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Two-way Fixed Effects and Differences-in-Differences
Estimators with Several Treatments∗

Clément de Chaisemartin Xavier D’Haultfœuille†

Abstract

We study two-way-fixed-effects regressions (TWFE) with several treatment variables.
Under a parallel trends assumption, we show that the coefficient on each treatment iden-
tifies a weighted sum of that treatment’s effect, with possibly negative weights, plus a
weighted sum of the effects of the other treatments. Thus, those estimators are not robust
to heterogeneous effects and may be contaminated by other treatments’ effects. When a
treatment is omitted from the regression, we obtain a new omitted variable bias formula,
where bias can arise even if the treatments are not correlated with each other, but can
be smaller than in the TWFE regression with all treatments. We propose an alternative
difference-in-differences estimator, robust to heterogeneous effects and immune to the con-
tamination problem. In the application we consider, the TWFE regression identifies a
highly non-convex combination of effects, with large contamination weights, and one of its
coefficients significantly differs from our heterogeneity-robust estimator.

(JEL C21, C23)

1 Introduction

To estimate treatment effects, researchers often use panels of groups (e.g. counties, regions), and
estimate two-way fixed effect (TWFE) regressions, namely regressions of the outcome variable
on group and time fixed effects and the treatment. de Chaisemartin and D’Haultfœuille (2020)
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have found that almost 20% of empirical papers published by the American Economic Review
(AER) from 2010 to 2012 estimate such regressions.

Under a parallel trends assumption, TWFE regressions with one treatment identify a weighted
sum of the treatment effects of treated (g, t) cells, with weights that may be negative and sum
to one (see de Chaisemartin and D’Haultfœuille, 2020; Borusyak and Jaravel, 2017). Because of
the negative weights, the treatment coefficient in such regressions is not robust to heterogeneous
treatment effects across groups and time periods: it may be, say, negative, even if the treatment
effect is strictly positive in every (g, t) cell.

However, in 18% of the TWFE papers published in the AER from 2010 to 2012, the TWFE
regression has several treatment variables. By including several treatments, researchers hope to
estimate the effect of each treatment holding the other treatments constant. For instance, when
studying the effect of marijuana laws, as in Meinhofer et al. (2021), one may want to separate the
effect of medical and recreational laws. To do so, one may estimate a regression of the outcome
of interest in state g and year t on state fixed effects, year fixed effects, an indicator for whether
state g has a medical law in year t, and an indicator for whether state g has a recreational law
in year t.

In this paper, we investigate what TWFE regressions with several treatments identify. We
show that under a parallel trends assumption, the coefficient on each treatment identifies the
sum of two terms. The first term is a weighted sum of the effect of that treatment in each
group and period, with weights that may be negative and sum to one. A similar weighted sum
appears in decompositions of TWFE regressions with only one treatment. The second term
is a sum of the effects of the other treatments, with weights summing to zero. Accordingly,
with several treatments, coefficients in TWFE regressions may be contaminated by the effect
of other treatments, an issue that was not present with one treatment. As the weights sum to
zero, this second term disappears if the effect of the other treatments is homogeneous, but it
is often implausible that those effects are homogeneous. The weights attached to any TWFE
regression with several treatments can be computed by the twowayfeweights Stata and R
packages. Estimating those weights may be useful, to assess if a TWFE coefficient is robust to
heterogeneous treatment effects, and if it is contaminated by the effect of the other treatments
in the regression.

We consider simple examples with two treatments, to show that TWFE regressions may not
be robust to heterogeneous effects because they may leverage two types of “forbidden compar-
isons”, borrowing the terminology coined by Borusyak and Jaravel (2017). In a first example,
the coefficient on the first treatment leverages a difference-in-differences (DID) comparing the
outcome evolution of a group going from untreated to receiving both treatments to the outcome
evolution of a “control” group going from untreated to receiving the second treatment. If the
effect of the second treatment is the same in the two groups, those two effects cancel each other
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out in this DID. But if the effects of the second treatment differ in the two groups, they do not
cancel each other out, and they contaminate the coefficient on the first treatment. In a second
example, the coefficient on the first treatment leverages a DID comparing the outcome evolution
of a group going from untreated to receiving the first treatment to the outcome evolution of a
“control” group that receives the second treatment at both periods. If the control group’s effect
of the second treatment is the same in the pre and in the post period, those two effects cancel
each other out in this DID. But if the control group’s effect of the second treatment changes
over time, those two effects do not cancel out, and they contaminate the coefficient on the first
treatment.

We then consider a TWFE regression that would omit the other treatments, and derive an
analogue of the standard omitted variable bias (OVB) formula for that regression, allowing
for heterogeneous effects. Allowing for heterogeneous effects leads to two perhaps surprising
departures from the standard OVB logic many researchers are used to. First, omitting from a
TWFE regression a treatment uncorrelated with the main treatment of interest may still lead
to an OVB. Second, controlling for more treatments may lead to a more biased estimator than
not controlling for them. Specifically, we show that in the presence of two treatments, a TWFE
regression with only the first treatment also estimates a weighted sum of the effect of that
treatment in each group and period, with weights that may be negative and sum to one, plus a
weighted sum of the effects of the other treatments, but with weights that do not sum to zero.
That second term, which corresponds to the OVB term in the standard formula, may differ from
zero even if the two treatments are uncorrelated conditional on the group and time fixed effects.
Then, we use our decompositions of the TWFE regressions with one and several treatments to
derive the maximal bias of both regressions for the average effect of the first treatment on the
treated, under the assumption that the effect of every treatment is bounded in absolute value
by a (potentially large) constant in every group and period. The ratio between the maximal
biases of both regressions is independent of that constant and can be estimated, thus allowing
researchers to compare the maximal bias of the two regressions. The ratio of the regressions’
maximal biases can either be smaller or larger than one in practice.

Finally, we propose an alternative DID estimator that relies on common trends assumptions,
like TWFE regressions, but that is robust to heterogeneous effects and does not suffer from
the contamination problem, unlike TWFE regressions. Our estimator generalizes the DIDM

estimator in de Chaisemartin and D’Haultfœuille (2020) to instances with several treatments. To
isolate the effect of the first treatment, our estimator compares the t− 1-to-t outcome evolution,
of switching groups whose first treatment switches from t − 1 to t while their other treatments
do not change, and of control groups i) whose treatments all remain the same, and ii) that had
the same treatments as the switching groups in period t− 1. i) ensures that our new estimator
is robust to heterogeneous effects across groups of all treatments. ii) ensures that it is robust to
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heterogeneous effects over time of all treatments.

Our estimator’s robustness may come at a high price in terms of external validity and statistical
precision. For instance, in our application in Section 5, we can only match a small number
of switchers to valid control groups meeting i) and ii). Then, there may be internal-external
validity and bias-variance trade-offs between our new estimator and less robust estimators, such
as the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020) or TWFE regressions
with several treatments. To account for the fact our new estimator may sometimes be estimated
on a small sample of groups, we propose, in addition to a standard confidence interval that
is asymptotically valid under weak conditions, another confidence interval that has both exact
coverage under a normality assumption and is asymptotically valid without such a normality
requirement.

As an illustration, we use our results to revisit Hotz and Xiao (2011), who run TWFE regressions
of measures of daycare quality in state g and year t on two daycare regulations in state g and
year t: the minimum number of years of schooling required to be a daycare director and the
minimum staff-to-child ratio. Focusing on the years-of-schooling treatment, we find that the
TWFE regression with several treatments estimates weighted sums of effects with very large
negative weights attached to them, both on the treatment’s own effects, but also on the effects
of the other treatments in the regression. The TWFE regression with only the years-of-schooling
treatment has much smaller weights attached to it. As a result, the maximal bias of the TWFE
regression with several treatments is almost five times larger than that of the regression including
only the years-of-schooling treatment. Thus, the “short” regression seems preferable, at least
per our maximal-bias metric. We finally show that our heterogeneity-robust estimator is much
closer to zero than, and significantly different from, the coefficient of the TWFE regression with
several treatments.

Our paper is closely related to the recent literature showing that TWFE regressions with
one treatment variable may not be robust to heterogeneous effects (see de Chaisemartin and
D’Haultfœuille, 2020; Goodman-Bacon, 2021; Borusyak and Jaravel, 2017). Our paper is also
closely related to several papers that have considered the causal interpretation of OLS regres-
sion coefficients with several treatments (see Sun and Abraham, 2021; Hull, 2018; Goldsmith-
Pinkham, Hull and Kolesár, 2021). We discuss those papers in more details later in the paper
(see Section 3.4), but for now we just note that when the treatments are indicators for whether
group g has started receiving a binary and staggered treatment ℓ periods ago, our decomposi-
tion of the TWFE regression reduces to one of the decompositions in Sun and Abraham (2021).
Accordingly, our decomposition extends their result to situations where the treatments in the re-
gression are different policies that could non-binary, non-staggered, and non-mutually-exclusive,
rather than indicators for having received a single binary and staggered policy ℓ periods ago.

The remainder of the paper is organized as follows. Section 2 presents the set up. Section 3
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presents our decomposition results for TWFE regressions with several treatments. Section 4
presents our alternative estimator. Section 5 presents our empirical application.

2 Set up

We consider a panel of G groups observed at T periods, respectively indexed by g and t. Typ-
ically, groups are geographical entities gathering many observations, but a group could also
just be a single individual or firm. For every (g, t) ∈ {1, ..., G} × {1, ..., T}, let Ng,t denote the
population of cell (g, t), and let N = ∑

g,t Ng,t be the total population across all cells.

We are interested in the effect of K treatments. In this paper, we follow, e.g., Holland (1986);
Holland and Rubin (1987), and define as a treatment a variable that has a causal effect on
the outcome, in the sense that different values of that variable lead to different counterfactual
outcomes. For every (k, g, t) ∈ {1, ..., K} × {1, ..., G} × {1, ..., T}, let Dk

g,t denote the value of
treatment k for group g at period t, and let Dg,t = (Dk

g,t)k∈{1,...,K} denote a vector stacking
together the K treatments of group g at period t. For every k, let Dk denote the values Dk

g,t can
take. For now, we assume that the treatments are binary: Dk = {0, 1} for all k. This is just
to simplify the exposition: our results can be extended to non-binary treatments, as explained
below. For any d ∈ {0, 1}K , let Yg,t(d) denote the potential outcome of group g at period t if
(D1

g,t, ..., D
K
g,t) = d. The observed outcome is Yg,t = Yg,t(D1

g,t, ..., D
K
g,t).

Importantly, our notation does not necessarily rule out dynamic effects of past treatments on
the outcome. The K treatments may for instance include lags of the same treatment variables.
We discuss this issue in more details after Theorem 2 below, and in Section 4.4.

We consider the treatments and potential outcomes of each (g, t) cell as random variables. For
instance, aggregate random shocks may affect the potential outcomes of group g at period t,
and that cell’s treatments may also be random. All expectations below are taken with respect
to the distribution of those random variables. On the other hand, the populations of cells (g, t)
Ng,t are treated as non-random throughout the paper.

Throughout the paper, we maintain the following assumptions. Below, we let 0 = (0, ..., 0)
denote the vector of K zeros.

Assumption 1 (Balanced panel of groups) For all (g, t) ∈ {1, ..., G} × {1, ..., T}, Ng,t > 0.

Assumption 2 (Independent groups) The vectors ((Yg,t(d))d∈{0,1}K , (Dk
g,t)k∈{1,...,K})t∈{1,...,T } are

mutually independent.

Assumption 3 (Strong exogeneity and common trends) For all (g, t) ∈ {1, ..., G} × {2, ..., T},

1. E(Yg,t(0) − Yg,t−1(0)|Dg,1, ..., Dg,T ) = E(Yg,t(0) − Yg,t−1(0)).
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2. E(Yg,t(0) − Yg,t−1(0)) does not vary across g.

Assumption 1 requires that no group appears or disappears over time. Assumption 2 requires
that potential outcomes and treatments of different groups be independent, but it allows these
variables to be correlated over time within each group. This is a commonly-made assumption in
DID analysis, where standard errors are usually clustered at the group level (see Bertrand, Duflo
and Mullainathan, 2004). Point 1 of Assumption 3 is related to the strong exogeneity condition
in panel data models. It requires that the shocks affecting group g’s untreated outcome be
mean independent of group g’s treatments. For instance, this rules out cases where a group gets
treated because it experiences negative shocks, the so-called Ashenfelter’s dip (see Ashenfelter,
1978). Point 2 requires that in every group, the expectation of the untreated outcome follow the
same evolution over time. It is a generalization of the standard common trends assumption in
DID models (see, e.g., Abadie, 2005).

We now define the TWFE regression described in the introduction, as well as our estimand of
interest βfe, the expectation of the treatment coefficient in the regression.1

Regression 1 (TWFE regression with K treatments)

Let βfe = E
[
β̂fe

]
, where β̂fe denotes the coefficient on D1

g,t in a sample OLS regression of Yg,t

on group fixed effects, period fixed effects, and the vector Dg,t, weighted by Ng,t:2

Yg,t = α̂g + γ̂t + β̂feDg,t + ug,t, (1)

where ug,t denotes the regression residual.

On top of the K treatments, the regression may also include some covariates. The decompo-
sitions below can easily be extended to this case, following the same steps as those used by
de Chaisemartin and D’Haultfœuille (2020) to extend their decomposition of TWFE regressions
with one treatment to TWFE regressions with one treatment and some covariates (see Theorem
S4 therein). In Section 3.4.2 below, we elaborate on the difference between a treatment and a
covariate.

Let D be the vector (Dg,t)(g,t)∈{1,...,G}×{1,...,T } collecting all the treatments in all the (g, t) cells. let
Dg = (D1,g, ..., DT,g) be the vector collecting all the treatments in group g. LetN1 = ∑

g,t Ng,tD
1
g,t

denote the total population of cells receiving the first treatment. LetD−1
g,t = (D2

g,t, ..., D
K
g,t) denote

1 Throughout the paper, we assume that the treatments Dk
g,t in Regression 1 are not collinear with the other

independhent variables in those regressions, so β̂fe is well-defined.
2 The regression could also be estimated using more disaggregated outcome data. For instance, groups may be

US counties, and one may estimate the regression using individual-level outcome measures. This disaggregated
regression is equivalent to the aggregated regression in (1), provided Yg,t is defined as the average outcome of
individuals in cell (g, t), and the aggregated regression is weighted by the number of individuals in cell (g, t).
Accordingly, the results below also apply to disaggregated regressions.
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a vector stacking together the treatments of cell (g, t), excluding treatment 1. Let εg,t denote
the residual of cell (g, t) in the sample regression of D1

g,t on group and period fixed effects and
D−1

g,t :
D1

g,t = α̂ + γ̂g + ν̂t + (D−1
g,t )′ζ̂ + εg,t. (2)

One can show that if the regressors in Regression 1 are not collinear, the average value of εg,t

across all (g, t) cells with D1
g,t = 1 differs from 0: ∑(g,t):D1

g,t=1(Ng,t/N1)εg,t ̸= 0. Then we let wg,t

denote εg,t divided by that average:

wg,t = εg,t∑
(g,t):D1

g,t=1(Ng,t/N1)εg,t

.

3 TWFE regressions with several treatments and heterogeneous ef-
fects

3.1 Decomposition results

3.1.1 Two treatment variables

For expositional purposes, we begin by considering the case with two treatments. For any
(g, t) ∈ {1, ..., G} × {1, ..., T}, let

∆2
g,t = Yg,t(0, 1) − Yg,t(0, 0)

denote the effect, in cell (g, t), of moving the second treatment from zero to 1 while keeping the
first treatment at zero. Let also

∆1
g,t = Yg,t(1, D2

g,t) − Yg,t(0, D2
g,t)

denote the effect, in cell (g, t), of moving the first treatment from zero to one while keeping
the second treatment at its observed value. When one estimates a TWFE regression with two
treatments, a natural target parameter for βfe, the coefficient on the first treatment, is

δAT T = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
∆1

g,t

 ,
the average effect of moving D1

g,t from 0 to 1 while keeping D2
g,t at its observed value, across all

(g, t)s such that D1
g,t = 1. δAT T is the ATT of D1

g,t controlling for D2
g,t. We now show that βfe

does not identify δAT T in general.

Theorem 1 Suppose that Assumptions 1-3 hold and K = 2. Then,

βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t +
∑

(g,t):D2
g,t=1

Ng,t

N1
wg,t∆2

g,t

 . (3)
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Moreover, ∑(g,t):D1
g,t=1(Ng,t/N1)wg,t = 1 and ∑(g,t):D2

g,t=1(Ng,t/N1)wg,t = 0.

Theorem 1 shows that the coefficient on D1
g,t identifies the sum of two terms. The first term is a

weighted sum of the average effect of moving D1
g,t from 0 to 1 while keeping D2

g,t at its observed
value, across all (g, t) such that D1

g,t = 1, and with weights summing to 1. The second term is
a weighted sum of the effect of moving D2

g,t from 0 to 1 while keeping D1
g,t at 0, across all (g, t)

such that D2
g,t = 1, and with weights summing to 0. If the effect of D2

g,t is constant (∆2
g,t = δ2

for all (g, t)), this second term is equal to zero, but it may differ from zero if the effect of D2
g,t is

heterogeneous.

Theorem 1 implies that there are two reasons why βfe may differ from δAT T . First, some of the
weights wg,t may differ from one. When the weights wg,t differ from one, one may have that

E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t

 ̸= δAT T ,

if the effect of D1
g,t is heterogeneous across (g, t) cells. Some of the weights wg,t could even

be negative, in which case E
[∑

(g,t):D1
g,t=1(Ng,t/N1)wg,t∆1

g,t

]
does not satisfy the no-sign reversal

property: this quantity could for instance be negative, even if ∆1
g,t ≥ 0 for all (g, t). With two

treatments, negative weights can occur even in very simple designs, where there would not be
any negative weights in the absence of the second treatment. For instance, consider a standard
DID set-up without variation in treatment timing but with two treatments: some groups start
receiving the first treatment at a date T 1, and a subset of those groups then start receiving the
second treatment at a later date T 2. In the absence of the second treatment, one can show that
the coefficient on D1

g,t in the regression of Yg,t on group fixed effects, period fixed effects, and
D1

g,t identifies the ATT of D1
g,t and does not have negative weights attached to it. On the other

hand, in the presence of the second treatment, one can show that βfe no longer identifies the
ATT of D1

g,t and may have negative weights attached to it (see Corollary 1 in de Chaisemartin
and d’Haultfoeuille, 2021b, a previous version of this paper, for a formal statement and a proof).

The second reason why βfe may differ from δAT T is that βfe may also be contaminated by the
effect of D2

g,t: if that effect is heterogeneous across (g, t) cells, E
[∑

(g,t):D2
g,t=1(Ng,t/N1)wg,t∆2

g,t

]
may differ from zero. Such a contamination phenomenon is not present in the presence of one
treatment only (see de Chaisemartin and D’Haultfœuille, 2020). Below, we give some intuition
as to why it arises.

Theorem 1 can be extended to non-binary ordered treatments, that may be continuous or dis-
crete. When D1

g,t ̸= 0, let S1
g,t = (Yg,t(D1

g,t, D
2
g,t)−Yg,t(0, D2

g,t))/D1
g,t be the slope of cell (g, t)’s po-

tential outcome function, when moving its first treatment from 0 to D1
g,t, while keeping its second

treatment at its observed value. Similarly, whenD2
g,t ̸= 0, let S2

g,t = (Yg,t(0, D2
g,t)−Yg,t(0, 0))/D2

g,t.
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Finally, let

wk
g,t =

εg,tD
k
g,t∑

(g,t)(Ng,t/N1)εg,tD1
g,t

,

for k = 1, 2. If D1
g,t and D2

g,t are non-binary, one can show, following similar steps as in the proof
of Theorem 1, that

βfe = E

 ∑
(g,t):D1

g,t ̸=0

Ng,t

N1
w1

g,tS
1
g,t +

∑
(g,t):D2

g,t ̸=0

Ng,t

N1
w2

g,tS
2
g,t

 .
Moreover, ∑(g,t):D1

g,t ̸=0(Ng,t/N1)w1
g,t = 1 and ∑

(g,t):D2
g,t ̸=0(Ng,t/N1)w2

g,t = 0. Essentially, Theo-
rem 1 extends to non-binary treatments, replacing the average treatment effects ∆1

g,t and ∆2
g,t

by slopes of (g, t)-cells’ potential outcome functions, from a treatment of zero to their actual
treatment. The decomposition in the previous display does not assume a linear treatment effect.

3.1.2 More than two treatment variables

We now go back to the general case where K may be greater than 2. We let 0−1 = (0, ..., 0) be
the vector of K − 1 zeros. We also define

∆1
g,t = Yg,t(1, D−1

g,t ) − Yg,t(0, D−1
g,t ),

∆−1
g,t = Yg,t(0, D−1

g,t ) − Yg,t(0,0−1).

∆1
g,t is the effect, in cell (g, t), of moving the first treatment from zero to one while keeping the

other treatments at their observed values. ∆−1
g,t is the effect, in cell (g, t), of moving the other

treatments from zero to their actual values, while keeping the first treatment at zero.

Theorem 2 below generalizes Theorem 1.

Theorem 2 Suppose that Assumptions 1-3 hold. Then,

βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t +
∑

(g,t):D−1
g,t ̸=0−1

Ng,t

N1
wg,t∆−1

g,t

 .
Moreover, ∑(g,t):D1

g,t=1(Ng,t/N1)wg,t = 1, and if K = 2 or the treatments D2
g,t, ..., D

K
g,t are mutu-

ally exclusive, ∑(g,t):D−1
g,t ̸=0−1(Ng,t/N1)wg,t = 0.

Theorem 2 is similar to Theorem 1, except that when K > 2, we do not always have
∑

(g,t):D−1
g,t ̸=0−1

Ng,t

N1
wg,t = 0.

The contamination weights on the effects of the other treatments may not sum to 0. Accordingly,
even if the effects of all treatments are constant, β̂fe may still be biased for the first treatment’s
effect.
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There are three special cases where the weights on the effects of the other treatments sum to 0.
The first one is when K = 2, as shown in Theorem 1. The second one is when the treatments
D2

g,t, ..., D
K
g,t are mutually exclusive, as stated in Theorem 2. The third one is when there is no

complementarity or substitutability between the treatments D2
g,t, ..., D

K
g,t. Specifically, assume

that for all (g, t), there exists (δk
g,t)k=2,...,K such that

E
[
∆−1

g,t |D
]

=
K∑

k=2
Dk

g,tδ
k
g,t. (4)

Then, we obtain Decomposition (5) below. The corresponding weights can be computed using
the twowayfeweights Stata command.

Corollary 1 Suppose that Assumptions 1-3 and (4) hold. Then,

βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t +
K∑

k=2

∑
(g,t):Dk

g,t=1

Ng,t

N1
wg,tδ

k
g,t

 . (5)

Moreover, ∑(g,t):D1
g,t=1(Ng,t/N1)wg,t = 1, and ∑(g,t):Dk

g,t=1(Ng,t/N1)wg,t = 0 for every k ∈ {2, ..., K}.

On the other hand, when the treatments are not mutually exclusive and may be complementary
or substitutable β̂fe could be biased even under constant treatment effects. This is because in
that case, Regression 1 is misspecified, and should include the interactions of the treatments.

Importantly, Theorem 2 does not necessarily rule out dynamic effects of past treatments on the
outcome. The treatments in the regression may for instance be the current treatment and its
first K − 1 lags. In that case, our potential outcome notation allows the current treatment and
its first K − 1 lags to affect the outcome. Accordingly, the twowayfeweights Stata command
can also be used to compute the weights attached to distributed-lags regressions of an outcome
on the current treatment and its lags.

3.2 Intuition for, and a perhaps surprising implication of, the contamination bias

3.2.1 Intuition for the contamination bias

The reasons why TWFE regressions are not robust to heterogeneous treatment effects are
now well understood (see de Chaisemartin and D’Haultfœuille, 2018; de Chaisemartin and
D’Haultfœuille, 2020; Goodman-Bacon, 2021; Borusyak and Jaravel, 2017). In this section,
we give intuition as to why βfe may be affected by contamination bias. To do so, we start by
considering two very simple examples, one where contamination bias is absent, and the other
where it is present.
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First, assume that there are three groups and two time periods. With probability one, no group
is treated at period 1, and at period 2 group 2 receives the first treatment while group 3 receives
the second treatment. Then, it is easy to show that

β̂fe = Y2,2 − Y2,1 − (Y1,2 − Y1,1) . (6)

The right-hand side of the previous display is a DID comparing the period-one-to-two outcome
evolution of group 2, that starts receiving the first treatment at period 2, to that of group 1,
that is untreated at both dates. Therefore,

βfe =E (Y2,2(1, 0) − Y2,1(0, 0) − (Y1,2(0, 0) − Y1,1(0, 0)))
=E (Y2,2(1, 0) − Y2,2(0, 0)) + E (Y2,2(0, 0) − Y2,1(0, 0) − (Y1,2(0, 0) − Y1,1(0, 0)))
=E (Y2,2(1, 0) − Y2,2(0, 0)) , (7)

where the second equality follows from Assumption 3. Equation (7) is a special case of Equation
(3) in Theorem 1. In this simple example, βfe is not contaminated by the effect of the second
treatment. It identifies the effect, in group 2 and at period 2, of moving the first treatment
from zero to one while keeping the second treatment at its observed value (zero). Because only
group 2 at period 2 receives the first treatment, this effect is equal to δAT T , the ATT of the first
treatment controlling for the second treatment.

Now let us consider another example, very similar to that above, but with a fourth group that
receives both treatments at period 2. Then, using the equivalence between TWFE regressions
and first-difference regressions with two periods and the fact that the first difference of the two
treatments are uncorrelated, we obtain

β̂fe = 1
2 (Y2,2 − Y2,1 − (Y1,2 − Y1,1)) + 1

2 (Y4,2 − Y4,1 − (Y3,2 − Y3,1)) . (8)

The first DID in Equation (8) is the same as that in the right-hand side of Equation (6) and
it is unbiased for E (Y2,2(1, 0) − Y2,2(0, 0)). The second DID compares the period-one-to-two
outcome evolution of group 4, that starts receiving the first and second treatments at period 2,
to that of group 3, that only starts receiving the second treatment. Therefore,

E (Y4,2 − Y4,1 − (Y3,2 − Y3,1))
=E (Y4,2(1, 1) − Y4,1(0, 0) − (Y3,2(0, 1) − Y3,1(0, 0)))
=E (Y4,2(1, 1) − Y4,2(0, 1)) + E (Y4,2(0, 1) − Y4,2(0, 0)) − E (Y3,2(0, 1) − Y3,2(0, 0))
+E (Y4,2(0, 0) − Y4,1(0, 0) − (Y3,2(0, 0) − Y3,1(0, 0)))
=E (Y4,2(1, 1) − Y4,2(0, 1)) + E (Y4,2(0, 1) − Y4,2(0, 0)) − E (Y3,2(0, 1) − Y3,2(0, 0)) . (9)
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Equations (8) and (9) imply that

βfe =1
2E (Y2,2(1, 0) − Y2,2(0, 0)) + 1

2E (Y4,2(1, 1) − Y4,2(0, 1))

+1
2E (Y4,2(0, 1) − Y4,2(0, 0)) − 1

2E (Y3,2(0, 1) − Y3,2(0, 0)) . (10)

Equation (10) is a special case of Equation (3) in Theorem 1. βfe identifies the sum of two
terms. The term on the first line is the average effect, in groups two and four and at period
two, of moving the first treatment from zero to one while keeping the second treatment at its
observed value (zero in group 2, one in group 4). The term on the second line is a contamination
bias term, equal to the difference, between groups 4 and 3, of the effect of moving the second
treatment from zero to one while keeping the first treatment at zero.

The contamination bias appears in the second example because β̂fe leverages a DID comparing a
group that starts receiving the first and the second treatments to a group that starts receiving the
second treatment only. With heterogeneous treatment effects, this comparison is contaminated
by the effect of the second treatment. On the other hand, if the effect of the second treatment
does not vary across groups, this contamination bias disappears. To our knowledge, our paper is
the first to show that TWFE regressions with several treatments leverage this type of “forbidden
comparisons”, using the terminology coined by Borusyak and Jaravel (2017).

In the example with four groups, a simple solution to eliminate the contamination bias is to
add the interaction of the two treatments to the regression. One can in fact show the following,
slightly more general result. With only two time periods, and groups that do not receive any
of the two treatments in the first period, the coefficient on D1

g,t in the regression of Yg,t on D1
g,t,

D2
g,t, and D1

g,tD
2
g,t is not contaminated by the effect of the second treatment. In such cases,

the regression with the interaction term is preferable, as it makes the contamination problem
disappear. This result does not, however, translate to more general designs with more than two
time periods and where groups may receive the treatments at every period. It is easy to find
examples where adding the interaction to the regression actually increases the contamination
weights. This is the case for instance in the application we consider in Section 5: in the regression
without control variables and with the two main treatments (the minimum staff-to-child ratio and
the minimum number of years of schooling required for daycare directors), adding the interaction
between the two treatments actually increases the absolute value of the contamination weights.

In the first example, the two treatments are mutually exclusive so β̂fe cannot leverage a “for-
bidden” DID comparing a group that starts receiving the first and the second treatments to
a group that starts receiving the second treatment only, which is why there is no contamina-
tion bias in this example. This does not mean contamination bias never arises with mutually
exclusive treatments. To illustrate this point, let us consider a third example with two groups
and three periods. Group 1 receives the first treatment at period 3, and Group 2 receives the
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second treatment at periods 2 and 3. Then, because this regression is equivalent to a regression
of Y2,t − Y1,t on a constant, D1

2,t −D1
1,t and D2

2,t −D2
1,t, we obtain, after some algebra,

β̂fe = Y1,3 − Y1,2 − (Y2,3 − Y2,2) . (11)

Accordingly, one can show that

βfe =E (Y1,3(1, 0) − Y1,3(0, 0))
+E (Y2,2(0, 1) − Y2,2(0, 0)) − E (Y2,3(0, 1) − Y2,3(0, 0)) . (12)

β̂fe is contaminated by the effect of the second treatment, because it leverages a DID where
the control group receives the second treatment at both dates. This second type of “forbidden”
DID is very similar to the late- versus early-treated DIDs due to which TWFE regressions
with one treatment are not robust to heterogeneous treatment effects (see de Chaisemartin and
D’Haultfœuille, 2020; Goodman-Bacon, 2021; Borusyak and Jaravel, 2017). Note that if the
effect of the second treatment is constant over time, the contamination bias term disappears.
However, constant effects over time is often an implausible assumption.

Overall, TWFE regressions with several treatments are not affected by contamination bias in very
simple designs with two time periods, where groups are only treated in the second period, and
where the treatments are mutually exclusive. In designs with non-mutually exclusive treatments,
contamination bias may appear because β̂fe may leverage DIDs comparing a group that starts
receiving, say, the first and the second treatments to a group that starts receiving the second
treatment only. With more than two time periods, even if the treatments are mutually exclusive,
β̂fe may leverage DIDs comparing a group that starts receiving, say, the first treatment, to a
group receiving the second treatment at both dates.

3.2.2 A perhaps surprising implication of the contamination bias

Theorem 1 has an important and perhaps surprising consequence for TWFE regressions with one
treatment where one seeks to estimate heterogeneous treatment effects. Oftentimes, researchers
run a TWFE regression with a treatment variable Dg,t interacted with a group-level binary
variable Ig, and with (1 − Ig).3 For instance, to study if the treatment effect differs in poor
and rich counties, one interacts the treatment with an indicator for counties above the median
income, and with an indicator for counties below the median income. Theorem 1 also applies to
those regressions. Specifically, one has

βI=1
fe = E

 ∑
(g,t):Dg,t=1,Ig=1

Ng,t

N1
wg,t∆g,t +

∑
(g,t):Dg,t=1,Ig=0

Ng,t

N1
wg,t∆g,t

 .
3Researchers may instead have Dg,t and Dg,tIg in the regression. The coefficient on Dg,t in this regression is

equal to that on Dg,t(1 − Ig) in the regression described in the text. The coefficient on Dg,tIg is equal to the
difference between that on Dg,tIg and that on Dg,t(1 − Ig) in the regression described in the text. Accordingly,
the discussion in this section also applies to those regressions.
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where βI=1
fe is the coefficient on Dg,t×Ig, and ∆g,t = Yg,t(1)−Yg,t(0). The previous display implies

that the coefficient on Dg,t × Ig is contaminated by the treatment effect in (g, t) cells such that
Ig = 0. In the example, the coefficient on the treatment interacted with the indicator for rich
counties is contaminated by the treatment effect in poor counties. This calls into question the
use of such TWFE regressions to estimate heterogeneous effects.

This contamination phenomenon disappears if the time fixed effects are interacted with Ig in
the regression. Then, the coefficient on Dg,t × Ig becomes equivalent to that one would obtain
by running a TWFE regression restricting the sample to groups such that Ig = 1. It follows
from de Chaisemartin and D’Haultfœuille (2020) that this coefficient identifies a weighted sum
of the treatment effects across (g, t) cells such that Dg,t = 1, Ig = 1: it is not contaminated by
the treatment effect in (g, t) cells such that Dg,t = 1, Ig = 0.

3.3 Should one control for other treatments?

In this section, we derive a decomposition similar to that in Theorem 1, when there are two
treatments but the second treatment is omitted from the regression.

Regression 2 (Short TWFE regression)

Let βs
fe = E

[
β̂s

fe

]
, where β̂s

fe denotes the coefficient on D1
g,t in a sample OLS regression of Yg,t

on group fixed effects, period fixed effects, and D1
g,t, weighted by Ng,t.

Let εs
g,t denote the residual of cell (g, t) in the sample regression of D1

g,t on group and period
fixed effects. If the regressors in Regression 2 are not collinear, the average value of εs

g,t across
all (g, t) cells with D1

g,t = 1 differs from 0: ∑(g,t):D1
g,t=1(Ng,t/N1)εs

g,t ̸= 0. Then we let ws
g,t denote

εs
g,t divided by that average:

ws
g,t =

εs
g,t∑

(g,t):D1
g,t=1(Ng,t/N1)εs

g,t

.

Theorem 3 Suppose that Assumptions 1-3 hold and K = 2. Then,

βs
fe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
ws

g,t∆1
g,t +

∑
(g,t):D2

g,t=1

Ng,t

N1
ws

g,t∆2
g,t

 . (13)

Moreover, ∑(g,t):D1
g,t=1(Ng,t/N1)ws

g,t = 1 and ∑(g,t):D2
g,t=1(Ng,t/N1)ws

g,t may differ from zero.

Theorem 3 is similar to Theorem 1. It shows that the coefficient on D1
g,t in the short regression

identifies the sum of two terms. The first term in Theorem 3 is similar to that in Theorem 1,
namely a weighted sum of the effect of moving D1

g,t from 0 to 1 while keeping D2
g,t at its observed

value, but with different weights that still sum to one. The second term in Theorem 3 is also
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similar to that in Theorem 1, namely a weighted sum of the effect of moving D2
g,t from 0 to

1 while keeping D1
g,t at 0, but with different weights that no longer sum to zero. Note that

Theorem 3 can easily be extended to instances with more than two treatments.

Theorem 3 may be seen as a version of the standard omitted variable bias (OVB) formula, for
TWFE regressions and with heterogeneous treatment effects. Allowing for heterogeneous treat-
ment effects in this OVB formula has one important consequence. With constant treatment
effects, there is no OVB if the omitted variable D2

g,t is uncorrelated with εs
g,t, the residual of D1

g,t

from a regression on group and time FEs. On the other hand, with heterogeneous treatment ef-
fects, there may be an OVB even if D2

g,t and εs
g,t are uncorrelated, if ∑(g,t)(Ng,t/N1)ws

g,tD
2
g,t∆2

g,t ̸=
0, namely if D2

g,t∆2
g,t and εs

g,t are correlated. Conversely, there is no OVB if D2
g,t∆2

g,t and εs
g,t are

uncorrelated, but this condition is strong, and unlike the standard condition that D2
g,t and εs

g,t

be uncorrelated, it is untestable. The implication of this result is that in TWFE regressions, if
treatment effects are heterogeneous, failing to control for other treatments may lead to an OVB
even if those other treatments are uncorrelated with the main treatment of interest.4

The previous paragraph may seem to imply that in TWFE regressions, one should control
for all the time-varying treatments one observes, if not for all that exist. And indeed, under
constant effects and a parallel trends assumption on Yg,t(0, 0), omitting the second treatment
from the regression leads to an omitted variable bias, and including the second treatment into the
regression is always preferable. But again, this logic breaks down under heterogeneous treatment
effects. Then, including the second treatment into the regression may not be preferable: D1

g,t’s
coefficient in the long regression may be more biased for δAT T than D1

g,t’s coefficient in the short
regression. The following corollary formalizes this idea.

Corollary 2 Suppose that Assumptions 1-3 hold, K = 2, and there is a real number B such
that |∆1

g,t| ≤ B and |∆2
g,t| ≤ B for all (g, t). Then,

|βfe − δAT T | ≤ B × E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
|wg,t − 1| +

∑
(g,t):D2

g,t=1

Ng,t

N1
|wg,t|

 ,
|βs

fe − δAT T | ≤ B × E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
|ws

g,t − 1| +
∑

(g,t):D2
g,t=1

Ng,t

N1
|ws

g,t|

 .
Moreover, both upper bounds are sharp.

4Not all OLS regressions are subject to this issue in the presence of heterogeneous treatment effects. For
instance, in an RCT, if one regresses the outcome on the treatment omitting other determinants of the outcome,
there will be no OVB in the regression, because the effect of those other determinants of the outcome is by design
uncorrelated with the treatment assignment. In TWFE regressions on the other hand, there is no guarantee that∑

(g,t)(Ng,t/N1)ws
g,tD

2
g,t∆2

g,t = 0.
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Corollary 2 assumes that the effects of the first and second treatments are both bounded in
every (g, t) cell by a constant B. Under that assumption, it gives the maximal biases of β̂fe and
β̂s

fe as estimators of δAT T , the ATT of D1
g,t controlling for D2

g,t. One can compare those maximal
biases by comparing (estimates of)

E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
|wg,t − 1| +

∑
(g,t):D2

g,t=1

Ng,t

N1
|wg,t|


and

E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
|ws

g,t − 1| +
∑

(g,t):D2
g,t=1

Ng,t

N1
|ws

g,t|

 ,
which does not require specifying B.5 The maximal bias of β̂fe could be larger than that of β̂s

fe,
if for (g, t)s such that D1

g,t = 1 the weights wg,t are on average further away from one than the
weights ws

g,t, and/or if for (g, t)s such that D2
g,t = 1 the contamination weights wg,t are on average

further away from zero than the weights ws
g,t. In our application in Section 5, we find that the

estimated maximal bias of the long regression is almost five times larger than that of the short
regression. Then, the short regression is preferable, at least per our maximal-bias metric.

3.4 Related literature

3.4.1 TWFE regressions with control variables

Theorem S4 in the Web Appendix of de Chaisemartin and D’Haultfœuille (2020) studies TWFE
regressions with one treatment and some time-varying control variables Xg,t.6 It assumes that for
some vector θ, E (Yg,t(0) − Yg,t−1(0) − (Xg,t −Xg,t−1)′θ) does not vary across groups. In other
words, groups may experience different trends, but those are fully accounted for by a linear model
in the evolution of their covariates. Under that assumption, de Chaisemartin and D’Haultfœuille
(2020) show that TWFE regressions with one treatment and some controls identify a weighted
sum of the treatment effects across all treated (g, t) cells, with weights that differ from those
without controls.

Theorems 1 and 2 are related to, but different from, that result. For instance, with D2
g,t as

the only control variable in the regression, the weighted sum of treatment effects identified
by βfe in Theorem S4 of de Chaisemartin and D’Haultfœuille (2020) is identical to the first
weighted sum in Theorem 1. On the other hand, the second weighted sum in Theorem 1, the

5A similar result holds if we consider distinct bounds B1 and B2 for |∆1
g,t| and |∆2

g,t|. Then, one has to multiply∑
(g,t):D2

g,t=1(Ng,t/N1)|wg,t| by (B2/B1) when performing the comparison of the maximal biases. Hence, in this
case, one needs to take a stand on the ratio B2/B1.

6With time-invariant group-level controls, the TWFE regression is not identified.
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contamination term, does not appear in Theorem S4 of de Chaisemartin and D’Haultfœuille
(2020). The only case where the decompositions in Theorems 1 and 2 reduce to that in Theorem
S4 of de Chaisemartin and D’Haultfœuille (2020) is when the effect of the other treatments do
not vary across (g, t) cells, an often implausible assumption.

Treating a variable in Regression 1 as a covariate or as a treatment leads to different decompo-
sitions of βfe, so it is important to weigh this choice carefully. In principle, any variable that
has a causal effect on the outcome, in the sense that different values of that variable lead to
different counterfactual outcomes, should be regarded as a treatment. Covariates, on the other
hand, are variables that do not have a causal effect on the outcome, though their evolution may
be correlated with the outcome’s evolution.

Overall, Theorems 1 and 2 are important extensions of Theorem S4 of de Chaisemartin and
D’Haultfœuille (2020). They apply to TWFE regressions where some of the variables in the
regression, other than the main treatment of interest, can affect the outcome and may have
heterogeneous effects. Such regressions are likely to be common in practice.

3.4.2 Linear regressions with several treatments

Theorems 1 and 2 complement the pioneering work of Sun and Abraham (2021). The au-
thors study the so-called event-study regression, an example of a TWFE regression with several
treatments, where the treatments are indicators for having started receiving a single binary-
and-staggered treatment ℓ periods ago. In those regressions, the authors show that effects of
being treated for ℓ′ periods may contaminate the coefficient supposed to measure the effect of ℓ
periods of treatment in the regression, and they provide a decomposition formula one can use
to quantify the extent of the phenomenon. If i) the K treatments in Regression 1 are indicators
for having started receiving a single binary-and-staggered treatment ℓ periods ago, and ii) the
treatment no longer has an effect after K + 1 periods of exposure, then our Theorem 2 reduces
to Proposition 3 in Sun and Abraham (2021), provided no lags are gathered together in the
event-study regression they consider.7 Our decompositions extend their result, by showing that
the contamination bias they first uncovered is much more pervasive: it can arise in any TWFE
regression with several treatments, rather than in event-study regressions only. In particular,
our results apply to situations where the treatments are different, potentially non-mutually ex-
clusive policies, that may not be binary or may not follow a staggered adoption design. Another
difference with their work is that with non-mutually exclusive treatments, the contamination
weights do not sum to zero. We also provide some novel intuition as to why contamination may
arise with different, potentially non-mutually exclusive treatments in the regression. We also

7In their decomposition, Sun and Abraham (2021) gather groups that started receiving the treatment at the
same period into cohorts. Their decomposition can then be further decomposed, finally leading to the result in
our Theorem 2.
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show that TWFE regressions with one treatment intended at measuring heterogeneous treat-
ment effects may also be affected by some form of contamination bias. Finally, we show that
omitting the other treatments from the regression may not necessarily increase the regression
coefficient’s bias.

Theorem 1 is also related to the pioneering work of Hull (2018). In his Section 2.2, the author
studies TWFE regressions where indicators for each value that a multinomial treatment may
take are included in the regression, an example of a TWFE regression with several treatments.
Equation (15) therein is, to our knowledge, the first instance where a contamination phenomenon
was shown. However, the paper does not discuss this phenomenon. It also does not give a
decomposition formula like Theorem 1, so one cannot use the paper’s results to compute the
contamination weights, and assess whether they are important in a given regression. Finally,
the paper’s result applies when the data has two periods, and in instances were the treatments
in the regression are indicators for each value that a multinomial treatment may take.

Another related paper, released after ours, is Goldsmith-Pinkham, Hull and Kolesár (2021),
who show that a contamination phenomenon similar to that in Sun and Abraham (2021) and
in Theorem 1 also arises in linear regressions with several treatments, and a set of controls such
that the treatments can be assumed to be independent of the potential outcomes conditional
on those controls. Their result is not nested within and does not nest the results of Sun and
Abraham (2021) nor ours: both Sun and Abraham (2021) and us assume parallel trends rather
than conditional independence. The weights in their decomposition are functions of the variance-
covariance matrix of the treatments conditional on the controls. An interesting difference with
our results is that under their conditional independence assumption, the weights on the effect of
D1

g,t are all positive.

Overall, our four papers complement each other, and show that the contamination phenomenon is
very pervasive, as it arises under several identifying assumptions (parallel trends and conditional
independence), and irrespective of the nature of the treatments included in the regression.

4 Alternative estimator

4.1 Identifying assumption

In this section, we start by considering the following identifying assumption.

Assumption 4 (Strong exogeneity and common trends from t − 1 to t, conditional on Dg,t−1)
For all (g, t) ∈ {1, ..., G} × {2, ..., T} and all dt−1 ∈ {0, 1}K,

1. E(Yg,t(dt−1) − Yg,t−1(dt−1)|Dg,1, ..., Dg,t−2, Dg,t−1 = dt−1, Dg,t, ..., Dg,T ) = E(Yg,t(dt−1) −
Yg,t−1(dt−1)|Dg,t−1 = dt−1).
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2. E(Yg,t(dt−1) − Yg,t−1(dt−1)|Dg,t−1 = dt−1) does not vary across g.

Like Assumption 3, Assumption 4 imposes both a strong exogeneity and a parallel trends condi-
tion. The strong exogeneity condition requires that groups’ t− 1-to-t outcome evolution, in the
counterfactual scenario where their period-t treatments all remain at their t− 1 value, be mean
independent of their treatments at every period other than t−1. The parallel trends assumption
requires that groups with the same period-t−1 treatments have the same counterfactual trends.
Then, consider a group whose first treatment changes between t − 1 and t, but whose other
treatments remain constant. Under Assumption 4, the t−1-to-t evolution of its outcome had its
first treatment not changed is identified by the outcome evolution of groups whose treatments
all remain constant and with the same period-t− 1 treatments.

We now compare our new assumption, Assumption 4, to the more standard Assumption 3.
The two assumptions are non-nested, and there are two main differences between them. First,
Assumption 3 requires that all groups be on parallel trends, over the entire duration of the
panel. Assumption 4, on the other hand, only requires that groups with the same period-t − 1
treatments be on parallel trends, from t − 1 to t. Assumption 4 may then be more plausible:
groups with the same treatments in the baseline period may be more similar, and may be more
likely to experience parallel trends.8 Moreover, parallel trends may be more likely to hold over
consecutive time periods than over the panel’s entire duration.

Second, Assumption 3 is a parallel trends assumption in the counterfactual where groups do not
receive any treatment, while Assumption 4 is a parallel trends assumption in the counterfactual
where groups’ treatments do not change from t − 1 to t. Accordingly, Assumption 3 only
restricts one potential outcome, the one without any treatment, while Assumption 4 imposes
restrictions on many potential outcomes. Still, Assumption 4 does not impose any restriction
on treatment effect heterogeneity, because it restricts only one potential outcome per (g, t) cell,
namely Yg,t(dt−1) for (g, t) cells such that Dg,t−1 = dt−1. In particular, Assumption 4 does
not require that all groups experience the same evolution of their treatment effect. Moreover, in
complicated designs where the number of treatments is large and/or when the treatments are non
binary, Assumption 4 may have considerably more identifying power than Assumption 3. Under
Assumption 3, an heterogeneity-robust DID estimator can only use as controls groups that do not
receive any treatment at two dates at least. Moreover, treatment effects can only be estimated

8Because it imposes parallel trends conditional on Dg,t−1, Assumption 4 may be seen as “in-between” a stan-
dard parallel trends assumption and the sequential ignorability assumption, another commonly-used identifying
assumption in panel data models (see, e.g., Robins, 1986; Bojinov, Rambachan and Shephard, 2021). Sequen-
tial ignorability requires that treatment be uncounfounded conditional on prior treatment and outcome, which
implies parallel trends conditional on prior treatment and outcome. Because Assumption 4 does not condition
on groups’ t − 1 outcomes, it may be less plausible than sequential ignorability. At the same time, estimators
relying on sequential ignorability need to compare groups with the same prior treatments and outcomes. This
may lead to a curse of dimensionality.
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for groups that do not receive any treatment at one date at least. With many treatments and/or
when the treatments are non binary, those two sets of groups may be small. In our empirical
application in Section 5, there are two non-binary treatments, and while there are (g, t) cells
whose two treatments are equal to 0, there is no group that does not receive any of the two
treatments at two dates at least. Accordingly, we cannot construct an heterogeneity-robust DID
estimator relying on Assumption 3, while we can construct one relying on Assumption 4.

We also consider a second identifying assumption.

Assumption 5 (Strong exogeneity and common trends from t−1 to t, conditional on Dg,t) For
all (g, t) ∈ {1, ..., G} × {2, ..., T} and all dt ∈ {0, 1}K,

1. E(Yg,t(dt)−Yg,t−1(dt)|Dg,1, ..., Dg,t−1, Dg,t = dt, Dg,t+1, ..., Dg,T ) = E(Yg,t(dt)−Yg,t−1(dt)|Dg,t =
dt).

2. E(Yg,t(dt) − Yg,t−1(dt)|Dg,t = dt) does not vary across g.

Assumption 5 is similar to Assumption 4, except that it assumes parallel trends from t− 1 to t,
in the counterfactual where groups keep their period-t rather than their period-t− 1 treatments.
Assumptions 4 and 5 are both parallel trends assumptions over two consecutive periods, among
groups with the same treatments at one of the two periods. Accordingly, in instances where
Assumption 4 is plausible, Assumption 5 may be plausible too. Imposing jointly Assumptions 4
and 5 may imply that the treatment effects follow the same evolution over time in some groups.9

4.2 Target parameters

Let

S1 =
{

(g, t) : t ≥ 2, D1
g,t ̸= D1

g,t−1, D
−1
g,t = D−1

g,t−1,∃g′ : Dg′,t = Dg′,t−1 = Dg,t−1

}

and NS1 = ∑
(g,t)∈S1 Ng,t. S1 is the set of cells (g, t) whose first treatment changes between t− 1

and t while their other treatments do not change, and such that there is another group g′ whose
treatments do not change between t − 1 and t, and with the same treatments as g in t − 1.
Hereafter, those cells are referred to as switchers. We show below that under Assumption 4, one
can unbiasedly estimate

δ1 = E

 ∑
(g,t)∈S1

Ng,t

NS1

∆1
g,t

 ,
9For instance, if K = 1, G = 4, T = 2, D1

1,1 = D1
1,2 = 0, D1

2,1 = D1
2,2 = 1, D1

3,1 = 0, D1
3,2 = 1, and

D1
4,1 = 1, D1

4,2 = 0, one can show that together, Assumptions 4 and 5 imply that the treatment effect follows the
same evolution in groups 3 and 4.
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the average effect of moving the first treatment from 0 to 1 while keeping all other treatments
at their observed value, across all switchers.10

δ1 may differ from δAT T , arguably a more natural target parameter. The two parameters apply
to different and non-nested sets of (g, t) cells. Let D1 = {(g, t) : D1

g,t = 1}. δ1 is the average of
∆1

g,t across all cells in S1. δAT T is the average effect of ∆1
g,t across all cells in D1.

(g, t) cells belonging to D1 but not to S1 can be divided into five mutually exclusive subgroups,
detailed in Section 1 of the Web Appendix. Identifying the effect of the first treatment in each of
those subgroups would require imposing stronger assumptions than Assumption 4. For instance,
the first subgroup belonging to D1 but not to S1 are all (g, t)s such that D1

g,t = 1 for all t. As
those cells’ first treatment never changes, their first-treatment’s effect cannot be identified under
a parallel trends assumption. The second and third subgroups are cells whose first-treatment’s
effect could only be identified under a stronger parallel trends assumption than Assumption 4,
which only imposes parallel trends over consecutive periods and conditional on cells’ period-
t − 1 treatments. The fourth subgroup are cells whose first treatment changes while at least
one of their other treatment also changes. Identifying their first-treatment’s effect would require
assuming that the effect of the other treatments is constant between groups, as discussed in
Section 3.2.1 (see Equation (10) therein). The fifth subgroup are cells whose first treatment
changes while their other treatments do not change, but such that all potential control cells
experiencing no treatment change have different baseline treatments. Identifying their first-
treatment’s effect would require assuming that the effects of the other treatments are constant
over time, as discussed in Section 3.2.1 (see Equation (12) therein). Therefore, S1 is the maximal
set of (g, t) cells for which the effect of the first treatment can be identified under a minimal
parallel trends assumption and without restricting treatment effect heterogeneity.

Finally, while we expect S1 to be often smaller than D1, there are also (g, t) cells that belong
to S1 but not to D1. Those are the switching-out cells, such that D1

g,t = 0, D1
g,t−1 = 1, D−1

g,t =
D−1

g,t−1,∃g′ : Dg′,t = Dg′,t−1 = Dg,t−1.

As δ1 and δAT T apply to different, non-nested subpopulations, a significant difference between
β̂fe and the estimator of δ1 we propose below cannot be interpreted as evidence that β̂fe is biased
for δAT T . It could also be the case that β̂fe is unbiased for δAT T and δ1 and δAT T differ. On the
other hand, under Assumptions 3 and 4, a significant difference between β̂fe and the estimator
of δ1 implies that the effect of at least one treatment is not constant.

Similarly, we show below that under Assumption 5, one can unbiasedly estimate

δ2 = E

 ∑
(g,t)∈S2

Ng,t

NS2

∆1
g,t

 ,
10When NS1 = 0, we simply let the term inside brackets be equal to 0.
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where

S2 =
{

(g, t) : t ≤ T − 1, D1
g,t ̸= D1

g,t+1, D
−1
g,t = D−1

g,t+1,∃g′ : Dg′,t = Dg′,t+1 = Dg,t+1

}
,

and NS2 = ∑
(g,t)∈S2 Ng,t. S2 is the set of cells (g, t) whose first treatment changes between t

and t + 1 while their other treatments do not change, and such that there is another group g′

whose treatments do not change between t and t + 1, and with the same treatments as g in
t+ 1. S1 and S2 are not necessarily disjoints: a (g, t) cell experiencing two consecutive changes
of its first treatment (D1

g,t−1 ̸= D1
g,t and D1

g,t ̸= D1
g,t+1) may belong both to δ1 and to δ2. On the

other hand, a (g, t) cell that does not experience two consecutive changes of its first treatment
(D1

g,t−1 = D1
g,t or D1

g,t = D1
g,t+1) may belong to δ1 or to δ2 but cannot belong to both sets.

Finally, under Assumptions 4 and 5, one can unbiasedly estimate

δ = E

 ∑
(g,t)∈S1∪S2

Ng,t

NS1∪S2

∆1
g,t

 ,
where NS1∪S2 = ∑

(g,t)∈S1∪S2 Ng,t.

4.3 Estimation

We now show that under Assumption 4, δ1 can be unbiasedly estimated by a weighted average
of DIDs. For all t ∈ {2, ..., T}, for all (d, d′) ∈ (D1)2, and for all d−1 ∈ D2 × ...× DK , let

Gd,d′,d−1,t =
{
g : D1

g,t = d,D1
g,t−1 = d′, D−1

g,t = D−1
g,t−1 = d−1

}
be the set of groups whose first treatment goes from d′ to d from t − 1 to t while their other
treatments are equal to d−1 at both dates. We then let Nd,d′,d−1,t = ∑

g∈Gd,d′,d−1,t
Ng,t denote the

total population of groups in Gd,d′,d−1,t. Let also

DIDf
+,d−1,t =

∑
g∈G1,0,d−1,t

Ng,t

N1,0,d−1,t

(Yg,t − Yg,t−1) −
∑

g∈G0,0,d−1,t

Ng,t

N0,0,d−1,t

(Yg,t − Yg,t−1) , (14)

DIDf
−,d−1,t =

∑
g∈G1,1,d−1,t

Ng,t

N1,1,d−1,t

(Yg,t − Yg,t−1) −
∑

g∈G0,1,d−1,t

Ng,t

N0,1,d−1,t

(Yg,t − Yg,t−1) . (15)

Note that DIDf
+,d−1,t is not defined when N1,0,d−1,t = 0 or N0,0,d−1,t = 0. In such instances, we let

DIDf
+,d−1,t = 0. Similarly, we let DIDf

−,d−1,t = 0 when N1,1,d−1,t = 0 or N0,1,d−1,t = 0.

DIDf
+,d−1,t compares the t− 1-to-t outcome evolution of groups whose first treatment goes from

0 to 1 from t−1 to t while their other treatments are equal to d−1 at both dates, to the outcome
evolution of groups whose first and other treatments are respectively equal to 0 and d−1 at
both dates. Under Assumption 4, the latter evolution is a valid counterfactual of the outcome
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evolution that the first groups would have experienced if their first treatment had remained equal
to 0 at period t. DIDf

−,d−1,t’s interpretation is similar, except that it compares groups whose first
treatment is equal to 1 at both dates to groups whose first treatment goes from 1 to 0.

Finally, let

DIDf
M =

T∑
t=2

∑
d−1∈{0,1}K−1

(
N1,0,d−1,t

NS1

DIDf
+,d−1,t + N0,1,d−1,t

NS1

DIDf
−,d−1,t

)
(16)

if NS1 > 0, and DIDf
M = 0 if NS1 = 0. DIDf

M is just a weighted average of the DIDf
+,d−1,t and

DIDf
−,d−1,t estimators, across values of the other treatments d−1 and across time periods t.

Theorem 4 If Assumptions 1-2 and 4 hold, E
[
DIDf

M

]
= δ1.

DIDf
M extends the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020) to settings

with several treatments. With several treatments, one could show the analogue of Theorem 3 for
the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020): the fact that this estimator
does not control for the other treatments may lead to a bias, even if switchers and non-switchers
are equally likely to experience a change in their other treatments, the analogue of having that
the treatments are uncorrelated conditional on the group and time fixed effects in the TWFE
regression. To avoid that, the DIDf

M and DIDM estimators differ on three important dimensions:
DIDf

M does not estimate the effect of the first treatment in (g, t) cells such that at least one of
g’s other treatments changes between t− 1 and t; it drops control groups whose first treatment
does not change but such that at least one of their other treatments changes between t − 1
and t; and it compares switchers and non-switchers with the same baseline values of their other
treatments. All those modifications ensure that our new estimator is not biased in the presence
of other treatments with potentially heterogeneous treatment effects, but they may also come
at a cost in terms of precision: the DIDf

M estimator in this paper discards several cells from the
estimation. Accordingly, there may be a bias-variance trade-off between the two estimators.

Like in de Chaisemartin and D’Haultfœuille (2020), it is straightforward to propose a placebo
version of the DIDf

M estimator that one can use to test Assumption 4. To do so, one just needs
to replace Yg,t − Yg,t−1 by Yg,t−1 − Yg,t−2 in Equations (14) and (15) above, and exclude from
the estimation groups experiencing a change in any of their treatments from t− 2 to t− 1. The
resulting placebo estimator compares the outcome evolution of switchers and non-switchers,
before switchers switch.

The DIDf
M estimator can be extended to accommodate discrete non-binary treatments taking

values in D1 = {0, ..., d}, like the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020)
(see Section 4 of the Web Appendix of de Chaisemartin and D’Haultfœuille, 2020). For all
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t ∈ {2, ..., T}, for all (d, d′) ∈ (D1)2, and for all d−1 ∈ D2 × ...× DK , let

DIDf
d,d′,d−1,t = [1{d′ < d} − 1{d < d′}]

[ ∑
g∈Gd,d′,d−1,t

Ng,t

Nd,d′,d−1,t

[Yg,t − Yg,t−1]

−
∑

g∈Gd′,d′,d−1,t

Ng,t

Nd′,d′,d−1,t

[Yg,t − Yg,t−1]
]

be a DID estimator comparing the t− 1-to-t outcome evolution in groups whose first treatment
changes from d′ to d and whose other treatments are equal to d−1 at both dates, to the same
outcome evolution in groups whose treatments do not change and with the same treatments in
t−1. With a non-binary treatment, the DIDf

M estimator is a weighted average of the DIDf
d,d′,d−1,t

estimators, across d, d′, d−1, and t, normalized by the average change of the first treatment among
switchers, to ensure the estimator can be interpreted as an effect produced by a one-unit increase
of the first treatment.

Similarly, under Assumption 5, and getting back to the binary treatment case, δ2 can be unbi-
asedly estimated by a weighted average of DIDs. For all t ∈ {1, ..., T − 1}, for all (d, d′) ∈ (D1)2,
and for all d−1 ∈ D2 × ...×DK , let Nd,d′,d−1,t+1,t = ∑

g∈Gd,d′,d−1,t+1
Ng,t denote the total population,

at period t, of groups in Gd,d′,d−1,t+1. Then, let

DIDb
+,d−1,t =

∑
g∈G0,1,d−1,t+1

Ng,t

N0,1,d−1,t+1,t

(Yg,t − Yg,t+1) −
∑

g∈G0,0,d−1,t+1

Ng,t

N0,0,d−1,t+1,t

(Yg,t − Yg,t+1) ,

DIDb
−,d−1,t =

∑
g∈G1,1,d−1,t+1

Ng,t

N1,1,d−1,t+1,t

(Yg,t − Yg,t+1) −
∑

g∈G1,0,d−1,t+1

Ng,t

N1,0,d−1,t+1,t

(Yg,t − Yg,t+1) .

In contrast to DIDf
+,d−1,t, which is a “forward” DID, DIDb

+,d−1,t is a “backward” DID, from the
future to the past. It compares the t+ 1-to-t outcome evolution of groups whose first treatment
goes from 0 to 1 from t + 1 to t while their other treatments are equal to d−1 at both dates,
to the outcome evolution of groups whose first and other treatments are respectively equal to 0
and d−1 at both dates. DIDb

−,d−1,t has a similar interpretation, except that it compares groups
whose first treatment is equal to 1 at both dates to groups whose first treatment goes from 1 to
0 from t+ 1 to t. Let

DIDb
M =

T −1∑
t=1

∑
d−1∈{0,1}K−1

(
N0,1,d−1,t+1,t

NS2

DIDb
+,d−1,t + N1,0,d−1,t+1,t

NS2

DIDb
−,d−1,t

)
(17)

if NS2 > 0, and DIDb
M = 0 if NS2 = 0. One can show that if Assumptions 1-2 and 5 hold,

E
[
DIDb

M

]
= δ2.

4.4 Dynamic treatment effects

With a single treatment Ds
g,t, DIDf

M can be used to estimate the effect of the current value of
Ds

g,t, allowing for dynamic effects. Assume that (D1
g,t, ..., D

K
g,t) = (Ds

g,t, ..., D
s
g,t−(K−1)). Then,
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our potential outcome notation allows the current treatment and its first K − 1 lags to af-
fect the outcome, so DIDf

M is an estimator of the effect of the current value of Ds
g,t robust to

dynamic effects up to K−1 lags. This is an improvement over the DIDM estimator in de Chaise-
martin and D’Haultfœuille (2020), which is not robust to dynamic effects, except with a binary
and staggered treatment. To achieve some robustness to dynamic effects, DIDf

M restricts the
estimation to groups that did not experience a treatment change from t − K to t − 1. For
instance, with K = 2 and (D1

g,t, D
2
g,t) = (Ds

g,t, D
s
g,t−1), the DIDf

M estimator compares groups
with (Ds

g,t−2, D
s
g,t−1, D

s
g,t) = (0, 0, 1) to groups with (Ds

g,t−2, D
s
g,t−1, D

s
g,t) = (0, 0, 0), and groups

with (Ds
g,t−2, D

s
g,t−1, D

s
g,t) = (1, 1, 0) to groups with (Ds

g,t−2, D
s
g,t−1, D

s
g,t) = (1, 1, 1). On the

other hand, the DIDf
M estimator may not be used to estimate the effect of past treatments

on the outcome. For instance, with K = 2 and (D1
g,t, D

2
g,t) = (Ds

g,t−1, D
s
g,t), S1 is empty: for

any group g such that (Ds
g,t−2 ̸= Ds

g,t−1 = Ds
g,t), there cannot exist another group g′ such that

(Ds
g′,t−2 = Ds

g′,t−1 = Ds
g′,t), and (Ds

g′,t−2, D
s
g′,t−1) = (Ds

g,t−2, D
s
g,t−1).

The opposite applies to DIDb
M: it may not be used to estimate the effect of the current treatment

allowing for dynamic effects, but it may be used to estimate the effect of past treatments on
the outcome. For instance, with K = 2 and (D1

g,t, D
2
g,t) = (Ds

g,t−1, D
s
g,t), S2 is not empty: it

contains all (g, t) cells such that Ds
g,t−1 ̸= Ds

g,t = Ds
g,t+1, for which there exists another group g′

such that Ds
g′,t−1 = Ds

g′,t = Ds
g′,t+1 = Ds

g,t+1. Then, DIDb
M is a weighted average of two types

of DIDs. DIDs of the first type compare the t + 1 to t outcome evolution between groups such
that Ds

g,t−1 = 1, Ds
g,t = 0, Ds

g,t+1 = 0 and groups such that Ds
g,t−1 = 0, Ds

g,t = 0, Ds
g,t+1 = 0.

DIDs of the second type compare the t + 1 to t outcome evolution between groups such that
Ds

g,t−1 = 1, Ds
g,t = 1, Ds

g,t+1 = 1 and groups such that Ds
g,t−1 = 0, Ds

g,t = 1, Ds
g,t+1 = 1. If the

current outcome only depends on the current treatment and its first lag, and if Assumption 5
holds for (D1

g,t, D
2
g,t) = (Ds

g,t−1, D
s
g,t), then DIDb

M is unbiased for the average effect of switching
the treatment’s first lag from 0 to 1 holding the current treatment fixed, across all (g, t)s in S2.

Of course, assuming that the current outcome only depends on the current treatment and its
first lag is restrictive. One could instead assume, say, that the current outcome only depends
on the current treatment and its first two lags. Then, with K = 3 and (D1

g,t, D
2
g,t, D

3
g,t) =

(Ds
g,t−2, D

s
g,t−1, D

s
g,t), DIDb

M is unbiased for the average effect of switching the treatment’s second
lag from 0 to 1, holding the current treatment and its first lag fixed, across all (g, t) cells in
S2. S2 now becomes the set of all (g, t) cells such that Ds

g,t−2 ̸= Ds
g,t−1 = Ds

g,t = Ds
g,t+1 and for

which there exists another group g′ such that Ds
g′,t−2 = Ds

g′,t−1 = Ds
g′,t = Ds

g′,t+1 = Ds
g,t+1. S2

contains fewer cells with K = 3 and (D1
g,t, D

2
g,t, D

3
g,t) = (Ds

g,t−2, D
s
g,t−1, D

s
g,t) than with K = 2 and

(D1
g,t, D

2
g,t) = (Ds

g,t−1, D
s
g,t): allowing more treatment lags to affect the outcome may be more

plausible, but it may also result in less precise estimators, that apply to a smaller population.
Note also that with dynamic effects up to K − 1 treatment lags, DIDb

M can be used to estimate
the effect of the K − 1th lag, but it cannot be used to estimate the effect of earlier lags.
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Overall, DIDf
M and DIDb

M can be used for some but not for all purposes in the presence of
a single treatment with dynamic effects. Assuming constant treatment effects, one can use a
TWFE regression of the outcome on the treatment and its lags, the so-called distributed lag
regression, to separately estimate the effect of the current and past treatments on the outcome.
Separately estimating each of those effects while allowing for heterogeneous treatment effects is
inherently difficult. This may be the reason why a substantial branch of the heterogeneity-robust
DID literature has instead proposed to estimate the total effect of current and past treatments
on the outcome (see Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; de Chaisemartin
and D’Haultfœuille, 2021a; Borusyak, Jaravel and Spiess, 2021). This literature has focused
on the case with one treatment. In Section 2 of the Web Appendix, we extend that literature,
and propose estimators of instantaneous and dynamic effects when there are several binary and
staggered treatments. Those estimators can also be used in the presence of a single treatment
that can change multiple times, to isolate the effect of each treatment change. For instance, with
a treatment that can switch on and then off, one may be interested in separately estimating the
effect of switching the treatment on/off.

4.5 Inference

In Section 3 of the Web Appendix, we prove the asymptotic normality of DIDf
M when the number

of groups goes to infinity, and we propose confidence intervals. Those results are established
under similar assumptions and arguments as those used to show the asymptotic normality of
the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020) (see Theorem S6 in the
Web Appendix therein), without any important conceptual difference. One limitation of this
approach, though, is that the asymptotic approximation may not be accurate. DIDf

M compares
carefully selected treatment and control groups, and it could be the case that only a small
number of groups can be included in those comparisons. The larger the number of treatments,
the more likely it is that DIDf

M uses data from a small number of groups. In this section, we
deal with this issue by proposing confidence intervals that are exact in a finite sample of groups
under a normality assumption, in the spirit of Donald and Lang (2007). The exactness of those
confidence intervals relies on strong conditions, but they remain asymptotically valid under
much weaker assumptions. The main price to pay for using them, rather than those described
in Section 3 of the Web Appendix, is that doing so may result in an adjustment of the definition
of δ1, as explained below.

To ease the exposition, in this section we condition on D. Accordingly, functions of D can be
treated as non-stochastic terms. For simplicity, we also assume that Ng,t = 1 for all (g, t). Let
s = 1, ..., S index “switches”, that is to say a K + 2-uple (d, d′, d−1, t) with d ̸= d′ for which
there exists (g, g′) satisfying D1

g,t = d, D1
g,t−1 = D1

g′,t−1 = D1
g′,t = d′ and D−1

g,t = D−1
g,t−1 = D−1

g′,t =
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D−1
g′,t−1 = d−1. Then, note that

DIDM =
S∑

s=1
αsDIDs,

for some non-stochastic weights (αs)s=1,...,S, where DIDs is the DID corresponding to switch s.
Let Gs denote the set of groups intervening in DIDs, either as a “switcher” or as a “control”.
The following assumption is needed to ensure the validity of our approach.

Assumption 6 (Non-overlapping groups) for any (s, s′) ∈ {1, ..., S}2, s ̸= s′, Gs ∩ Gs′ = ∅.

Note that Assumption 6 automatically holds with T = 2. Otherwise, it is more likely to hold if
T is small. When Assumption 6 fails, we can ensure it holds on a modified sample, by removing
groups belonging to several sets Gs from all those sets except one. This sample modification
will modify the estimator DIDf

M. It may also lead to removing a switching group from a set
Gs. This would change the target parameter, which would become the average treatment effect
across all switching cells in the modified sample, in lieu of δ1, the average treatment effect across
all switching cells in the original sample. For simplicity, we still denote the parameter and its
estimator on the modified sample δ1 and DIDf

M.

Our confidence interval relies on the following variance estimator:

V̂ =
S∑

s=1
α2

s

 1
n1s(n1s − 1)

∑
g∈G1s

(∆Yg,ts − ∆Y 1s)2 + 1
n0s(n0s − 1)

∑
g∈G0s

(∆Yg,ts − ∆Y 0s)2

 ,
where G1s (resp. G0s) is the subset of switching (resp. control) cells in Gs, nks =card(Gks), and
∆Y ks is the average of ∆Yg,ts over g ∈ Gks. Our definition of V̂ uses the convention that 0/0=0.

Next, let q1−α denote the quantile of order 1 − α of |T |, defined as

T =
( ∑S

s=1 α
2
s (1/n1s + 1/n0s)∑S

s=1 α
2
s [W1s/[n1s(n1s − 1)] +W0s/[n0s(n0s − 1)]]

)1/2

× Z, (18)

where (Z,W01,W11, ...,W0S,W1S) are independent of the data, mutually independent and satisfy
Z ∼ N (0, 1) and Wks ∼ χ2(nks − 1). Note that q1−α does not have a closed-form expression, but
it can be approximated by simulations.

Then, the confidence interval of order 1 − α we consider is

CI ex
1−α =

[
DIDM ± q1−α

√
V̂
]
.

Below, we introduce two assumptions under which CI ex
1−α is valid: under Assumption 7, CI ex

1−α

is valid in finite samples; under Assumption 8, CI ex
1−α is valid asymptotically.

Assumption 7 (Restrictions for finite-sample validity of CI ex
1−α)
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1. For all s = 1, ..., S and g ∈ Gs, Yg,ts(d1
s, d

−1
s ) − Yg,ts(d1

s
′, d−1

s ) = δ1s where (ts, d1
s, d

1
s

′, d−1
s )

are the (t, d1, d1′, d−1) associated with s and δ1s is non-stochastic.

2. For all s and g ∈ Gs, ∆Yg,ts(0, d−1
s ) ∼ N (µs, σ

2).

Point 1 of Assumption 7 assumes that the first treatment’s effect is homogeneous within each
set of groups s, but may vary across s. Point 2 of Assumption 7 assumes that ∆Yg,ts(0, d−1

s ) is
normally distributed and homoskedastic: the variance of ∆Yg,ts(0, d−1

s ) should not depend on s.

Assumption 8 (Restrictions for asymptotic validity of CI ex
1−α)

1. There exists G0 such that for all G ≥ G0, SG := {(d, d′, d−1, t) : Nd,d′,d−1,t > 0, Nd′,d′,d−1,t >

0} does not vary across G and is finite. We denote by S its cardinal.11

2. For all (k, s) ∈ {0, 1}×{1, ..., S}, the (∆Yg,ts)g∈Gks
are i.i.d. and for g ∈ Gks, E[∆Y 2

g,ts
] < ∞

and V (∆Yg,ts) > 0.

3. For all (k, s) ∈ {0, 1} × {1, ..., S}, lim infG→∞ nks/G > 0.

Assumption 8 does not make any treatment-effect homogeneity or homoscedasticity assumption.
Note that we impose that the (∆Yg,ts)g∈Gks

are identically distributed for simplicity. If we instead
assumed that the (∆Yg,ts)g∈Gks

are independent but not identically distributed, one could still
show that CI ex

1−α is asymptotically conservative under appropriate regularity conditions, as in,
e.g., Theorem S6 in the Web Appendix of de Chaisemartin and D’Haultfœuille (2020).

The following theorem shows that CI ex
1−α is exact under Assumption 7, and asymptotically valid

under Assumption 8.

Theorem 5 If Assumptions 1-2, 4, and 6 hold, then, for any α ∈ (0, 1):

1. if Assumption 7 further holds, P
(
δ1 ∈ CI ex

1−α

)
= 1 − α.

2. if Assumption 8 further holds, limG→∞ P
(
δ1 ∈ CI ex

1−α

)
= 1 − α.

Our approach in this section generalizes that in Donald and Lang (2007) to designs with more
than two time periods and/or several treatments. A difference with that paper is that our
confidence intervals use critical values from a non-standard distribution, instead of critical values
from a t-distribution.

11Accordingly, we keep the same indexation for switches s ∈ {1, ..., S} for all G ≥ G0.
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5 Application

In this section, we revisit Hotz and Xiao (2011).12 Unfortunately, many tables in this paper rely
on proprietary data. The only table with TWFE regressions with several treatments that we
can replicate is Table 11. Therefore, we focus on this table in our replication, though it is not
the paper’s main table.

Hotz and Xiao (2011) use a panel of the 50 US states and the District of Columbia, in 1987,
1992, and 1997, to estimate the effect of state center-based daycare regulations, namely the
minimum years of schooling required to be the director of a center-based care and the minimum
staff-to-child ratio, on the demand for family home daycare. Family home day cares are not
subject to those regulations. More stringent regulations may increase the cost of center-based
establishments, but may also increase their safety and quality. Accordingly, the effects of those
regulations on the demand for family home daycare is ambiguous. The distributions of these
regulations are shown in Table 1. The minimum years of schooling is a discrete treatment taking
six values included between 0 (no minimum) and 16, with 14 (associate degree) being the most
frequent value. The minimum staff-to-child ratio is a also discrete treatment variable, taking
seven values included between 0 (no minimum) and 1/3 (one professional per three children),
with 1/4 being the most frequent value.

12This paper is the only one, in the census of TWFE papers published by the AER from 2010 to 2012 that we
conducted in de Chaisemartin and D’Haultfœuille (2020), that has several treatments in the regression, relies at
least partially on non-proprietary data, and for which the treatments are not continuous (thus making it possible
to compute the DIDf

M estimator).
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Table 1: Distribution of the two treatments in Hotz and Xiao (2011)

Min. years of schooling # of (g,t) cells

0 26
12 36
12.5 5
13 4
14 61
16 21

Min. staff-to-child ratio # of (g,t) cells

0 5
1/8 2
1/7 4
1/6 30
1/5 21
1/4 82
1/3 9

Hotz and Xiao (2011) regress the revenue of family home day cares in state g and year t on state
fixed effects, year fixed effects, 12 control variables, the minimum years of schooling required
to be the director of a center-based care, the minimum staff-to-child ratio, and two indicators
for whether there is no such minima, to allow for potentially non-linear effects. In Column (3)
of their Table 11, the coefficient on the minimum years of schooling treatment, β̂X

fe, is equal to
−0.445 and is highly significant (95% confidence interval=[−0.735,−0.155]),13 thus suggesting
that increasing by one the years of schooling required for directors of center-based daycare
decreases the revenue of family home daycare by 0.44 million USD.

Dropping the 12 control variables from the regression does not affect that conclusion very much:
the coefficient on the minimum years of schooling treatment, β̂fe, is now equal to −0.566 and is
still highly significant (95% confidence interval=[−0.852,−0.280]). Below, we study β̂fe, rather
than β̂X

fe, the coefficient estimated by Hotz and Xiao (2011). This is to ensure that the TWFE
estimator we study is comparable to the DIDf

M estimator we compute below: while the DIDf
M

estimator can be extended to allow for control variables, the sample on which it is computed in
this application is not large enough to include 12 control variables.

13This confidence interval is slightly larger than that in Hotz and Xiao (2011), because we cluster standard
errors at the state rather than at the state×year level, which is more in line with the standard practice in
empirical work (see Bertrand, Duflo and Mullainathan, 2004).
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We now show that β̂fe may not be robust to heterogeneous effects across state and years, and
may also be contaminated by the effects of the other treatments in the regression. Following
Corollary 1, this coefficient can be decomposed into the sum of four terms. The first term is a
weighted sum of the effects of increasing by one the years of schooling required in 127 state×year
cells, where 44 effects receive a positive weight and 83 receive a negative weight, and where the
positive and negative weights respectively sum to 7.897 and -6.897. The second term is a sum
of the effects of not having a requirement on directors’ years of schooling in 26 state×year cells,
where 11 effects receive a positive weight and 15 receive a negative weight, and where the positive
and negative weights respectively sum to 0.148 and -0.148. The third term is a sum of the effects
of increasing by one the staff to child ratio in 148 state×year cells, where 51 effects receive a
positive weight and 97 receive a negative weight, and where the positive and negative weights
respectively sum to 0.160 and -0.160. The last term is a sum of the effects of not having a
requirement on staff to child ratio in 5 state×year cells, where 4 effects receive a positive weight
and 1 receive a negative weight, and where the positive and negative weights respectively sum to
0.055 and -0.055. Results are similar for the other three treatment coefficients in the regression,
except that the contamination weights attached to them are even larger. For instance, for the
coefficient on the staff to child ratio treatment, the weighted sum of the effects of the minimum
years of schooling treatment has positive and negative weights summing to 246.222 and -246.222.

When the other three treatment variables are dropped from the regression, the coefficient on
the minimum years of schooling becomes small (−0.020) and insignificant (95% confidence
interval=[−0.114, 0.074]). We follow Theorem 3 to decompose the coefficient in this “short”
regression, and compare it to the coefficient in the “long” regression with the four treatments.
The short regression’s coefficient can be decomposed into the sum of four terms. The first term
is a weighted sum of the effects of increasing by one the years of schooling required in 127
state×year cells, where 56 cells receive a positive weight and 71 receive a negative weight, and
where the positive and negative weights respectively sum to 1.759 and -0.759. Thus, the short
regression has considerably smaller negative weights in this first term than the long regression.
The second term is a sum of the effects of not having a requirement on directors’ years of school-
ing in 26 state×year cells, where 5 effects receive a positive weight and 21 receive a negative
weight, and where the positive and negative weights respectively sum to 0.008 and -0.077. The
third term is a sum of the effects of increasing by one the staff to child ratio in 148 state×year
cells, where 61 effects receive a positive weight and 87 receive a negative weight, and where the
positive and negative weights respectively sum to 0.030 and -0.022. The last term is a sum of
the effects of not having a requirement on staff to child ratio in 5 state×year cells, where all
effects receive a negative weight, and where the negative weights sum to -0.035. Thus, the short
regression also has considerably less contamination weights than the long regression. Accord-
ingly, the estimated maximal bias in Corollary 2 is almost five times lower for the short than for
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the long regression (4.233 × B versus 20.741 × B), so the short regression is preferable per this
maximal-bias metric.

Finally, we compute the estimator proposed in Section 4, for the minimum years of schooling
treatment, controlling for the staff-to-child ratio treatment. Our estimators do not assume linear
treatment effects, so we do not need to control for the indicators for whether there is no such
minima.

There are 127 (g, t) cells with a non-zero minimum years of schooling. On the other hand,
there are only five (g, t) cells in S1, all of which have a non-zero minimum years of schooling.
The 5 (g, t) cells our estimator applies to are (Kentucky,1992), (Minnesota,1992), (Utah,1992),
(Vermont,1992), and (Rhode Island,1997).14 Of the 122 (g, t) cells we lose when focusing on S1,
93 belong to the first subgroup in Appendix 1, 19 belong to the second or third subgroup, and
10 belong to the fourth or fifth subgroup. Therefore, the vast majority of the cells we lose do
not experience any change of their minimum years of schooling, so their treatment effect cannot
be identified under a parallel trends assumption. We may seem to lose 19 cells by imposing only
a minimal parallel trends assumption. In reality, estimating the treatment effects of 14 of the 19
cells in the second or third subgroup would also require assuming that the effect of the minimum
staff-to-child ratio is homogeneous: either their minimum staff-to-child ratio also changes when
their minimum years of schooling changes, or they cannot be matched to a control state with
the same baseline treatments.

We find that DIDf
M = −0.029. DIDf

M uses data from 5 switching and 19 control (g, t) cells, so the
asymptotic approximation in Section 3 of the Web Appendix may not be very reliable for that
estimator. Instead, we compute the confidence interval CI ex

1−α for α = 0.95 and find that it is
equal to [−0.821, 0.807].15 In this application, the assumption that the first-differenced outcome
is normally distributed is not rejected. We conduct a Shapiro-Wilk test separately for the 1987
to 1992 and for the 1992 to 1997 first differences, as the test assumes independent observations.
None of the two tests is rejected (p-value= 0.98 and 0.46, respectively).

To gain precision, one may further impose Assumption 5. Doing so allows us to use DIDb
M

to estimate the treatment effect in five (g, t) cells in S2. S1 and S2 do not overlap and have
the same numbers of cells, so we can also use 1/2(DIDf

M + DIDb
M) to estimate δ, the average

treatment effect in S1 ∪ S2. We find that 1/2(DIDf
M + DIDb

M) = −0.016. 1/2(DIDf
M + DIDb

M)
uses data from 50 (g, t) cells, coming from 30 different states. The asymptotic approximation

14For the staff-to-child ratio treatment, the set S1 is even smaller as it only contains two (g, t) cells. This is
why we focus on the minimum-years-of-schooling treatment.

15CI ex
1−α relies on Assumption 6, which does not hold in our data: Rhode Island and Washington are used

twice in DIDf
M. Removing these two states in one of the two s they belong to (using the notation in Section 4.5)

changes very slightly the value of DIDf
M (-0.0072 in lieu of -0.029).
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in Section 3 of the Web Appendix may be more reasonable for that estimator,16 so we follow
Theorem 7 therein to compute a 95% confidence interval for δ. We find that this confidence
interval is equal to [−0.126, 0.094]. We also test the equality between δ and βfe, and reject the
null hypothesis at all conventional levels (p-value=4 × 10−4). Hence, as discussed above, we can
reject the hypothesis that the effects of the minimum years of schooling and staff-to-child ratio
treatments are homogenous.

Let us summarize our results. Using a TWFE regression with several treatments, Hotz and Xiao
(2011) find that increasing the years of schooling required for directors of center-based daycare
significantly decreases the revenue of family home daycare. We show that in the presence of
heterogeneous treatment effects, their regression estimates a highly-non-convex combination of
the effects of the years of schooling treatment, and is contaminated by the effects of the other
treatments. Therefore, their finding may not be robust to heterogeneous treatment effects.
Then, we use our robust estimators to assess if, in the presence of heterogeneous effects, one can
conclude, for at least a subset of (g, t) cells, that increasing the years of schooling requirement
significantly decreases the revenue of family home daycare. The answer is negative, as our
estimators are insignificant. Moreover, one of our estimators is significantly different from the
TWFE estimator, thus allowing us to reject the null hypothesis that the effects of all treatments
are constant in this application. Overall, there is no evidence that the finding in Hotz and
Xiao (2011) is robust to heterogeneous effects, while there is evidence that treatment effects are
heterogeneous in this application.

Table 2: Estimators of the effect of the minimum years of schooling treatment

Estimate 95% Confidence Interval

β̂X
fe −0.445 [−0.735,−0.155]
β̂fe −0.566 [−0.852,−0.280]
β̂s −0.022 [−0.114, 0.074]
DIDf

M −0.029 [−0.821, 0.807]
1/2(DIDf

M + DIDb
M) −0.016 [−0.126, 0.094]

16To verify that, we considered simulations with the same design as in the application but with no effects of
the treatments, and (∆Yg,2(0), ∆Yg,3(0)) drawn either from a normal distribution N (0, Σ), with Σ equal to the
estimated variance matrix on the sample, or from the empirical distribution of (∆Yg,2, ∆Yg,3). In both cases, the
coverage of our confidence interval was higher than 95% (95.4% and 99.3%, respectively).
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6 Conclusion

In this paper, we show that treatment coefficients in TWFE regressions with several treatments
may not be robust to heterogeneous effects, and could be contaminated by the effects of other
treatments in the regression. We propose alternative DID estimators that are robust to hetero-
geneous effects and do not suffer from this contamination problem.

In most instances where TWFE and DID estimators are used, it is likely that besides the main
treatment of interest, many other determinants of the outcome change over the study period.
We show that in the presence of heterogeneous treatment effects, failing to control for those
other treatments, be it in a TWFE regression or using an heterogeneity-robust DID estimator,
may lead to a biased estimator, even if those other treatments are uncorrelated with the main
treatment of interest. Accordingly, all those other treatments should be controlled for, but
our results also show that a non-parametric DID estimator robust to the heterogeneous effects
of many treatments will often be subject to a curse of dimensionality. Data-driven methods
to select the treatments that should be controlled for, as well as more parametric methods to
control for them, would be useful additions to the econometrics literature. In the meantime,
applied researchers could discuss more systematically whether other treatments than the one
under consideration have changed over their study period. If so, they could assess if their
estimates are robust to controlling for at least some of those other treatments, using the tools
provided in this paper.
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A Proofs

A.1 Theorem 1

The result directly follows from Theorem 2. If K = 2, D−1
g,t = D2

g,t. Then, D−1
g,t ̸= 0−1 if and

only if D2
g,t = 1, and one then has D2

g,t∆−1
g,t = D2

g,t∆2
g,t.

A.2 Theorem 2

We first establish the following lemma.

Lemma 1 If Assumptions 1-3 hold, for all (g, g′, t, t′) ∈ {1, ..., G}2 × {1, ..., T}2,

E (Yg,t|D) − E (Yg,t′|D) − (E (Yg′,t|D) − E (Yg′,t′|D))
=D1

g,tE
(
∆1

g,t

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
−D1

g′,tE
(
∆1

g′,t(D−1
g′,t)

∣∣∣D)
− E

(
∆−1

g′,t

∣∣∣D)
−D1

g,t′E
(
∆1

g,t′(D−1
g,t′)

∣∣∣D)
− E

(
∆−1

g,t′

∣∣∣D)
+D1

g′,t′E
(
∆1

g′,t′(D−1
g′,t′)

∣∣∣D)
+ E

(
∆−1

g′,t′

∣∣∣D)
.

Proof of Lemma 1

For all (g, t) ∈ {1, ..., G} × {1, ..., T},

E (Yg,t|D) =E
(
Yg,t(0,0−1) +D1

g,t(Yg,t(1, D−1
g,t ) − Yg,t(0, D−1

g,t ) + Yg,t(0, D−1
g,t ) − Yg,t(0,0−1))

+ (1 −D1
g,t)(Yg,t(0, D−1

g,t ) − Yg,t(0,0−1))
∣∣∣∣∣D
)

=E
(
Yg,t(0,0−1)

∣∣∣D)
+D1

g,tE
(
∆1

g,t

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
=E

(
Yg,t(0,0−1)

∣∣∣Dg

)
+D1

g,tE
(
∆1

g,t

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
, (19)

where the last equality follows from Assumption 2. Moreover, by Assumption 3

E
(
Yg,t(0,0−1)

∣∣∣Dg

)
− E

(
Yg,t′(0,0−1)

∣∣∣Dg

)
− E

(
Yg′,t(0,0−1)

∣∣∣Dg

)
+ E

(
Yg′,t′(0,0−1)

∣∣∣Dg

)
=0. (20)

The result follows by combining (19) and (20).

Proof of Theorem 2

It follows from the Frisch-Waugh theorem and the definition of εg,t that

E
(
β̂fe

∣∣∣D)
=
∑

g,t Ng,tεg,tE (Yg,t|D)∑
g,t Ng,tεg,tD1

g,t

. (21)
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Now, by definition of εg,t again,
T∑

t=1
Ng,tεg,t = 0 for all g ∈ {1, ..., G}, (22)

G∑
g=1

Ng,tεg,t = 0 for all t ∈ {1, ..., T}, . (23)

Then, ∑
g,t

Ng,tεg,tE (Yg,t|D)

=
∑
g,t

Ng,tεg,t (E (Yg,t|D) − E (Yg,1|D) − E (Y1,t|D) + E (Y1,1|D))

=
∑
g,t

Ng,tεg,t

(
D1

g,tE
(
∆1

g,t

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
−D1

1,tE
(
∆1

1,t(D−1
1,t )

∣∣∣D)
− E

(
∆−1

1,t )
∣∣∣D)

− D1
g,1E

(
∆1

g,1(D−1
g,1)

∣∣∣D)
− E

(
∆−1

g,1)
∣∣∣D)

+D1
1,1E

(
∆1

1,1(D−1
1,1)

∣∣∣D)
+ E

(
∆−1

1,1)
∣∣∣D))

=
∑
g,t

Ng,tεg,t

(
D1

g,tE
(
∆1

g,t

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D))
=

∑
(g,t):D1

g,t=1
Ng,tεg,tE

(
∆1

g,t

∣∣∣D)
+

∑
(g,t):D−1

g,t ̸=0−1

Ng,tεg,tE
(
∆−1

g,t

∣∣∣D)
. (24)

The first and third equalities follow from Equations (22) and (23). The second equality follows
from Lemma 1. The fourth equality follows from the fact that ∆0

g,t(0−1) = 0. Finally,∑
g,t

Ng,tεg,tD
1
g,t =

∑
(g,t):D1

g,t=1
Ng,tεg,t. (25)

Combining (21), (24), (25) yields

E
(
β̂fe

∣∣∣D) =
∑

(g,t):D1
g,t=1

Ng,t

N1
wg,tE

(
∆1

g,t

∣∣∣D)
+

∑
(g,t):D−1

g,t ̸=0−1

Ng,t

N1
wg,tE

(
∆−1

g,t

∣∣∣D)
. (26)

Then, the first result follows from the law of iterated expectations. Finally, if K = 2 or the
treatments are mutually exclusive,

∑
(g,t):D−1

g,t ̸=0−1

Ng,tεg,tE
(
∆−1

g,t

∣∣∣D)
=

K∑
k=2

∑
(g,t):Dk

g,t=1
Ng,tεg,tE

(
∆−1

g,t

∣∣∣D)
.

Moreover, by definition of εg,t,
∑

(g,t):Dk
g,t=1 Ng,tεg,t = 0 for all k = 2, ..., K − 1. The second result

follows.

Proof of Theorem 3

The proof is the same as that of Theorem 1, with just one difference: we do not have∑(g,t):D2
g,t=1 Ng,t

×εs
g,t = 0, since εs

g,t is not orthogonal to D2
g,t in general.

38



Proof of Corollary 2

The result directly follows from Theorems 1 and 3, the triangle inequality, and the fact there is
a real number B such that |∆1

g,t| ≤ B and |∆2
g,t| ≤ B for all (g, t). The first bound is reached

when ∆1
g,t = B × (2 × 1{wg,t ≥ 1} − 1) and ∆2

g,t = B(2 × 1{wg,t ≥ 0} − 1), the second bound is
reached when ∆1

g,t = B × (2 × 1{ws
g,t ≥ 1} − 1) and ∆2

g,t = B(2 × 1{ws
g,t ≥ 0} − 1).

Theorem 4

First, by definition of DIDf
M,

DIDf
M =

T∑
t=2

∑
d−1∈{0,1}K−1

N1,0,d−1,t

NS1

DIDf
+,d−1,t + N0,1,d−1,t

NS1

DIDf
−,d−1,t, (27)

using here the convention that 0/0 = 0. Let t ≥ 2 and d−1 ∈ {0, 1}K−1 be such that N1,0,d−1,t > 0
and N0,0,d−1,t > 0. For every g such that D1

g,t−1 = 0, D1
g,t = 1, and D−1

g,t = D−1
g,t−1 = d−1, we have

E (Yg,t − Yg,t−1|D) =E
(
∆1

g,t

∣∣∣D)
+ E

(
Yg,t(0, d−1) − Yg,t−1(0, d−1)

∣∣∣D)
. (28)

Under Assumptions 2 and 4, for all t ≥ 2, there exists ψ0,d−1,t ∈ R such that for all g ∈
G0,0,d−1,t ∪ G1,0,d−1,t,

E
(
Yg,t(0, d−1) − Yg,t−1(0, d−1)

∣∣∣D)
=E

(
Yg,t(0, d−1) − Yg,t−1(0, d−1)

∣∣∣Dg

)
=E

(
Yg,t(0, d−1) − Yg,t−1(0, d−1)

∣∣∣D1
g,t−1 = 0, D−1

g,t−1 = d−1
)

=ψ0,d−1,t. (29)

As a result,

N1,0,d−1,tE
(
DIDf

+,d−1,t

∣∣∣D)
=

∑
g∈G1,0,d−1,t

Ng,tE
(
∆1

g,t

∣∣∣D)
+

∑
g∈G1,0,d−1,t

Ng,tE
(
Yg,t(0, d−1) − Yg,t−1(0, d−1)

∣∣∣D)

− N1,0,d−1,t

N0,0,d−1,t

∑
g∈G0,0,d−1,t

Ng,tE
(
Yg,t(0, d−1) − Yg,t−1(0, d−1)

∣∣∣D)

=
∑

g∈G1,0,d−1,t

Ng,tE
(
∆1

g,t

∣∣∣D)
+ ψ0,d−1,t

 ∑
g∈G1,0,d−1,t

Ng,t − N1,0,d−1,t

N0,0,d−1,t

∑
g∈G0,0,d−1,t

Ng,t


=

∑
g∈G1,0,d−1,t

Ng,tE
(
∆1

g,t

∣∣∣D)
.

The first equality follows by (28), the second by (29), and the third after some algebra. Given
that DIDf

+,d−1,t = 0 if N1,0,d−1,t = 0 or N0,0,d−1,t = 0, we obtain, by definition of S1 and with the
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convention that sums over empty sets are 0,

E
(
N1,0,d−1,tDIDf

+,d−1,t

∣∣∣D)
= E

( ∑
g:D1

g,t=1,D−1
g,t =d−1

(g,t)∈S1

Ng,t∆1
g,t

∣∣∣∣∣D
)
. (30)

A similar reasoning yields, for all t ≥ 2 and d−1 ∈ {0, 1}K−1,

E
(
N0,1,d−1,tDIDf

−,d−1,t

∣∣∣D)
= E

( ∑
g:D1

g,t=0,D−1
g,t =d−1

(g,t)∈S1

Ng,t∆1
g,t

∣∣∣∣∣D
)
. (31)

Plugging (30) and (31) into (27) yields

E(DIDf
M) =E

(
E

(
T∑

t=2

∑
d−1∈{0,1}K−1

∑
g:D−1

g,t =d−1

(g,t)∈S1

Ng,t∆1
g,t

∣∣∣∣∣D
))

=E
(
E

( ∑
(g,t)∈S1

Ng,t∆1
g,t

∣∣∣∣∣D
))

=δ1.

A.3 Theorem 5

As in Subsection 4.5, the proof is conditional on D.

1. First, under Assumption 7, we have δ1 = ∑S
s=1 αsδ1s. Thus, using again Assumption 7 but

also Assumption 6,

DIDM − δ1 =
S∑

s=1
αs(DIDs − δ1s) ∼ N

(
0, σ2

S∑
s=1

α2
s

( 1
n1s

+ 1
n0s

))
. (32)

For the same reasons, we have

V̂

σ2 ∼
S∑

s=1
α2

s

[
W1s

n1s(n1s − 1) + W0s

n0s(n0s − 1)

]
,

where the (W01,W11, ...,W0S,W1S) are mutually independent, independent of DIDM and Wks ∼
χ2(nks − 1), by Cochran’s theorem. By definition of T (see (18)), this implies that

DIDM − δ1√
V̂

∼ T.

The result follows.
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2. Without loss of generality, we assume hereafter that G ≥ G0, so that SG does not vary across
G and has cardinal S.

Consider the ratio R := (DIDM − δ1)/V̂ 1/2. We first show that as G → ∞, R d−→ N (0, 1). For
any (k, s) ∈ {0, 1} × {1, ..., S}, let µks := E[∆Yg,ts ] and σ2

ks := V (∆Yg,ts). Given that nks → ∞,
we have, by the central limit theorem,

∆Y ks − µks√
σ2

ks/nks

d−→ N (0, 1).

Remark that DIDM = ∑S
s=1 αs

(
∆Y 1s − ∆Y 0s

)
and δ1 = ∑S

s=1 αs (µ1s − µ0s). Moreover, (∆Y 01,
∆Y 11, ...,∆Y 0S,∆Y 1S) are mutually independent by Assumptions 2 and 6. Then, by, e.g.,
Lemma C.5 of D’Haultfœuille and Tuvaandorj (2022), we obtain

DIDM − δ1√∑S
s=1 α

2
s (σ2

1s/n1s + σ2
0s/n0s)

d−→ N (0, 1) . (33)

Moreover, by the law of large numbers,
1

n1s − 1
∑

g∈G1s

(∆Yg,ts − ∆Y 1s)2 P−→ σ2
ks.

Then, α2
s ≤ 1 and mink,s lim infG nks/G > 0 implies that

G

V̂ −
S∑

s=1
α2

s

(
σ2

1s/n1s + σ2
0s/n0s

) P−→ 0. (34)

Next,

G
S∑

s=1
α2

s

(
σ2

1s/n1s + σ2
0s/n0s

)
≥
(

min
k,s

σ2
ks

) S∑
s=1

α2
s ≥ mink,s σ

2
ks

S
,

where the latter holds by convexity of x 7→ x2 and ∑S
s=1 αs = 1. Hence, by Assumption 8, we

obtain

lim inf
G

G
S∑

s=1
α2

s

(
σ2

1s/n1s + σ2
0s/n0s

)
> 0.

Combined with (34), this yields

V̂∑S
s=1 α

2
s (σ2

1s/n1s + σ2
0s/n0s)

P−→ 1. (35)

Taken together, (33) and (35) imply that R d−→ N (0, 1).

Next, we prove that T d−→ N (0, 1). First, for all (k, s), nks → ∞ by Assumption 8. Thus, by
the law of large numbers, Wks/(nks − 1) P−→ 1. In turn, using lim infG nks/G > 0, we obtain

G

 S∑
s=1

α2
s

(
W1s

n1s(n1s − 1) + W0s

n0s(n0s − 1)

)
−

S∑
s=1

α2
s

( 1
n1s

+ 1
n0s

) P−→ 0.
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Moreover, since G/nks ≥ 1 for all k, s, we have

G
S∑

s=1
α2

s

( 1
n1s

+ 1
n0s

)
≥ 2

S∑
s=1

α2
s ≥ 1/S.

As a result, lim infG G
∑S

s=1 α
2
s (1/n1s + 1/n0s) > 0. Hence,∑S

s=1 α
2
s [W1s/[n1s(n1s − 1)] +W0s/[n0s(n0s − 1)]]∑S

s=1 α
2
s (1/n1s + 1/n0s)

P−→ 1.

Thus, by definition of T , T d−→ N (0, 1).

By continuity of the normal distribution, this implies that q1−α → Φ−1(1−α/2). Now, note that

P
(
δ1 ∈ CI ex

1−α

)
= F|R|(q1−α),

where F|R| denotes the cumulative distribution function ofR, which converges to x 7→ max(0, 2Φ(x)−
1) by what precedes. Moreover, by Pólya’s theorem, the convergence is uniform. The result fol-
lows.
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