
treatment) and w2, w3 (after treatment):

p(z, d, w1, w2, w3) =
∑
h

π(h, z, d) f2(w2|h, d) f1|2(w1|w2, h, d) f3|2(w3|w2, h, d). (1)

Notice how we condition the densities of wi1 and wi3 on wi2. The static case of iid wages
given latent types and treatment can be seen as a particular case where W2(d) is reduced
to a singleton.

We show that all the components of the right-hand side of equation (1) are identified
under the following assumptions.

Assumption 2 (Overlap). For all h, d, π(h, 0, d) 6= 0.

Assumption 2 is standard and means that workers of all types have a positive proba-
bility of being both treated and non-treated for at least one instrument value, arbitrarily
set equal to zero.
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Assumption 3 (Linear independence). For all d, w2 ∈ W2(d), and t = 1, 3, there
exists grids of wages (wt) such that the systems

{
Ft|2(wt|w2, h, d),∀h : f2(w2|h, d) 6= 0

}
are linearly independent.

Any latent type such that its conditional wage distribution can be replicated as a
linear combination of the other types’ distributions cannot be separately identified from
the other types. This is also a standard assumption.

Assumption 4 (Rank condition). For all d, and all h 6= h′ , π(h, 1, d)
π(h, 0, d) 6=

π(h′, 1, d)
π(h′, 0, d) .

This assumption is standard in the literature on latent group identification. For ex-
ample, it is related to Assumption 3 in Bonhomme et al. (2019) and Assumption 2.3
in Hu (2008) (or Assumption 3 in Hu’s (2017) survey). Assumption 4 requires different
exposures to the instrument for all types, whatever the treatment. If the ratios π(h,1,d)

π(h,0,d)

differ by h, then we can as well relabel types so that π(h,1,d)
π(h,0,d) is increasing in h. So, given d,

we require probabilities π(h, z, d) to be log-supermodular. In other words, the instrument
must predict individual types given treatment; but it must not predict wages given type
and treatment.

In our empirical application, the instrument is training information. Conditional on all
worker heterogeneity, it seems reasonable to assume that it has no causal effect on wages
(Assumption 1) but receiving information about training opportunities should increase
the probability to be treated. The instrument is an intention to treat. Now, with more
transparent notation,

π(h, 1, d)
π(h, 0, d) = Pr(d|h, z = 1) Pr(z = 1|h)π(h)

Pr(d|h, z = 0) Pr(z = 0|h)π(h) . (2)

Assumption 4 can thus hold because different types show different probabilities of com-
plying, or because different types show different intentions to treat.

Finally, we assume that the pre-treatment wage distribution should be independent of
the treatment. Hence, pre-treatment wages must be independent of both the instrument
(Assumption 1) and the treatment.

Assumption 5 (Predetermination). For all types h, f1(w1|h, d) = f1(w1|h) and f1(·|h) 6=
f1(·|h′) for all h, h′.

This assumption is useful to recover a common labelling of groups across treatments.
Predetermination does not always hold (even conditional on all relevant heterogeneity).
For example, an “Ashenfelter dip” (wages drop before treatment) could be observed if em-
ployers make workers pay for the forthcoming training. In our application, most training
sessions are rather short (a few days, rarely a whole week) and the pre-treatment wage is
observed a full year before training.
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Theorem 1 (Identification given (d, w2)). Under Assumptions 1-5, the number of la-
tent groups H, and the functional parameters π(h, z, d), f2(w2|h, d), F1|2(w1|w2, h, d),
and F3|2(w3|w2, h, d) are identified up to labelling. Using Bayes’ rule, we also identify
F1(w1|h, d), f2|1(w2|w1, h, d).

The detailed proof of the identification theorem is in Appendix A. We here sketch the
proof to emphasize the roles of Assumptions 2, 3 and 4. The identification argument
is similar, yet not identical, to the ones in the seminal papers of Hu (2008); Hu and
Schennach (2008); Kasahara and Shimotsu (2009b); Hu and Shum (2012). We also refer
the reader to Hu’s (2017) survey and to his forthcoming book on the econometrics of
unobservables.

Sketch of the algebraic method of proof. To see how these three assumptions are crucial
for identification, at least with the method of proof used in this paper, let us examine the
simple case of just two wages, no training, and no wage dynamics. The likelihood of the
joint event {wi1 ≤ w1, wi2 ≤ w2, zi = z} is

p(z, w1, w2) =
∑
h

π(h, z)F (w1|h)F (w2|h).

Hence we want to identify a discrete mixture with an additional measurement of the
latent variable h, which is z. This additional measurement z can be as simple as a
binary variable. In Hu (2017)’s classification, we have a 2.1-measurement model. What
is important is that z be correlated with h but not with wages given h. Let us consider a
grid of wages, and let us store the discretized function F (w|h) in a matrix G = [F (w|h)]w,h
where wage points index rows and latent types index columns (as in Bonhomme et al.,
2019). The first row of G is made of ones if the first point of the grid is the maximal
wage. Next, let P (z) = [p(z, w1, w2)]w1,w2

store the likelihood values in a matrix where
w1 indexes rows and w2 indexes columns. Finally, let D(z) = diag [π(1, z), ..., π(H, z)] be
a diagonal matrix with the latent type probabilities π(h, z) along the diagonal. Then,
P (z) = GD(z)G>.

This looks like an eigendecomposition formula, except that matrix G is not orthogonal.
This is why we need two matrices P (0), P (1), using a classic algebraic trick for identifying
latent structure models such as finite mixtures and independent component analysis (see
for example Cardoso, 1989). Assumptions 2 and 3 guarantee that G and D(0) are full
rank. So P (0) has rank H and the number of types is identified. To simplify, let us assume
that G is a square matrix (the number of wages on the grid is reduced to H). Let us
consider the spectral decomposition: P (0) = QΛQ>, with Q symmetric and orthogonal.
We can write

Q>P (0)QΛ−1 = Q>GD(0)G>QΛ−1 = IH ,

where IH is the identity matrix. Define W = Q>G. Then, D(0)G>QΛ−1 = W−1. It also
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follows that

Q>P (1)QΛ−1 = Q>GD(1)G>QΛ−1

= Q>GD(1)D(0)−1D(0)G>QΛ−1

= WD(1)D(0)−1W−1.

This last expression gives the eigendecomposition of the matrix Q>P (1)QΛ−1. Its eigen-
values are the elements of the diagonal matrix D(1)D(0)−1 = diag

[
π(h,1)
π(h,0)

]
.

By Assumption 4, the ratios π(h,1)
π(h,0) are all distinct, meaning that the eigenvalues of

matrix Q>P (1)QΛ−1 are simple. It follows that the eigenvectors in W are identified up
to scale. And W contains the information on G, the mixture components. The unknown
scale of the columns ofW is identified by the property that the columns of G are bounded
by one. If the eigenvalues are not simple, then many choices are possible for the basis of
the eigenspaces, and only some linear combinations of the mixture components F (w|h)
will be identifiable.

To sum up, the role of the instrument is to create two observable matrices P (1)
and P (0) with the same algebraic structure. One is used to standardize the other (this
is called “whitening” in the Independent Component Analysis literature), by a sort of
matrix division operation that gives to the ratios π(h,1)

π(h,0) the interpretation of eigenvalues.
Assumption 4 is also a condition for the point identification of the mixture cdfs F (w|h).

In the detailed proof in Appendix A, we generalize this procedure to the case of
Markovian wages (building on Hu and Shum, 2012). This proves identification given
treatment di and first post-treatment wage wi2. However, how do we know that one
group that we have labelled 1 for one particular value of (d, w2) is the same as the group
we have labelled 1 for another value? Assumption 4 allows to align groups across different
wage values w2. The odds ratios π(h,1,d)

π(h,0,d) being independent of wages w2, and all different
by assumption, they also allow to identify a common labelling of the latent groups over
all wages w2 ∈ W2(d). Across different treatments d, wage predetermination fulfill the
same role.

We are now equipped with a nonparametric identification result and we can safely
develop a method to estimate our model. Our estimation method is described in sections
3.3 and 3.4 below. Although the identification proof is constructive, it leads to complicated
estimating equations that do not use all the available information. This is why we prefer,
for estimation, to use maximum likelihood and a parametric version of the model.7

7Our parametric version could be made arbitrarily flexible, but the data that we use would not
support the estimation of a complicated specification with a large number of parameters. Estimating a
parametric model after showing nonparametric identification is standard. See for example Cunha et al.
(2010); Bonhomme et al. (2019).
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2.2 Treatment effects and usual estimators

Before turning to the estimation procedure and to our empirical application, we discuss
the definition of policy-relevant parameters in our framework. We mainly compare the
treatment effects with the usual estimators of applied econometrics, such as OLS and IV
estimators.

Let y(0) and y(1) denote the counterfactual outcomes. In our application, it can
be the wages in period t = 2 or t = 3 of untrained and trained workers, or the wage
changes between t = 2, 3 and t = 1 given training. Hence, our discussion will encompass
both static and dynamic experiments (yet not staggered treatments). Note also that, in
our setup, counterfactual outcomes y(0) and y(1) satisfy the conditional independence
assumption:

y(0), y(1) ⊥⊥ d, z |h. (3)

The difficulty here is that the conditioning variable h is not observed.
Define the observed outcome y = d y(1) + (1− d) y(0). We now define and derive the

Average Treatment Effect (ATE) and the Average Treatment Effect on the Treated (ATT).
Then we consider OLS and IV estimators.

ATE. We define a conditional Average Treatment Effect given type h as follows,

ATE(h) = E[y(1)− y(0)|h] = µ(h, 1)− µ(h, 0),

where µ(h, d) = E[y(d)|h]. The unconditional ATE is simply the average over types
h = 1, . . . , H of the conditional ATEs, that is,

ATE =
∑
h

π(h)ATE(h), (4)

where π(h) = ∑
z,d π(h, z, d) is the population share of type-h workers.

ATT. Under the above conditional independence assumption,

ATT(h) = E[y(1)− y(0)|h, d = 1] = ATE(h).

The ATT is thus the average value of the conditional treatment effect ATE(h) over the
treated individuals:

ATT = E[y(1)− y(0)|d = 1] =
∑
h

π(h|d = 1)ATE(h), (5)
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with π(h|d) = ∑
z π(h, z|d) and for d = 0, 1,

π(h, z|d) = π(h, z, d)∑
h,z π(h, z, d) .

OLS and DiD. Now, we study the OLS estimator of the impact of treatment on the
outcome. The difference-in-difference (DiD) estimator is the OLS estimator when the
outcomes y(1), y(0) are defined as wage changes between before and after the treatment’s
application.

We have

bOLS = Cov(y, d)
Var(d) = E[y(1)|d = 1]− E[y(0)|d = 0]

=
∑
h

π(h|d = 1)µ(h, 1)−
∑
h

π(h|d = 0)µ(h, 0)

= ATT +BOLS,

where BOLS is the bias, defined as

BOLS =
∑
h

[π(h|d = 1)− π(h|d = 0)]µ(h, 0). (6)

Hence, the OLS estimator is an unbiased estimator of ATT (BOLS = 0) if

1. π(h|d = 1) = π(h|d = 0) for all types h; or

2. µ(h, 0) = µ(1, 0) for all h.

These restrictions will not hold in general as we expect neither the decision to treat, nor the
outcome levels to be independent of individual types. However, with outcomes defined
as wage changes between periods before and after training, assumption 2 is the usual
common trend assumption in DiD setups: the expected change in the outcome, before
and after treatment, is independent of the group. Hence, for levels, we shall refer to BOLS

simply as the “heterogeneity” bias. For differences, we will call BOLS the “heterogeneous
trend” bias.

Lastly, the sign of the bias is unknown a priori. However, imagine that good types,
with higher pre-treatment wages (and wage growth), also have a higher probability of
benefiting from training. Then, we expect the OLS (or DiD) estimator to be biased
upward vis-a-vis the ATT. One can find a similar discussion in Carneiro et al. (2011).

IV and LATE. Finally, the IV estimator of the regression of y on d, using z as an
instrument can be expressed as follows,

bIV = Cov(y, z)
Cov(d, z) = E(y|z = 1)− E(y|z = 0)

E(d|z = 1)− E(d|z = 0) .
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First, the denominator of bIV is trivially

E(d|z = 1)− E(d|z = 0) =
∑
h

[π(h, d = 1|z = 1)− π(h, d = 1|z = 0)] .

Second, the numerator can be factored as

E(y|z = 1)− E(y|z = 0) =
∑
h

[π(h, d = 1|z = 1)µ(h, 1) + π(h, d = 0|z = 1)µ(h, 0)]

−
∑
h

[π(h, d = 1|z = 0)µ(h, 1) + π(h, d = 0|z = 0)µ(h, 0)]

=
∑
h

[π(h, d = 1|z = 1)− π(h, d = 1|z = 0)] [µ(h, 1)− µ(h, 0)]

+
∑
h

[π(h|z = 1)− π(h|z = 0)]µ(h, 0),

making use of

π(h, d|z) = π(h, z, d)∑
h,d π(h, z, d) and π(h|z) =

∑
d

π(h, d|z).

Hence,
bIV = LATE +BIV ,

where we define

LATE =
∑
h [π(h, d = 1|z = 1)− π(h, d = 1|z = 0)]ATE(h)∑

h [π(h, d = 1|z = 1)− π(h, d = 1|z = 0)] (7)

and
BIV =

∑
h [π(h|z = 1)− π(h|z = 0)]µ(h, 0)∑

h [π(h, d = 1|z = 1)− π(h, d = 1|z = 0)] . (8)

LATE is a weighted average of conditional ATEs given type. This average is infor-
mative if the weights are uniformly positive or negative, that is, if monotonicity holds
(Imbens and Angrist, 1994):

π(h, d = 1|z = 1) ≥ π(h, d = 1|z = 0).

In our setup, it makes sense to think that the probability of training increases if the em-
ployer informs its workers about training possibilities. However, our estimator is more gen-
erally applicable as we do not need to assume monotonicity in the treatment probability.
As in de Chaisemartin and d’Haultfoeuille (2020)’s application to difference-in-difference,
we can check whether all weights are of the same sign or not.

The IV estimator is an unbiased estimator of LATE (BIV = 0) if

1. π(h|z = 1) = π(h|z = 0) for all types h; or
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2. µ(h, 0) = µ(1, 0) for all h.

The second restriction has already been discussed in the case of OLS. The first restriction
is also similar, although it now links heterogeneity h to the instrument z instead of the
treatment d. In our application, the instrument is determined at the firm level. So,
it may be correlated with worker types either because of matching — good firm types
matching with good worker types — or if employers themselves inform workers about
training possibilities in a selective way. In many usual LATE setups, the instrument is
not local (a policy designed at some regional level, for example). In which case, the first
restriction is also more likely to hold (that is, if individuals do not move in response to
the policy). In randomized setups, z is the intention to treat, the random assignment
to treatment and is by construction exogenous. Then, treated individuals may comply
(d = 1) or not (d = 0) with the assignment to treat (e.g., Abadie et al., 2002).

Conclusion. Our setup, therefore, offers two main advantages: 1) It allows one to iden-
tify average treatment effects (and more generally their distribution across latent types) in
situations where counterfactual outcomes are heterogeneous. In a difference-in-difference
setup, this means that identification does not rest on the common trend assumption.
2) Identification is complete, meaning that all parameters of the structural model are
nonparametrically identified. This allows one to identify not only the conditional treat-
ment effects given types, but also the joint distribution of treatment and types. Hence,
the weights of marginal treatment effects in OLS and IV estimators can be separately
identified, with no need for such assumptions as constant-sign or monotonicity.

3 Application: the wage returns to training

3.1 The data

We use survey data collected between 2013 and 2015 by Céreq,8 as part of the DEFIS
survey.9 The survey sampled 4,529 firms with three employees or more from all sectors
but agriculture in 2013, and 16,126 workers were subsequently drawn from these firms’
employees.10 The main objective of the survey was to document the use of formal or
non-formal adult education by employees, and the effect of this form of learning on work
outcomes. Several waves of interviews were conducted. We use the first wave in this paper,
in which employees were interviewed between June and October 2015 about any training
sessions that they participated in between January 2014 and the time of the interview.

8Centre d’études et de recherches sur les qualifications (a French public institution).
9Dispositif d’enquêtes sur les formations et itinéraires des salariés.

10The employees were sampled among the sampled firms’ employees, provided that they were employed
by their firm in December 2013. The latter sampling is stratified to provide a representative sample of
workers
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This was done through retrospective questions (such as “Did you hold a full-time or a
part-time contract in firm X in the fall of 2013?”, or “Since January 2014, did you take
part in a training program?”).

The responses to the employer survey (in December 2014) and the worker survey (in
2015) are matched with wage data obtained from tax registers, reported by employers to
the tax authorities (Déclarations annuelles de salaires, DADS) for the ongoing employ-
ment spells in December 2013, December 2014, and December 2015.11 Our definition of
the wage is the total earnings paid to the worker by the employer in December 2013, 2014,
and 2015, net of payroll taxes (but not net of income tax) and divided by the total number
of hours worked in that employment in the whole years of 2013, 2014, and 2015. Nearly
80% (12,597/16,126) of workers reported that they were employed by the same firm as
in 2013 at the time of the interview in 2015. Greater fractions (89.2% = 12,100/13,562
in 2014 and 85.3% = 11,103/13,014 in 2015) of the wages recorded for 2014 and 2015
were paid by the same employer who paid the wage recorded in 2013. Therefore, a large
majority of workers in our data did not move during our period of analysis so we will
abstract from worker mobility in this paper.

To give a first overview of the factors affecting the selection into training, we start
with a simple comparison of employees who reported at least one training session in 2014
or 2015 with employees who did not declare any training. Among the 16,126 employees
surveyed in 2015, 6,349 individuals (39.3%) declared at least one training session, with a
majority of them declaring only one session.12 Table 1 presents the average characteristics
of trained and untrained workers in terms of demographics, education, occupation, job,
and firm characteristics, before any training (situation in the fall of 2013). Statistics
are presented both for the overall sample (the two left-hand columns) and the analysis
sample (the two right-hand columns). The analysis sample excludes some individuals with
extreme wage observations and more importantly, includes only “stayers” — workers who
are observed in the same firm in 2013 and in 2015.

All variables in rows are binary, except the age and hourly wage (in logs). Table 1
suggests that on average, workers who trained between January 2014 and the time of the
first interview (between June and October 2015) are more likely to be French, male, living
as a couple, and to have children (even controlling for age) compared to workers who did
not train. They also tend to be more educated, most of them having post-secondary
degrees. They occupy more skilled jobs, they have higher salaries, and they are more
likely to hold full-time and permanent contracts. They are also more likely to receive
information on training (our instrument). Using the employer survey, we also find that
trained workers are on average in bigger firms, that are more likely to have human resource

11More precisely, the last employment spells of the years 2013, 2014 and 2015, which ends at the end
of December for 83% of the workers in 2013, 78% in 2014 and 76% in 2015.

12Among the 6,349 employees who received training, 61% declared one session, 26% declared two, 9%
declared 3, and less than 4% declared more than 3.
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Table 1: Comparison of trained and untrained workers by baseline characteristics

All Stayers
Trained Untrained Trained Untrained

Demographics:
Age (modal group) 40-44 45-49 40-44 45-49
Male 70.7 67.3 74.1 72.9
French 97.0 94.1 98.1 95.8
In couple 74.8 68.4 78.6 74.0
Has children 57.4 49.0 63.1 55.9
Disability 7.2 12.5 6.7 10.1
Previous health problem 3.4 5.7 2.6 4.1
Education:
Less than high school diploma 28.3 46.1 29.4 46.5
High school diploma 18.5 18.6 18.3 18.1
Trade or vocational degree 20.7 14.9 21.9 16.7
Bachelor’s degree 7.9 5.5 6.9 4.7
Master’s degree or more 23.9 13.8 23.0 13.1
Occupation:
Unskilled blue collar 5.9 9.6 5.2 9.0
Skilled worker, technician 18.5 26.2 18.8 26.8
Office worker, public sector employee 21.2 27.9 17.5 24.3
Foreman/Supervisor 13.7 9.9 15.0 11.2
Technician, draftsman, salesman 9.3 6.5 10.0 7.4
Engineer, manager 29.5 15.7 32.7 18.9
Job characteristics:
Log(hourly wage), 2013 (w1) 2.7 2.5 2.8 2.6
Log(hourly wage), 2014 (w2) 2.8 2.6 2.8 2.6
Log(hourly wage), 2015 (w3) 2.8 2.6 2.8 2.6
Permanent contract 90.0 83.3 98.5 98.3
Full time contract 88.7 80.1 95.9 93.9
Information on training (z) 78.8 62.8 81.7 68.5
Firm characteristics:
3 to 49 employees 24.0 39.1 21.1 38.2
50 to 249 employees 20.5 21.8 21.4 23.5
250 to 499 employees 9.1 7.2 9.7 7.9
500 to 999 employees 8.6 6.5 8.5 6.8
1000 to 1999 employees 7.4 6.2 7.2 5.4
More than 2000 employees 30.4 19.1 32.1 18.3
Has HR department 89.6 81.5 91.5 81.9
Has individual incentive strategy 72.4 60.0 74.4 61.8
Has collective incentive strategy 78.4 64.5 82.2 68.6
Outsources part of activity 40.6 34.8 41.9 36.5
Number of observations 6343 9783 3467 4066

Notes: “All” refers to the whole sample and “Stayers” refers to the sub-sample of workers who remain
employed in the same firm all three years. For all binary variables, the mean is given as a percentage. The
bottom row gives the number of workers for all variables except log(hourly wage), where 59 observations
are missing wages in 2013, and approx. 3,000 in 2014 and 2015.
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staff. Overall, more advantaged workers are more likely to get training. The two samples
are generally similar across observable dimensions, with notable differences being that
individuals in our analysis are more likely to be full-time and hold a permanent contract.

In the next section, we present the results from estimating, by OLS and IV, a system of
equations that resembles the model presented in section 2 for our application. This allows
us to compare the results using our method to those obtained using standard approaches,
the theoretical analysis of Subsection 2.2 having demonstrated the potential biases on
OLS and IV estimators.

3.2 Preliminary analysis

We start by estimating the wage equation,

wit = αt + βtdi + xiθt + vit, (9)

where wit are log-wages at the end of 2013 (t = 1), 2014 (t = 2), and 2015 (t = 3);
di is an indicator for training between January 2014 and December 2015; and xiθt is a
combination of control variables (as observed in 2013).13 This equation is first estimated
by OLS for each year separately, and then by 2SLS, instrumenting di by zi, the information
on training mentioned above. The estimations are done with and without controls. The
DiD estimate of the effect of training in 2014 and 2015 is obtained as ∆β2 = β2 − β1 and
∆β3 = β3 − β1.

The results are reported in Table 3. The OLS results suggest very small effects of
training (differences in the β’s around 0.2-0.5% with controls) and the effect of training on
pre-treatment wages remains significant even after adding many controls to the estimation.
After instrumenting the training variable, we see both stronger effects of around 4%, and
the effect of training on 2013 wages stops being significant when controls are included in
the regressions. Note that standard errors jump by one order of magnitude, pointing at
a certain weakness of the instrument.

These results suggest the existence of a causal link between wages and training of
around 4%, which is non-negligible. We now use our model in order to check whether
there is any reason to doubt that the IV estimation delivers an unbiased estimate of the
causal effect of training on wages.

13For controls, we use: gender, age brackets, married, handicapped, having health problems, open-ended
contract, full-time contract, socioeconomic status, firm size brackets, existence of an HR department,
existence of wage incentives for performance (individual and collective), whether the firm outsources
activities. See Table 1 for summary statistics.
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Table 3: Static estimation of wage regressions with training

OLS 2SLS
Without With Without With
controls controls controls controls

Log-wage levels
2013 0.158 0.038 0.179 0.057

(0.009) (0.006) (0.060) (0.053)
2014 0.166 0.040 0.219 0.098

(0.009) (0.006) (0.061) (0.053)
2015 0.169 0.043 0.216 0.093

(0.009) (0.006) (0.062) (0.054)

Log-wage changes
2014 0.007 0.002 0.040 0.041

(0.003) (0.003) (0.019) (0.025)
2015 0.011 0.005 0.037 0.036

(0.003) (0.004) (0.022) (0.030)
Nb of workers 7,533 7,533 7,533 7,533

3.3 Parametric specification

In practice, we specify a parametric version of the model and we use maximum likelihood
for estimation.

We assume that log-wages are normal conditional on type and training, and first-order
autoregressive with autocorrelation coefficient ρ. More precisely, we postulate that

w1 = µ1(h) + u1, where u1 ∼ N (0, σ2
1(h)),

and for t = 2, 3,

wt = µt(h, d) + ut, where ut ∼ N (ρut−1, σ
2
t (h, d)).

Then, with ϕ(u) = (2π)−1/2e−u
2/2, we have,

f1(w1|h) = 1
σ1(h)ϕ

(
w1 − µ1(h)
σ1(h)

)
,

and
f2|1(w2|w1, h, d) = 1

σ2(h, d)ϕ
(
w2 − µ2(h, d)− ρ [w1 − µ1(h)]

σ2(h, d)

)
,

f3|2(w3|w2, h, d) = 1
σ3(h, d)ϕ

(
w3 − µ3(h, d)− ρ [w2 − µ2(h, d)]

σ3(h, d)

)
.
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The model is flexible at first and second order as long as parameters µt, σt are left unre-
stricted. A more flexible distribution than the normal could be used for the distribution
of innovation errors, but, as we shall see, the link between wages and training is tiny.
Thus, there is little data to infer higher-order moments.

Probabilities π(h, z, d) are left unrestricted.
The data for each individual i is the array xi = (wi1, wi2, wi3, zi, di). The parameters

of the model are denoted β = (µ, π, ρ, σ). The complete likelihood of individual i’s
observations xi and any type h is

`ih(β) ≡ `(xi, h, β) (10)

= π(h, zi, di) f1(wi1|h, β) f2|1(wi2|w1i, h, di, β) f3|2(wi3|wi2, h, di, β).

The individual likelihood is `i(β) = ∑
h `ih(β). The sample likelihood is the product of

individual likelihoods, L(β) = ∏
i `i(β).

3.4 Types and likelihood maximisation

We found that a two-stage approach to estimation worked best in our application. In
the first stage, we classify workers into types based solely on their wages, abstracting
from training and training information. We then perform a second round of classification
within each group from the first stage, now allowing wages to depend on training. Within
each stage, the EM algorithm is used to estimate the discrete mixture, and groups are
labelled by increasing values of mean wages in 2013, i.e. by µ1. Specifically, we now
assume that each type h is a pair h = (k, g), where k ∈ {1, . . . , K} is the first-stage
type component (depending only on wages) and g ∈ {1, . . . , G} is a second-stage type
component (depending on training and wages). It follows that the total number of discrete
groups is H = GK.14

We started by estimating the full model with unrestricted types in a single step. How-
ever, most of the latent classification was used to fit the overall distribution of wages, and
little heterogeneity was spared to fit different relationships between wages and training.
In particular, it was not possible to avoid wages in 2013 varying with training in 2014
within each estimated group. By first estimating a discrete mixture of wages and then
re-estimating a discrete mixture of wages and training, given the first classification, we
increase our chances of zooming in on the wage-training link. Note that, in principle,
this two-stage procedure is used without loss of generality. Indeed, nothing prevents the
estimated second-stage mixture from being exactly the same within each of the first-stage
groups.

14We could have let G depend on k, each first-stage type k determining a different number of second-
stage types G(k), but to keep the analysis relatively simple, we keep G constant across k.
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The simplified first-stage model is

w1 = µ̄1(k) + u1, u1 ∼ N
(
0, σ̄2

1(k)
)
,

wt = µ̄t(k) + ut, ut ∼ N
(
ρ̄ut−1, σ̄

2
t (k)

)
, t = 2, 3,

where we use an upper bar to distinguish the first-stage variables and parameters from
those of the second stage.

We use a sequential EM-algorithm for the likelihood maximization of both stages (see
Appendix B for details). Moreover, we relabel groups k and subgroups g by increasing
values of µ1(k) and µ1(k, g) after estimation has converged.

3.5 Estimating the number of types, H

In the identification of our model, one of the key parameters that we showed to be identi-
fied was the number of types, H. In our identification strategy, the number of types was
simply the rank of the matrix of observed data points, P (z). However, in the alternative
method we use to estimate our model, the econometrician fixes H at the start of the
procedure. Therefore, if we want to avoid selecting the number of types arbitrarily, we
need a method to estimate (or “choose”) H. This problem has been well-studied theoret-
ically in the computer science literature, although practical methods are rare, especially
in situations where the correct model is not in the set of considered models (Fraley and
Raftery, 1998).

As the number of groups increases, so does the number of parameters. Hence the fit
of the model is monotonically increasing in the number of groups. Therefore, the “elbow-
method” has been widely used, which involves looking for “elbows” in some objective
function, i.e. where it starts to increase less steeply. We use a range of (penalized) likeli-
hood functions as the objective function in our analysis, including the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), and the integrated conditional
likelihood (ICL) proposed by Biernacki et al. (2000). The ICL criterion was proposed
to counter the tendency of BIC to overestimate the number of groups by penalizing the
likelihood when groups are not well separated.15

3.6 Bootstrap

Standard calculations of parameter standard errors do not incorporate the random nature
of the estimated classification (even if it should be negligible asymptotically). We there-
fore bootstrap standard errors by resampling and reestimating many times the whole

15As pointed out by Biernacki et al., the BIC is a reliable approximation of the integrated likelihood if
the estimated parameters are well within their domain. This is not the case if the estimated K is greater
than the true K0, as K −K0 shares should be equal to 0.
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procedure. This is computationally intensive as we use 500 replicated samples, with
replacement, from the original sample. Specifically, we use the weighted-likelihood boot-
strap. O’Hagan et al. (2019) show that it provides a robust solution in our setting.
Standard bootstrap may generate unstable results if re-sampling causes certain types to
be under-represented or even to disappear. The weighted version draws non-zero weights
for each observation from a Dirichlet distribution to ensure that no observations are com-
pletely dropped in any bootstrapped sample (Newton and Raftery, 1994). The weights
λi are such that they sum to the size of the full sample, that is, ∑i λi = N . We use the
original, full-sample estimates as initial values for the algorithm at the beginning of each
re-estimation. Confidence intervals can then be estimated by selecting the corresponding
percentiles of the bootstrapped parameter estimates, i.e. the 5th and 95th percentiles for
a 90% confidence interval.

4 Results

4.1 Choosing the number of types (K and G)

Our estimation strategy requires the econometrician to choose the number of types in both
stages, K and G. Figure 1 presents some of the criteria we use to choose the number
of types for the remainder of our analysis. In Figure 1a, the different broken lines show
how total likelihood (lnL) and penalized-likelihood criteria evolve with K. The first two
penalized-likelihood criteria are the well-known Akaike and Bayesian information criteria
(respectively, AIC and BIC). We are looking for “elbows”, that is, values of K where the
marginal gain in likelihood for an additional type is noticeably less than it is for K − 1.
There is a clear elbow at K = 3 or K = 4 for AIC and BIC. The ICL criterion is more or
less steadily decreasing for all K.

In Figure 1b we study what happens to the sizes and means of the groups as we increase
K. The groups all appear distinct when compared by their means, but very small groups
start to appear for K = 6 or 7. Notice also that there is only a small fraction of the
workers who display different mean wages across periods. There is only one group with
clearly different wage means for K ≤ 5. For K = 6 or 7 we see more than one group with
different wage means, but this looks like a dilution of the only such group appearing when
K = 4 or 5. Combining the evidence from both panels of Figure 1, we choose K = 4
for the first stage, and we leave to the second stage the task of determining the role of
training in generating the observed changes on mean wages over time.

Figure 2 represents the results from the second stage of our estimation procedure. In
panel (a), each of the four subpanels shows the likelihood criteria for each one of the four
types obtained in the first stage. The likelihood, here, is a weighted sum of individual
likelihoods where the weights are the posterior type probabilities estimated from the first
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Figure 1: Choosing the number of types K

(a) Likelihood criteria

(b) Group sizes (bars) and means (points)

Notes: (a) If M is the number of parameters, N the number of observations, and L the likelihood,
AIC = − lnL + 1

2 lnM , and BIC = − lnL + ln(N)M . We plot −AIC and −BIC on the figure. The
ICL is an alternative criterion proposed by Biernacki et al. (2000). (b) The bars in Panel (b) are the
shares of each group. The colored dots are the levels of estimated mean wages in the three years for
which we observe wages.
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Figure 2: Choosing G (stage 2)

(a) Likelihood criteria

(b) Group sizes (bars) and means (points), G = 3

Notes: (a) If M is the number of parameters, N the number of observations, and L the likelihood,
AIC = − lnL+ 1

2 lnM , and BIC = − lnL+ ln(N)M . We plot −AIC and −BIC on the figure. (b) The
bars in Panel (b) are the shares of each group. The dots are the estimated mean wages in 2013.
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Table 4: Test of assumption 4

G = 1 2 3 4
K = 1 - 0.023 0.071 0.092

2 0.004 0.119 0.107 0.107
3 0.000 0.028 0.085 0.057
4 0.048 0.031 0.019 0.013
5 0.012 0.015 0.007 0.001

Notes: The table shows minh6=h′,d

∣∣∣Pr(z=1,h,d)
Pr(z=0,h,d) −

Pr(z=1,h′,d)
Pr(z=0,h′,d)

∣∣∣ for
all K and G. This is a criteria to help choose the number of
types based on assumption 4.

Figure 3: Conditional posterior type probabilities pi(g|k = 2)

Notes: The three panels above show the posterior probabilities of workers of being some type g, conditional
on them being type k = 2. They show the distribution of the second stage types conditional on k = 2.
There are 50 bins in each histogram.

stage (see Appendix B). For all types except k = 2, the BIC wants G = 3.16 When k = 2,
the optimal G is 5, but given that this is the smallest group from stage 1 (represented by
the red horizontal lines in panel (b)), and for the sake of simplicity, we choose the same
number G of second-stage types within each first-stage type k. To avoid an abundance of
numbers and plots, we chooseG = 3 and show results withG = 3 for all types k = 1, . . . , 4.
We checked that G = 5 delivers similar conclusions.17

In table 4 we present a criterion based on assumption 4 to help select the number of
types. Recall that assumption 4 requires that different types have different exposures to
the instrument. We can check to what extent this assumption holds for different values
of K and G. The values in table 4 are the minimum differences,

∣∣∣Pr(z=1,h,d)
Pr(z=0,h,d) −

Pr(z=1,h′,d)
Pr(z=0,h′,d)

∣∣∣,
across all values of h 6= h′ and d. We do not want this minimum difference to be too close
to zero for our chosen K and G.

16The second-stage ICL actually wants a larger G than the BIC. Given the motivation for the ICL (the
BIC can overestimate K) we choose the K suggested by the BIC in the second stage.

17Our results are stable across a range of values for K and G.
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A final criterion to determine the optimal number of groups is whether groups are
well differentiated or not — sometimes known as the entropy of the classification. This
is what the ICL criterion takes into account, and the BIC does not. We can check the
strength of the classification by plotting the distribution of posterior group-probabilities,
pi(h).18 Figure 3 displays these distributions conditional on k = 2 and for all g = 1, 2, 3,
i.e. p(g|k = 2). We see that they are concentrated near zero and one.

4.2 Observed characteristics by type

We did not include controls when estimating the model to avoid the double complication
of choosing a functional form for probabilities π(h, z, d) and specifying the interaction
between observed and unobserved heterogeneity in these probabilities and the wage den-
sities. But we can still study if types can be characterized by some specific values of
observed variables. We first assign to each individual a type corresponding to their high-
est posterior probability, and then study the individuals assigned to each group. The
results of this exercise are in Table 5.

Interestingly, although we only use wages in the first stage, and wages and training in
the second, the resulting classification does not correspond to any (obvious) classification
in terms of other observed characteristics. For example, k is not obviously associated to
education, and g is not obviously related to occupation or firm size.

4.3 Parameter estimates (with K = 4 and G = 3)

Figure 4 displays the probability of being treated conditional on first- and second-stage
types, and the value of the instrument, i.e., π(d = 1|k, g, z). The error bars indicate
bootstrapped, 90% confidence intervals. There are two key features to note. First, right-
blue bars are higher than left-red ones. This is evidence of instrument monotonicity,
which holds almost perfectly: those who receive information on training are more likely
to train across all types (except (k, g) = (2, 2)). Second, the bars are generally increasing
in both k and g.

In figure 5 we show the different components of the decomposition of assumption 4.
We can see that in panels (a) and (b) the bars are generally different sizes, suggesting
that assumption 4 likely holds. This remains true when we combine the bars in panel (c),
although there are a few that are close.

In Figure 6, we study the correlation between the types and the instrument. As already
emphasized, IV is equal to LATE only if the instrument and the type are independent,
which would require the red and blue bars to be equal for each combination of k and g,
i.e., that Pr(k, g|z = 1) = Pr(k, g|z = 0). This assumption seems violated here, and there

18By definition, pi(h) = Pr{hi = h |wit, zi, di} = `ih(β̂)/
∑

h `ih(β̂).
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Table 5: Comparing types by baseline characteristics

ki = 1 ki = 2 ki = 3 ki = 4
gi = 1 2 3 1 2 3 1 2 3 1 2 3
Demographics:
Age (modal group) 45 45 40 50 40 55 40 50 50 45 45 50
Male 57.8 66.7 71.1 62.3 68.5 91.1 56.4 73.3 80.7 75.4 81.9 85.2
French 93.1 96.4 96.9 96.9 98.1 94.9 93.9 97.4 97.4 96.2 97.6 97.7
In couple 61.7 66.7 73.4 73.0 78.1 87.3 64.6 75.3 82.2 77.1 82.2 84.4
Has children 44.9 52.9 57.1 53.5 62.1 63.3 48.2 57.4 66.0 57.3 67.2 64.3
Disability 13.8 12.4 9.90 21.1 7.73 5.06 9.2 8.92 4.50 12.2 3.29 5.28
Previous health issue 3.29 5.33 3.86 6.92 2.40 1.27 6.78 4.14 1.69 4.06 1.90 1.51
Education:
Less than HS diploma 59.6 63.6 46.5 54.7 22.4 13.9 61.5 50.5 18.1 47.3 20.3 21.4
HS diploma 24.9 19.1 22.4 16.0 16.0 8.86 23.0 19.1 13.6 17.9 15.8 12.3
Trade / voc. degree 9.88 10.7 18.3 12.9 22.4 15.2 7.99 17.9 26.0 17.4 23.9 20.9
Bachelor’s degree 2.99 3.11 6.04 5.03 8.00 8.86 3.39 6.16 6.04 4.53 6.58 5.53
Master’s degree + 2.10 2.22 5.93 10.10 29.9 53.2 2.66 5.98 35.7 12.4 32.9 39.2
Occupation:
Unskilled blue collar 13.2 15.1 9.38 8.81 1.60 2.53 15.3 9.02 1.33 7.88 1.52 1.26
Skilled, technician 33.2 40.4 32.8 34.6 10.1 5.06 32.9 31.4 7.96 28.2 11.4 6.28
Office, public sector 43.4 27.6 28.8 26.7 10.9 5.06 42.9 25.7 6.71 23.2 8.99 7.79
Foreman/Supervisor 0.90 3.56 11.1 9.12 12.5 1.27 1.21 12.8 12.0 11.7 13.7 10.6
Technician, sales 2.69 6.67 9.55 6.29 10.1 3.80 2.66 12.0 9.36 7.88 10.1 4.02
Engineer, manager 0.60 2.22 5.64 9.43 53.3 81.0 0.73 7.18 61.5 19.1 53.4 68.8
Job characteristics:
Log(hourly wage)
2013 (w1) 2.19 2.26 2.44 2.35 2.80 3.44 2.18 2.53 3.07 2.60 3.04 3.25
2014 (w2) 2.21 2.28 2.47 2.45 2.89 3.50 2.19 2.54 3.09 2.66 3.06 3.27
2015 (w3) 2.23 2.29 2.50 2.45 3.01 3.53 2.20 2.55 3.10 2.67 3.08 3.29

Permanent contract 97.6 98.2 97.8 96.2 98.7 96.2 98.5 99.2 99.3 97.9 98.6 98.2
Full time contract 87.7 88.9 94.9 93.4 97.9 94.9 86.7 95.5 96.7 95.9 96.8 97.5
Info. on training (z) 64.4 63.1 78.2 75.2 82.1 75.9 61.3 73.0 78.0 74.7 79.9 62.1
Training (d) 12.3 2.22 50.2 36.5 57.6 45.6 12.6 34.9 62.9 17.7 83.7 40.5
Firm characteristics:
Number of employees
3 to 49 47.6 48.9 34.0 31.8 23.7 29.1 49.2 37.1 17.0 31.0 17.8 25.6
5 to 249 25.1 28.0 26.3 22.6 19.7 19.0 24.9 19.4 20.6 22.9 19.0 23.4
25 to 499 7.49 6.22 7.13 10.1 10.9 12.7 5.81 8.28 9.36 11.7 9.37 11.6
50 to 999 4.19 3.11 6.50 8.49 8.80 3.80 6.05 8.28 9.06 8.35 8.23 9.05
1000 to 1999 2.69 4.89 5.70 7.86 7.47 3.80 3.63 5.89 7.44 4.30 7.85 8.54
More than 2000 12.9 8.89 20.4 19.2 29.3 31.6 10.4 21.1 36.6 21.7 37.7 21.9

Has HR department 76.9 75.6 85.6 85.5 92.3 88.6 71.7 82.8 91.5 87.1 93.7 90.2
Individual incentives 53.9 49.8 64.5 62.6 75.5 77.2 44.1 63.8 77.1 67.8 81.8 71.6
Collective incentives 57.5 57.3 72.9 69.2 79.5 78.5 53.5 72.9 85.0 76.1 86.2 76.9
Outsources activity 29.3 27.1 35.2 43.7 43.7 40.5 27.4 34.6 47.9 38.2 45.1 44.7
No. of observations 334 225 1740 318 375 79 413 1090 1360 419 790 398
Notes: This table shows the characteristics of each type. We first assign each individual i the type,
hi = (ki, gi), corresponding to their largest posterior probability, i.e. hi ≡ arg maxh pi(h). Then, having
assigned individuals to types, we can treat each type as a separate group and produce summary statistics
of that type using the variables in our dataset.
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Figure 4: Treatment probability, Pr(d = 1|k, g, z)

Notes: The bars show the probability of training, conditional on type, and on whether information is
provided (intention to treat), i.e. Pr(d = 1|k, g, z). The red bars correspond to no information (z = 0)
and the blue ones represent those to whom information was provided (z = 1). The second-step types,
g, vary along the x-axis, while the panels show different first-stage types, k. The error bars display 90%
confidence intervals, obtained by bootstrap.
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Figure 5: Test of assumption 4 (Pr(h,z=1,d)
Pr(h,z=0,d) 6=

Pr(h′,z=1,d)
Pr(h′,z=0,d))

(a) Pr(d|k,g,z=1)
Pr(d|k,g,z=0)

.

(b) Pr(z=1|k,g)
Pr(z=0|k,g)

(c) Pr(z=1,k,g,d)
Pr(z=0,k,g,d)

Notes: This figure shows the components of the decomposition of a key assumption, assumption 4. In
panel (a) is the ratio of treatment probabilities for different intentions to treat, with the untrained in red
and trained in blue, for each type (x-axis). In panel (b) are the ratios of intention to treat for each type
(x-axis). In panel (c) the bars from panels (a) and (b) are combined.
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Figure 6: Composition, π(k, g|z)

Notes: The bars show the probability of being in a given group conditional on intention to treat, i.e. on
whether they receive information, with red bars for those who do not receive information (z = 0) and
blue bars for those who do (z = 1). Error bars show 90% confidence intervals, obtained by bootstrap.

seems to be a pattern to the differences in bars. First, subgroups g = 1, 2 show similar
differences by z, opposite to g = 3. Moreover, groups k = 1, 3 and k = 2, 4 show opposite
differences by z, which could be significant as groups k = 2, 4 are the ones exhibiting the
greatest mean wage variations over time.

4.4 Treatment effects (with K = 4 and G = 3)

We now move on to the main objects of our analysis, the treatment effects. Panel (a)
of Figure 7 displays treatment effects ATE(k, g), conditional on all types (k, g). Noting
that the y-axes differ between cells, we see substantial heterogeneity in treatment effects
across types. The effects estimated for k = 2 are five times larger than for the rest of the
k-types. However, none of these conditional ATEs is very precisely estimated.

Note that we calculate an empirical wage mean in 2013 for the trained and the un-
trained, and corresponding pseudo-ATEs, although we estimated mean wages in 2013,
µ1(k, g), as independent of d. We did this calculation to check this independence assump-
tion ex post. Unfortunately, the 2013 pre-treatment effects are of similar size to (or even
greater than) 2014 and 2015 post-treatment effects for some types. Together with the
large bootstrap standard errors, this confirms that the conditional ATEs are essentially
not interpretable.
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Figure 7: Type-conditional treatment effects

(a) ATE(k, g)

.
(b) ATE(k) and ATT (k)

Notes: The bars show the type-conditional average treatment effects (ATEs), conditional on both first-
and second-stage types in panel (a), and after aggregating over the second-stage types in panel (b). The
colors in both panels correspond to ATEs in different years: 2013 (red), 2014 (green), 2015 (blue). The
error bars are 90% confidence intervals obtained by bootstrap. In panel (b) the filled bar shows the ATE,
while the black outline shows the average treatment on the treated (ATT, obtained by aggregating only
over those who received training) for the same year.
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Panel (b) of Figure 7 displays aggregate treatment effects conditional on first-stage
types only, ATE(k), obtained by summing over g conditional ATE(k, g) weighted by
π(g|k). The empty black-outlined bars are the ATT (k), obtained in the same way, but
using weights π(g|k, d = 1). Recall, the first-stage classification orders workers by in-
creasing abilities, a source of heterogeneity that determines wages independently of adult
training. Generally the ATE(k)’s are small — around one percent or less — though
for k = 2 they are closer to three percent in 2014 and 2015, but imprecisely estimated.
The ATT (k)’s are only marginally greater than the ATE(k)’s. This suggests workers are
not selecting into training based on their ex post wage returns. Generally, the picture in
Figure 7 suggests small positive wage returns to training for most individuals of less than
1%, with a small number (around 12%) of individuals enjoying higher wage returns of
about 3%. Lastly, note that the 2013 returns to training vanish after aggregating within
the first-stage types (k).

Finally, we aggregate across both types k and g to obtain a variety of treatment effects
summarizing the whole sample, which are presented in Table 6. The top rows show the
results obtained when the outcome is log-wage in levels. The bottom rows show results
when the outcome is the difference in log-wages between pre- (2013) and post-treatment
(2014 and 2015) periods.

The first three columns are estimates of the average treatment effects weighted dif-
ferently, ATE, ATT and LATE (equations (4), (5) and (7)). These are plug-in estimates
using our estimates of the structural parameters (treatment probabilities and density
means and variances).

Then, in subsection 2.2 we calculated two asymptotic biases on OLS and 2SLS esti-
mators, for a well specified model satisfying Assumptions 1-5: BOLS and BIV (equations
(6) and (8)). We also show the plug-in estimates in two different columns.

Let then
bOLS = ATT +BOLS, bIV = LATE +BIV ,

denote the corresponding plug-in estimates of the OLS and IV parameters

Cov(y, d)
Var(d) and Cov(y, z)

Cov(d, z) .

Finally, let b̂OLS and b̂IV denote the standard OLS and the IV estimates obtained by
replacing the preceding population variances by sample variances. While for OLS the
plug-in and analog estimates coincide (b̂OLS = bOLS), for IV there is an additional bias
arising because, in the sample, pre-treatment wages are correlated with treatment and
instrument, and post-treatment wages are correlated with the instrument given treat-
ment, albeit minutely. The plug-in estimator of the IV population parameter imposes the
model’s assumptions. The 2SLS estimator does not. The OLS and IV estimates and their
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Table 6: Aggregate treatment effects

ATE ATT LATE b̂OLS = bOLS BOLS b̂IV bIV BIV b̂IV − bIV
Log-wage levels
2013 0.003 0.002 0.006 0.158 0.156 0.179 0.188 0.182 -0.011

(0.004) (0.004) (0.005) (0.027) (0.029) (0.063) (0.060) (0.061) (0.021)
2014 0.009 0.010 0.012 0.164 0.153 0.219 0.199 0.187 0.022

(0.006) (0.008) (0.008) (0.027) (0.035) (0.063) (0.060) (0.061) (0.023)
2015 0.009 0.011 0.010 0.167 0.157 0.216 0.204 0.194 0.010

(0.007) (0.006) (0.009) (0.027) (0.029) (0.063) (0.060) (0.061) (0.024)

Log-wage changes
’14 vs ’13 0.009 0.010 0.012 0.008 -0.002 0.040 0.015 0.003 0.025

(0.006) (0.008) (0.008) (0.009) (0.022) (0.017) (0.011) (0.013) (0.023)
’15 vs ’13 0.009 0.011 0.010 0.012 0.001 0.037 0.020 0.010 0.017

(0.007) (0.006) (0.009) (0.008) (0.024) (0.021) (0.011) (0.009) (0.024)
Notes: (1) The ATE, ATT and LATE estimates for 2013 log-wage levels are zero by Assumption 5. To
obtain the (nonzero) values in the top rows of the table, we compute µ1(h, d) as mean log-wages weighted
by posterior probabilities separately for trained and untrained workers. For log-wage differences, the
ATE, ATT and LATE refer to µt(h, d) − µ1(h). (2) Standard errors are in parentheses, calculated as
the standard deviation of the parameter estimates from 500 weighted-likelihood bootstrap repetitions.
(3) b̂OLS and b̂IV are “naive” estimates obtained using ordinary least squares (OLS) and two-stage least
squares (IV). bOLS and bIV are our model analogues of these estimates, calculated using the formulas in
subsection 2.2.

associated biases, are displayed in Table 6.
We find similar-sized estimates of ATE, ATT, and LATE, of around 1%, with a big

bootstrap standard error. The treatment effects calculated for wages in 2013 are much
lower than those calculated for wages in 2014 and 2015, which is consistent with our
identifying restriction.

The biases resulting from heterogeneous treatment and counterfactual wage levels,
BOLS and BIV , are of the same order of magnitude as the respective OLS and IV estimates,
b̂OLS and b̂IV . This was expected: we already know that there is a lot of heterogeneity in
wage trajectories.

The specification errors on the IV estimator (b̂IV −bIV ) are small in comparison. They
are similar in magnitude to treatment effects, but with a much larger bootstrap standard
error. Therefore, we do not reject the model’s assumptions.

In the bottom part of Table 6 we show the difference-in-difference (DiD) decomposi-
tion. Under the identifying restrictions that wages do not depend on the instrument given
treatment and that pre-treatment wages do not depend on the treatment, DiD treatment
effects and level treatment effects are identical; but the decompositions differ. We see
that the bias due to heterogeneous trends — i.e. due to violation of the common trend
assumption — is negligible for OLS (BOLS) and is slightly bigger for IV (BIV ). It is
therefore likely that the sizable IV estimate for wage differences (4%) is for a large part
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(maybe half of it) just noise.
All this evidence suggests that the effect of adult training on wages is very small, quasi

undetectable.

5 Conclusion

In this article, we developed and demonstrated the empirical use of a novel methodology
for estimating treatment effects that allows for unobserved heterogeneity. The identifica-
tion of conditional treatment effects given latent types (ATE, ATT, and LATE) is rendered
possible by a combination of nonparametric difference-in-difference and instrumental-
variable inference. Conventional monotonicity or common trend assumptions are not
required for identification. In addition, we allow outcome variables (wages) to be Marko-
vian given treatment and latent type. By assuming discrete types, we permit unobserved
heterogeneity to condition observed outcomes, treatments, and instruments in a very gen-
eral way. For example, no form of linearity nor homoscedasticity is required in contrast
with factor models. This also allows us to base the estimation of a flexible parametric form
of the model on the EM algorithm. Our method is generally applicable to other policy
evaluation problems. In our application using novel French data on training and wages,
we find that formal training has a small positive effect on wages, around 1% on average,
except for a small fraction of workers for whom we find treatment effects of around 3%.
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A Proof of the Identification Theorem

The identification proof has four steps.

Step 1: Identifying restrictions. Consider first the joint probability p(z, d, w1, w2, w3)
of treatment di = d, instrument zi = z, and wages wi1 ≤ w1 (before treatment) and
wi2 = w2, wi3 ≤ w3 (after treatment). We now drop index i to lighten notation. Mixing
over unobserved types, for any wage w2 ∈ W2(d) — such that f2(w2|h, d) 6= 0 at least for
one h — we can write

p(z, d, w1, w2, w3) =
∑

h:f2(w2|h,d) 6=0
π(h, z, d) f2(w2|h, d)F1|2(w1|w2, h, d)F3|2(w3|w2, h, d),

where F1|2 and F3|2 denote distribution functions and f2 a density. Notice how we first
condition on wi2. The sum is therefore over the values of h such that f2(w2|h, d) 6= 0.

Let us consider a grid of N wages w1 and M wages w3, including maximal wages
w1, w3. Then, for any value of (z, d, w2), we can store these probabilities p(.) in a matrix

P (z, d, w2) = [p(z, d, w1, w2, w3)]w1×w3
,

where the subscript w1×w3 means that the values of w1 index rows and those of w3 index
columns. Let

D(z, d, w2) = diag [π(h, z, d) f2(w2|h, d)]h:f2(w2|h,d)6=0

be the diagonal matrix with π(h, z, d) f2(w2|h, d) in the hth diagonal entry, keeping only
the values of h such that f(w2|h, d) 6= 0. Let also G1(d, w2) =

[
F1|2(w1|w2, h, d)

]
w1×h

denote the matrix of pre-treatment wage probabilities, with w1 indexing rows and h

indexing columns. Similarly, let G2(d, w2) =
[
F3|2(w3|w2, h, d)

]
w3×h

be the post-treatment
matrix. Again, the values of h indexing columns are only those such that f2(w2|h, d) 6= 0.
Note that the first row of G1, G2 is a row of ones. Finally, In matrix notation, we then
have, for every (w2, z, d),

P (z, d, w2) = G1(d, w2)D(z, d, w2)G2(d, w2)>.

The number of columns of G1(d, w2) and G2(d, w2) and the dimensions of D(z, d, w2) vary
with w2, as we keep only those values of h such that f2(w2|h, d) 6= 0 in their construction.
But, we do not know what they are a priori.

Step 2: Identification given treatment d and first post-treatment wage w2. We
first fix a value d of the treatment variable and a wage w2 ∈ W2(d). The previous step
shows that, for all d, w2, there are two observable matrices, P (0, d, w2) and P (1, d, w2),
with the same algebraic structure. Importantly, G1(d, w2) and G2(d, w2) are independent
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of z as wages are independent of the instrument given treatment and type (Assumption
1). Under Assumption 3, G1(d, w2) and G2(d, w2) are full-column rank, and under As-
sumption 2 the matrix D(0, d, w2) is invertible for all w2 ∈ W2(d). Also, by Assumption
4 all diagonal entries of D(1, d, w2)D(0, d, w2)−1 are distinct. Finally, all first row en-
tries of G1(d, w2) and G2(d, w2) contain ones. We deduce from the following lemma the
identification of G1(d, w2), D(z, d, w2) and G2(d, w2).

Lemma 2 (Standardization). Let P (0), P (1) ∈ RN×M be two matrices with similar alge-
braic structure: P (z) = G1D(z)G>2 , z ∈ {0, 1}, where G1, G2, D(z) satisfy the following
restrictions: i) G1 ∈ RN×H and G2 ∈ RM×H are two full column-rank; ii) D(z) ∈ RH×H

are diagonal; iii) D(0) is non singular; iv) all diagonal entries of D(1)D(0)−1 are dis-
tinct; v) the first rows of G1 and G2 are made of ones. Then, G1, G2, D(0) and D(1) are
uniquely determined by P (0), P (1).

Proof. Matrix P (0) has rank H and there exists a singular value decomposition: P (0) =
UΛV >, where U ∈ RN×N and V ∈ RM×M are nonsingular orthogonal matrices with
U>U = IN , V >V = IM and Λ ∈ RN×M is a rectangular diagonal matrix with non-negative
real numbers on the diagonal. The number of non-zero diagonal entries in Λ is equal to H.
Let Λ1 ∈ RH×H be the square diagonal matrix containing the non-zero singular values,
and let U = (U1, U2) and V = (V1, V2) partition the columns of Λ accordingly, so that
P (0) = U1Λ1V

>
1 .

Next, using the singular value decomposition of P (0), we have

Λ−1
1 U>1 P (0)V1 = Λ−1

1 U>1 U1Λ1V
>

1 V1 = IH .

Hence, Λ−1
1 U>1 G1D(0)G>2 V1 = IH . Define W = Λ−1

1 U>1 G1 ∈ RH×H . The matrix W is
thus non singular and W−1 = D(0)G>2 V1.

Now, we also find that

Λ−1
1 U>1 P (1)V1 = Λ−1

1 U>1 G1D(1)G>2 V1 = WD(1)D(0)−1W−1.

The diagonal entries of D(1)D(0)−1 being distinct, they are uniquely determined as the
eigenvalues of the matrix Λ−1

1 U>1 P (1)V1. However, eigenvectors are determined only up
to a multiplicative constant. So, let Ŵ be one matrix of eigenvectors. There exists a non-
singular diagonal matrix ∆ such that Ŵ = W∆ = Λ−1

1 U>1 G1∆. Then, Λ1Ŵ = U>1 G1∆.
It is not true that U1U

>
1 = IN because the columns of U1 are orthogonal but not its

rows. However, since the columns of U are orthogonal vectors,

U>2 P (0) = U>2 U1Λ1V
>

1 = 0(N−H)×M .

Hence, U>2 G1D(0)G>2 = 0(N−H)×M . As D(0)G>2 ∈ RH×M is a full row-rank, it follows that
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U>2 G1 = 0(N−H)×H. A similar argument implies that P (0)V2 = 0 since V >1 V2 = 0. Now,
since G1D(0) has rank H, it follows that G>2 V2 = 0H×(M−H). From U>2 G1∆ = 0(N−H)×H,
we deduce that  Λ1Ŵ

0(N−H)×H

 = U>G1∆.

Hence,

U1Λ1Ŵ = (U1, U2)
 Λ1Ŵ

0(N−H)×H

 = UU>G1∆ = G1∆.

Since G1 contains a row of ones, then the last equality implies that the diagonal of ∆
is identified by the first row of U1Λ1Ŵ . Then G1 = U1Λ1Ŵ∆−1 follows.

Lastly, we have ∆Ŵ−1 = W−1 = D(0)G>2 V1. Applying the same argument as above,
we have that

W−1V >1 =
(
D(0)G>2 V1, 0H×(M−H)

) V >1

V >2


=
(
D(0)G>2 V1, D(0)G>2 V2

)
V >

= D(0)G>2 V V >

= D(0)G>2 .

In the same way as above, the first row of G2 is made of ones, it follows that D(0) and
G2 are identified. Hence D(1) is also identified.

Step 3: Common labelling given d. In the previous step, we have identified

D(1, d, w2)D(0, d, w2)−1 = diag
[
π(h, 1, d)
π(h, 0, d)

]
h:f2(w2|h,d)6=0

.

By Assumption 4, these eigenvalues are all different (and independent of w2). One can
thus relabel groups for each d so that the labelling is consistent for all possible choices of
w2. This also allows to identify the different supports W2(h, d).

Step 2 can be done for all wages w2 in the joint support W2(d) = ⋃
hW2(h, d). Thus,

we can sum D(0, d, w2) and D(1, d, w2) over w2 and eliminate f2(w2|h, d) (which sums to
one on its support). This identifies π(0, h, d) and π(1, h, d) for all h. Knowing π(h, z, d)
and D(z, d, w2), we identify f2(w2|h, d).

Since F1|2(w1|w2, h, d) is already identified, then the Law of Total Probability implies
that F1(w1|h, d) is identified. Also, we can take the grid of wages w1 as fine as we want.
Bayes’ formula therefore implies that F2|1(w2|w1, h, d) is also identified.

Step 4: Common labelling across treatments. It remains to align the groupings
across treatments. This is done by remarking that F1(w1|h) is independent of d (Assump-
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tion 5) and therefore, can be used to make sure that the same groups have identical labels
across treatments.
Q.E.D.

B Sequential EM-algorithm formulas

B.1 Stage 1

In stage 1 wages (and types) are independent of training, d, and information z. We
denote first-stage types by k, and the number of types is K. We assume that log-wages
are normal and denote log-wage in period t by wt. The difference with the model described
above is that µ and σ depend only on the first-stage type k, and do not depend on d. To
avoid ambiguity, we use an upper bar to distinguish the first-stage from the second-stage
variables and parameters,

w1 = µ̄1(k) + u1, u1 ∼ N
(
0, σ̄2

1(k)
)
,

wt = µ̄t(k) + ut, ut ∼ N
(
ρ̄ut−1, σ̄

2
t (k)

)
, t = 2, 3.

E-step. The complete individual likelihood in stage 1 has a simplified form (depending
only on k), that is,

¯̀
ik(β) = π̄(k) f̄1(wi1|k) f̄2|1(wi2|wi1, k) f̄3|2(wi3|wi2, k) (11)

The posterior probability of worker i to be of type k given data (i.e., the conditional
probability of k knowing i, also called responsibility), denoted p̄ik, can be computed with
the help of contributions to likelihood, using Bayes’ rule. Let β(m) denote an estimate of
the parameters at the end of iteration m. More precisely, we have,

p̄
(m)
ik ≡

¯̀
ik(β(m))∑
k

¯̀
ik(β(m))

. (12)

M-step. We update the parameters sequentially as follows, using the following sequen-
tial procedure.

1. Update pre-treatment wage distribution parameters µ, σ2 given current iteration
ρ̄(m−1) of the AR parameter as

µ̄
(m)
t (k) =

∑
i p̄

(m)
ik wit∑
i p̄

(m)
ik

,

and, with ū(m)
itk = wit − µ̄(m)

t (k) for t = 1,
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(σ̄2
1)(m)(k) =

∑
i p̄

(m)
ik

(
ū

(m)
i1k

)2

∑
i p̄

(m)
ik

,

and for t = 2, 3,

(σ̄2
t )(m)(k) =

∑
i p̄

(m)
ik

[
ū

(m)
itk (k)− ρ̄(m−1)ū

(m)
i,t−1,k

]2
∑
i p̄

(m−1)
ik

.

2. Then update ρ̄ as follows,

ρ̄(m) =

∑
i

∑
k

p̄
(m)
ik

 ū
(m)
i1k ū

(m)
i2k

(σ̄2
2)(m)(k) + ū

(m)
i2k ū

(m)
i3k

(σ̄2
3)(m)(k)


∑
i

∑
k

p̄
(m)
ik

 (ū(m)
i1k )2

(σ̄2
2)(m)(k) + (ū(m)

i2k )2

(σ̄2
3)(m)(k)

 .

The standard EM procedure would have all µ, σ2 and ρ estimated by weighted
nonlinear least squares. By simplifying the M-estimation in this way, we do not
obtain efficient M-step updates but the sequential EM algorithm keeps increasing
the likelihood at each iteration.

3. Finally, we update π̄ as the mean posterior probability across all workers,

π̄(m)(k) = 1
N

∑
i

p̄
(m)
ik .

We continue iterating between these steps until the algorithm converges. The key results
from the first stage are the final posterior probabilities, p̄ik, which we use as weights
throughout the second stage to “allocate” workers to types.

B.2 Stage 2

To understand our 2-stages procedure, it can be helpful to consider the hypothetical case of
a perfect (or hard) classification in stage 1. If each individual i belonged to only one group
(or type) with probability 1, then, we would run stage 2 on each type k, only including
those individuals classified as that type. With our soft classification, the posteriors p̄ik
can take any value between zero and one. Therefore, each observation i can contribute to
the estimation of the model of several types in stage 2.

We assume now that the distribution of log-wages in period t, still denoted wt, now
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depend on (k, g) and treatment d. Wages are given by the following expressions,

w1 = µ1(k, g) + u1, u1 ∼ N
(
0, σ2

1(k, g)
)

(13)

wt = µt(k, g, d) + ut, ut ∼ N
(
ρut−1, σ

2
t (k, g, d)

)
, t = 2, 3 (14)

The complete individual likelihood for stage 2 is now given by:

`ikg(β) = π(g, k, zi, di) f1(wi1|k, g) f2|1(wi2|wi1, k, g, di) f3|2(wi3|wi2, k, g, di) (15)

In stage 2, we run the following procedure for each type k ∈ K obtained in stage 1. As in
stage 1, we iterate between an E-step (in which we update the posterior probabilities) and
an M-step (in which we maximize the likelihood given the posteriors from the E-step).
But we use the expression of pik, obtained in the first stage, to compute the posterior
probabilities of all (k, g)s.

E-step. In the E-step, at the m-th iteration, we update the posterior probabilities as
follows,

p
(m)
ig|k = `ikg(β(m))∑

g `ikg(β(m)) . (16)

Let also p(m)
ikg = p̄i(k)p(m)

ig|k (using the estimated posterior probabilities p̄i(k) from the first
stage).

M-step. In the M-step we update the parameters of the likelihood function sequentially.

1. For t = 1:

µ
(m)
1 (k, g) =

∑
i p

(m)
ikg wi1∑
i p

(m)
ikg

, (17)

(σ2
1)(m)(k, g) =

∑
i p

(m)
ikg (u(m)

i1kg)2∑
i p

(m)
ikg

, (18)

with u(m)
i1kg = wi1 − µ(m)

1 (k, g).
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2. Then, for t = 2, 3,

µ
(m)
t (k, g, d) =

∑
{i:di=d}

p
(m)
ikg

[
wit − ρ(m−1)u

(m)
i,t−1,kgd

]
∑

{i:di=d}
p

(m)
ikg

(σ2
t )(m)(k, g, d) =

∑
{i:di=d}

p
(m)
ikg

[
u

(m)
itkgd − ρ(m−1)u

(m)
i,t−1,kgd

]2
∑

{i:di=d}
p

(m)
ikg

,

where u(m)
itkgd = wit − µ(m)

t (k, g, d), t = 2, 3.
Note that µt(k, g, d) now depends on ρ for t = 2, 3 because we impose µ1(k, g, 0) =
µ1(k, g, 1) = µ1(k, g), i.e., treatment d has no effect on pre-treatment wages, condi-
tional on type (k, g). If we relaxed this constraint, the estimator µt(k, g, d) would
always be a simple weighted average of wit.

3. Denote I(d) = {i : di = d}, then, we can update the autoregressive parameter ρ as
follows,

ρ(m) =

∑
k,g

∑
d∈{0,1}

∑
i∈I(d)

p
(m)
ikg

 u
(m)
i1kgu

(m)
i2kgd

(σ2
2)(m)(k, g, d) +

u
(m)
i2kgdu

(m)
i3kgd

(σ2
3)(m)(k, g, d)


∑
k,g

∑
d∈{0,1}

∑
i∈I(d)

p
(m)
ikg

 (u(m)
i1kg)2

(σ2
2)(m)(k, g, d) +

(u(m)
i2kgd)2

(σ2
3)(m)(k, g, d)

 .

4. Finally, the type-state probabilities π(k, g, z, d) are estimated as the average of pos-
terior probabilities

π(m)(k, g, z, d) = 1
N

∑
{i:zi=z,di=d}

p
(m)
ikg .
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