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Summary
Linear regressions with period and group fixed effects are widely used to estimate

policies’ effects: 26 of the 100 most cited papers published by the American Economic
Review from 2015 to 2019 estimate such regressions. It has recently been shown that
those regressions may produce misleading estimates, if the policy’s effect is heteroge-
neous between groups or over time, as is often the case. This survey reviews a fast-
growing literature that documents this issue, and that proposes alternative estimators
robust to heterogeneous effects. We use those alternative estimators to revisit Wolfers
(2006a).

Keywords: two-way fixed effects regressions, differences-in-differences, parallel trends,
heterogeneous treatment effects, panel data, repeated-cross section data, policy evalua-
tion.

1. INTRODUCTION

A popular method to estimate the effect of a policy, or treatment, on an outcome is to
compare over time groups experiencing different evolutions of their exposure to treat-
ment. In practice, this idea is implemented by regressing Yg,t, the outcome in group g and
at period t, on group fixed effects, period fixed effects, and Dg,t, the treatment of group
g at period t. For instance, to measure the effect of the minimum wage on employment
in the US, researchers have often regressed employment in county g and year t on county
fixed effects, year fixed effects, and the minimum wage in county g and year t.

Such two-way fixed effects (TWFE) regressions are probably the most-commonly used
technique in economics to measure the effect of a treatment on an outcome. de Chaise-
martin and D’Haultfœuille (2021a) conducted a survey of the 20 papers with the most
Google Scholar citations published by the American Economic Review in 2015, and of
the similarly selected papers in 2016, 2017, 2018, and 2019. Of those 100 papers, 26
have estimated at least one TWFE regression to estimate the effect of a treatment on an
outcome. TWFE regressions are also very commonly used in political science, sociology,
and environmental sciences.

Researchers have long thought that TWFE estimators are equivalent to differences-
in-differences (DID) estimators. With two groups and two periods, a DID estimator
compares the outcome evolution from period 1 to 2 between a treatment group s that
switches from untreated to treated, and a control group n that is untreated at both dates:

DID = Ys,2 − Ys,1 − (Yn,2 − Yn,1) .
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DID relies on a parallel trends assumption: in the absence of the treatment, both groups
would have experienced the same outcome evolution. Specifically, for every g ∈ {s, n}
and t ∈ {1, 2}, let Yg,t(0) and Yg,t(1) denote the potential outcomes in group g at period t
without and with the treatment, respectively.1 Parallel trends requires that the expected
evolution of the untreated outcome be the same in both groups:

E [Ys,2(0)− Ys,1(0)] = E [Yn,2(0)− Yn,1(0)] .

Under that assumption, DID is unbiased for the average treatment effect (ATE) in group
s at period 2 (see, e.g., Abadie (2005)):

E [DID] =E [Ys,2 − Ys,1 − (Yn,2 − Yn,1)]

=E [Ys,2(1)− Ys,1(0)− (Yn,2(0)− Yn,1(0))]

=E [Ys,2(1)− Ys,2(0)] + E [Ys,2(0)− Ys,1(0)]− E [Yn,2(0)− Yn,1(0)]

=E [Ys,2(1)− Ys,2(0)] , (1.2)

where the last equality follows from the parallel trends assumption. Parallel trends is
partly testable, by comparing the outcome trends of groups s and n, before group s
received the treatment. In practice, such pre-trends tests sometimes fail, but other times
they indicate that the two groups were indeed on parallel paths before s got treated.2

Motivated by the fact that in the two-groups and two-periods design described above,
DID is equal to the treatment coefficient in a TWFE regression, researchers have also
estimated TWFE regressions in more complicated designs with many groups and peri-
ods, variation in treatment timing, treatments switching on and off, and/or non-binary
treatments. Recent research has shown that in those more complicated designs, TWFE
estimators are unbiased for an ATE if parallel trends holds, and if another assumption is
satisfied: the treatment effect should be constant, between groups and over time. Unlike
parallel trends, this assumption is unlikely to hold, even approximately, in most of the
applications where TWFE regressions have been used. For instance, the effect of the min-
imum wage on employment is likely to differ in counties with highly educated workers,
and in counties with less educated workers.

The realization that one of the most commonly used empirical methods in social science
relies on an often-implausible assumption has spurred a flurry of methodological papers
diagnosing the seriousness of the issue, and proposing alternative estimators. This review
aims to provide an overview of this recent literature, which has developed in such a quick
and dynamic manner that some practitioners may have gotten lost in the whirlwind of
new working papers. We start by giving an overview of the papers that have identified
TWFE’s regressions lack of robustness to heterogeneous treatment effects, and that have
proposed diagnostic tools practitioners may use to assess the seriousness of this issue.
We then give an overview of the papers that have proposed alternative estimators robust

1Implicitly, this notation rules out dynamic treatment effects, and assumes that groups’ potential 
outcomes only depend on their current treatment, not on their past treatments. This restriction is not 
of essence to derive Equation (1.2) below, but it is of essence for some of the other results we cover, as 
noted later in the paper. We relax it in Section 3.2.
2Pre-trends tests come with caveats unveiled by a recent literature, see Kahn-Lang and Lang (2020), 

Bilinski and Hatfield (2018), and Roth (2021). Similarly, recent papers have proposed relaxations of the 
parallel trends assumption (see, e.g., Manski and Pepper, 2018; Rambachan and Roth, 2019; Freyalden-
hoven et al., 2019). Though we allude to it in Section 3.2, this literature is mostly beyond the scope of 
this survey. See Roth et al. (2022) for a review.
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to heterogeneous treatment effects. Finally, we revisit Wolfers (2006a), a famous TWFE
application, in light of the recent literature discussed in this survey. As a word of caution,
note that this literature is very recent, so several of the papers we review are still working
papers, which have not been through the peer-review process yet.

Table 2 in the conclusion summarizes the heterogeneity-robust estimators available to
applied researchers, depending on their research design. When available, the Stata and
R commands implementing the diagnostics tools and alternative estimators discussed in
this review are referenced, and the basic syntax of the Stata command is provided. We
refer the reader to the commands’ help files for further details on their syntax. Finally,
the Stata code for our re-analysis of Wolfers (2006a), where several of the estimators
discussed in this survey are computed, is available on the journal’s website.

2. TWFE REGRESSIONS WITH HETEROGENEOUS TREATMENT EFFECTS

2.1. TWFE regressions may not identify a convex combination of treatment effects

We consider a panel of G groups observed at T periods, respectively indexed by the
placeholders g and t, which can refer to any group or time period. Typically, groups are
geographical entities gathering many observations, but a group could also just be a single
individual or firm. Let β̂fe denote the coefficient of Dg,t, the treatment in group g at
period t, in an OLS regression of Yg,t, the outcome of group g at period t, on group fixed
effects, period fixed effects, and Dg,t:

Yg,t = α̂g + γ̂t + β̂feDg,t + εg,t, (2.1)

where εg,t denotes the regression residual. We assume that the regression is unweighted,
but it is sometimes weighted by Ng,t, the population of group g at period t. The re-
sults discussed below also apply to this weighted regression, see de Chaisemartin and
D’Haultfœuille (2020).3

de Chaisemartin and D’Haultfœuille (2020) show that under a parallel trends assump-
tion on the potential outcome without treatment Yg,t(0),

E
[
β̂fe

]
= E

 ∑
(g,t):Dg,t 6=0

Wg,tTEg,t

 . (2.2)

If the treatment is binary, TEg,t = Yg,t(1) − Yg,t(0), the ATE in group g at time t. If
the treatment is discrete or continuous, TEg,t = (Yg,t(Dg,t)− Yg,t(0))/Dg,t, the effect of
moving the treatment from 0 to Dg,t scaled by Dg,t.

4 The Wg,t are weights summing to
1, that are proportional to and of the same sign as

Dg,t −Dg,. −D.,t +D.,., (2.3)

3 The regression could also be estimated using more disaggregated outcome data. For instance, groups
may be US counties, and one may estimate the regression using individual-level outcome measures,
assigning group membership based on county of residence. This disaggregated regression is equivalent to
the aggregated regression in (2.1), provided Yg,t is defined as the average outcome of individuals in cell
(g, t), and the aggregated regression is weighted by the number of individuals in cell (g, t). Accordingly,
the results below also apply to disaggregated regressions, see de Chaisemartin and D’Haultfœuille (2020).
4de Chaisemartin and D’Haultfœuille (2020) derive Equation (2.2) assuming that groups’ potential

outcomes only depend on their current treatment, not on their past treatments. With dynamic effects,
Equation (2.2) still holds if the treatment is binary and staggered, except that some of the TEg,ts become
effects of having been treated for more than one period.
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where Dg,. is the average treatment of group g across periods, D.,t is the average treat-
ment at period t across groups, and D.,. is the average treatment across groups and
periods.

Equations (2.2) and (2.3) have two important consequences. First, Wg,t is in general

not equal to one divided by the number of treated (g, t) cells, so β̂fe may be biased
for the average treatment effect across those cells, the ATT. A special case where Wg,t

is equal to one divided by the number of treated (g, t) cells, and where β̂fe is therefore
unbiased for the ATT is when (i) the design is staggered, meaning that groups’ treatment
can only increase over time and can change at most once;5 (ii) the treatment is binary;
and (iii) there is no variation in treatment timing: all treated groups start receiving the

treatment at the same date. However, conditions (i)-(iii) are seldom met in practice. β̂fe
can also be unbiased for the ATT if one is ready to make more assumptions than just
parallel trends. For instance, if one is also ready to assume that Dg,t −Dg,. −D.,t +D.,.

is uncorrelated with TEg,t, the treatment effects that are up- and down-weighted by β̂fe
do not systematically differ, and one can then show that β̂fe is unbiased for the ATT
(see Corollary 2 in de Chaisemartin and D’Haultfœuille, 2020).6 Unfortunately, this no-
correlation condition is often implausible. To see this, note that Dg,t −Dg,. −D.,t +D.,.

is decreasing in Dg,., meaning that β̂fe downweights the treatment effect of groups with
the highest average treatment from period 1 to T . However, groups with the largest and
lowest average treatment may have systematically different treatment effects. Similarly,
Dg,t−Dg,.−D.,t+D.,. is decreasing in D.,t, and the treatment effects at time periods with
the highest average treatment may also systematically differ from the treatment effects
at time periods where the average treatment is lower. In staggered adoption designs,
D.,t is increasing in t so the weights are decreasing in t. If the treatment effect is also
monotonically increasing or decreasing in t, this no-correlation condition will fail. This
no-correlation condition is partly testable, if one observes a proxy variable Pg,t that is
likely to be correlated with TEg,t. Then, one can just test if Dg,t −Dg,. −D.,t +D.,. is
correlated with Pg,t.

Second, and perhaps more worryingly, Equation (2.3) implies that some of the weights

Wg,t may be negative. This means that in the minimum wage example, β̂fe could be
estimating something like 3 times the effect of the minimum wage on employment in
Santa Clara county, minus 2 times the effect in Wayne county. Then, if raising the
minimum wage by one dollar decreases employment by 5% in Santa Clara county and by

20% in Wayne county, one would have E
[
β̂fe

]
= 3×−0.05− (2×−0.2) = 0.25. E

[
β̂fe

]
would be positive, while the minimum wage’s effect on employment is negative both in
Santa Clara and in Wayne county. This example shows that β̂fe may not satisfy the

“no-sign reversal property”: E
[
β̂fe

]
could for instance be positive, even if the treatment

effect is strictly negative in every (g, t). This phenomenon can only arise when some of

5Together, (i) and (ii) imply that groups can only switch from untreated to treated, and may do so at
different points in time. This is probably the definition of a staggered design many people have in mind.
(i) extends the definition of a staggered design to non-binary treatments.
6A special case of this “no-correlation” condition is if the treatment effect is constant, i.e. TEg,t = δ

for all (g, t). Then, it directly follows from Equation (2.2) that E
[
β̂fe

]
= δ. However, constant effect is

most often an implausible assumption.
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the weights Wg,t are negative: when all those weights are positive, β̂fe does satisfy the
no-sign reversal property. Note that despite its intuitive appeal and its popularity among
applied researchers, the no-sign reversal property is not grounded in statistical decision
theory, unlike other commonly-used criteria to discriminate estimators such as the mean-
squared error. Still, it is connected to the economic concept of Pareto efficiency. If an
estimator satisfies “no-sign-reversal”, the estimand attached to it can only be positive if
the treatment is not Pareto-dominated by the absence of treatment, meaning that not
everybody is hurt by the treatment. Conversely, the estimand can only be negative if
the treatment does not Pareto-dominate the absence of treatment. On the other hand,
if an estimator does not satisfy “no-sign-reversal”, the estimand attached to it could for
instance be positive, even if the treatment is Pareto-dominated.

Inasmuch as “no-sign-reversal” is a desirable property, it becomes interesting to un-
derstand when β̂fe may satisfy it. Equation (2.3) shows that with a binary treatment,

the weights attached to β̂fe could all be positive. With a binary treatment, all the (g, t)s
entering the summation in (2.2) must have Dg,t = 1, so for a weight Wg,t to be strictly
negative, one must have 1 +D.,. < Dg,. +D.,t. This cannot happen if Dg,. +D.,t ≤ 1 for
every (g, t). Accordingly, all the weights are likely to be positive when there is no group
that is treated most of the time, and no time periods where most groups are treated. In
staggered designs, this has led Jakiela (2021) to propose to drop the last periods of the
data, those when D.,t is the highest, to mitigate or eliminate the negative weights. One
could also drop the always-treated groups, if there are any.

On the other hand, Equation (2.3) shows that with a non-binary treatment, it becomes
more likely that some of the weights Wg,t are negative. Gentzkow et al. (2011) study the
effect of the number of newspapers in county g and year t on turnout in presidential
elections. Assume that in year t, county g has 1 newspaper (Dg,t = 1), which is below its
average number of newspapers across years, equal, say, to 2 (Dg,. = 2). At the same time,
the average number of newspapers across counties in year t is equal to 2 (D.,t = 2), which
is above the average number of newspapers across all counties and years, equal, say, to 1
(D.,. = 1). Then, it follows from (2.3) that the weight assigned to the effect of newspapers
in county g and year t is strictly negative. More generally, a necessary condition to have
that all weights are positive is that in every period where the population’s treatment is
higher than its average across periods (D.,t ≥ D.,.), the treatment of each treated group
must also be larger than its average across periods (Dg,t ≥ Dg,. for all gs such that
Dg,t 6= 0). This condition is likely to often fail.

The twowayfeweights Stata (see de Chaisemartin et al., 2019) and R (see Zhang and
de Chaisemartin, 2021) commands compute the weights Wg,t in (2.2). The basic syntax
of the Stata command is:

twowayfeweights outcome groupid timeid treatment, type(feTR)

A decomposition similar to (2.2) can be obtained for TWFE regressions with control

variables, and for β̂fd, the treatment’s coefficient in a regression of the outcome’s first
difference on the treatment’s first difference and period fixed effects. de Chaisemartin and
D’Haultfœuille (2020) also derive decompositions similar to (2.2), for β̂fe and β̂fd, under
common trends and under the assumption that the treatment effect does not change over
time. The weights in all those decompositions are also computed by the twowayfeweights
Stata and R commands.
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de Chaisemartin and D’Haultfœuille (2020) use the twowayfeweights Stata command
to revisit Gentzkow et al. (2011). The authors regress the change in turnout in county
g between two elections on the change of the county’s number of newspapers and state-
year fixed effects. They find that β̂fd = 0.0026 (s.e. = 0.0009): one more newspaper
increases turnout by 0.26 percentage points. Using the twowayfeweights Stata package,

de Chaisemartin and D’Haultfœuille (2020) find that under parallel trends, β̂fd esti-
mates a weighted sum of the effects of newspapers on turnout in 10,077 county×election
cells, where 5,472 effects are weighted positively while 4,605 are weighted negatively, and
where negative weights sum to -1.43. Accordingly, β̂fd is far from estimating a convex

combination of effects. The weights are negatively correlated with the election year: β̂fd
is more likely to upweight newspapers’ effects in early elections, and to downweight or
weight negatively newspapers’ effects in late elections. This may lead β̂fd to be biased if

newspapers’ effects change over time. Similar results apply to β̂fe: more than half of the
weights attached to that coefficient are negative, and negative weights sum to -0.53.

The decomposition in (2.2) is the main result in de Chaisemartin and D’Haultfœuille
(2020). Related results have appeared earlier in Theorems S1 and S2 of the Supple-
mentary Material of de Chaisemartin and D’Haultfœuille (2015). Borusyak and Jaravel
(2017) consider the case with a binary and staggered treatment. In their Lemma 1 and
Proposition 1, they assume that the treatment effect varies with the duration elapsed
since one has started receiving the treatment but does not vary across groups and over
time. Then, they show that β̂fe estimates a weighted sum of effects, that may assign
negative weights to long-run treatment effects. Their Appendix C also contains another
result related to that in Equation (2.2).7

2.2. The origin of the problem: “forbidden comparisons”

2.2.1. Forbidden comparisons when the treatment is binary and the design is staggered
Goodman-Bacon (2021) shows that when the treatment is binary and the design is stag-
gered, meaning that groups can switch in but not out of treatment, we have

β̂fe =
∑

g 6=g′,t<t′

vg,g′,t,t′DIDg,g′,t,t′ , (2.4)

where DIDg,g′,t,t′ is a DID comparing the outcome evolution of two groups g and g′ from
a pre period t to a post period t′, and where vg,g′,t,t′ are non-negative weights summing
to one, with vg,g′,t,t′ > 0 if and only if g switches treatment between t and t′ while g′ does
not.8 Some of the DIDg,g′,t,t′s in Equation (2.4) compare a group switching treatment
from t to t′ to a group untreated at both dates, while other DIDg,g′,t,t′s compare a
switching group to a group treated at both dates. The negative weights in (2.2) originate
from this second type of DIDs.

To see that, let us consider a simple example, first introduced by Borusyak and Jaravel

7Prior to that, Chernozhukov et al. (2013) had shown that one-way FE regressions may be biased for the
average treatment effect, though unlike TWFE regressions they always estimate a convex combination
of effects.
8Goodman-Bacon (2021) actually decomposes β̂fe as a weighted average of DIDs between cohorts of

groups becoming treated at the same date, and between periods of time where their treatment remains
constant. One can then further decompose his decomposition, as we do here.
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(2017),9 with two groups and three periods. Group e, the early-treated group, is untreated
at period 1 and treated at periods 2 and 3. Group `, the late-treated group, is untreated
at periods 1 and 2 and treated at period 3. In this example, Equation (2.4) reduces to

β̂fe = (DIDe,`,1,2 + DID`,e,2,3)/2, (2.5)

with

DIDe,`,1,2 = Ye,2 − Ye,1 − (Y`,2 − Y`,1) ,

DID`,e,2,3 = Y`,3 − Y`,2 − (Ye,3 − Ye,2) .

DIDe,`,1,2 compares the period-1-to-2 outcome evolution of group e, that switches from
untreated to treated from period 1 to 2, to the outcome evolution of group ` that is
untreated at both periods. DIDe,`,1,2 is similar to the DID estimator in Equation (1.1),
and under parallel trends it is unbiased for the treatment effect in group e at period 2:

E [DIDe,`,1,2] = E [TEe,2] . (2.6)

DID`,e,2,3, on the other hand, compares the period-2-to-3 outcome evolution of group `,
that switches from untreated to treated from period 2 to 3, to the outcome evolution of
group e that is treated at both dates. At both periods, e’s outcome is its treated potential
outcome, which is equal to the sum of its untreated outcome and its treatment effect.
Accordingly,

Ye,3 − Ye,2 = Ye,3(0) + TEe,3 − (Ye,2(0) + TEe,2).

On the other hand, group ` is only treated at period 3, so

Y`,3 − Y`,2 = Y`,3(0) + TE`,3 − Y`,2(0).

Taking the expectation of the difference between the two previous equations,

E [DID`,e,2,3] = E [TE`,3 − TEe,3 + TEe,2] , (2.7)

where E [Ye,3(0)− Ye,2(0)] and E [Y`,3(0)− Y`,2(0)] cancel out under the parallel trends
assumption. Finally, it follows from Equations (2.5), (2.6), and (2.7) that

E
[
β̂fe

]
= E [1/2TE`,3 + TEe,2 − 1/2TEe,3] . (2.8)

In this simple example, Equation (2.2) reduces to (2.8). The right-hand side of Equation 
(2.8) is a weighted sum of three ATEs where one ATE receives a negative weight. As

the previous derivation shows, this negative weight comes from the fact β̂fe leverages 
DID`,e,2,3, a DID comparing a group switching from untreated to treated to a group 
treated at both periods.

To make things more concrete, Figure 1 below shows the actual and counterfactual 
outcome evolution, in a numerical example with three periods and an early and a late 
treated group. All treatment effects are positive: the actual outcomes, on the solid lines, 
are always above the counterfactual outcomes on the dashed lines. However, β̂fe is nega-

tive. β̂fe is the simple average of the DID comparing the early- to the late-treated group 
from period one to two, which is positive, and of the DID comparing the late- to the 
early-treated group from period two to three, which is negative, and larger in absolute

9Borusyak and Jaravel (2017) have also coined the “forbidden comparisons” expression we borrow here.
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value than the first DID. The reason why the second DID is negative is that the treat-
ment effect of the early-treated group increases substantially from period two to three,
so this group’s outcome increases more than that of the late-treated group.

Figure 1. A numerical example with three periods, an early and a late treated group

1 2 3

Y early Y(0) early Y late Y(0) late

Early 
becomes 
treated

Late 
becomes 
treated

t

If one is ready to assume that the treatment effect does not change over time, TEe,3 =
TEe,2, and (2.7) simplifies to

E [DID`,e,2,3] = E [TE`,3] . (2.9)

Then, the negative weight in (2.7) disappears, and β̂fe estimates a weighted average 
of treatment effects. This extends beyond this simple example: Theorem S2 of the Web 
Appendix of de Chaisemartin and D’Haultfœuille (2020) and Equation (16) of Goodman-

Bacon (2021) show that in staggered adoption designs with a binary treatment, β̂fe 
estimates a convex combination of effects, if the treatment effect does not change over 
time but may still vary across groups. This conclusion, however, no longer holds if the 
treatment is not binary or the design is not staggered. Moreover, assuming constant 
treatment effects over time is often implausible as this rules out both dynamic treatment 
effects and calendar time effects.

The decomposition in Equation (2.4) is key to understand why β̂fe may not identify a 
convex combination of treatment effects. On the other hand, it cannot be used to assess if 
β̂fe does indeed estimate a convex combination of effects in a given application. Consider 
an example similar to that above, but with a third group n that remains untreated from 
period 1 to 3. In this second example, the decomposition in (2.4) now indicates that β̂fe 
assigns a weight equal to 1/6 to DIDs comparing a switcher to a group treated at both 
periods. On the other hand, all the weights in (2.2) are positive in this second example. 
This phenomenon can also arise in real data sets. In the data of Stevenson and Wolfers 
(2006) used by Goodman-Bacon (2021) in his empirical application, if one restricts the
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sample to states that are not always treated and to the first ten years of the panel, all the
weights in (2.2) are positive, but the sum of the weights in (2.4) on DIDs comparing a
switcher to a group treated at both periods is equal to 0.06. Beyond these examples, one
can show that having DIDs comparing a switcher to a group treated at both periods in
(2.4) is necessary but not sufficient to have negative weights in (2.2). Similarly, the sum
of the weights on DIDs comparing a switcher to a group treated at both periods in (2.4)
is always larger than the absolute value of the sum of the negative weights in (2.2). The
reason why Equation (2.4) “overestimates” the negative weights in (2.2) is that as soon
as there are three distinct treatment dates, there is not a unique way of decomposing
β̂fe as a weighted average of DIDs, and there exists other decompositions than Equation
(2.4) putting less weight on DIDs using a group treated at both periods as the control
group.10

The bacondecomp Stata (see Goodman-Bacon et al., 2019) and R (see Flack and Ed-
ward, 2020) commands compute the DIDg,g′,t,t′s entering in (2.4), the weights assigned
to them, as well as the sum of the weights on DIDg,g′,t,t′s using a group treated at both
periods as the control group. The basic syntax of the bacondecomp Stata command is:

bacondecomp outcome treatment, ddetail

2.2.2. “Forbidden comparisons” when the design is not staggered or treatment is not
binary When the treatment is not staggered or when it is not binary, β̂fe may leverage
another type of comparison: it may compare the outcome evolution of a group m whose
treatment increases more to the outcome evolution of a group ` whose treatment increases
less. In fact, with two groups m and ` and two periods, one can show that

β̂fe =
Ym,2 − Ym,1 − (Y`,2 − Y`,1)

Dm,2 −Dm,1 − (D`,2 −D`,1)
, (2.12)

where the right hand side of the previous display is the Wald-DID estimator studied
by de Chaisemartin and D’Haultfœuille (2018). The Wald-DID compares the outcome
evolution of groups m and `, and scales that comparison by the differential evolution
of m’s and `’s treatments. de Chaisemartin and D’Haultfœuille (2018) show that the
Wald-DID may not estimate a convex combination of effects, unless the treatment effect
is constant over time and is the same in groups m and `. This second requirement was
not present in the binary and staggered case. In that case, we have seen before that if
the treatment effect is constant over time, β̂fe estimates a convex combination of effects,
even if the treatment effect varies between groups.

10To see that, let t0 < t1 < t2 be three dates, let e be an early-treated group becoming treated at
t1, let ` be a late-treated group becoming treated at t2, and let n be a group untreated yet at t2. Let
v = min(v`,e,t1,t2 , ve,n,t0,t2 ) > 0. One has

DID`,e,t1,t2 = DID`,n,t0,t2 − DIDe,n,t0,t2 + DIDe,`,t0,t1 . (2.10)

Then, it follows from Equation (2.10) that

v`,e,t1,t2DID`,e,t1,t2 + ve,n,t0,t2DIDe,n,t0,t2

=(v`,e,t1,t2 − v)DID`,e,t1,t2 + vDID`,n,t0,t2 + vDIDe,`,t0,t1 + (ve,n,t0,t2 − v)DIDe,n,t0,t2 . (2.11)

Plugging Equation (2.11) into Equation (2.4) will yield a different decomposition of β̂fe as a weighted
average of DIDs. But the weight on DIDs using a group treated at both periods as the control group is
equal to v`,e,t1,t2 in the left-hand-side of Equation (2.11), and to (v`,e,t1,t2 − v) in its right-hand side.
Accordingly, this new decomposition puts strictly less weight than Equation (2.4) on DIDs using a group
treated at both periods as the control group.

9
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To see that with a non-binary or non-staggered treatment β̂fe may not estimate a
convex combination of effects even if the treatment effect is constant over time, let us
consider a simple example. Assume that group m goes from 0 to 2 units of treatment
from period 1 to 2, while group ` goes from 0 to 1 unit. Then, the denominator of the
Wald-DID is equal to 2− 0− (1− 0) = 1, so

β̂fe = Ym,2 − Ym,1 − (Y`,2 − Y`,1) .

To simplify, let us also assume that in both groups, potential outcomes are linear in the
number of treatment units, with slopes that are constant over time but may differ for
groups m and `:

Ym,t(d) =Ym,t(0) + δmd

Y`,t(d) =Ym,t(0) + δ`d.

Then, under parallel trends,

E
[
β̂fe

]
=E [Ym,2(2)− Ym,1(0)− (Y`,2(1)− Y`,1(0))]

=E [Ym,2(0) + 2δm − Ym,1(0)− (Y`,2(0) + δ` − Y`,1(0))]

=E [Ym,2(0)− Ym,1(0)]− E [Y`,2(0)− Y`,1(0)] + 2δm − δ`
=2δm − δ`,

a weighted sum of m and `’s treatment effects, where group `’s effect is weighted nega-
tively. Intuitively, group ` is also treated at period two, and β̂fe, which uses ` as a control 
group, subtracts its treatment effect out. This example also shows that β̂fe may fail to 
identify a convex combination of effects, even without variation in treatment timing: 
here, both m and ` start getting treated at period 2.

To make things more concrete, Figure 2 below shows the actual and counterfactual 
outcome evolution, in a numerical example with two periods, a group whose treatment 
increases more, from 0 to 2 units, and a group whose treatment increases less, from 0 to 1 
unit. All treatment effects are positive: the actual outcomes, on the solid lines, are always 
above the counterfactual outcomes on the dashed lines. However, β̂fe, which is equal to 
the DID comparing the more- and the less-treated groups from period one to two, is 
negative. The reason why this DID is negative is that the treatment effect, per treatment 
unit, of the less-treated group is more than twice larger than the treatment effect of the 
more-treated group. Accordingly, the outcome of the less-treated group increases more, 
despite the fact that this group receives a twice smaller treatment dose in period 2.
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Figure 2. A numerical example with two periods, a more- and a less-treated group

1 2

Y more Y(0) more Y less Y(0) less

t

2.3. Decomposition results for other TWFE regression coefficients

2.3.1. Dynamic TWFE regressions In staggered designs with a binary treatment, Sun
and Abraham (2021) consider event-study regressions:

Yg,t = γ̂g + λ̂t +

L∑
`=−K, 6̀=−1

β̂`1{Fg = t− `}+ εg,t, (2.13)

where Fg is the first period at which group g is treated. In words, the outcome is regressed
on group and period fixed effects, and relative-time indicators 1{Fg = t − `} equal to 1

if group g started receiving the treatment ` periods ago. For ` ≥ 0, β̂` is supposed to
estimate the cumulative effect of ` + 1 treatment periods. For ` ≤ −2, β̂` is supposed
to be a placebo coefficient testing the parallel trends assumption, by comparing the
outcome trends of groups that will and will not start receiving the treatment in |`|
periods. Researchers have sometimes estimated a variant of this regression, where the
first and last indicators 1{Fg = t + K} and 1{Fg = t − L} are respectively replaced
by an indicator for being at least K periods away from adoption (1{Fg ≥ t + K}) and
an indicator for having adopted at least L periods ago (1{Fg ≤ t − L}). Such endpoint
binning is for instance recommended by Schmidheiny and Siegloch (2020): without it, the
regression implicitly assumes that the treatment no longer has any effect after L periods.
Instead, with endpoint binning the regression assumes that that the treatment effect is
constant after L periods, a more plausible assumption.

Sun and Abraham (2021) show that under parallel trends, for ` ≥ 0,

E
[
β̂`

]
= E

∑
g

wg,`TEg(`) +
∑
`′ 6=`

∑
g

wg,`′TEg(`′)

 , (2.14)
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where TEg(`) is the cumulative effect of ` + 1 treatment periods in group g, and wg,`

and wg,`′ are weights such that
∑

g wg,` = 1 and
∑

g wg,`′ = 0 for every `′.11 The first
summation in the right-hand side of Equation (2.14) is a weighted sum across groups of
the cumulative effect of `+1 treatment periods, with weights summing to 1 but that may
be negative. This first summation resembles that in the decomposition of the “static”
TWFE coefficient in (2.2), and it implies that β̂` may be biased if the cumulative effect
of ` + 1 treatment periods varies across groups. The second summation is a weighted
sum, across `′ 6= ` and groups, of the cumulative effect of `′ + 1 treatment periods in
group g, with weights summing to 0. This second summation was not present in the
decomposition of the static TWFE coefficient. Importantly, its presence implies that β̂`,
which is supposed to estimate the cumulative effect of ` + 1 treatment periods, may in
fact be contaminated by the effects of `′+1 treatment periods. As

∑
g wg,`′ = 0 for every

`′, this second summation disappears if TEg(`′) does not vary across groups, but it is
often implausible that the treatment effect does not vary across groups.

For ` ≤ −2, and without assuming parallel trends, Sun and Abraham (2021) show

that β̂` estimates the sum of two terms. As intended, the first term measures deviations 
from parallel trends between groups that will and will not start receiving the treatment 
in |`| periods. But the second term is similar to the second summation in the right-hand 
side of Equation (2.14): a weighted sum, across `′ ≥ 0 and groups, of the cumulative 
effect of `′ + 1 treatment periods in group g, with weights summing to zero. Due to 
the presence of this second term, the expectation of β̂` may differ from zero even if 
parallel trends holds, and it may be equal to zero even if parallel trends fails. Thus, an 
important consequence of the results in Sun and Abraham (2021) is that in the presence 
of heterogeneous treatment effects, (2.13) cannot be used to test for parallel trends.

The eventstudyweights Stata command (see Sun, 2020) computes the weights at-
tached to event-study regressions. Its basic syntax is:

eventstudyweights {rel time list}, absorb(i.groupid i.timeid) 
cohort(first treatment) rel time(ry),

where rel time list is the list of relative-time indicators 1{Fg = t − `} included in 
(2.13), first treatment is a variable equal to the period when group g got treated for 
the first time, and ry is a variable equal to timeid minus first treatment, the number 
of periods elapsed since group g started receiving the treatment.

Event-study regressions can only be used in staggered designs with a binary treatment. 
In more complicated designs where the treatment is not binary or a group’s treatment can 
increase or decrease multiple times, some researchers have estimated TWFE regressions of 
the outcome on the treatment and its first K lags, the so-called distributed-lag regression. 
Other researchers have estimated a panel-data version of the local-projection method 
proposed by Jordà (2005) for time-series data: Yg,t+` is regressed on group and period FEs 
and Dg,t, for ` ∈ {0, ..., K}. de Chaisemartin and D’Haultfœuille (2021a) show that those 
regressions suffer from similar issues as the event-study regression: under parallel trends, 
the distributed-lag and local-projection regressions may produce biased estimates of the

11Equation (2.14) follows from Proposition 3 in Sun and Abraham (2021), assuming no binning and 
that the treatment does not have an effect after L + 1 periods of exposure. A slight difference is that the 
decomposition in Sun and Abraham (2021) gathers groups that started receiving the treatment at the 
same period into cohorts. Their decomposition can then be further decomposed, as we do here.
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treatment’s instantaneous and dynamic effects, if effects are heterogeneous across groups
and over time. In particular, they do not satisfy the no-sign reversal property: one could
have that the treatment’s instantaneous and dynamic effects are positive in every (g, t)
cell, but the expectations of those regression coefficients are negative. de Chaisemartin
and D’Haultfœuille (2021a) also show that the panel-data version of the local-projection
method may yield biased estimates even if effects are homogeneous.

2.3.2. TWFE regressions with more than one treatment Another case of interest is
TWFE regressions with several treatments. For instance, to estimate separately the effect
of medical and recreational marijuana laws on consumption, one may regress marijuana
consumption in state g and year t on state and year fixed effects, on whether state g
has a recreational marijuana law in year t, and on whether state g has a medical law
in year t. de Chaisemartin and D’Haultfœuille (2021b) show that in those regressions,
the coefficient on a given treatment identifies a weighted sum of that treatment’s effect
across (g, t)s, with weights summing to 1 but that may be negative, plus weighted sums
of the effects of the other treatments in the regression, with weights summing to 0. In the
example above, the coefficient on recreational laws may be contaminated by the effect
of medical laws. The weights attached to TWFE regressions with several treatments are
also computed by the twowayfeweights Stata and R commands.

3. ALTERNATIVE HETEROGENEITY-ROBUST DID ESTIMATORS

In this section, we review several recently-proposed alternatives to TWFE regressions.
We restrict our attention to estimators relying on parallel trends assumptions, like TWFE
regressions, but that do not restrict treatment effect heterogeneity between groups and
over time, unlike TWFE regressions. This excludes papers that have assumed random-
ized treatment timing (see, e.g., Athey and Imbens, 2022; Roth and Sant’Anna, 2021)
or sequential treatment randomization (see, e.g., Bojinov et al., 2021), rather than par-
allel trends. Intuitively, all the estimators below carefully choose valid control groups, to
avoid making the “forbidden comparisons” that render TWFE estimators non-robust to
heterogeneous treatment effects. We start by reviewing estimators ruling out dynamic
effects, i.e. that assume that a group’s current outcome only depends on its current treat-
ment, before reviewing estimators that allow dynamic effects. In complicated designs, say
with a continuous treatment that changes often, allowing for dynamic effects comes with
a number of costs: it may result in imprecise estimators, and may complicate the in-
terpretation of the estimated effects. Then, one may want to carefully evaluate if past
treatments are indeed likely to affect the current outcome.

3.1. Estimators ruling out dynamic effects

With a binary treatment, de Chaisemartin and D’Haultfœuille (2020) propose to use the
DIDM estimator. With two time periods, DIDM is merely a weighted average of

DID+ =
1

N0,1

∑
g:Dg,1=0,Dg,2=1

(Yg,2 − Yg,1)− 1

N0,0

∑
g:Dg,1=0,Dg,2=0

(Yg,2 − Yg,1),
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DID− =
1

N1,1

∑
g:Dg,1=1,Dg,2=1

(Yg,2 − Yg,1)− 1

N1,0

∑
g:Dg,1=1,Dg,2=0

(Yg,2 − Yg,1),

where for all (d1, d2) ∈ {0, 1}2, Nd1,d2 denotes the number of groups such that Dg,1 = d1 
and Dg,2 = d2.12 DID+ is a DID comparing the period-one-to-two outcome evolution 
of groups going from untreated to treated, the “switchers in”, and of groups untreated 
at both dates. It is similar to the DID estimator in Equation (1.1), and it is unbiased 
for the treatment effect of the switching-in groups at period 2, under a parallel trends 
assumption on the untreated outcome Yg,t(0). DID− is a DID comparing the period-
one-to-two outcome evolution of groups treated at both dates, and of groups going from 
treated to untreated, the “switchers out”. DID− is also similar to the DID estimator in 
Equation (1.1), switching “treatment” and “non-treatment”. Then, one can show that 
DID− is unbiased for the treatment effect of the switching-out groups at period 2, under 
a parallel trends assumption on the treated outcome Yg,t(1).

The DIDM estimator can easily be extended to applications with more than two time 
periods. For each pair of consecutive time periods, one can compute a DID+,t estimator 
comparing groups going from untreated to treated from t − 1 to t to groups untreated at 
both dates, and a DID−,t estimator comparing groups treated at t − 1 and t to groups 
going from treated to untreated from t − 1 to t. Then, one averages the DID+,t and 
DID−,t estimators across t. de Chaisemartin and D’Haultfœuille (2020) show that the 
resulting estimator is unbiased for the average treatment effect across all switching (g, t) 
cells, namely cells such that Dg,t 6= Dg,t−1. They also propose placebo estimators to test 
the parallel trends assumptions underlying DIDM. The placebos compare the outcome 
trends of switchers and non-switchers, before the switchers switch.

With more than two time periods, the DIDM estimator may be biased if the treatment 
has dynamic effects. For instance, to infer the counterfactual trend that groups going 
from untreated to treated from t − 1 to t would have experienced without that switch, 
DID+,t uses as controls all groups untreated at t − 1 and t. However, some of those 
groups may have been treated, say, at t − 2. If the treatment has dynamic effects, this 
past treatment may affect their period t − 1-to-t outcome evolution, thus making them 
potentially invalid controls. Note that if the treatment is binary and staggered, such 
situations cannot arise: groups untreated at t − 1 and t have been untreated all along. 
Accordingly, DIDM is robust to dynamic effects in binary and staggered designs.

The DIDM estimator can easily be extended to non-binary treatments taking a finite 
number of values. Then, it is a weighted average, across d and t, of DIDs comparing the 
t − 1 to t outcome evolution of groups whose treatment goes from d to some other value 
from t − 1 to t, and of groups with a treatment equal to d at both dates, normalized 
by the intensity of the treatment change experienced by the switchers. For instance, in 
Gentzkow et al. (2011), a county going from 2 to 4 newspapers is compared to a county 
with 2 newspapers at both dates. The multi-period DID estimator in Imai and Kim 
(2021) is related to the DIDM estimator. It can be used with a binary treatment, to 
estimate the switchers-in’s treatment effect.

12Implicitly, this definition of DID+ and DID− assumes that all groups have the same sizes. The DIDM 
estimator can easily be extended to instances where groups have heterogeneous sizes, see de Chaisemartin 
and D’Haultfœuille (2020).
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The DIDM estimator is computed by the did multiplegt Stata (see de Chaisemartin
et al., 2019) and R (see Zhang and de Chaisemartin, 2020) commands. The basic syntax
of the Stata command is:

did multiplegt outcome groupid timeid treatment

de Chaisemartin and D’Haultfœuille (2020) compute the DIDM estimator in the Gentzkow
et al. (2011) example mentioned above, that studies the effect of newspapers on turnout in
US presidential elections. de Chaisemartin and D’Haultfœuille (2020) find that DIDM =
0.0043 (s.e. = 0.0014), meaning that one more newspaper increases turnout by 0.43

percentage point. DIDM is 66% larger than, and significantly different from, β̂fd, the
estimator reported by Gentzkow et al. (2011).

de Chaisemartin et al. (2022) extend the DIDM estimator to continuous treatments.
To simplify, we present their estimators in the case with two time periods, though they
readily extend to the case with more periods. de Chaisemartin et al. (2022) assume that
from period one to two, the treatment of some units, hereafter referred to as the movers,
changes. They also assume that the treatment of other units, hereafter referred to as
the stayers, does not change. This assumption is likely to be met when the treatment is
say, trade tariffs: tariffs’ reforms rarely apply to all products, so it is likely that tariffs
of at least some products stay constant over time. On the other hand, this assumption
is unlikely to be met when the treatment is say, precipitations: geographical units never
experience the exact same precipitations over two consecutive years.

Under the assumption that there are some stayers, the estimator proposed by de Chaise-
martin et al. (2022) compares the outcome evolution of movers and stayers, with the
same period-one treatment. With a continuous treatment, such comparisons can either
be achieved by reweigthing stayers by propensity score weights, or by adjusting movers’
outcome change using a nonparametric regression of the outcome change on the period-
one treatment among the stayers. Under parallel trends assumptions, the corresponding
estimands identify a weighted average of the effect, across all movers, of moving their
treatment from its period-one to its period-two value, scaled by the difference between
these two values. This effect is a weighted average of the slopes of movers’ potential
outcome function, between their period-one and period-two treatments.

The estimators in de Chaisemartin et al. (2022) can be extended to the case where there
are no stayers, provided there are quasi-stayers, meaning units whose treatment barely
changes from period one to two. Alternatively, one could also use the estimator proposed
by Graham and Powell (2012), which compares the outcome evolution of movers and quasi
stayers, but without conditioning on units’ period-one treatment. Their estimator relies
on a linear treatment effect assumption, unlike those in de Chaisemartin et al. (2022).
When there are no true stayers, both estimators require choosing a bandwidth, namely
the lowest treatment change below which a unit can be considered as a quasi-stayer.
Neither de Chaisemartin et al. (2022) or Graham and Powell (2012) derive an “optimal”
bandwidth, so for now bandwidth choice is left to the discretion of the researcher. If
the data has at least three periods, one could also use the correlated-random-coefficient
estimator proposed by Chamberlain (1992). While it allows for some treatment effect
heterogeneity, that estimator relies on a linear treatment effect assumption, like the
estimator in Graham and Powell (2012).

de Chaisemartin et al. (2022) show that after some relabelling, some of their estimators

15



C. de Chaisemartin and X. D’Haultfœuille

are equivalent or nearly equivalent to estimators that had been previously proposed by
de Chaisemartin and D’Haultfœuille (2018), Abadie (2005), and Callaway and Sant’Anna
(2021). This implies that their estimators can be computed, up to small tweaks, by the
companion software for those papers. We refer the reader to de Chaisemartin et al. (2022)
for a precise description of how their estimators can be computed using existing software.

3.2. Estimators allowing for dynamic effects when the treatment is binary and the
design is staggered.

For any t ∈ {1, ..., T}, let 0t (resp. 1t) denote a vectors of t zeros (resp. ones). With
dynamic effects, group g’s outcome at time t is allowed to depend on her past treatments.
For any (d1, ..., dt), let Yg,t(d1, ..., dt) denote group g’s potential outcome at period t with
treatments (d1, ..., dt) from period 1 to t.13 In particular, Yg,t(0t) is group g’s outcome
without ever being treated from period 1 to t. With dynamic effects, Callaway and
Sant’Anna (2021) and Sun and Abraham (2021) have proposed to replace the parallel
trends assumption on Yg,t(0) by a parallel trends assumption on Yg,t(0t): for all g 6= g′

and t ≥ 2,

E [Yg,t(0t)− Yg,t−1(0t−1)] = E [Yg′,t(0t)− Yg′,t−1(0t−1)] . (3.1)

We now review the estimators proposed by Callaway and Sant’Anna (2021), Sun and
Abraham (2021), and Borusyak et al. (2021) for binary and staggered treatments, under
the parallel trends assumption in Equation (3.1).

3.2.1. The estimators proposed by Callaway and Sant’Anna (2021) In a staggered
adoption design, groups can be aggregated into cohorts that start receiving the treat-
ment at the same period. For all c and t, and for all ` ∈ {0, ..., t} let Y c,t denote the
average outcome at period t across groups belonging to cohort c, and let Y n,t denote
the average outcome at period t across groups that remain untreated from period 1 to
T , hereafter referred to as the never-treated groups, assuming for now that such groups
exist. Callaway and Sant’Anna (2021) define their parameters of interest as

TEc,c+` = E
[
Y c,c+`(0c−1,1`+1)− Y c,c+`(0c+`)

]
,

the average effect of having been treated for ` + 1 periods in the cohort that started
receiving the treatment at period c, for every c ∈ {2, ..., T} and ` ≥ 0 such that `+c ≤ T .
To estimate, say, TEc,c, Callaway and Sant’Anna (2021) propose

DIDc,0 = Y c,c − Y c,c−1 −
(
Y n,c − Y n,c−1

)
,

a DID estimator comparing the period c − 1-to-c outcome evolution in cohort c and in
the never-treated groups n. DIDc,0 is unbiased for TEc,c:

E
[
Y c,c − Y c,c−1 −

(
Y n,c − Y n,c−1

)]
=E

[
Y c,c(0c−1, 1)− Y c,c−1(0c−1)−

(
Y n,c(0c)− Y n,c−1(0c−1)

)]
=E

[
Y c,c(0c−1, 1)− Y c,c(0c)

]
+ E

[
Y c,c(0c)− Y c,c−1(0c−1)−

(
Y n,c(0c)− Y n,c−1(0c−1)

)]
=E

[
Y c,c(0c−1, 1)− Y c,c(0c)

]
,

13This notation implicitly rules out anticipation effects: the outcome cannot depend on a group’s future
treatment.
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where the last equality follows from Equation (3.1). More generally, to estimate TEc,c+`,
Callaway and Sant’Anna (2021) propose

DIDc,` = Y c,c+` − Y c,c−1 −
(
Y n,c+` − Y n,c−1

)
,

a DID estimator comparing the period-c− 1-to-c+ ` outcome evolution in cohort c and
in the never-treated groups n.

Callaway and Sant’Anna (2021) extend those baseline estimators in various directions.
First, they propose more aggregated estimators, such as DID`, a weighted average of the
DIDc,` estimators across all cohorts reaching ` periods after their first treatment before
the end of the panel. Second, they propose estimators similar to those above, but that
use the not-yet-treated instead of the never-treated as controls. For instance, all groups
not yet treated at period c can be used as control groups in the definition of DIDc,0.
This is very useful when there is no never-treated group: in that case, the effects TEc,c+`

can still be estimated, for every c ≥ 2 and ` ≥ 0 such that ` + c ≤ U , where U is
the last period when at least one group is still untreated. Even when there are never-
treated groups, one may worry that such groups are less comparable to groups that get
treated at some point, and researchers sometimes prefer to discard them and only leverage
variation in treatment timing. Finally, even when one is fine with keeping the never-
treated groups, the not-yet-treated is a larger control group, and may lead to more precise
estimators. Note that in staggered adoption designs with a binary treatment, the DIDM

estimator proposed by de Chaisemartin and D’Haultfœuille (2020) also uses the not-yet-
treated as controls, and is identical to the DID0 estimator of the instantaneous treatment
effect using the not-yet-treated as controls in Callaway and Sant’Anna (2021). Third,
Callaway and Sant’Anna (2021) also propose estimators relying on a conditional parallel
trends assumption. Fourth, they suggest placebo estimators to test the parallel trends
assumptions underlying their estimators. These placebos are robust to heterogeneous
effects, unlike the coefficients β̂` for ` ≤ −2 from the event-study regression in (2.13).

The estimators proposed by Callaway and Sant’Anna (2021) are computed by the
csdid Stata command (see Rios-Avila et al., 2021), and by the did R command (see
Sant’Anna and Callaway, 2021). The basic syntax of the Stata command is

csdid outcome, time(timeid) gvar(cohort)

where cohort is equal to the period when a group starts receiving the treatment.

3.2.2. The estimators proposed by Sun and Abraham (2021) Sun and Abraham (2021) 
also propose DID estimators of the cohort-and-period specific effects T Ec,c+` that only 
rely on the parallel trends assumption in Equation (3.1), and that are robust to heteroge-
neous treatment effects. Their estimators either use the never-treated groups as controls, 
or the last-treated groups if there are no never-treated. With the former control group, 
their estimators of the T Ec,c+` parameters are identical to those proposed by Callaway 
and Sant’Anna (2021) with the same control group. Operationally, they show that their 
estimators can be computed via a simple linear regression, which may reduce computing 
time. Unlike Callaway and Sant’Anna (2021), they do not propose estimators relying on 
a conditional parallel trends assumption, and they also do not propose estimators using 
the not-yet-treated as controls.

Their estimators are computed by the eventstudyinteract Stata command (see Sun, 
2021). Its basic syntax is

17



C. de Chaisemartin and X. D’Haultfœuille

eventstudyinteract outcome {rel time list}, absorb(i.groupid i.timeid)

cohort(first treatment) control cohort(controlgroup)

where rel time list is the list of relative-time indicators 1{Fg = t − `} one would
include in the event-study regression in (2.13), first treatment is a variable equal to
the period when group g got treated for the first time, and controlgroup is an indicator
for the control group observations (e.g.: the never treated).

3.2.3. The estimators proposed by Borusyak et al. (2021), Gardner (2021), and Liu et al.
(2021) Borusyak et al. (2021), Gardner (2021), and Liu et al. (2021) have proposed
estimators that may be more efficient than those in Callaway and Sant’Anna (2021)
and Sun and Abraham (2021), under some assumptions. We start by reviewing Borusyak
et al. (2021), before discussing the connection between their results and those in Gardner
(2021) and Liu et al. (2021). The estimators in Borusyak et al. (2021) can be obtained
by running a TWFE regression of the outcome on group and time fixed effects, and
fixed effects for every treated (g, t) cell. To be concrete, if the data has 50 groups, 10
time periods, and 100 treated (g, t) cells, the regression has a constant and 158 fixed
effects (49 for groups, 9 for time periods, and 100 for the treated (g, t) cells). Under
the assumptions of the Gauss-Markov theorem, the coefficients from this regression are
the linear estimators of the population coefficients with the lowest variance. But under
parallel trends, the population coefficient on the fixed effect for treated cell (g, t) is
actually equal to TEg,t, the ATE in cell (g, t), so the estimators in Borusyak et al. (2021)
are the linear estimators of those ATEs with the lowest variance. With estimators of
TEg,t in hand, one can estimate TEc,c+` as the average of all the TEg,ts such that group
g started receiving the treatment at period c and t = c+`. Again, Gauss-Markov ensures
that this estimator is the best linear estimator of TEc,c+`. As the estimators in Callaway
and Sant’Anna (2021) and Sun and Abraham (2021) are also linear estimators, those in
Borusyak et al. (2021) have a lower variance.

A second, numerically equivalent way of computing the estimators in Borusyak et al.
(2021) amounts to fitting a regression of the outcome on group and time fixed effects in the
sample of untreated observations, and using that regression to predict the counterfactual
outcome of treated observations. Estimates of the treatment effect of those observations
are then merely obtained by substracting their counterfactual to their actual outcome.
This imputation method is computationally faster than the first. It also readily general-
izes to more complicated specifications, such as triple-differences, or models allowing for
group-specific linear trends. Using this representation of their estimator, Borusyak et al.
(2021) show that it can also be used to estimate the effect of a binary and non-staggered
treatment, if that treatment does not have dynamic effects. This imputation method is
the one used by the did imputation Stata command (see Borusyak, 2021) and by the
didimputation R command (see Butts, 2021) to compute the estimators proposed by
Borusyak et al. (2021). The basic syntax of the Stata command is:

did imputation outcome groupid timeid first treatment,

where first treatment is a variable equal to the period when group g first got treated.

Before Borusyak et al. (2021), Liu et al. (2021) and Gardner (2021) have proposed the
same imputation method as in Borusyak et al. (2021),14 but the result showing that the

14Even before that, Gobillon and Magnac (2016) have proposed a similar strategy to estimate treatment
effects under a factor model.
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resulting estimators are efficient under the assumptions of the Gauss-Markov theorem
only appears in Borusyak et al. (2021). Note that Wooldridge (2021) has also proposed
an estimation strategy connected, and in some cases numerically equivalent, to that of
Borusyak et al. (2021).

3.2.4. Understanding the differences between those estimators Under parallel trends,
the estimators in Borusyak et al. (2021) may offer precision gains with respect to those
in Callaway and Sant’Anna (2021) or Sun and Abraham (2021), under the assumptions
of the Gauss-Markov theorem. Those require, among other things, that the never treated
potential outcomes Yg,t(0t) be independent of each other, both across groups and over
time. It is, of course, often implausible that the potential outcomes of the same group
are uncorrelated over time. With serial correlation, it is no longer guaranteed that the
estimators in Borusyak et al. (2021) will always be more efficient than those in Callaway
and Sant’Anna (2021) and Sun and Abraham (2021), but simulations in Borusyak et al.
(2021) suggest that one can still expect efficiency gains with moderate serial correlation.

If trends are not exactly parallel, the estimators in Borusyak et al. (2021) may be more
or less biased than those in Callaway and Sant’Anna (2021) or Sun and Abraham (2021)
depending on the nature of the violation of parallel trends. Borusyak et al. (2021) do not
provide a closed-form of their estimators, but one can show that with only one treated
group s, which starts to receive the treatment at period ts, their estimator of that group’s
treatment effect at ts + ` is

Ys,ts+` −
1

ts − 1

ts−1∑
k=1

Ys,k −
1

G− 1

∑
g 6=s

(
Yg,ts+` −

1

ts − 1

ts−1∑
k=1

Yg,k

)
, (3.2)

while the estimator in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) is

Ys,ts+` − Ys,ts−1 −
1

G− 1

∑
g 6=s

(Yg,ts+` − Yg,ts−1) . (3.3)

Equation (3.3) shows that the estimator in Callaway and Sant’Anna (2021) and Sun and 
Abraham (2021) use groups’ ts − 1 outcome, the last period before s gets treated, as 
the baseline outcome, while Equation (3.2) shows that the estimator in Borusyak et al.
(2021) instead uses the average outcome from period 1 to ts − 1 as the baseline. This 
is why the latter estimator is often more precise. However, it is also more biased, when 
parallel trends does not exactly hold and the discrepancy between groups’ trends gets 
larger over longer horizons, as would for instance happen when there are group-specific 
linear trends. In such instances, Roth (2021) notes that leveraging earlier pre-treatment 
periods increases the bias of a DID estimator, since one makes comparisons from earlier 
periods. If, on the other hand, parallel trends fails due to anticipation effects arising a 
few periods before ts, Equations (3.2) and (3.3) imply that the estimator in Borusyak 
et al. (2021) is less biased than that in Callaway and Sant’Anna (2021) and Sun and 
Abraham (2021). However, these two types of violations of parallel trends may not be 
equally problematic. Often times, both estimators can be immunized against anticipation 
effects, by redefining ts as the date when the treatment was announced. On the other 
hand, it is often harder to immunize them against differential trends widening over time 
(see de Chaisemartin and D’Haultfœuille, 2021a, for further discussion). Beyond the 
simple example we consider here, deriving a closed-form expression of the estimators in
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Borusyak et al. (2021) is not straightforward. Whether the conclusions we derive in this
simple example carry through to more complicated designs is thus an open question.

If one views parallel trends as a reasonable first-order approximation rather than an
assumption that holds exactly, it may make sense to investigate how sensitive one’s
findings are to violations of parallel trends. To do so, one may for instance implement
the partial identification approach in Manski and Pepper (2018) or Rambachan and Roth
(2019). The latter approach assumes that parallel trends do not hold exactly, and that
the magnitude of placebo estimators is informative as to the magnitude of the bias in the
actual estimators caused by differential trends. The estimators proposed by Callaway and
Sant’Anna (2021) and Sun and Abraham (2021) may be more amenable to the approach
in Rambachan and Roth (2019) than the estimators proposed by Borusyak et al. (2021).
Consider again the same simple example as above. For any ` ≤ ts − 2, one can construct
the following placebo estimator:

Ys,ts−1 − Ys,ts−`−2 −
1

G− 1

∑
g 6=s

(Yg,ts−1 − Yg,ts−`−2) . (3.4)

This placebo compares the treated and control groups’ outcome evolution, from period 
ts − ` − 2 to ts − 1, namely over ` + 1 periods before group s got treated. It exactly 
mimicks the estimator of group s’s treatment effect at period ts + ` proposed by Call-
away and Sant’Anna (2021) and Sun and Abraham (2021), which compares the same 
groups, over the same number of periods. Accordingly, the magnitude of that placebo 
may indeed be informative as to the magnitude of the bias of the estimator in Equation 
(3.3), as requested by Rambachan and Roth (2019). Building a placebo that would sim-
ilarly mimick the estimator proposed by Borusyak et al. (2021) is not feasible, precisely 
because that estimator leverages all pre-treatment periods to construct its baseline. See 
de Chaisemartin and D’Haultfœuille (2021a) for more discussion of the advantages of 
having placebos that mimick actual estimators.

Another difference between these approaches is that Borusyak et al. (2021) impose 
parallel trends for every group and between every pair of consecutive time periods.15 

Callaway and Sant’Anna (2021), on the other hand, impose a weaker parallel trends as-
sumption: from period c onwards, cohort c must be on the same trend as the never-treated 
groups, but before that cohort c may have been on a different trend. The assumption in 
Callaway and Sant’Anna (2021) is the minimal assumption ensuring that all the T Ec,c+`

can be unbiasedly estimated, but it is conditional on the design: which groups are re-
quired to be on parallel trends at which dates depends on groups’ realized treatments. It 
is also not testable. We refer the reader to Marcus and Sant’Anna (2021) and Borusyak 
et al. (2021) for further discussion on the differences between parallel trends assumptions.

Overall, whether the estimators in Borusyak et al. (2021) should be preferred to those 
in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) may depend on one’s 
degree of confidence in the parallel trends assumption, on the type of violations of this 
assumption that seems more likely to arise in the application at hand, on whether it is 
possible to immunize the estimators against anticipation effects by redefining the treat-
ment date as the announcement date, and on one’s willingness to undertake a sensitivity 
analysis such as the one proposed by Rambachan and Roth (2019). Note also that if

15de Chaisemartin and D’Haultfœuille (2020) and Sun and Abraham (2021) also impose that assumption.
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the estimators proposed by Borusyak et al. (2021), Callaway and Sant’Anna (2021), and
Sun and Abraham (2021) are significantly different, this implies that the parallel trends
assumption, at least the “strong version” of this assumption imposed by Borusyak et al.
(2021) and Sun and Abraham (2021), must be violated.

3.3. Estimators allowing for dynamic effects when the treatment is not binary or the
design is not staggered.

de Chaisemartin and D’Haultfœuille (2021a) propose treatment effect estimators robust
to heterogeneous and dynamic treatment effects and that can be used even if the treat-
ment is not binary or the design is not staggered. In their survey of 26 highly cited
2015-2019 AER papers using a TWFE regression, they find that 4 have a binary treat-
ment and a staggered design, so being able to accommodate more general designs is
important. The paper’s main idea is to propose a generalization of the event-study ap-
proach to such designs, by defining the event as the period where a group’s treatment
changes for the first time. With a binary-and-staggered treatment, the event per this def-
inition is the period where a group gets treated, so this definition extends the standard
one to general designs.

More specifically, de Chaisemartin and D’Haultfœuille (2021a) start by showing that
for any group g whose treatment changed for the first time at period Fg, the instantaneous
and dynamic effects of that change can be unbiasedly estimated. Let

δg,` = E(Yg,Fg+` − Yg,Fg+`(Dg,1, ..., Dg,1))

be the expected difference between group g’s actual outcome at Fg + ` and the counter-
factual “status quo” outcome it would have obtained if its treatment had remained equal
to its period-one value from period one to Fg + `. Let N c

g,` denote the number of groups
whose treatment has not changed yet at Fg + `, and with the same treatment as g at
period one. de Chaisemartin and D’Haultfœuille (2021a) show that

DIDg,` = Yg,Fg+` − Yg,Fg−1 −
1

N c
g,`

∑
g′:Dg′,1=Dg,1,Fg′>Fg+`

(Yg′,Fg+` − Yg′,Fg−1),

a DID estimator comparing the Fg − 1-to-Fg + ̀  outcome evolution between group g and 
groups whose treatment has not changed yet at Fg + ` and with the same treatment 
as g at period one, is unbiased for δg,` under parallel trends assumptions. To test those 
parallel trends assumptions, they propose placebo estimators comparing the outcome 
trends of switchers and non-switchers before the switchers switch.

Then, de Chaisemartin and D’Haultfœuille (2021a) aggregate the DIDg,` estimators 
into an estimator of the effect of having experienced a weakly higher amount of treatment 
for ` periods. For any real number x and t ∈ {1, ..., T }, let xt denote a 1 × t vector with 
coordinates equal to x. When the treatment is binary, for groups untreated at period 
one, Dg,1 = 0, so

δg,` = E(Yg,Fg+`(0Fg−1, 1, Dg,Fg+1, ..., Dg,Fg+`) − Yg,Fg+`(0Fg+`)).

For groups treated at period one, Dg,1 = 1, so

−δg,` = E(Yg,Fg+`(1Fg+`) − Yg,Fg+`(1Fg−1, 0, Dg,Fg+1, ..., Dg,Fg+`)).

The right-hand side of the two equations above are effects of having experienced a weakly
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higher amount of treatment for ` + 1 periods. Accordingly, the DIDg,` estimators are
aggregated into a DID` estimator, multiplying by minus one the DIDg,` of groups treated
at period one. With a non-binary treatment, one can also aggregate the DIDg,` to estimate
the effect of having experienced a weakly higher amount of treatment for `+ 1 periods.

Ultimately, this approach leads to an event-study graph, with the distance to the
first treatment change on the x-axis, the DID` estimators on the y-axis to the right of
zero, and placebo estimators on the y-axis to the left of zero. This event-study graph
is useful to test the parallel trends assumption, and to provide reduced-form evidence
of whether weakly increasing the treatment for ` + 1 periods increases or decreases the
outcome on average. However, interpreting the magnitude of the DID` estimators might
be complicated. For instance, with three periods and three groups such that (D1,1 =
0, D1,2 = 4, D1,3 = 1), (D2,1 = 0, D2,2 = 2, D2,3 = 3), and (D2,1 = 0, D2,2 = 0, D2,3 =
0), DID1 estimates the average of E(Y1,3(0, 4, 1) − Y1,3(0, 0, 0)) and E(Y2,3(0, 2, 3) −
Y2,3(0, 0, 0)). Accordingly, DID1 does not estimate by how much the outcome increases
on average when the treatment increases by a given amount for a given number of periods.

To circumvent this important limitation, two strategies can be implemented. First, the
reduced-form event-study graph described above can be complemented with a first-stage
event-study graph, where the outcome is replaced by the treatment. The estimators
on the first-stage graph show the average value of |Dg,Fg+` − Dg,1| across all groups
entering in DID`. In the example above, the first two estimates on the first-stage graph
are equal to 1/2(D1,2 −D1,1 +D2,2 −D2,1) = 3 and 1/2(D1,3 −D1,1 +D2,3 −D2,1) = 2.
This reflects the fact that in this example, DID1 is an effect produced by increasing the
previous and current treatment by 3 and 2 units on average. Second, a weighted average
across ` of the reduced-form estimators divided by a weighted average across ` of the
first-stage estimators is unbiased for a parameter with a clear economic interpretation.
That parameter may be used to conduct a cost-benefit analysis comparing groups’ actual
treatments to the status quo scenario where they would have kept all along the same
treatment as in period one. In other words, that parameter can be used to determine if
the policy changes that took place over the duration of the panel led to a better situation
than the one that would have prevailed if no policy change had been undertaken, a natural
policy question. Importantly, that parameter can also be interpreted as an average total
effect per unit of treatment, where “total effect” refers to the sum of the instantaneous
and dynamic effects of a treatment.

The estimators proposed by de Chaisemartin and D’Haultfœuille (2021a) are computed
by the did multiplegt Stata and R commands. To compute those estimators rather than
those proposed in de Chaisemartin and D’Haultfœuille (2020), the Stata command’s basic
syntax is:

did multiplegt outcome groupid timeid treatment, robust dynamic dynamic(#)

average effect placebo(#) longdiff placebo breps(#) cluster(groupid),

where dynamic(#) specifies the horizon over which effects of a first treatment switch
have to be estimated, and placebo(#) specifies the number of placebos to be estimated.

The estimators in de Chaisemartin and D’Haultfœuille (2021a) can be used with a
binary treatment switching on and off, with a discrete treatment, or with a continuous
and staggered treatment (groups start getting treated at different dates, with differing
intensities, but once a group gets treated its treatment intensity never changes). The
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estimators proposed by Callaway et al. (2021) can also accommodate continuous and 
staggered treatments. For continuous and non-staggered treatments, in their Section 4.3 
de Chaisemartin et al. (2022) extend their baseline estimators to allow for dynamic effects. 
With respect to their baseline estimators, the main difference is that when allowing for 
dynamic effects, fewer units can be used as controls. Without dynamic effects, at period 
t, any unit whose treatment has not changed between t − 1 and t can be used as a 
valid control. With dynamic effects, only units whose treatments have not changed from 
period 1 to t can be used as valid controls. Therefore, the need for “stayers” becomes 
even stronger when allowing for dynamic effects: many units need to keep the same value 
of the treatment for a large number of time periods. Developing estimators robust to 
dynamic effects that can be used with a continuous treatment and no stayers has not 
been done yet and is a promising area for future research.

The estimators in de Chaisemartin and D’Haultfœuille (2021a) can, of course, also 
be used with a binary and staggered treatment. Without covariates in the estimation, 
they are then equivalent to the estimators proposed by Callaway and Sant’Anna (2021) 
using the not-yet-treated as controls. With covariates, the estimators in Callaway and 
Sant’Anna (2021) and de Chaisemartin and D’Haultfœuille (2021a) differ. Callaway and 
Sant’Anna (2021) consider time-invariant covariates, and assume that trends are parallel 
once we condition on them. de Chaisemartin and D’Haultfœuille (2021a) instead consider 
time-varying covariates and assume that trends are parallel once the linear effect of those 
time-varying covariates on the outcome is accounted for. This for instance allows them to 
include group-specific linear trends in the estimation. With covariates, the parallel trends 
conditions in Callaway and Sant’Anna (2021) and de Chaisemartin and D’Haultfœuille 
(2021a) are not nested, and in principle one could combine both.

Finally, it is worth noting that de Chaisemartin and D’Haultfœuille (2021b) propose 
estimators for the case with several treatments. They propose both estimators that gen-
eralize the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020) and rule out 
dynamic effects, and estimators that generalize those in Callaway and Sant’Anna (2021) 
and allow for dynamic effects.

4. APPLICATION

In this section, we revisit an application with a binary and staggered treatment, thus al-
lowing us to compute several of the heterogeneity-robust DID estimators reviewed above. 
Between 1968 and 1988, 29 US states adopted a unilateral divorce law (UDL). Wolfers 
(2006a), building upon Friedberg (1998), studies the effects of those laws on divorce rates, 
using a version of the event-study regression in (2.13). We use his data (Wolfers, 2006b) 
to revisit this question. In what follows, estimates are weighted by states’ populations 
and standard errors are clustered at the state level, as in Wolfers (2006a). As the author 
estimates UDLs’ dynamic effects up to 15 years after adoption, in our replication we fo-
cus on heterogeneity-robust DID estimators allowing for dynamic effects, and present the 
estimated effects over the same horizon. We use Stata for this replication exercise, and 
the versions of the twowayfeweights, eventstudyinteract, csdid, did imputation, 
and did multiplegt commands available from the SSC repository at the end of April 
2022.

Figure 3 below shows the instantaneous and dynamic effects of passing a UDL, ac-
cording to six estimation methods. In the top-left panel, we show the estimates from the
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event-study regression in (2.13), with L = 15, K = 10, and endpoint binning. According 
to this regression, UDLs increase the divorce rate on the year when the law is passed 
and for seven years thereafter. 11 years after those laws are passed, their effect becomes 
significantly negative. Those effects are consistent with those in Column (1) of Table 
2 of Wolfers (2006a). Our event-study regression and that in Wolfers (2006a) differ on 
two dimensions: Wolfers (2006a) does not include any placebo indicator for pre-adoption 
periods, and he includes post-adoption indicators for bins of two years (one indicator for 
the year when the law is passed and the year after that, one indicator for the second and 
third years after the law is passed, etc.). Results seem fairly robust to those specifica-
tion choices. The placebo estimates are small, and individually and jointly insignificant 
(F-test p-value=0.863).

We follow Sun and Abraham (2021), and compute the weights attached to UDLs’ 
instantaneous effect in this event-study regression.16 As shown in Equation (2.14), this 
coefficient can be decomposed as the sum of two terms. The first term is a weighted 
sum of UDL’s effects in the year when they are passed, across 27 states, where all effects 
receive a positive weight. The weights are negatively correlated with the year variable 
(correlation=−0.232), so this first term upweights UDLs’ instantaneous effects in states 
passing a law early, and downweights UDLs’ instantaneous effects in states passing a 
law late. Accordingly, this first term may differ from the average instantaneous effects 
of UDLs if those effects vary between early- and late-adopting states, but it at least 
estimates a convex combination of effects. The second term is a weighted sum of UDLs’ 
effects in the years after they are passed. 29 effects of having passed a UDL a year ago 
enter in that second term. 16 enter with a positive weight, and 13 enter with a negative 
weight. The positive and negative weights respectively sum to 0.012 and −0.012. 28 effects 
of having passed a UDL two years ago enter in that second term. 10 effects enter with a 
positive weight, and 18 enter with a negative weight. The positive and negative weights 
respectively sum to 0.010 and −0.010. Effects of having passed a UDL three, four, ..., 
14, and more than 15 years ago also enter in that second term. In total, the positive and 
negative weights in that second term respectively sum to around 0.064 and −0.064. If 
UDLs’ dynamic effects vary across states, that second term may not be equal to zero, thus 
further biasing the estimated instantaneous effect in the event-study regression. However, 
those contamination weights are not very large, so this bias is likely to be small. Overall, 
this event-study regression seems fairly robust to heterogeneous treatment effects.

In the top-centre panel of Figure 3, we use the eventstudyinteract command to 
compute the estimators proposed by Sun and Abraham (2021). The estimated effects 
are very similar to those in the top-left panel. This could either be due to the fact that 
UDLs effects are not very heterogeneous, or to the fact that the event-study regression 
is fairly robust to heterogeneous treatment effects, as suggested above. Interestingly, the 
confidence intervals are, if anything, slightly wider in the top-left than in the top-centre 
panel of Figure 3, thus showing that heterogeneity-robust DID estimators are not always 
less precise than TWFE estimators. The placebos are individually insignificant. They 
are also substantially smaller than the estimated effects of UDLs: it does not seem that 
violations of parallel trends can fully account for those estimated effects.

In the top-right panel of Figure 3, we use the csdid command to compute the estima-

16In practice, we use the twowayfeweights Stata command, which has an option to compute the corre-

lation between the weights and other variables that we use below.
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tors proposed by Callaway and Sant’Anna (2021), using the “not-yet-treated” states as 
the control group. The estimated effects are very similar to those in the top-centre panel. 
19 states never adopt a UDL over the period under consideration, so the group of “never-
treated” states used as controls by eventstudyinteract is quite large, and accounts for 
a relatively large fraction of the group of “not-yet-treated” states used as controls by 
csdid. This may explain why in this application, the two commands yield very similar 
estimates. Using the larger control group of “not-yet-treated” states also does not lead 
to markedly more precise estimates: the widths of the confidence intervals are similar 
in the two panels. The placebos produced by csdid are small and individually insignifi-
cant. The placebos are much smaller in the top-right than in the top-centre panel. This 
is because csdid computes first-difference placebos, comparing the outcome evolution 
of treated and not-yet treated states, before the treated start receiving the treatment, 
and between pairs of consecutive periods.17 On the other hand, eventstudyinteract 
computes long-difference placebos. For instance, the second placebo, shown at t = −3 
on the graph, compares the outcome evolution of treated and never-treated states, from 
Fg − 1, the period before the treated start getting treated, to Fg − 3. See de Chaise-
martin and D’Haultfœuille (2021a) for a discussion of the respective advantages of long-
and first-difference placebos.

In the bottom-left panel of Figure 3, we use the did imputation command to compute 
the estimators proposed by Borusyak et al. (2021). The effects are very similar to those 
found by the previous two estimators. The confidence interval of the instantaneous effect 
is much tighter in the bottom-left panel than in all other panels: for that treatment 
effect, the estimator proposed by Borusyak et al. (2021) does lead to a large precision 
gain. However, the opposite can hold when one considers dynamic effects. For instance, 
the confidence interval of the effect two years after passing a UDL is more than 50%
larger per did imputation than per csdid. Accordingly, the estimators proposed by 
Borusyak et al. (2021) do not always lead to precision gains, relative to those proposed 
by Sun and Abraham (2021) or Callaway and Sant’Anna (2021). The placebos produced 
by did imputation are small, individually insignificant, and jointly insignificant (F-test
p-value = 0.541).18 Note that the placebos computed by did imputation are different 
from those computed by the other commands. Essentially, the command estimates a 
TWFE regression among all the untreated (g, t), with K leads of the treatment. To be 
consistent with the other estimations, we run the command with 9 leads. Then, everything 
is relative to 10 periods prior to treatment, which is why the placebo estimate is set to 
0 at t = −10 in the bottom-left panel, instead of at t = −1 in the other panels.

In the bottom-centre panel of Figure 3, we use the did multiplegt command to 
compute the estimators proposed by de Chaisemartin and D’Haultfœuille (2021a). The 
resulting estimates are extremely close to those produced by the csdid command. The 
only reason why the two sets of estimates are not identical is that the estimation is 
weighted by states’ population, and the two commands seem to handle weights slightly 
differently. Without weighting, the two sets of estimates are identical, as expected given 
that there are no covariates in the estimation and we used csdid with the not-yet-treated

17csdid has an option to compute long-difference placebos, but it returned an error when we used it. 
18We did not report a joint test that all placebos are equal to 0 based on eventstudyinteract: this 
command does not readily allow to compute this test, as it does not return the covariances between the 
estimators. Similarly, csdid does not allow to jointly test if the placebos in Figure 3 are significant: it 
computes a joint nullity test, but for more disaggregated placebos.
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as controls. The placebos computed by did multiplegt are long-difference placebos,
similar to those computed by eventstudyinteract, except that did multiplegt uses
the not-yet-treated as controls. They are small, and individually and jointly insignificant
(F-test p-value = 0.427).

Figure 3. Effects of Unilateral Divorce Laws, using the data in Wolfers (2006a)
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Note: This figure shows the estimated effects of Unilateral Divorce Laws on the divorce rate and placebo 
estimates, using the data in Wolfers (2006a) and six estimation methods. In the top-left panel, we show 
estimated effects per the event-study regression in (2.13), with L = 15, K = 10, and endpoint binning. 
In the top-centre (resp. top-right, bottom-left, bottom-centre) panel, we show estimated effects per the 
eventstudyinteract (resp. csdid, did imputation, did multiplegt) Stata command. In the bottom-
right panel, we show estimated effects per the did multiplegt Stata command, controlling for state-
specific linear trends. All estimations are weighted by states’ populations. Standard errors are clustered 
at the state level. 95% confidence intervals relying on a normal approximation are shown in red.

The estimates discussed so far do not control for state-specific linear trends. Whether
such trends should or should not be included to estimate the effect of UDLs has been a
debated issue in this literature, with Friedberg (1998) arguing in their favor, and Wolfers
(2006a) arguing that they may conflate dynamic effects. The results presented so far
already suggest that including state-specific linear trends is unnecessary, as placebos
are small and insignificant without them. To confirm that, we run the did multiplegt
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command again, controlling for state-specific linear trends.19 The results, displayed in the
bottom-right panel of Figure 3, show that results are fairly insensitive to the inclusion of
state-linear trends. If anything, adding them makes the estimated long-run effects more
noisy. The only argument in favor of state-specific trends is that the placebos are slightly
smaller with them, though the difference is most likely insignificant.

Finally, to synthetize our results and obtain a point estimate that can be compared to
the results in Wolfers (2006a), we average UDL’s effects from the year the law is passed to
seven years thereafter. The results are displayed in Table 1. We do not include therein the
estimates from the eventstudyinteract and csdid commands, as one cannot readily
obtain the standard error of this average effect from these commands. The results show
that according to all estimation methods, UDLs positively affect the divorce rate from
the year the law is passed to seven years thereafter. All estimates are fairly similar to each
other and point towards an increase of 20%. The estimated standard error is substantially
lower using the author’s original specification, which is not surprising as it is less flexible
than the other estimation methods. The estimated standard error is slightly larger using
Borusyak et al. (2021) than the flexible event-study regression or the estimators proposed
by de Chaisemartin and D’Haultfœuille (2021a).

Table 1. The short-run effects of Unilateral Divorce Laws

Wolfers (2006a) 0.200
(0.056)

Event-study without binning pairs of years 0.249
(0.106)

Borusyak et al. (2021) 0.198
(0.129)

de Chaisemartin and D’Haultfœuille (2021a), no linear trends 0.185
(0.107)

de Chaisemartin and D’Haultfœuille (2021a), linear trends 0.219
(0.096)

Note: This table shows the estimated effects of Unilateral Divorce Laws on the divorce rate, from 0 
to 7 years after adoption, using the data in Wolfers (2006a). The first set of estimates is based on the 
regression in Column (2) of Table 2 of Wolfers (2006a). The second (resp. third, fourth) set of estimates 
is based on the results shown in the bottom-left (resp. bottom-centre, bottom-right) panel of Figure 3. 
All estimations are weighted by states’ populations. Standard errors, clustered at the state level, are 
shown beneath each estimate, between parentheses.

5. CONCLUSION, AND AVENUES FOR FUTURE RESEARCH

The literature reviewed in this survey has shown that TWFE regressions may not always 
estimate a convex combination of treatment effects. In such cases, it may be hard to give
them a causal interpretation, as TWFE coefficients could for instance be of a different sign 
than every unit’s treatment effect. Table 2 below summarizes the alternative estimators
available to applied researchers, depending on their research design and on whether they

19csdid does not allow for group-specific trends. did imputation allows in principle for such trends but 
returned an error when such trends were added. eventstudyinteract allows for such trends.
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are ready or not to rule out dynamic effects. The table shows that the literature so 
far has mostly focused on providing alternative estimators for the case with a binary 
treatment and staggered adoption. Heterogeneity-robust DID estimators that can be 
used in more complicated designs are scarce, while many applications where TWFE 
regressions have been used either do not have a staggered design, or do not have a binary 
treatment. Developing more estimators that can be used in such designs is a promising 
avenue for future research. This can often be done by building upon the insights gained 
from studying the binary-and-staggered case. For instance, the estimators proposed by 
de Chaisemartin and D’Haultfœuille (2021a) build upon those proposed by Callaway and 
Sant’Anna (2021) for the binary-and-staggered case. We hope that the whirlwind of DID 
working papers shall continue, till heterogeneity-robust DID estimators are as widely 
applicable as TWFE regressions.

It is also important to stress that at this stage, it is still unclear whether researchers 
should systematically abandon TWFE estimators. Those estimators sometimes estimate 
a convex combination of effects under the parallel trends assumption, they may estimate 
the ATT if the weights attached to them are uncorrelated with the treatment effects 
T Eg,t, and they often have a lower variance than the heterogeneity-robust estimators re-
viewed in the previous section. While there are examples where TWFE and heterogeneity-
robust DID estimators are economically and statistically different (see, e.g., the empirical 
examples in de Chaisemartin and D’Haultfœuille, 2020, 2021a,b; Baker et al., 2022), the 
previous section also shows a data set where TWFE and heterogeneity-robust DID esti-
mators lead to very similar conclusions. Understanding the circumstances where TWFE 
and heterogeneity-robust DID estimators are more likely to differ is an important ques-
tion. We conjecture that differences are likely to be larger in complicated designs (e.g.: 
a non-binary treatment that can turn on and off multiple times, or several treatments) 
than in simple designs (e.g.: a single binary and staggered treatment). This conjecture is 
based on our discussion of Equation (2.3) in Section 3. This is also a pattern we found 
when computing TWFE and heterogeneity-robust DID estimators in four different data 
sets, in the empirical examples of this survey and of de Chaisemartin and D’Haultfœuille 
(2020; 2021a; 2021b). But those examples are not enough to draw general conclusions: 
a systematic comparison of TWFE and heterogeneity-robust DID estimators in a broad 
set of applications is in order.

Analyzing estimators’ robustness to heterogeneous treatment effects is important, as 
the assumption that all units are affected in the same way by a treatment is seldom cred-
ible. In this survey, we have focused on estimators relying on parallel trends assumptions, 
but this question is also relevant for other estimators. See for instance S loczyński (2020) 
and Blandhol et al. (2022) for instrumental variables estimators with covariates. More 
closely related to our set-up, the impact of heterogeneous treatment effects in the “group 
fixed-effects” model of Bonhomme and Manresa (2015) remains to be studied.
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Table 2. A summary of available heterogeneity-robust DID estimators

Panel A: Estimators ruling out dynamic effects
Can be used when outcome unaffected by past treatments

Treatment Estimators available Stata commands See:

Binary de Chaisemartin and D’Haultfœuille (2020) did multiplegt 3.1
Imai and Kim (2021) 3.1
Borusyak et al. (2021) did imputation 3.2.3

Discrete de Chaisemartin and D’Haultfœuille (2020) did multiplegt 3.1

Continuous,
with stayers de Chaisemartin et al. (2022) See Section 3.1 3.1

Continuous, de Chaisemartin et al. (2022) See Section 3.1 3.1
without stayers Graham and Powell (2012) gmm 3.1

Chamberlain (1992) gmm 3.1

Several treatments de Chaisemartin and D’Haultfœuille (2021b) did multiplegt 3.3

Panel B: Estimators allowing dynamic effects
Can be used when outcome affected by past treatments

Treatment Estimators available Stata commands See:

Binary and Callaway and Sant’Anna (2021) csdid 3.2.1
staggered Sun and Abraham (2021) eventstudyinteract 3.2.2

Borusyak et al. (2021) did imputation 3.2.3
de Chaisemartin and D’Haultfœuille (2021a) did multiplegt 3.3

Binary or discrete,
non-staggered de Chaisemartin and D’Haultfœuille (2021a) did multiplegt 3.3

Continuous and de Chaisemartin and D’Haultfœuille (2021a) did multiplegt 3.3
staggered Callaway et al. (2021) 3.3

Continuous and
non-staggered,
with stayers de Chaisemartin et al. (2022) See paper 3.3

Continuous and
non-staggered,
without stayers No estimator available yet

Several treatments de Chaisemartin and D’Haultfœuille (2021b) did multiplegt 3.3

Note: All the Stata commands have R equivalents with the same name, except eventstudyinteract
that does not have an R equivalent, and csdid whose R equivalent is called did. The table’s last column
indicates the section of the paper where the estimator is described.
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