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Abstract

Bartik regressions use locations’ differential exposure to nationwide sector-level

shocks as an instrument to estimate the effect of a location-level treatment on an

outcome. We show that under parallel-trends assumptions, Bartik regressions may

estimate weighted sums of location-and-period-specific treatment effects, with some

negative weights. Accordingly, they may not be robust to heterogeneous effects

across locations or periods. We provide simple diagnostic tools researchers may

use to assess the robustness of their regression. Finally, we propose alternative

correlated-random-coefficient estimators that are more robust to heterogeneous ef-

fects than Bartik regressions. We use our results to revisit two empirical applica-

tions.
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1 Introduction

The “Bartik instrument”, also known as the “shift-share instrument”, is a popular method 
to estimate the effect of a  treatment on an o utcome. It has first been proposed by  Bartik 
(1991). Since then it has been applied in many fields, including labor (see Altonji & Card 
1991, Card 2001, 2009), international trade (see Autor et al. 2013, 2020), and finance (see 
Greenstone et al. 2020).

To fix ideas, in this introduction we describe our paper in the context of the canonical 
setting considered by Bartik (1991), but our results apply to any Bartik design. As-

sume one wants to estimate how the evolution of employment affects t he e volution of 
wages. One could construct a data set with wages and employment evolutions at, say, 
the commuting-zone (CZ) level, and regress the former evolution on the latter. However, 
employment growth may be endogenous. For example, it may be correlated with other 
CZ-level shocks that could have an impact on wage growth. Instead, a Bartik two-stage 
least squares (2SLS) regression uses a weighted average of the nationwide employment 
growth in each industry, with weights equal to the share that each industry accounts for 
in the employment of a CZ, to instrument for CZs’ employment growth. Intuitively, this 
strategy may solve the aforementioned endogeneity problem, because the variation of the 
Bartik instrument across CZs comes from their differential exposure to nationwide shocks, 
not from local, CZ-level shocks.

This paper makes four contributions. First, we show that under parallel-trends as-
sumptions, if the treatment effect varies across CZs or over t ime, Bartik regressions may 
not identify well-defined a verages o f C Z-and-period-specific eff ects. Ins tead, the y may 
identify weighted sums of those effects, with some negative w eights. Due to the negative 
weights, Bartik regression coefficients may not satisfy the no-sign reversal pr operty: they 
could be negative, even if the treatment effect is positive in every CZ and at every period. 
Importantly, those results are related to, but different f rom, those in Adão et al. (2019), 
Goldsmith-Pinkham et al. (2020), and Borusyak et al. (2022), and we will shortly discuss 
the connections and differences b etween o ur a pproaches. Our s econd c ontribution i s to 
provide diagnostic tools researchers may use to assess if their Bartik regressions are robust 
to heterogeneous effects. Third, we propose two alternative correlated-random-coefficient 
estimators inspired from Chamberlain (1992), that are more robust to heterogeneous 
effects t han B artik r egressions, t hough t hey s till i mpose r estrictions o n e ffects’ hetero-
geneity. Fourth, we use our results to revisit the canonical Bartik setting, and Autor 
et al. (2013), who use a Bartik instrument to measure the effect o f exposure t o Chinese 
competition on US employment. In both cases, we find t hat Bartik r egressions d o not 
estimate convex combinations of CZ-and-period-specific e ffects. In  Au tor et  al . (2013), 
our alternative estimators are more negative than the Bartik estimator.

We now describe our results in more details. We follow Adão et al. (2019), and assume 
that the treatment evolution is generated by a model linear in the shocks, with sector-
, commuting-zone-, and period-specific fi rst-stage eff ects, whi le the  out come evolution
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is generated by a model linear in the treatment evolution, with commuting-zone- and

period-specific second-stage effects. Then, we make two parallel-trends assumptions: in

the absence of any industry shock, the treatment and the outcome would have followed the

same evolution in every CZ. As we shall argue in Section 3, our parallel-trends assumption

on the treatment should generally be fairly plausible. In Autor et al. (2013), we show

that our parallel-trends assumption on the outcome can be tested, by regressing CZs

employment evolution prior to the China shock on their Bartik instrument, a placebo test

closely related to that conducted by Autor et al. (2013) in their Table 2. This test is

not rejected, thus lending support to our parallel-trends assumption on the outcome in

this application. In the canonical setting we are not able to test this assumption, but in

Section 3 we argue again that it is fairly plausible.

Under those parallel-trends assumptions, we show that the first-stage (resp. reduced-

form) Bartik regression identifies a weighted sum of industry- and commuting-zone-specific

first-stage (resp. reduced-form) effects, where some weights must be negative. Accord-

ingly, the first-stage and reduced-form Bartik regressions never estimate convex combi-

nations of effects, a result that differs from that for two-way fixed effects regressions,

that sometimes identify convex combinations of effects under parallel-trends assumptions

(see de Chaisemartin & D’Haultfœuille 2020). Then, we show that the 2SLS Bartik re-

gression identifies a weighted sum of commuting-zone specific second-stage effects, where

some weights may be negative. Accordingly, under our parallel-trends assumptions, Bar-

tik regressions may be misleading in the presence of heterogeneous first- or second-stage

effects. The intuition for our results is that Bartik regressions compare the employment

and wage evolutions of commuting zones that received high and low shocks. From that

perspective, they are comparable to “fuzzy” differences-in-differences (DID) estimators,

that also do not estimate convex combinations of effects under parallel-trends assumptions

(see De Chaisemartin & D’Haultfœuille 2018).

The weights attached to the first-stage and reduced-form Bartik regressions can be

estimated. The number of positive and negative weights attached to the 2SLS regression

can also be estimated, under the assumption that the first-stage effects do not vary across

industries and are all positive. Estimating the weights attached to the first-stage and

reduced-form regressions, or counting the number of negative weights attached to the 2SLS

regression, may help applied researchers assess the robustness of their Bartik regression to

heterogeneous effects. One can perform that diagnosis under various restrictions on the

first- and second-stage effects, to assess which type of heterogeneity is more problematic

in a given application. For instance, when we revisit the canonical Bartik design, we find

that without making any assumption, nearly half of the weights attached to the first-stage

and reduced-form regressions are negative, and the negative weights sum to -1.22. On the

other hand, assuming that first-stage effects do not vary across industries dramatically

reduces the negative weights, which now sum to -0.04 only. Accordingly, it seems that

Bartik regressions in this application may be robust to first- and second-stage effects that
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vary across commuting zones or over time, but may be much less robust to industry-

specific first-stage effects. By contrast, when we revisit Autor et al. (2013), we find

that Bartik regressions may not be robust to commuting-zone-specific first- and second-

stage effects, while industry-specific first-stage effects seem less problematic. Those two

examples show that our results can help researchers identify which restriction on treatment

effect heterogeneity is key to lend a causal interpretation to their Bartik regression.

Finally, we propose two alternative estimators, that can be used when there are at

least three periods in the data. The first one is robust to commuting-zone-specific first-

and second-stage effects, but not to time-varying first- and second-stage effects or to

sector-specific first-stage effects. The second one allows for time-varying effects, provided

the first- and second-stage effects follow the same evolution over time in every location.

Under our parallel-trends assumptions and the aforementioned assumptions on the first-

and second-stage effects, we show that the mean of the treatment and outcome evolution

conditional on the shocks are additively separable in a regression function with location-

specific coefficients and a regression function with period-specific coefficients. Then, those

conditional-mean-models are nested in the correlated-random-coefficient models studied

in Chamberlain (1992), and the models’ parameters can be estimated following similar

steps as in that paper. Our first estimator can be written as a standard GMM estimator,

so its asymptotic distribution follows from standard GMM asymptotic theory and one can

use standard errors pre-canned in standard statistical softwares for inference. Our second

estimator can be written as a GMM estimator, where the sample moment conditions

depend on pre-estimated parameters, and where the number of pre-estimated parameters

increases with the number of locations. Accordingly, its asymptotic distribution does

not follow from standard GMM asymptotic theory, and studying it is left for future

work. In Autor et al. (2013), our two estimators are substantially more negative than

the Bartik 2SLS estimator, thus suggesting that the effect of Chinese import exposure on

US manufacturing employment could have been more negative than that found by Autor

et al. (2013). In the canonical setting, our two estimators are extremely close from the

Bartik 2SLS estimator.

The paper is organized as follows. Section 2 discusses how our results relate to those in

the recent Bartik literature. Section 3 introduces our notation and assumptions. Section

4 presents our identification results. Section 5 presents our alternative estimators. Section

6 presents our re-analysis of Autor et al. (2013). To preserve space, our re-analysis of the

canonical Bartik setting is in Section A of the Web Appendix.

2 Connections Between our Results and the Pre-existing

Bartik Literature

A recent literature has considerably improved our understanding of Bartik regressions. 
Goldsmith-Pinkham et al. (2020) show that they are equivalent to using local industry
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shares as instruments, and show that the Bartik 2SLS coefficient consistently estimates

the treatment effect under the assumption that second-stage effects are homogeneous

and that industry shares are exogenous, meaning uncorrelated with CZ’s potential wage

evolutions in the absence of any shock. Borusyak et al. (2022) instead assume that shocks

are exogenous, and derive consistency results under that assumption. Finally, Adão et al.

(2019) follow the exogenous-shocks approach first proposed by Borusyak et al. (2022), and

show that using the robust standard errors of Bartik regression coefficients for inference

leads to over-rejection because the instruments of locations with similar industry shares

are correlated. They then propose new estimators of the standard errors.

While these papers sometimes assume homogeneous effects as a baseline case, they

all have identification results allowing for heterogeneous effects. We now discuss the

connections and the differences between those results and ours.

2.1 Our Results and Those in Borusyak et al. (2022) and Adão

et al. (2019)

As we will explain in further details in Section 3.3.1, the key difference between our

assumptions and those of Borusyak et al. (2022) and Adão et al. (2019) is that they do

not make parallel-trends assumptions. Instead, they assume that the expectation of the

shock is the same in every sector, the so-called randomly-assigned-shocks assumption.

In the canonical Bartik design, this amounts to assuming that each industry has the

same expected employment growth. Importantly, our parallel-trends assumptions are

neither weaker or stronger than the randomly-assigned-shocks assumption: those two

assumptions are non-nested. Under the randomly-assigned-shock assumption, Adão et al.

(2019) show that the first-stage Bartik regression identifies a weighted average of industry-

, commuting-zone-, and period-specific first-stage effects, with no negative weights. And

Borusyak et al. (2022) and Adão et al. (2019) show that the 2SLS Bartik regression

identifies a weighted average of commuting-zone- and period-specific second-stage effects,

again without negative weights. Those results contrast with ours. Together, our and

their results imply that whether Bartik regressions satisfy or not the no-sign reversal

property depends on whether the randomly-assigned-shocks assumption or the parallel-

trends assumption is more plausible. Therefore, a contribution of our paper may be

to show that the robustness of Bartik regressions to heterogeneous effects in Borusyak

et al. (2022) and Adão et al. (2019) critically relies on the randomly-assigned-shocks

assumption.

Borusyak et al. (2022) have shown that a great appeal of the randomly-assigned-shocks

assumption is that one can test it, by testing whether average shocks vary with sectors’

characteristics. Unfortunately, in our two applications, we find that this test is rejected.

In the canonical setting, some sectors are more likely to receive positive employment

shocks than others. In Autor et al. (2013), some sectors are more likely to see an increase
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in their exposure to Chinese imports than other sectors. Borusyak et al. (2022) also test

the randomly-assigned-shocks assumption in Autor et al. (2013), and they do not reject it.

As explained in Section 6.2, the implication of the randomly-assigned-shocks assumption

that we test is stronger than the one they test, so our test may be more powerful.

Overall, our approach may be appealing in applications where the randomly-assigned-

shocks assumption is rejected, while our parallel-trends assumptions seem plausible and

the tests we propose of those assumptions are not rejected. This is for instance the case

in Autor et al. (2013).

Importantly, when they consider Bartik regressions with covariates, Borusyak et al.

(2022) and Adão et al. (2019) allow sectors to have different expected shocks, provided

those differences are fully accounted for by a linear model in sector-level covariates, see for

instance Equation (24) in Adão et al. (2019). While this is an important relaxation of the

randomly-assigned shocks assumption, one may still worry that there are characteristics

determining sectors’ shocks that are not controlled for in the regression.

2.2 Our Results and Those in Goldsmith-Pinkham et al. (2020)

Goldsmith-Pinkham et al. (2020) also show that with heterogeneous treatment effects,

Bartik 2SLS regressions may identify weighted sums of effects with some negative weights,

see their Equation (10). As we will explain in further details in Section 3.3.2, our assump-

tions on the second-stage Bartik regression are close to theirs, as they make an assumption

that may be interpreted as a parallel-trends assumption on the outcome. On the other

hand, our assumptions on the first-stage Bartik regression are very different. In fact, we

show in Section 3.3.2 that our two sets of first-stage assumptions are “nearly mutually

exclusive”: under our first-stage assumptions, their first-stage assumptions can only hold

under a condition that seems hard to rationalize, see Equation (3.4). Because our first-

stage assumptions are different, the weights in our and in their decomposition of Bartik

2SLS regressions as weighted sums of location- and period-specific effects differ: their

weights are functions of the so-called Rotemberg weights (see Rotemberg 1983), while our

weights do not depend on said Rotemberg weights. Under our and their decompositions,

the sets of locations × periods whose treatment effect is weighted negatively by the Bartik

2SLS regression differ. For instance, with two periods, if all industry shocks are positive

and if all first-stage effects are positive, then the treatment effects of all locations with a

Bartik shock below the average shock across locations are weighted negatively under our

decomposition, but not under the decomposition in Goldsmith-Pinkham et al. (2020). See

the first point of Theorem 3 for a closed-form expression of our weights, and see Equation

(4.1) for a comparable expression of the weights in Equation (10) in Goldsmith-Pinkham

et al. (2020). Importantly, Goldsmith-Pinkham et al. (2020) only use their assumptions

on the first-stage Bartik regression to derive their Equation (10). Their other results

assume homogeneous effects, and do not rely on their first-stage assumptions.

Another difference between our papers is that we show that the weights attached to
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the first-stage and reduced-form Bartik regressions can be estimated, and the sign of the

weights attached to the 2SLS Bartik regression can be estimated under some assumptions.

Thus, we provide researchers with diagnostic tools they may use to assess their regression’s

robustness to heterogeneous treatment effects. Goldsmith-Pinkham et al. (2020) do not

propose such tools, again probably because heterogeneous treatment effects is not as

central to their papers as it is to ours.

3 Set-up and Assumptions

We consider a data set with G locations, indexed by g ∈ {1, ..., G}. To make exposition as

simple as possible, for now we assume the data has two time periods indexed by t ∈ {1, 2},
but we will relax that assumption later. Locations are typically geographical regions, for

instance counties, states or commuting zones. Let Rg,t denote the value of a generic

variable R in location g and period t. Then, let ∆Rg = Rg,2 − Rg,1 denote the change of

that variable from period 1 to 2 in location g. We are interested in how the evolution of a

treatment variable ∆Dg affects the evolution of an outcome variable ∆Yg. For instance,

the canonical setting first proposed by Bartik (1991) focused on how the evolution of (log)

employment affects the evolution of (log) wages, and Autor et al. (2013) have studied how

the evolution of exposure to Chinese competition affects the evolution of US local labor

markets. We could regress ∆Yg on ∆Dg, but we worry that the treatment evolution may

be endogenous. For example, in the canonical setting, the effect of employment growth

on wage growth may be confounded by other labor market shocks, such as technological

changes or inflation.

Instead, the following instrumental variable strategy has been proposed. Assume

there are S sectors indexed by s ∈ {1, ..., S}. Sectors could for instance be industries.

Let Rs,t denote the value of a generic variable R in sector s and period t. Then, let

∆Rs = Rs,2 − Rs,1 denote the change of that variable from period 1 to 2 in sector s. For

every s ∈ {1, ..., S}, let ∆Zs denote a shock affecting sector s between periods 1 and 2.

For example, in the canonical setting, ∆Zs denotes the nationwide employment growth

in sector s.

Definition 1 Bartik Instrument: The Bartik instrument ∆Zg is:

∆Zg =
S∑

s=1

Qs,g∆Zs.

For every g, Qs,g are positive weights summing to 1. Typically, Qs,g is a measure of the 
importance of sector s in location g at period 1. For instance, Qs,g could be the share that 
sector s accounts for in location g’s employment at period 1. In the canonical setting, 
the Bartik instrument represents the employment evolution that location g would have 
experienced if all sectors in location g had experienced the same evolution as in the overall
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economy. Our results readily extend to applications where shares sum to less than 1, as

is the case in Autor et al. (2013), see footnote 8 for further discussion.

Throughout the paper, we consider both the sharesQs,g and the shocks ∆Zs as stochas-

tic quantities. This approach is similar to that of Borusyak et al. (2022), and nests both

that of Adão et al. (2019), who treat the shocks as stochastic and condition on the shares,

and that of Goldsmith-Pinkham et al. (2020), who treat the shares as stochastic and

condition on the shocks.

3.1 Assumptions on the first-stage Bartik regression

We start by introducing the notation and assumptions we use to analyze the first-stage

Bartik regression. For any (δ1, ..., δS) ∈ RS, let ∆Dg(δ1, ..., δS) denote the potential treat-

ment evolution that location g will experience if (∆Z1, ...,∆ZS) = (δ1, ..., δS). And let

∆Dg(0) = ∆Dg(0, ..., 0) denote the potential treatment evolution that location g will

experience in the absence of any shocks. The actual treatment evolution is ∆Dg =

∆Dg(∆Z1, ...,∆ZS).

We start by making the following assumption:

Assumption 1 Linear First-Stage Equation: for all g ∈ {1, ..., G}, there are real num-

bers (βs,g)s∈{1,...,S} such that for any (δ1, ..., δS) ∈ RS:

∆Dg(δ1, ..., δs) = ∆Dg(0) +
S∑

s=1

Qs,gδsβs,g.

Assumption 1 requires that the effect of the shocks on the treatment evolution be

linear. Similar assumptions are also made by Adão et al. (2019) (see their Equation (11))

and Goldsmith-Pinkham et al. (2020) (see their Equation (8), which we discuss in more

details later). Increasing ∆Zs by 1 unit, holding all other shocks constant, leads the

treatment of location g to increase by Qs,gβs,g units. Under Assumption 1,

∆Dg = ∆Dg(0) +
S∑

s=1

Qs,gZsβs,g. (3.1)

Our key first-stage identifying assumption is the following one.

Assumption 2 Exogenous Shares and Shocks and Common Trends for the Treatment:

1. For all g ∈ {1, ..., G}: E(∆Dg(0)|∆Z1, ...,∆ZS, Q1,g, ..., QS,g) = E(∆Dg(0)).

2. There is a real number µD such that ∀g ∈ {1, ..., G}: E(∆Dg(0)) = µD.

The first p oint o f A ssumption 2  r equires t hat l ocations’ p otential t reatment evolution 
without any shock be mean-independent of the sector-level shocks, and of locations’ shares. 
The second point of Assumption 2 requires that the expectation of the potential treatment
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evolution in the absence of any shocks be the same for all locations. This second require-

ment is a parallel-trends assumption, similar to that made in Difference-in-Differences

models (see Abadie 2005, de Chaisemartin & D’Haultfœuille 2020).

Assumption 2 is untestable, unless one observes the treatment change at a time period

where sectors do not experience any shock (see Section 4.4). However, that condition is

not always met: for instance, it is not met in our two empirical applications. Therefore, it

is important to clarify the restrictions imposed by Assumption 2 in the context of a given

application, to gauge its plausibility. We now do so in our two empirical applications.

In the canonical setting, ∆Zs is the change in US employment in sector s, and ∆Dg

is the change in commuting-zone (CZ) g’s employment. ∆Z1 = ... = ∆ZS = 0 is a

counterfactual where the US does not experience any employment growth in any sector. In

that counterfactual, employment could be redistributed from less- to more-dynamic CZs,

in which case E(∆Dg(0)) would vary across CZs. However, for employment redistribution

to lead to ∆Z1 = ... = ∆ZS = 0, workers moving across CZs should remain in the

same sector. If some workers move from less- to more-dynamic CZs, they may be more

likely to change sector and start working in a sector with a high employment share in

their destination CZ. As sectoral shares are likely to differ across less- and more-dynamic

CZs, this would lead to heterogeneous employment growth across sectors, thus violating

∆Z1 = ... = ∆ZS = 0. Therefore, Assumption 2 is violated if in the counterfactual where

the US does not experience any employment growth in any sector, there is employment

redistribution across CZs that does not lead to redistribution across sectors. That may

not be a very plausible scenario.

In Autor et al. (2013), the treatment has a Bartik structure similar to that of the

instrument. Let ∆Mu,c,s be the change in US imports from China in sector s, let Lu,s be

the US employment in sector s, let Ls,g be CZ g’s employment in sector s, and let Lg be

CZ g’s employment. Autor et al. (2013) define their treatment as ∆Dg =
∑S

s=1Qs,g∆Ds,

where ∆Ds = ∆Mu,c,s/Lu,s is the per-worker change in US imports from China in sector

s, and Qs,g = Ls,g/Lg is the employment share of sector s in CZ g (see their Equation

(3)).1 The shocks ∆Zs are the per-worker change in imports from China in sector s, in

some other high-income countries. Then, ∆Z1 = ... = ∆ZS = 0 is a counterfactual where

other high-income countries do not experience a China shock. In that counterfactual, it

is reasonable to assume that the US would also not experience a China shock. Then, one

would have ∆Ds = 0 for all s, thus implying that ∆Dg = 0 for all g. Then, Assumption

2 mechanically holds.

Overall, Assumption 2 does impose some restrictions but still seems fairly plausible in

the canonical setting, and almost mechanically holds in Autor et al. (2013).

1This definition of the treatment variable is micro-founded by a model where the change of location g’s

employment in sectors subject to Chinese competition is a linear function of ∆Dg, see Equation (2) in

Autor et al. (2013).
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3.2 Assumptions on the second-stage Bartik regression

We now introduce the notation and assumptions we use to analyze the second-stage

Bartik regression. Let ∆Yg(dg) denote the potential outcome evolution that location g

will experience if ∆Dg = dg.
2 ∆Yg(0) is location g’s potential outcome evolution without

any treatment change.

Assumption 3 Linear Second-Stage Equation: for all g ∈ {1, ..., G}, there is a real

number αg such that for any dg ∈ R:

∆Yg(dg) = ∆Yg(0) + αgdg.

Assumption 3 is analogous to Equation (7) in Goldsmith-Pinkham et al. (2020) without

control variables, and to Equation (30) in Adão et al. (2019) allowing for location-specific

second-stage effects. Combining Assumption 3 with Assumption 1, we have:

∆Yg(∆Dg(δ1, ..., δS)) = ∆Yg(∆Dg(0)) + αg(∆Dg(δ1, ..., δS)−∆Dg(0))

= ∆Yg(∆Dg(0)) + αg

S∑
s=1

Qs,gδsβs,g

= ∆Yg(∆Dg(0)) +
S∑

s=1

Qs,gδsγs,g,

where γs,g = αgβs,g. Therefore, the potential outcome evolution is also linear in sector-

level shocks.

Our key second-stage identifying assumption is the equivalent of Assumption 2 for

∆Yg(∆Dg(0)), locations’ potential outcome evolution without shocks.

Assumption 4 Exogenous Shares and Shocks and Common Trends for the Outcome

1. For all g ∈ {1, ..., G}: E(∆Yg(∆Dg(0))|∆Z1, ...,∆ZS, Q1,g, ..., QS,g) = E(∆Yg(∆Dg(0))).

2. There is a real number µY such that ∀g ∈ {1, ..., G}: E(∆Yg(∆Dg(0))) = µY .

The first point of Assumption 4 requires that locations’ potential outcome evolution with-
out any shock be mean-independent of the sector-level shocks, and of location’ shares. The 
second point of Assumption 4 requires that the expectation of the potential outcome evo-
lution in the absence of any shocks be the same for all locations. Assumption 4 is similar 
to Assumption A3 in De Chaisemartin (2013), and to Assumption A1 in Hudson et al.
(2017).

Like Assumption 2, Assumption 4 is untestable, unless one observes the outcome 
change at a time period where sectors do not experience any shock (see Section 4.4).
2We implicitly make an exclusion restriction assumption: the shocks have no direct effect on the outcome

evolution, they can only affect t he outcome e volution t hrough t heir effect on  th e tr eatment evolution, 
see Angrist & Imbens (1995).
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This requirement is met in Autor et al. (2013): ∆Yg is the change in the manufacturing-

employment share in CZ g, and that variable is observed before the China shock. The test

is conclusive: changes in CZs manufacturing-employment shares before the China shock

are uncorrelated with their Bartik instrument, a function of the shocks (∆Z1, ...,∆ZS)

and shares (Q1,g, ..., QS,g). This lends credibility to Assumption 4 in this application.

We cannot implement the test in the canonical setting, but can still assess the plau-

sibility of Assumption 4 on logical grounds. ∆Yg is the change in CZ g’s average wage.

Even in the absence of employment growth in any sector, sectors may experience non-zero

and heterogeneous wage growths. For instance, some sectors may experience larger pro-

ductivity growth than others. If, say, the labor market in each sector is competitive with

homogenous workers, differential productivity growths across sectors leads to differential

wage growth. In the short-run, workers may not be substitutable at all across sectors,

say for instance because working in a given sector requires specific skills that take time to

acquire. Then, differential wage growth is compatible with zero employment growth in all

sectors, and CZ’s wage growth would depend on their employment shares in sectors with

a high/low wage growth, thus leading to a violation of Assumption 4. While it may be

plausible in the short run, this scenario is implausible in the long run: then, differential

wage growth across sectors should lead to differential employment growth. In the canoni-

cal setting, the shocks are sectoral employment growths over ten-years periods. Over this

horizon, it is hard to envision how differential wage growths across sectors would not lead

to differential employment growths, so Assumption 4 may be plausible.

In our analysis, we consider the first- and second-stage effects βs,g and αg as deter-

ministic. On the other hand, we consider
(
∆Yg(0),∆Dg(0), (Qs,g)s∈{1,...,S}

)
g∈{1,...,G} and

(∆Zs)s∈{1,...,S} as random, and all the probabilistic statements above and below are with

respect to the joint distribution of those random variables. Our last assumption is that

the variables attached to different locations are independent conditional on the shocks.

Assumption 5 Independent Locations:

Conditional on (∆Zs)s∈{1,...,S}, the vectors
(
∆Yg(0),∆Dg(0), (Qs,g)s∈{1,...,S}

)
are mutually

independent across g.

Goldsmith-Pinkham et al. (2020) make a similar assumption, see their Section I.A. Be-

cause they assume shocks are non-stochastic, they assume that locations’ variables are

independent without conditioning on shocks.
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3.3 Comparing our identifying assumptions to those in pre-

existing work

3.3.1 Comparing our assumptions to those in Adão et al. (2019) and Borusyak

et al. (2022)

When studying the first-stage Bartik regression, Adão et al. (2019) make an assumption

closely related to the first point of Assumption 2. Their Assumption 1 (ii) requires that

for every s, ∆Zs be mean independent of the vector (∆D1(0), ...,∆DG(0)). Assuming

non-stochastic shares as they do, their mean-independence requirement is neither weaker

nor stronger than that in the first point of our Assumption 2, and both assumptions

are implied by the stronger condition (∆Z1, ...,∆ZS) ⊥⊥ (∆D1(0), ...,∆DG(0)). Similarly,

when studying the second-stage Bartik regression, Adão et al. (2019) make an assumption

closely related to the first point of Assumption 4 (see their Assumption 4 (ii)). Overall,

both our and their approach require that shocks be unrelated to locations’ potential

treatment and outcome evolutions in the absence of any shock. Borusyak et al. (2022) also

make a related assumption: shocks should be mean independent of locations’ outcomes

evolutions (see their Assumption 1).

On the other hand, Adão et al. (2019) and Borusyak et al. (2022) do not make the

parallel-trends assumption in the second point of Assumption 2. Instead, they assume that

the sector-level shocks are as-good-as randomly assigned, in the sense that they all have the

same expectation, i.e. E (∆Zs) = δ, for some real number δ (see Assumption 1 (ii) in Adão

et al. 2019 and Assumption 1 in Borusyak et al. 2022). This randomly-assigned-shocks

assumption has first been proposed by Borusyak et al. (2022). Point 2 of Assumption 2

is neither weaker or stronger than the randomly-assigned-shocks assumption: those two

assumptions are non-nested. As shown by Borusyak et al. (2022), a great appeal of the

randomly-assigned-shocks assumption is that one can test it, by testing whether shocks

are independent of industries’ characteristics. Unfortunately, in our two applications, we

find that this test is rejected. In the canonical setting, some sectors are more likely to

receive positive employment shocks than others. In Autor et al. (2013), some sectors are

more likely to see an increase in their exposure to Chinese imports than other sectors.

Then, our approach may be appealing in applications where the randomly-assigned-shocks

assumption is rejected, while our Assumptions 2 and 4 seem plausible. Our approach may

be particularly appealing when the tests of Assumptions 2 and 4 we propose in Section

4.4 can be implemented and are conclusive.

3.3.2 Comparing our assumptions to those in Goldsmith-Pinkham et al.

(2020)

Equation (8) and Assumption 3 are the two main assumptions on the first-stage Bartik 
regression in Goldsmith-Pinkham et al. (2020). Using our notation, and assuming the
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regression has no control variables, those require that for all (s, g),3

∆Dg = µD +Qs,g∆Zsβs,g + us,g, (3.2)

with E(Qs,gus,g) = 0. (3.3)

Equation (3.2) is a linear first-stage equation similar to Equation (3.1), but where the

first-stage effect of only one sector explicitly appears.

Under Assumptions 1 and 2, and momentarily assuming that shocks are non stochastic

as in Goldsmith-Pinkham et al. (2020), it is difficult to rationalize Equations (3.2) and

(3.3). Under Assumption 1, Equations (3.1) and (3.2) imply that

us,g = ∆Dg(0)− µD +
∑
s′ ̸=s

Qs′,g∆Zs′βs′,g.

Then,

E(Qs,gus,g) =E(Qs,g(∆Dg(0)− µD)) +
∑
s′ ̸=s

E(Qs,gQs′,g)∆Zs′βs′,g

=
∑
s′ ̸=s

E(Qs,gQs′,g)∆Zs′βs′,g,

where the second equality follows from Assumption 2. Therefore, Equations (3.2) and

(3.3) can only hold if for all s,∑
s′ ̸=s

E(Qs,gQs′,g)∆Zs′βs′,g = 0, (3.4)

a condition that seems hard to rationalize.
Overall, the first-stage a ssumptions i n Goldsmith-Pinkham e t a l. ( 2020) a re hard to 

rationalize under our linear first-stage model and our parallel-trends a ssumption. There-
fore, with a slight abuse of language, our two sets of assumptions may be considered as 
mutually exclusive: in applications where our first-stage a ssumptions a re p lausible, the 
first-stage a ssumptions i n Goldsmith-Pinkham e t a l. ( 2020) may not b e p lausible. Con-
versely, in applications where the first-stage a ssumptions i n G oldsmith-Pinkham e t al.
(2020) are plausible, our first-stage assumptions may not b e p lausible. Note that Equa-
tion (8) and Assumption 3 in Goldsmith-Pinkham et al. (2020) are only used to derive 
Proposition 4 and Equation (10) therein, which study the Bartik estimator under hetero-
geneous effects. All t heir o ther r esults a ssume homogeneous e ffects, and do  no t re st on 
Equation (8) and Assumption 3.

Perhaps surprisingly, while our first-stage assumptions are (nearly) incompatible, our 
second-stage assumptions are fairly close. Equation (7) and Assumption 2 are the two 
main assumptions on the second-stage Bartik regression in Goldsmith-Pinkham et al.
3Rather than Equation (3.3) below, Assumption 3 in Goldsmith-Pinkham et al. (2020) requires that 

E(Qs,gus,gαg) = 0. Our discussion still applies if one replaces Equation (3.3) by E(Qs,gus,gαg) = 0.
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(2020). Without control variables, their Equation (7) is equivalent to our Assumption 3.

Then, using our notation, their Assumption 2 requires that for all (s, g),

E(Qs,g(∆Yg(0)− µY )) = 0. (3.5)

If instead of our Assumption 4, one were to make the same assumption but on ∆Yg(0), then

Equation (3.5) would automatically hold. Accordingly, Equation (3.5) may be interpreted

as a parallel-trends assumption on the outcome without any treatment change, while

Assumption 4 is a parallel-trends assumption on the outcome without shocks.

Assume that Assumption 2 holds with µD = 0, as seems plausible both in the canon-

ical setting and in Autor et al. (2013) as discussed above. Then, under Assumption 3

∆Yg(∆Dg(0)) = ∆Yg(0)+αg∆Dg(0), so parallel trends on ∆Yg(0) implies parallel trends

on ∆Yg(∆Dg(0)): the two assumptions are closely related and Assumption 4 is slightly

weaker. This means that in applications like the canonical setting or Autor et al. (2013),

parallel trends on the outcome without any treatment change and Assumption 4 are

essentially the same.

If Assumption 2 holds with µD ̸= 0, under Assumption 3 parallel trends on ∆Yg(0) and

Assumption 4 cannot jointly hold (unless αg = α for all g), so the two assumptions are

substantively different. As explained above, an appealing feature of Assumption 4 is that

it can be placebo-tested when one observes the outcome change at a time period where

sectors do not experience any shock. Shocks in Bartik studies are sometimes caused by a

policy change, and there may be time periods without any policy change, and therefore

without any shock. Testing parallel trends on ∆Yg(0) would require observing the outcome

change at a time period where all locations do not experience any treatment change. But

if Assumption 2 holds with µD ̸= 0, some locations will experience a treatment change

even if there are no shocks, so one will not be able to placebo-test parallel trends on

∆Yg(0).

Overall, Assumption 4 may be preferable to parallel trends on ∆Yg(0): either the two

assumptions are essentially equivalent, or they are not but then Assumption 4 is more

likely to be placebo testable than parallel trends on ∆Yg(0).

4 Identification Results for Bartik Regressions

4.1 First-Stage and Reduced-Form Bartik Regressions

Throughout the paper, we consider Bartik regressions that are not weighted, say, by

locations’ population. It is straightforward to extend all our results to weighted Bartik

regressions. For instance, the decompositions in Theorems 1 to 3 still hold, except that

the numerator and the denominator of the weights have to be multiplied by Ng, the weight

assigned to location g, and ∆Z. has to be redefined as
∑G

g=1
Ng

N
∆Zg, where N =

∑G
g=1Ng.

We start by considering the first-stage Bartik regression.
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Definition 2 First-stage Bartik regression: Let β̂D
C denote the coefficient of ∆Zg in the

first-stage regression of ∆Dg on ∆Zg and a constant. Let βD
C = E[β̂D

C ].

Let ∆Z . =
1
G

∑G
g=1 ∆Zg.

Theorem 1 Suppose Assumptions 1, 2, and 5 hold.

1. Then,

βD
C = E

(
G∑

g=1

S∑
s=1

Qs,g∆Zs(∆Zg −∆Z .)∑G
g=1

∑S
s=1 Qs,g∆Zs(∆Zg −∆Z .)

βs,g

)
.

2. If one further assumes βs,g = βg,

βD
C = E

(
G∑

g=1

∆Zg(∆Zg −∆Z .)∑G
g=1 ∆Zg(∆Zg −∆Z .)

βg

)
.

The first point of Theorem 1 shows that βD
C is equal to the expectation of a weighted

sum of the first-stage effects βs,gs, with weights summing to one. Accordingly, if all the

first-stage effects βs,gs are equal to a constant β, βD
C identifies β under our assumptions.

Note that the denominator of the weights is equal to
∑G

g=1(∆Zg − ∆Z .)
2 and is non-

negative. Therefore, the weights are positive for all (s, g) such that ∆Zs and ∆Zg −∆Z .

are of the same sign, and negative otherwise. Interestingly, because ∆Zg −∆Z . must be

strictly positive for some gs and strictly negative for other gs, there must be some βs,gs

that are weighted negatively, unless Qs,g = 0 for all (s, g) such that (∆Zg−∆Z .)∆Zs < 0,

a condition that is very unlikely to hold. Therefore, under Assumptions 1, 2, and 5, βD
C

never estimates a convex combination of first-stage effects. This differs from two-way

fixed effects regressions, which sometimes estimate a convex combination of effects under

parallel-trends assumptions (see de Chaisemartin & D’Haultfœuille 2020). Because of the

negative weights, βD
C is not robust to heterogenous treatment effects. In particular, it

does not satisfy the no-sign reversal property, which requires that if all first-stage effects

are of the same sign, βD
C should also be of that sign.

The second point of Theorem 1 shows that if we further assume βs,g = βg, β
D
C is

equal to the expectation of a weighted sum of the βgs, where some weights may still be

negative. To fix ideas, assume ∆Z. > 0. Then, the βgs of all locations that received a

less than average positive shock (0 < ∆Zg < ∆Z.) enter with a negative weight in Point

2 of Theorem 1. If ∆Z. = 0 all the weights are positive, but ∆Z. = 0 is unlikely to hold

in practice. If the instrument is redefined as ∆Zg −∆Z., all the weights are positive, but

now our notation and assumptions need to hold for the recentered rather than original

shocks. For instance, our notation for the potential treatment evolutions now implies that

the treatment’s evolution cannot depend on the average level of the shocks across sectors,

a strong and implausible requirement.
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Note that the weights in Theorem 1 can be estimated. Estimating the weights, and

assessing if many are negative, can be used to assess the robustness of the first-stage

Bartik regression to heterogeneous effects under parallel trends, as de Chaisemartin &

D’Haultfœuille (2020) have proposed for two-way fixed effects regressions.

Here is some intuition on Theorem 1. If there are only two locations (G = 2),

β̂D
C =

∆D2 −∆D1

∆Z2 −∆Z1

,

a Wald-DID estimator similar to that studied by De Chaisemartin & D’Haultfœuille

(2018). Without loss of generality, let us assume that ∆Z2 > ∆Z1. Then,

βD
C =E

(
E (∆D2|∆Z1, ...,∆ZS, Q1,2, ..., QS,2)− E (∆D1|∆Z1, ...,∆ZS, Q1,1, ..., QS,1)

∆Z2 −∆Z1

)
=E

(
E (∆D2(0)|∆Z1, ...,∆ZS, Q1,2, ..., QS,2) +

∑S
s=1Qs,2∆Zsβs,2

∆Z2 −∆Z1

)

−E

(
E (∆D1(0)|∆Z1, ...,∆ZS, Q1,1, ..., QS,1) +

∑S
s=1Qs,1∆Zsβs,1

∆Z2 −∆Z1

)

=E

(∑S
s=1Qs,2∆Zsβs,2 −

∑S
s=1Qs,1∆Zsβs,1

∆Z2 −∆Z1

)
,

where the first, second, and third equalities respectively follow from the law of iterated

expectations and Assumption 5, Assumption 1, and Assumption 2. The previous dis-

play shows that in location two, the first-stage effects of negative shocks (∆Zs < 0) are

weighted negatively by βD
C , while in location one, the first-stage effects of positive shocks

are weighted negatively. If one assumes βs,g = βg, as in Point 2 of Theorem 1, the previous

display rewrites as

βD
C =E

(
∆Z2β2 −∆Z1β1

∆Z2 −∆Z1

)
.

The Bartik first-stage regression compares the treatment evolution in locations receiving

high and low Bartik shocks. But if the Bartik shock is positive in the low-shock location

(∆Z1 > 0), β1, the first-stage effect in that location, is weighted negatively by βD
C .

Our paper is not the first to note the analogy between Bartik regressions and DID

estimators: this analogy is emphasized in Goldsmith-Pinkham et al. (2020). However, we

believe that our paper is the first to note that owing to their similarity to “fuzzy” DID

estimators, Bartik regressions are not robust to heterogeneous treatment effects.

In the previous literature on Bartik regressions, Adão et al. (2019) is the only pa-

per that studies Bartik first-stage regressions with heterogeneous treatment effects (see

their Proposition 1). Unlike our Theorem 1, they show that first-stage Bartik regressions

identify a weighted average of first-stage effects under their randomly-assigned-shocks

assumption. Accordingly, our two results show that whether first-stage Bartik regres-

sions are robust to heterogeneous effects crucially depends on whether parallel trends or

randomly-assigned-shocks is more plausible in the application under consideration.
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Finally, we show a result very similar to Theorem 1 for reduced-form Bartik regressions.

Definition 3 Reduced-form Bartik regression: Let β̂Y
C denote the coefficient of ∆Zg in

the reduced-form regression of ∆Yg on ∆Zg and a constant. Let βY
C = E[β̂Y

C ].

Theorem 2 Suppose Assumptions 1, 3, 4, and 5 hold.

1. Then,

βY
C = E

(
G∑

g=1

S∑
s=1

Qs,g∆Zs(∆Zg −∆Z .)∑G
g=1

∑S
s=1 Qs,g∆Zs(∆Zg −∆Z .)

γs,g

)
.

2. If we further assume βs,g = βg and let γg = αgβg,

βY
C = E

(
G∑

g=1

∆Zg(∆Zg −∆Z .)∑G
g=1 ∆Zg(∆Zg −∆Z .)

γg

)
.

Theorem 2 is equivalent to Theorem 1, replacing the treatment evolution by the outcome

evolution. Accordingly, its interpretation is the same. Note that the weights in Theorem

2 are the same as in Theorem 1.

4.2 2SLS Bartik Regressions

In this section, we study 2SLS Bartik regressions.

Definition 4 2SLS Bartik regression: Let β̂2SLS
C = β̂Y

C /β̂
D
C denote the coefficient of ∆Dg

in the 2SLS regression of ∆Yg on ∆Dg and a constant, using ∆Zg as the instrument for

∆Dg. Let β
2SLS
C = βY

C /β
D
C .

Theorem 3 Suppose Assumptions 1-5 hold.

1. Then,

β2SLS
C = E

 G∑
g=1

∑S
s=1

Qs,g∆Zs(∆Zg−∆Z.)∑G
g=1

∑S
s=1 Qs,g∆Zs(∆Zg−∆Z.)

βs,g

E

(∑G
g=1

∑S
s=1

Qs,g∆Zs(∆Zg−∆Z.)∑G
g=1

∑S
s=1 Qs,g∆Zs(∆Zg−∆Z.)

βs,g

)αg

 .

2. If ∆Zs ≥ 0 for all s and βD
C ≥ 0, and one further assumes that βs,g ≥ 0 for

all (s, g), αg is weighted negatively in the decomposition in Point 1 if and only if

∆Zg −∆Z . < 0.

3. If one further assumes βs,g = βg,

β2SLS
C = E

 G∑
g=1

∆Zg(∆Zg−∆Z.)∑G
g=1 ∆Zg(∆Zg−∆Z.)

βg

E

(∑G
g=1

∆Zg(∆Zg−∆Z.)∑G
g=1 ∆Zg(∆Zg−∆Z.)

βg

)αg

 .
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4. If one further assumes βs,g = β,

β2SLS
C = E

(
G∑

g=1

∆Zg(∆Zg −∆Z .)∑G
g=1∆Zg(∆Zg −∆Z .)

αg

)
.

The first point of Theorem 3 shows that β2SLS
C is equal to the expectation of a weighted

sum of the second-stage effects αg, with weights that may not all be positive, thus implying

that like βD
C and βY

C , β
2SLS
C may not be robust to heterogeneous treatment effects under

our assumptions.4 Contrary to the weights in Theorems 1 and 2, the weights in the first

point of Theorem 3 cannot be estimated, as they depend on the first stage effects βs,g.

One can still describe which αgs get positively/negatively weighted. First, notice that the

denominator of the weights is the first-stage estimand βD
C , and to fix ideas let us assume

that βD
C ≥ 0. Then, notice that

G∑
g=1

S∑
s=1

Qs,g∆Zs(∆Zg −∆Z .) =
G∑

g=1

(∆Zg −∆Z .)
2 ≥ 0.

Then, locations whose αg get weighted negatively are those for which ∆Zg −∆Z . is of a

different sign than the effect of the shocks on their treatment evolution
∑S

s=1Qs,g∆Zsβs,g.

The second point of Theorem 3 shows that in applications where all the shocks ∆Zs

are positive and where the first-stage Bartik regression coefficient is positive, if one further

assumes that the first-stage effects βs,g are all positive, an assumption similar to the mono-

tonicity condition in Imbens & Angrist (1994), then αg is weighted negatively by β2SLS
C if

and only if ∆Zg is strictly lower than ∆Z .. This result has two important implications.

First it implies that there must be gs whose second-stage effects are weighted negatively.

Second, it implies that one can estimate the set of locations whose second-stage effects are

weighted negatively. Then, one may compare the characteristics of those locations to the

characteristics of locations whose second-stage effects are weighted positively, to assess if

those two groups are likely to have different second-stage effects. Negative weights may

not be problematic if those two groups are unlikely to have different second-stage effects,

but they may be problematic otherwise.

The third and fourth points of Theorem 3 show that even under further restrictions

on the heterogeneity of the first-stage effects, β2SLS
C still identifies the expectation of a

weighted sum of second-stage effects, with weights that may not all be positive. The

third point of Theorem 3 also implies that if we assume that the first-stage effects are all

positive and constant across sectors (βs,g = βg ≥ 0), the sign of the weight assigned by

β2SLS
C to each second-stage effect is identified and equal again to the sign of ∆Zg −∆Z ..

Again, one can then compare positively and negatively weighted locations, to assess if

their second-stage effects are likely to differ. The fourth point of Theorem 3 implies

that if we assume that the first-stage effects are constant across sectors and locations

(βs,g = β), the weights attached to the second-stage effects can be estimated.

4The weights do not sum up to 1, but their expectations sum to 1.
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In the previous Bartik literature, both Borusyak et al. (2022) and Goldsmith-Pinkham

et al. (2020) study Bartik 2SLS regressions with heterogeneous treatment effects. Under

their randomly-assigned-shock assumption, Borusyak et al. (2022) show that such re-

gressions identify convex combination of location-specific second-stage effects (see their

Proposition A1), provided first-stage effects are all positive. Very interestingly, their re-

sult does not rely on a linear second-stage effects assumption, thus showing that under

their randomly-assigned-shocks assumption, Bartik 2SLS regressions are robust both to

heterogeneous and non-linear effects. Again, our two results show that whether 2SLS

Bartik regressions are robust to heterogeneous effects depends on whether parallel trends

or randomly-assigned-shocks is more plausible in the application under consideration.

Under their assumptions, Goldsmith-Pinkham et al. (2020) also show that β2SLS
C iden-

tifies a weighted sum of second-stage effects, potentially with some negative weights (see

their Equation (10)). The weights in their and our decomposition differ, which is not

surprising because the assumptions we make on the first-stage Bartik regression are very

different. Expressed in our notation, the weight assigned to αg in their decomposition is∑S
s=1

(
∆Zs

(∑G
g′=1Qs,g′(∆Dg′ −∆D.)

)
(Qs,g −Qs,.)

2∆Zsβs,g

)
(∑S

s=1∆Zs

(∑G
g′=1 Qs,g′(∆Dg′ −∆D.)

))
×
(∑G

g=1 (Qs,g −Qs,.)
2∆Zsβs,g

)
=

∑S
s=1

(∑G
g′=1Qs,g′(∆Dg′ −∆D.)

)
(Qs,g −Qs,.)

2∆Z2
sβs,g(∑G

g′=1∆Zg′(∆Dg′ −∆D.)
)
×
(∑G

g=1 (Qs,g −Qs,.)
2∆Zsβs,g

) , (4.1)

where
∆Zs

(∑G
g′=1Qs,g′(∆Dg′ −∆D.)

)
∑S

s=1∆Zs

(∑G
g′=1 Qs,g′(∆Dg′ −∆D.)

)
is the so-called Rotemberg weight (see Rotemberg 1983).

Let us assume that
∑G

g′=1 ∆Zg′(∆Dg′ −∆D.) > 0, meaning that the first-stage Bartik

regression coefficient is positive. Notice that if
∑S

s=1Qs,g′ = 1,
∑S

s=1

∑G
g′=1 Qs,g′(∆Dg′ −

∆D.) = 0. Therefore, there are sectors such that
∑G

g′=1 Qs,g′(∆Dg′ −∆D.) > 0 (sectors

whose shares are positively correlated with locations’ treatment change), and sectors such

that
∑G

g′=1 Qs,g′(∆Dg′ − ∆D.) < 0 (sectors whose shares are negatively correlated with

locations’ treatment change). Then, in the decomposition of Goldsmith-Pinkham et al.

(2020), locations whose second stage effects are weighted negatively are such that sectors

for which (Qs,g −Qs,.)
2∆Z2

sβs,g is the largest, meaning that g’s share of sector s differs

the most from s’s average share across locations, tend to be sectors with a negative share

correlation with locations’ treatment change. Accordingly, locations whose second-stage

effect is weighted negatively differ under their and our assumptions.
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4.3 Extension to Applications with Multiple Periods

So far, we have assumed that the data only has two periods. All our previous results

readily generalize to settings with more than two periods.

We begin by adapting our notation and assumptions to the case where there are

multiple time periods indexed by t ∈ {1, ..., T}, T ≥ 3. For all t ≥ 2 and any location-

level variable Rg, let ∆Rg,t = Rg,t − Rg,t−1. Let ∆Zs,t denote the shock affecting sector

s between periods t − 1 and t, and let ∆Z = (∆Zs,t)(s,t)∈{1,...,S}×{2,...,T} denote a vector

collecting all the shocks ∆Zs,t.

Definition 5 Bartik Instrument: The Bartik instrument ∆Zg,t is:

∆Zg,t =
S∑

s=1

Qs,g∆Zs,t.

With more than two periods, our definition of the Bartik instrument assumes that the

shares Qs,g do not change over time. In practice, applied researchers sometimes use time-

varying shares to define the Bartik instrument. Our results can readily be generalized to

allow time-varying shares.

For any (δ1, ..., δS) ∈ RS, let ∆Dg,t(δ1, ..., δS) denote the potential treatment evolution

that location g will experience from period t − 1 to t if (∆Z1,t, ...,∆ZS,t) = (δ1, ..., δS).

And let ∆Dg,t(0) = ∆Dg,t(0, ..., 0) denote the potential treatment evolution that location

g will experience in the absence of any shocks. Finally, let ∆Yg,t(dg,t) denote the potential

outcome evolution that location g will experience from period t− 1 to t if ∆Dg,t = dg,t.

The assumptions below generalize Assumptions 1-5 to instances with multiple periods.

Assumption 6 Linear First-Stage Equation: for all g ∈ {1, ..., G}, t ∈ {2, ..., T}, there
are real numbers (βs,g,t)s∈{1,...,S} such that for any (δ1, ..., δS) ∈ RS:

∆Dg,t(δ1, ..., δs) = ∆Dg,t(0) +
S∑

s=1

Qs,gδsβs,g,t.

Assumption 7 Common Trends for the Treatment: for all t ∈ {2, ..., T}, there are real

numbers µD
t such that ∀g ∈ {1, ..., G}, E(∆Dg,t(0)|∆Z, (Qs,g)s∈{1,...,S}) = µD

t .

Assumption 8 Linear Second-Stage Equation: for all g ∈ {1, ..., G}, t ∈ {2, ..., T}, there
is a real number αg,t such that for any dg,t ∈ R:

∆Yg,t(dg,t) = ∆Yg,t(0) + αg,tdg,t.

Assumption 9 Common Trends for the Outcome: for all t ∈ {2, ..., T}, there are real

numbers µY
t such that ∀g ∈ {1, ..., G}, E(∆Yg,t(∆Dg,t(0))|∆Z, (Qs,g)s∈{1,...,S}) = µY

t .

Assumption 10 Independent Locations:

Conditional on ∆Z, the vectors
(
(∆Yg,t(0),∆Dg,t(0))t∈{2,...,T} , (Qs,g)s∈{1,...,S}

)
are mutu-

ally independent across g.
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With several periods, the analog of the 2SLS regression with a constant is a 2SLS regres-

sion with period fixed effects.

Definition 6 Let β̂D
C denote the coefficient of ∆Zg,t in the regression of ∆Dg,t on ∆Zg,t

and period fixed effects, and let βD
C = E[β̂D

C ]. Let β̂Y
C denote the coefficient of ∆Zg,t

in the regression of ∆Yg,t on ∆Zg,t and period fixed effects, and let βY
C = E[β̂Y

C ]. Let

β2SLS
C = βY

C /β
D
C .

The following result extends Theorem 3 to applications with multiple periods. The cor-

responding extensions of Theorems 1 and 2 are in Appendix Section B.

Theorem 4 Suppose Assumptions 6-10 hold.

1. Then,

β2SLS
C = E

 G∑
g=1

T∑
t=2

∑S
s=1

Qs,g∆Zs,t(∆Zg,t−∆Z.,t)∑G
g=1

∑T
t=2

∑S
s=1 Qs,g∆Zs,t(∆Zg,t−∆Z.,t)

βs,g,t

E

(∑G
g=1

∑T
t=2

∑S
s=1

Qs,g∆Zs,t(∆Zg,t−∆Z.,t)∑G
g=1

∑T
t=2

∑S
s=1 Qs,g∆Zs,t(∆Zg,t−∆Z.,t)

βs,g,t

)αg,t

 .

2. If one further assumes that βs,g,t = βg,t,

β2SLS
C = E

 G∑
g=1

T∑
t=2

∆Zg,t(∆Zg,t−∆Z.,t)∑G
g=1

∑T
t=2 ∆Zg,t(∆Zg,t−∆Z.,t)

βg,t

E

(∑G
g=1

∑T
t=2

∆Zg,t(∆Zg,t−∆Z.,t)∑G
g=1

∑T
t=2 ∆Zg,t(∆Zg,t−∆Z.,t)

βg,t

)αg,t

 .

3. If one further assumes that βs,g,t = β,

β2SLS
C = E

(
G∑

g=1

T∑
t=2

∆Zg,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2∆Zg,t(∆Zg,t −∆Z .,t)

αg,t

)
.

4. If one further assumes that βs,g,t = βg and αg,t = αg,

β2SLS
C = E

 G∑
g=1

(∑T
t=2

∆Zg,t(∆Zg,t−∆Z.,t)∑G
g=1

∑T
t=2 ∆Zg,t(∆Zg,t−∆Z.,t)

)
βg

E

(∑G
g=1

(∑T
t=2

∆Zg,t(∆Zg,t−∆Z.,t)∑G
g=1

∑T
t=2 ∆Zg,t(∆Zg,t−∆Z.,t)

)
βg

)αg

 .

Points 1, 2, and 3 of Theorem 4 are generalizations of Points 1, 3, and 4 of Theorem 3. The

important new implication that was not present in Theorem 3 is that Bartik regressions

are also not robust to heterogeneous first- and second-stage effects over time. Point 4 is a

new result that was not present in Theorem 3. There, it is assumed that first-stage effects

do not vary across sectors and over time, and that second-stage effects do not vary over

time (βs,g,t = βg and αg,t = αg). It is useful to consider what Bartik regressions estimate

under that assumption, because it underlies the first alternative estimator we propose in

Section 5. Under that assumption, the second-stage Bartik regression estimates again a

weighted sum of the location-specific second stage effects αg, with weights that may be

negative. This contrasts with our first alternative estimator: if βs,g,t = βg and αg,t = αg,

it estimates a weighted average of the second-stage effects αg.
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4.4 Testing the parallel-trends assumptions

When the data contains a time period where no shocks arise, our parallel-trends assump-

tions can be tested. Let us assume that ∆Zs,2 = 0 for every s ∈ {1, ..., S}. In the canonical

design, that means that the nationwide employment should remain stable from t = 1 to

t = 2 in every sector. In Autor et al. (2013), that means that the exposure to Chinese

imports should remain stable from t = 1 to t = 2 in every sector. Then, one can use the

following regressions to test Assumptions 7 and 9.

Definition 7 Placebo First-Stage Bartik regression: Let β̂D
pl denote the coefficient of

∆Zg,3 in the regression of ∆Dg,2 on ∆Zg,3 and a constant. Let βD
pl = E[β̂D

pl ].

Definition 8 Placebo Reduced-Form Bartik regression: Let β̂Y
pl denote the coefficient of

∆Zg,3 in the regression of ∆Yg,2 on ∆Zg,3 and a constant. Let βY
pl = E[β̂Y

pl ].

βD
pl is the coefficient of ∆Zg,3, the period-3 Bartik instrument, from a regression of ∆Dg,2,

the period-1-to-2 treatment evolution, on a constant and ∆Zg,3. If ∆Zs,2 = 0 for every

s ∈ {1, ..., S}, ∆Dg,2 = ∆Dg,2(0) for every g. Under Assumption 7, the expectation of

∆Dg,2(0) should be the same in every location, and should not correlate with locations’

value of the Bartik instrument in the next period. Accordingly, βD
pl = 0 so finding that

β̂D
pl is significantly different from 0 would imply that Assumption 7 is rejected. As per the

same logic, finding that β̂Y
pl is significantly different from 0 would imply that Assumption

9 is rejected. Theorem 5 below formalizes this argument.

Theorem 5 Suppose Assumptions 6, 8, 10 hold, and ∆Zs,2 = 0 for every s ∈ {1, ..., S}.

1. If Assumption 7 also holds, βD
pl = 0.

2. If Assumption 9 also holds, βY
pl = 0.

Theorem 5 shows that βD
pl = 0 and βY

pl = 0 are testable implications of Assumptions 7 and

9. When ∆Zs,2 = 0 for every s ∈ {1, ..., S}, testing whether β̂D
pl (resp. β̂Y

pl) significantly

differs from 0  is not the only way to test Assumption 7  ( resp. 9 ). For instance, one could 
regress ∆Dg,2 (resp. ∆Yg,2) on any of the ∆Zg,t for t ≥ 3. The reason we focus on the 
test presented above is that it is closely related to a placebo test commonly implemented 
by applied researchers, see for instance Autor et al. (2013). Theorem 5 shows that this 
placebo test is in fact a test of our parallel-trends assumptions.

5 Alternative estimators

In this section, we propose two alternative estimators. They are closely related to the 
correlated-random-coefficients es timator proposed by  Chamberlain (1 992). They can be 
used when the data has at least three periods, which is often the case in Bartik applica-
tions.5

5With two periods, the estimation method we propose cannot be used, but one may then be able to
follow a similar estimation strategy as that proposed in Graham & Powell (2012).

22



5.1 Estimator robust to heterogeneous effects across locations

Our first alternative estimator relies on the following assumption:

Assumption 11 Constant first-stage effects across sectors and over time, and constant

second-stage effects over time: for all g ∈ {1, ..., G}, there are real numbers βg and αg

such that βs,g,t = βg for every s ∈ {1, ..., S} and t ∈ {2, ..., T} and αg,t = αg for every

t ∈ {2, ..., T}.

Assumption 11 requires that first-stage effects be constant across sectors and over time,

and that second-stage effects be constant over time, as in Point 4 of Theorem 4. Under

Assumption 11, for every g ∈ {1, ..., G}, let γg = αgβg denote the reduced-form effect of

the instrument on the outcome.

Let

∆Zg =(∆Zg,2, ...,∆Zg,T )
′

∆Dg =(∆Dg,2, ...,∆Dg,T )
′

∆Yg =(∆Yg,2, ...,∆Yg,T )
′

be (T − 1)× 1 vectors stacking together the instruments, the evolutions of the treatment,

and the evolutions of the outcome, respectively. Let

µD =(µD
2 , ..., µ

D
T )

′

µY =(µY
2 , ..., µ

Y
T )

′

be (T − 1)× 1 vectors stacking together the common trends affecting the treatment and

the outcome, defined in Assumptions 7 and 9. For every g ∈ {1, ..., G}, let

Mg = I − 1

∆Z ′
g∆Zg

∆Zg∆Z ′
g,

where I denotes the (T − 1)× (T − 1) identity matrix.

Theorem 6 Suppose that Assumptions 6-11 hold, E
(

1
G

∑G
g=1 M

′
gMg

)
is invertible, and

with probability 1 ∆Zg ̸= 0 for every g ∈ {1, ..., G}. Then:

µD =E

(
1

G

G∑
g=1

M ′
gMg

)−1

E

(
1

G

G∑
g=1

M ′
gMg∆Dg

)
(5.1)

µY =E

(
1

G

G∑
g=1

M ′
gMg

)−1

E

(
1

G

G∑
g=1

M ′
gMg∆Yg

)
(5.2)

1

G

G∑
g=1

βg =E

(
1

G

G∑
g=1

∆Z ′
g

(
∆Dg − µD

)
∆Z ′

g∆Zg

)
(5.3)

1

G

G∑
g=1

γg =E

(
1

G

G∑
g=1

∆Z ′
g

(
∆Yg − µY

)
∆Z ′

g∆Zg

)
. (5.4)
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Under Assumptions 6-11,

E(∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = µD + βg∆Zg, (5.5)

an equation that is additively separable in the location-specific coefficient βg and the

common trends µD, and thus falls into the class of semi-parametric models studied in

Chamberlain (1992). Then, identification follows from the same steps as in Chamberlain

(1992). First, it is easy to check thatMg∆Zg = 0. Accordingly, left-multiplying Equation

(5.5) by Mg, it follows that

E
(
Mg∆Dg|∆Z, (Qs,g)s∈{1,...,S}

)
= Mgµ

D, (5.6)

so µD is identified by a regression of Mg∆Dg on Mg, as in Equation (5.1). Similarly,

Equation (5.3) follows after left-multiplying Equation (5.5) by ∆Z ′
g, rearranging terms,

using the law of iterated expectations, and averaging across g. Notice that

∆Z ′
g

(
∆Dg − µD

)
∆Z ′

g∆Zg

is the coefficient of ∆Zg,t in the regression, within group g, of ∆Dg,t−µD
t on ∆Zg,t without

a constant. Accordingly, once the common trends µD
t have been identified, Chamberlain’s

estimator of the average first-stage effect 1
G

∑G
g=1 βg amounts to regressing ∆Dg,t − µD

t

on ∆Zg,t without a constant in every group, and then averaging those coefficients across

groups. To estimate the average reduced-form effect 1
G

∑G
g=1 γg, the procedure is similar,

replacing the treatment evolution by the outcome evolution.

Corollary 1 Under the same assumptions as those in Theorem 6,

G∑
g=1

βg∑G
g=1 βg

αg =

E

(
1
G

∑G
g=1

∆Z′
g(∆Yg−µY )
∆Z′

g∆Zg

)
E
(

1
G

∑G
g=1

∆Z′
g(∆Dg−µD)

∆Z′
g∆Zg

) . (5.7)

Corollary 1 directly follows from Equations (5.3) and (5.4) and the definition of γg. Under

the assumption that all first-stage effects are positive,
∑G

g=1
βg∑G

g=1 βg
αg is a weighted aver-

age of location-specific second stage effects, that gives a higher weight to the second-stage

effect of locations with a higher first-stage effect. Therefore, Corollary 1 implies that un-

der Assumption 11 and if βg ≥ 0, our correlated-random-coefficient estimator estimates

a weighted average of second-stage effects. Point 4 of Theorem 4 shows that under the

same assumptions, the 2SLS Bartik regression may not estimate a weighted average of

second-stage effects.

Operationally, estimators of µD, µY , 1
G

∑G
g=1 βg, and 1

G

∑G
g=1 γg can be computed
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using the Generalized Method of Moments (GMM). Indeed, one has

E

(
1

G

G∑
g=1

Mg(∆Dg − µD)

)
= 0

E

(
1

G

G∑
g=1

Mg(∆Yg − µY )

)
= 0

E

(
1

G

G∑
g=1

∆Z ′
g

(
∆Dg − µD

)
∆Z ′

g∆Zg

− 1

G

G∑
g=1

βg

)
= 0

E

(
1

G

G∑
g=1

∆Z ′
g

(
∆Yg − µY

)
∆Z ′

g∆Zg

− 1

G

G∑
g=1

γg

)
= 0, (5.8)

a just-identified system with 2T moment conditions and 2T parameters.

All the moment conditions in (5.8) actually hold conditional on (∆Zg)g∈{1,...,G}, thus

implying that the parameters could be estimated using conditional rather than uncondi-

tional GMM. Applying results in Chamberlain (1992), one can derive the optimal esti-

mator of µD and µY attached to the first two equations in (5.8). An issue, however, is

that Chamberlain’s optimality results do not apply to the estimators of 1
G

∑G
g=1 βg and

1
G

∑G
g=1 γg, the building blocks of our target parameter. Moreover, the computation of the

optimal estimator requires a non-parametric first-stage estimation. To our knowledge, no

data-driven method has been proposed to choose the tuning parameters involved in this

first stage. Accordingly, we prefer to stick with the unconditional GMM estimator above.

Under Assumption 10, conditional on∆Z, the vectors (∆Yg,t,∆Dg,t,∆Zg,t)t∈{2,...,T} are

mutually independent across g. Then, to perform inference on
∑G

g=1
βg∑G

g=1 βg
αg conditional

on the shocks, one may use the heteroskedasticity-robut standard errors attached to the

GMM system in (5.8).6 The entire time series of each location enters in the system’s

2T moment conditions, so those heteroskedasticity-robut standard errors do not assume

that the vectors (∆Yg,t,∆Dg,t,∆Zg,t) are independent across t: they only require that

conditional on ∆Z, the vectors (∆Yg,t,∆Dg,t,∆Zg,t)t∈{2,...,T} be independent across g.

Accounting for the variance arising from the shocks would require extending the approach

in Adão et al. (2019) to the estimators in Theorem 6, and without making the randomly-

assigned shocks assumption. This important extension is left for future work. Similarly,

in our applications, to draw inference on Bartik regression coefficients we use standard

errors clustered at the location level: those do not account for the variance arising from

the shocks, but they give valid estimators of the coefficients’ standard errors conditional

on the shocks under Assumption 10. The standard errors proposed by Adão et al. (2019)

for Bartik regressions account for the shocks, but they are only valid under the random-

shocks assumption.

6Theorem 6 is also valid conditional on the shocks.
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5.2 Estimator robust to heterogeneous effects across locations

and over time

While the estimator above is robust to heterogeneous first- and second-stage effects across

locations, it is not robust to heterogeneous first- and second-stage effects over time, and

to heterogeneous first-stage effects across sectors. Accordingly, it still rests on strong

homogeneity assumptions. We now propose a second alternative estimator that relies on

a weaker assumption.

Assumption 12 Constant first-stage effects across sectors, and first- and second-stage

effects additively separable in location and time: for all g ∈ {1, ..., G} and t ∈ {2, ..., T},
there are real numbers βg, αg, λ

D
t and λY

t such that βs,g,t = βg+λD
t for every s ∈ {1, ..., S},

and αg,t = αg + λY
t .

λD
t and λY

t respectively represent the change in the first- and second-stage effects from

t − 1 to t, which is assumed to be constant across locations. Accordingly, Assumption

12 maybe be interpreted as a parallel trends assumption on the first- and second-stage

effects. Without loss of generality, we can assume that λD
2 = λY

2 = 0. Then, let θD =

(µD
2 , µ

D
3 , λ

D
3 , ..., µ

D
T , λ

D
T )

′ and θY = (µY
2 , µ

Y
3 , λ

Y
3 , ..., µ

Y
T , λ

Y
T )

′, let 0k denote a vector of k

zeros, let

Pg =


1,02T−4

0, 1,∆Zg,3,02T−6

03, 1,∆Zg,4,02T−8

...

02T−5, 1,∆Zg,T

 ,

let ∆Z̃g,t = ∆Zg,t(βg + λD
t ), let

M̃g = I − 1

∆Z̃ ′
g∆Z̃g

∆Z̃g∆Z̃ ′
g,

and let

P̃g =


1,02T−4

0, 1,∆Z̃g,3,02T−6

03, 1,∆Z̃g,4,02T−8

...

02T−5, 1,∆Z̃g,T

 .

Theorem 7 Suppose that Assumptions 6-10 and 12 hold, E
(

1
G

∑G
g=1P

′
gMgPg

)
and

E
(

1
G

∑G
g=1 P̃

′
gM̃gP̃g

)
are invertible, and with probability 1 ∆Zg ̸= 0 and ∆Z̃g ̸= 0
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for every g ∈ {1, ..., G}. Then:

θD =E

(
1

G

G∑
g=1

P ′
gMgPg

)−1

E

(
1

G

G∑
g=1

P ′
gMg∆Dg

)
(5.9)

βg =E

(
∆Z ′

g

(
∆Dg − Pgθ

D
)

∆Z ′
g∆Zg

)
(5.10)

θY =E

(
1

G

G∑
g=1

P̃ ′
gM̃gP̃g

)−1

E

(
1

G

G∑
g=1

P̃ ′
gM̃g∆Yg

)
(5.11)

1

G

G∑
g=1

αg =E

 1

G

G∑
g=1

∆Z̃ ′
g

(
∆Yg − P̃gθ

Y
)

∆Z̃ ′
g∆Z̃g

 . (5.12)

Under Assumptions 6-10 and 12,

E(∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = Pgθ
D + βg∆Zg, (5.13)

an equation that is additively separable in the location-specific coefficient βg and the

common trends θD, like Equation (5.5), so identification of θD follows from similar steps

as the identification of µD in Theorem 6. Once θD is identified, Equation (5.10) directly

follows from Equation (5.13), thus showing that βg is identified for all g. Once βg and θD

are identified, ∆Z̃g,t is identified. Then, under Assumptions 6-10 and 12,

E(∆Yg,t|∆Z, (Qs,g)s∈{1,...,S}) = µY
t + (αg + λY

t )(βg + λD
t )∆Zg,t = µY

t + λY
t ∆Z̃g,t + αg∆Z̃g,t.

Therefore,

E(∆Yg|∆Z, (Qs,g)s∈{1,...,S}) = P̃gθ
Y + αg∆Z̃g, (5.14)

an equation similar to Equation (5.13), replacing ∆Dg by ∆Yg, and ∆Zg,t by ∆Z̃g,t.

Then, identification of 1
G

∑G
g=1 αg and θY follows from similar steps as above.

Note that once 1
G

∑G
g=1 αg and θY are identified,

1

T − 1

T∑
t=2

1

G

G∑
g=1

(αg + λY
t ), (5.15)

the average second-stage effect across all periods and locations, is also identified. This

parameter is arguably more natural than the weighted average of second-stage effects in

Corollary 1.

To estimate that parameter, one can proceed as follows:

1. Compute θ̂D =
(

1
G

∑G
g=1P

′
gMgPg

)−1 (
1
G

∑G
g=1P

′
gMg∆Dg

)
.

2. Compute β̂g =
∆Z′

g(∆Dg−Pg θ̂D)
∆Z′

g∆Zg
.
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3. Compute ∆ ̂̃Zg,t = ∆Zg,t(β̂g + λ̂D
t ) and define

̂̃
P g and

̂̃
M g accordingly.

4. Compute θ̂Y =

(
1
G

∑G
g=1

̂̃
P

′

g
̂̃
M g

̂̃
P g

)−1(
1
G

∑G
g=1

̂̃
P

′

g
̂̃
M g∆Yg

)
.

5. Finally, compute α̂g =
∆

̂̃
Z

′
g

(
∆Yg− ̂̃

P g θ̂Y
)

∆
̂̃
Z

′
g∆

̂̃
Zg

.

One can show that θ̂D is numerically equivalent to a standard GMM estimator. One

can also show that θ̂Y and 1
G

∑G
g=1 α̂g are numerically equivalent to non-standard GMM

estimators, with G + T − 2 preliminary estimated parameters to estimate the variables

∆Z̃g,t. Studying the large-sample properties of those estimators is left for future work.

6 Empirical Application: China Shock

In this section, we revisit Autor et al. (2013), who use the Bartik instrument to estimate

the effects of exposure to Chinese imports on manufacturing employment in the US. We

also revisit another empirical application, the canonical application in Bartik (1991), in

Section A of our Web Appendix.

6.1 Data

We use the replication dataset of Autor et al. (2013) on the AEA website. In their main

analysis, they use a CZ-level panel data set, with 722 CZs and 3 periods (1990, 2000, and

2007). The outcome variable ∆Yg,t is the change in the manufacturing employment share

of the working age population in CZ g between two consecutive periods. The treatment

variable ∆Dg,t is the change in Chinese import exposure per worker in CZ g between two

consecutive periods. The sectoral shocks ∆Zs,t are the change in per-worker imports from

China to other high-income countries in industry s, for 397 manufacturing industries. The

share Qs,g in Autor et al. (2013) is the employment share of sector s in location g, and

the shares are lagged by 1 period when constructing the Bartik instrument (see Equation

(4) in Autor et al. 2013).7 The shares do not sum up to 1 in each location, because

there is employment in non-manufacturing industries as well (see Borusyak et al. 2022

for a discussion of this).8 The replication dataset of Autor et al. (2013) does not contain

7Specifically, the exact definition of the treatment variable is ∆Dg,t =
∑

s Ps,g,t∆Ds,t, where Ps,g,t =

Ls,g,t/Lg,t is the local employment share of sector s in cell (g, t), and ∆Ds,t = ∆Mu,c,s,t/Lu,s,t is the

per-worker change in US imports from China in sector s and period t. The Bartik instrument is defined

as ∆Zg,t =
∑

s Qs,g,t∆Zs,t, where Qs,g,t = Ls,g,t−1/Lg,t−1 is the lagged local employment share of

sector s in location g, and ∆Zs,t = ∆Mo,c,s,t/Lu,s,t−1 is the per-lagged-US worker change in other

countries’ imports from China in sector s and period t. See footnote 39 of Borusyak et al. (2022) for

more discussion. We use the same variable definitions as Borusyak et al. (2022).
8 Under their random-shock assumption, Borusyak et al. (2022) show that it is important to control for

the sum of shares when it is not always equal to 1 (see their section 4.2). Intuitively, with shares summing
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the shock and share variables. However, we obtained those variables from the replication

dataset of Borusyak et al. (2022).

6.2 Testing the identifying assumptions

We start by assessing the plausibility of the random shock assumption, by testing whether

shocks are independent of industries’ characteristics. We use the five industry characteris-

tics in Acemoglu et al. (2016) that are in the replication dataset of Borusyak et al. (2022).

These characteristics are the share of production workers in each industry’s employment

in 1991, the ratio of the industry’s capital to value-added in 1991, the industry’s log real

wages in 1991, the share of its investment devoted to computers in 1990, and the share

of its high-tech equipment in total investment in 1990. These predetermined characteris-

tics reflect the structure of employment and technology across industries. Table 1 shows

regressions of sectoral shocks from 1990 to 2000 (in Column (1)) and from 2000 to 2007

(in Column (2)) on these characteristics. We follow Borusyak et al. (2022) and weight

the regressions by the average industry exposure shares and cluster the standard errors

at the level of three-digit SIC codes, but the results are very similar when the regressions

are not weighted or when one uses robust standard errors.

The results show that large import shocks tend to appear in industries with low wages

and more high-tech equipment investment, and we can reject the hypothesis that the

import shocks are not correlated with any industry characteristic (p-value < 0.001 in

Column (1), p-value = 0.017 in Column (2)). Therefore, there are industries with cer-

tain characteristics that make them more likely to receive a large import shock, and the

random-shock assumption is rejected.h

Note that our test of the random shocks assumption is inspired from and closely

related to that in Table 3 Panel A in Borusyak et al. (2022). The only difference is

that they separately regress each industry characteristic on the shocks, while we regress

the shocks on all the industry characteristics. Our results differ from those in Table 3

Panel A of Borusyak et al. (2022). In their univariate regressions, the authors find no

significant correlation between characteristics and shocks. Reverting the dependent and

the independent variables in their Table 3 Panel A would leave their t-stats unchanged,

so the difference between our and their results comes from the fact they assess if each

of the five industry-level characteristics can separately predict the average industry-level

shocks, while we assess if the five industry-level characteristics can jointly predict the

average industry-level shocks. Based on our results, one can reject the null that the mean

to less than one, the Bartik instrument is still well defined assuming there is a “missing sector” s = 0

with no sectoral shock: ∆Z0 = 0. But then, the random-shock assumption would require all the other

sectors to have shocks with zero expectation. By controlling for the sum of shares, one can relax this

restriction. In our setting, adding a missing sector with ∆Z0 = 0 does not impose additional restrictions

on our parallel-trends assumptions, which can be extended to have an additional missing sector with no

shock. Therefore, our results readily extend to settings where shares do not sum up to 1.
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of the shocks conditional on those five characteristics is constant, thus implying that the

random-shock assumption is violated. Based on their results, one cannot reject the null

that the mean of the shocks conditional on each individual characteristic is constant.

But it follows from the law of iterated expectations that the null in our test is stronger

than the null in their test: denoting by X1,s, X2,s, X3,s, X4,s, X5,s the five characteristics in

Acemoglu et al. (2016), E(∆Zs|X1,s, X2,s, X3,s, X4,s, X5,s) = µ ⇒ E(∆Zs|Xk,s) = µ for all

k ∈ {1, ..., 5}. Because we test a stronger implication of the random-shock assumption,

our test may be more powerful, which could explain why our test is rejected while theirs

is not.

Table 1: Testing the Random Shock Assumption

(1) (2)

Variables ∆Zs,t: 1990-2000 ∆Zs,t: 2000-2007

Production workers’ share of employment1991 0.178 1.528

(5.179) (24.436)

Ratio of capital to value-added1991 0.209 8.389

(0.822) (3.000)

Log real wage (2007 USD)1991 -8.946 -11.514

(2.171) (8.505)

Computer investment as share of total investment1990 0.103 1.149

(0.135) (0.633)

High-tech equipment as share of total investment1990 0.299 1.095

(0.135) (0.433)

Constant 29.414 25.161

(9.787) (40.623)

Observations 397 397

R-squared 0.082 0.067

F-test P-value 0.0000 0.0172

Notes: The table reports estimates of regressions of the industry-level change in per-worker imports

from China to other high-income countries during 1990-2000 and 2000-2007 on a set of pre-determined

industry characteristics. The dependent variable in Column (1) is the change in per-worker imports from

China to other high-income countries from 1990 to 2000. The dependent variable in Column (2) is the

change in per-worker imports from China to other high-income countries from 2000 to 2007. The industry

characteristics are obtained from Acemoglu et al. (2016), and include an industry’s share of production

workers in employment in 1991, the ratio of its capital to value-added in 1991, its log real wages in 1991,

the share of its investment devoted to computers in 1990, and the share of its high-tech equipment in total

investment in 1990. The regressions are weighted by the average industry exposure shares. Standard

errors clustered at the level of three-digit SIC codes are shown in parentheses. The F-test p-value is the

p-value of the joint test that all the coefficients of the industry characteristics are equal to 0.

In this application, there are periods where all industries barely receive any shocks.

As discussed in Autor et al. (2013), the growth in Chinese imports to the US was very 
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small prior to 1990. Accordingly, 1990 and prior periods satisfy, or nearly satisfy, the

requirement in Theorem 5 that ∆Zs,t should be 0 for every industry. In fact, in their

Table 2, Autor et al. (2013) implement a placebo test closely related to that we propose

in Theorem 5. They average the 1990-to-2000 and 2000-to-2007 Bartik instrument of each

CZ, and then estimate a 2SLS regression of 1970-to-1980 and 1980-to-1990 manufacturing

employment growths on 1990-to-2000 and 2000-to-2007 Chinese import exposure growth,

using the average Bartik as the instrument. Instead, Table 2 below follows Point 2 of

Theorem 5 and presents placebo reduced-form regressions. In Column (1) (resp. (2)), we

regress CZs 1970-to-1980 and 1980-to-1990 manufacturing employment growths on their

1990-to-2000 (resp. 2000-to-2007) Bartik instrument. We use standard errors clustered

at the CZ level (between parenthesis). Unlike Autor et al. (2013), we do not weight

the regression by CZ’s population, to be consistent with Sections 3 to 5, but results

remain similar with weighting. We also cluster our standard errors at the CZ rather

than at the state level, but results are similar if we cluster at the state level. Finally,

we do not average the 1990-to-2000 and 2000-to-2007 instruments, to be consistent with

Theorem 5, but again results are similar if we instead use the average of the 1990-to-2000

and 2000-to-2007 instruments. Table 2 shows that the placebo reduced-form coefficients

of the 1990-to-2000 and 2000-2007 Bartik instruments are small, and insignificant at

the 5% level. Overall, it seems that CZs 1970-to-1980 and 1980-to-1990 manufacturing

employment growths are uncorrelated with their 1990-to-2000 and 2000-to-2007 Bartik

instruments, so Assumption 9, our parallel trends condition on the outcome evolution

without shocks, seems plausible in this application. Unfortunately, we are unable to

implement the placebo test for the first-stage regression, because trade data with China

is unavailable before 1990, as explained by Autor et al. (2013).

Table 2: Testing the Common Trends Assumptions

(1) (2)

Dependent Variable ∆Yg,t, t ∈ {1980, 1990} ∆Yg,t, t ∈ {1980, 1990}
∆Zg,2000 0.038

(0.077)

∆Zg,2007 0.053

(0.031)

Observations 1,444 1,444

Notes: The table reports estimates of regressions using a US commuting-zone (CZ) level panel data 
set with five p eriods, 1 970, 1 980, 1 990, 2 000, a nd 2 007. T he d ependent variable i s t he c hange o f the 
manufacturing employment share in CZ g, from 1970 to 1980 and from 1980 to 1990. In Column (1)
(resp. (2)), the independent variables are the 1990-to-2000 (resp. 2000-to-2007) Bartik instrument of 
each CZ, and an indicator equal to 1 if the independent variable is measured from 1980 to 1990. The 
construction of the Bartik instrument is detailed in the text. Standard errors clustered at the CZ level 
are shown in parentheses. All regressions are unweighted.
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6.3 Results

Columns (1) to (3) of Table 3 below show the results of the Bartik first-stage, reduced-

form, and 2SLS regressions. In Column (1), the first-stage coefficient is 0.867. In Column

(2), the reduced form coefficient is -0.539. Finally, in Column (3), the 2SLS coefficient is

-0.622. Robust standard errors clustered at the CZ level are shown between parentheses.

All coefficients are statistically significant. The 2SLS coefficient slightly differs from that

in Table 2 Column (3) in Autor et al. (2013), because our 2SLS regression is not weighted

by CZ’s population. This is just to be consistent with Sections 3 to 5, where we consider

unweighted Bartik regressions.

Table 3: Bartik Regressions in Autor et al. (2013)

Bartik FS Bartik RF Bartik 2SLS Chamberlain 2SLS

(1) (2) (3) (4)

Dependent Variable ∆Dg,t ∆Yg,t ∆Yg,t ∆Yg,t

Bartik Instrument ∆Zg,t 0.867 -0.539

(0.131) (0.087)

∆Dg,t -0.622 -1.163

(0.148) (0.263)

Observations 1,444 1,444 1,444 722

Notes: Columns (1) to (3) report estimates of Bartik regressions with period fixed e ffects, us ing a US 
commuting-zone (CZ) level panel data set with T = 3 periods, 1990, 2000, and 2007. ∆Yg,t is the change 
of the manufacturing employment share in CZ g, from 1990 to 2000 for t = 2000, and from 2000 to 
2007 for t = 2007. ∆Dg,t is the change in exposure to Chinese imports in CZ g from 1990 to 2000 for 
t = 2000, and from 2000 to 2007 for t = 2007. ∆Zg,t is the Bartik instrument, whose construction is 
detailed in the text. Columns (1), (2), and (3) respectively report estimates of the first-stage, reduced-
form, and 2SLS Bartik regression coefficients. St andard er rors cl ustered at  th e CZ  le vel ar e sh own in 
parentheses. All regressions are unweighted. Column (4) reports an alternative estimate of the second-
stage effect, u sing t he GMM S tata c ommand, a nd w ith t he s ystem o f moment c onditions i n Equation 
(5.8). The 2T = 6 moment conditions have one observation per CZ, hence the number of observations. 
Heteroskedasticity-robust standard errors are shown in parentheses.

We now investigate if the first-stage, r educed-form, and 2SLS r egressions i n Table 3
respectively estimate convex combinations of first-stage, reduced-form, and second-stage
effects. We follow Theorem B.1 in the Web Appendix, a straightforward generalization of
Theorem 1 to applications with more than two periods, to estimate the weights attached
to the first-stage regression in Table 3 . Panel A  of Table 4  reports summary statistics on
those weights. Column (1) shows that without making any assumption on the first-stage
effects, t he fi rst-stage re gression es timates a we ighted sum of  13 2,906 fir st-stage effects,
where 70,422 effects receive a  negative weight, and where negative weights sum to -0.095.
Column (2) shows that under the assumption that first-stage effects do  no t va ry across
sectors (βs,g,t = βg,t), the first-stage r egression e stimates a  weighted s um o f 1 ,442 first-
stage effects, where 854 effects receive a negative weight, and where negative weights sum
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to -0.084. Assuming that first-stage effects do not vary over time only slightly reduces

the sum of negative weights, as shown in Column (3). Finally, Column (4) trivially shows

that if the first-stage effect is fully homogeneous (βs,g,t = β), the first-stage regression

estimates β. Similarly, we can follow Theorem B.2 in the Web Appendix to estimate

the weights attached to the reduced-form regression in Table 3. We do no report those

weights, because they are identical to those in Panel A of Table 4, except that they are

obtained under assumptions on the reduced-form effects γs,g,t.

Then, we follow Theorem 4 to estimate the weights attached to the 2SLS regression

in Table 3. Panel B of Table 4 reports summary statistics on those weights. Column (1)

shows that without making any assumption on the first-stage effects, we cannot estimate

the number of negative weights or their sum. Column (2) shows that under the assumption

that first-stage effects do not vary across sectors and are all positive (βs,g,t = βg,t ≥ 0), the

2SLS regression estimates a weighted sum of 1,442 second-stage effects, where 854 effects

receive a negative weight, even though we cannot estimate the sum of those negative

weights. Similarly, Column (3) shows that under the assumption that first-stage effects

do not vary across sectors and over time and are all positive (βs,g,t = βg ≥ 0), and that

second-stage effects do not vary over time (αg,t = αg), the 2SLS regression estimates a

weighted sum of 722 second-stage effects, where 390 effects receive a negative weight.

Finally, Column (4) shows that if the first-stage effect is fully homogeneous (βs,g,t = β),

the 2SLS regression estimates a weighted sum of 1,442 second-stage effects, where 854

effects receive a negative weight, and where negative weights sum to -0.084. Overall,

Table 4 shows that under parallel-trends assumptions, the Bartik regressions in Table 3

do not estimate convex combinations of effects.
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Table 4: Summary Statistics on the Weights Attached to Bartik Regressions in Table 3

Panel A: Weights Attached to the First-Stage Regression

Assumption on first-stage effects None βs,g,t = βg,t βs,g,t = βg βs,g,t = β

(1) (2) (3) (4)

Number of negative weights 70,422 854 390 0

Number of positive weights 62,484 588 332 1

Sum of negative weights -0.095 -0.084 -0.076 0

Panel B: Weights Attached to the 2SLS Regression

Assumption on first-stage effects None βs,g,t = βg,t ≥ 0 βs,g,t = βg ≥ 0 βs,g,t = β

Assumption on second-stage effects None None αg,t = αg None

(1) (2) (3) (4)

Number of negative weights ? 854 390 854

Number of positive weights ? 588 332 588

Sum of negative weights ? ? ? -0.084

Notes: Panel A of the table reports summary statistics on the weights attached to the first-stage regression

in Table 3. The weights are estimated following Theorem B.1 in the Web Appendix. In Column (1),

no assumption is made on first-stage effects. In Column (2), it is assumed that first-stage effects do not

vary across sectors (βs,g,t = βg,t). In Column (3), it is assumed that first-stage effects do not vary across

sectors and over time (βs,g,t = βg). Finally, in Column (4) it is assumed that the first-stage effects are

fully homogeneous (βs,g,t = β). Panel B of the table reports summary statistics on the weights attached

to the 2SLS regression in Table 3. The weights are estimated following Theorem 4. In Column (1),

no assumption is made on first- and second-stage effects. In Column (2), it is assumed that first-stage

effects do not vary across sectors and are positive (βs,g,t = βg,t ≥ 0). In Column (3), it is assumed

that first-stage effects do not vary across sectors and over time and are positive (βs,g,t = βg ≥ 0), and

that second-stage effects do not vary over time (αg,t = αg). Finally, in Column (4) it is assumed that

the first-stage effects are fully homogeneous (βs,g,t = β). In Panel B, question marks indicate that the

quantity under consideration cannot be estimated.

Finally, in Column (4) of Table 3, we follow Corollary 1 and present our first al-

ternative estimator of the second stage effect. The system of moment conditions has

one observation per CZ, hence the number of observations. Because the estimation only

uses one observation per CZ, the heteroskedasticity-robust standard error shown between

parenthesis below the estimate relies on the assumption that observations are independent

across CZ, and is therefore comparable to the CZ-clustered standard errors in Columns

(1) to (3). Our first alternative estimator is of the same sign as the 2SLS coefficient in

Table 3, and is almost twice as large in absolute value.

Tables 3 and 4 suggest that even under Assumption 11, meaning that first- and second-

34



stage effects only vary across CZs, the Bartik regressions in Table 3 may be biased.

Column (2) of Table 4 shows that under that assumption, the sum of the negative weights

attached to the first-stage and reduced-form Bartik regressions is still relatively large,

around -0.076. Moreover, the weights attached to Bartik regressions are correlated with

variables that may themselves be correlated with CZs’ first- and second-stage effects. For

instance, the correlation between the weights in Table 4 Panel A Column (3) and CZs’

share of college-educated workers in 1990 is equal to -0.12 (p-value<0.01). In CZs with a

higher proportion of college-educated workers, a rise in nationwide exposure to Chinese

imports may lead to a lower rise in Chinese imports than the national average, because

manufacturing jobs in those CZs may be more qualified, and less subject to Chinese

competition. Accordingly, such CZs could have a lower first-stage effect. That would

lead the Bartik first-stage regression to be upward biased for the average first-stage effect
1
G

∑G
g=1 βg. The Bartik second-stage regression could then be upward biased as well,

assuming for instance a constant negative second-stage effect. Column (4) of Table 3

substantiates that concern: our first alternative estimator is substantially lower than the

Bartik 2SLS regression coefficient, and unlike the Bartik regression, under Assumption 11

it estimates a convex combination of second-stage effects.

While it is more robust to heterogeneous treatment effects than the Bartik regression,

our alternative estimator in Column (4) of Table 3 still assumes that the first- and second-

stage effects are time invariant, and that the first-stage effects do not vary across sectors.

Both assumptions are strong, in particular the first one: economic conditions in the

US changed substantially over the period, and the effect of Chinese competition on US

employment may have evolved over time. Our second alternative estimator allows for

heterogeneous first- and second-stage effects over time, provided those follow the same

evolution in all CZs. This estimator is equal to −0.867, in-between the 2SLS Bartik

regression coefficient and our first alternative estimator. Accordingly, allowing for time-

varying first- and second-stage effects, we still get a more negative estimate of the effect of

Chinese imports on US employment than in Autor et al. (2013). Deriving the asymptotic

distribution of this second alternative estimator is left for future work so we do not report

a standard error for that estimate.

7 Conclusion

In this paper, we show that under parallel-trends assumptions, Bartik regressions may not

be robust to heterogeneous treatment effects, across locations or over time. We provide

diagnostic tools applied researchers may use to assess the robustness of their regressions.

Finally, we propose a first alternative estimator that is robust to heterogeneous first-

and second-stage effects across locations but not over time. We also propose a second

alternative estimator allowing heterogeneous first- and second-stage effects over time,

provided those effects follow the same evolution in every location. Studying the asymptotic
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distribution of that second alternative estimator is left for future work.
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8 Proofs

8.1 Theorem 1

Proof of Point 1

β̂D
C =

∑G
g=1∆Dg (∆Zg −∆Z .)∑G
g=1 ∆Zg (∆Zg −∆Z .)

.

Therefore,

βD
C = E

(∑G
g=1∆Dg (∆Zg −∆Z .)∑G
g=1 ∆Zg (∆Zg −∆Z .)

)

= E

∑G
g=1 (∆Zg −∆Z .)E

(
∆Dg|

(
∆Zs, (Qs,g′)g′∈{1,...,G}

)
s∈{1,...,S}

)
∑G

g=1∆Zg (∆Zg −∆Z .)

 . (8.1)

The second equality comes from the law of iterated expectations, and the fact ∆Zg and

∆Z . are functions of
(
∆Zs, (Qs,g′)g′∈{1,...,G}

)
s∈{1,...,S}. Then,

G∑
g=1

(∆Zg −∆Z .)E
(
∆Dg|

(
∆Zs, (Qs,g′)g′∈{1,...,G}

)
s∈{1,...,S}

)
=

G∑
g=1

(∆Zg −∆Z .)E
(
∆Dg(0)|

(
∆Zs, (Qs,g′)g′∈{1,...,G}

)
s∈{1,...,S}

)
+

G∑
g=1

(∆Zg −∆Z .)
S∑

s=1

Qs,g∆Zsβs,g

=
G∑

g=1

(∆Zg −∆Z .)E
(
∆Dg(0)| (∆Zs, Qs,g)s∈{1,...,S}

)
+

G∑
g=1

(∆Zg −∆Z .)
S∑

s=1

Qs,g∆Zsβs,g

=
G∑

g=1

(∆Zg −∆Z .)µ
D +

G∑
g=1

(∆Zg −∆Z .)
S∑

s=1

Qs,g∆Zsβs,g

=
G∑

g=1

(∆Zg −∆Z .)
S∑

s=1

Qs,g∆Zsβs,g. (8.2)

The first equality follows from Assumption 1. The second equality follows from Assump-

tion 5. The third equality follows from Assumption 2. The fourth equality follows after

some algebra. Plugging (8.2) into (8.1),

βD
C = E

∑G
g=1(∆Zg −∆Z .)

(∑S
s=1Qs,g∆Zsβs,g

)
∑G

g=1∆Zg(∆Zg −∆Z .)


= E

∑G
g=1(∆Zg −∆Z .)

(∑S
s=1Qs,g∆Zsβs,g

)
∑G

g=1

∑S
s=1 Qs,g∆Zs(∆Zg −∆Z .)


= E

(
G∑

g=1

S∑
s=1

Qs,g∆Zs(∆Zg −∆Z .)∑G
g=1

∑S
s=1Qs,g∆Zs(∆Zg −∆Z .)

βs,g

)
.

The second equality follows from Assumption 1.
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Proof of Point 2

The result directly follows from plugging βs,g = βg into Point 1.

8.2 Theorem 2

The proof is similar to that of Theorem 1, so it is omitted.

8.3 Theorem 3

Point 1 directly follows from Definition 4 and Theorems 1 and 2. Points 2, 3, and 4

directly follow from Point 1.

8.4 Theorem 4

The result directly follows from Definition 6 and Theorems B.1 and B.2, so it is omitted.

8.5 Theorem 5

Note that

β̂D
pl =

∑G
g=1∆Dg,2 (∆Zg,3 −∆Z .,3)∑G
g=1∆Zg,3 (∆Zg,3 −∆Z .,3)

.

Therefore,

βD
pl = E

(∑G
g=1∆Dg,2 (∆Zg,3 −∆Z .,3)∑G
g=1∆Zg,3 (∆Zg,3 −∆Z .,3)

)

= E

∑G
g=1 E

(
∆Dg,2|∆Z, (Qs,g′)g′∈{1,...,G},s∈{1,...,S}

)
(∆Zg,3 −∆Z .,3)∑G

g=1∆Zg,3 (∆Zg,3 −∆Z .,3)


= E

∑G
g=1 E

(
∆Dg,2(0)|∆Z, (Qs,g)s∈{1,...,S}

)
(∆Zg,3 −∆Z .,3)∑G

g=1∆Zg,3 (∆Zg,3 −∆Z .,3)


= E

( ∑G
g=1 µ

D
2 (∆Zg,3 −∆Z .,3)∑G

g=1∆Zg,3 (∆Zg,3 −∆Z .,3)

)
= 0.

The second equality follows from the law of iterated expectation. The third equality

follows from Assumptions 6 and 10, and the fact that ∆Zs,2 = 0. The fourth equality

follows from Assumption 7. The proof of βY
pl = 0 is similar, so it is omitted.
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8.6 Theorem 6

Under Assumptions 6-11,

E(∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = µD + βg∆Zg. (8.3)

Because Mg∆Zg = 0 and Mg is a function of ∆Z, (Qs,g)s∈{1,...,S}, we left-multiply Equa-

tion (8.3) by Mg, and it follows that

E
(
Mg∆Dg|∆Z, (Qs,g)s∈{1,...,S}

)
= Mgµ

D.

Also note that

M ′
gMg =

(
I − 1

∆Z ′
g∆Zg

∆Zg∆Z ′
g

)′(
I − 1

∆Z ′
g∆Zg

∆Zg∆Z ′
g

)
= I − 1

∆Z ′
g∆Zg

∆Zg∆Z ′
g = Mg,

therefore, it follows that

E
(
M ′

gMg∆Dg|∆Z, (Qs,g)s∈{1,...,S}
)
= M ′

gMgµ
D.

Therefore, by the law of iterated expectation:

E

(
1

G

G∑
g=1

M ′
gMg∆Dg

)
= E

(
1

G

G∑
g=1

M ′
gMg

)
µD.

So Equation (5.1) holds.

Similarly, we left-multiply Equation (8.3) by ∆Z ′
g, and it follows that

E(∆Z ′
g∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = ∆Z ′

gµ
D + βg∆Z ′

g∆Zg.

Therefore,

E

(
1

∆Z ′
g∆Zg

∆Z ′
g

(
∆Dg − µD

)
|∆Z, (Qs,g)s∈{1,...,S}

)
= βg.

Then by the law of iterated expectation:

1

G

G∑
g=1

βg = E

(
1

G

G∑
g=1

1

∆Z ′
g∆Zg

∆Z ′
g

(
∆Dg − µD

))
.

So Equation (5.3) holds. The proofs of Equations (5.2) and (5.4) are similar: one simply

needs to replace ∆Dg, µ
D and βg by ∆Yg, µ

Y and γg.
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8.7 Theorem 7

Under Assumptions 6-10 and 12, and because Pg is a function of ∆Z, (Qs,g)s∈{1,...,S},

E(∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = Pgθ
D + βg∆Zg, (8.4)

Because Mg∆Zg = 0 and Mg is a function of ∆Z, (Qs,g)s∈{1,...,S}, we left-multiply Equa-

tion (8.3) by Mg, and it follows that

E(Mg∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = MgPgθ
D,

which in turn implies

E(P ′
gMg∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = P ′

gMgPgθ
D.

Therefore, by the law of iterated expectation:

E

(
1

G

G∑
g=1

P ′
gMg∆Dg

)
= E

(
1

G

G∑
g=1

P ′
gMgPg

)
θD.

So Equation (5.9) holds.

Similarly, we left-multiply Equation (8.4) by ∆Z ′
g, and it follows that

E(∆Z ′
g∆Dg|∆Z, (Qs,g)s∈{1,...,S}) = ∆Z ′

gPgθ
D + βg∆Z ′

g∆Zg.

Equation (5.10) follows from rearranging and the law of iterated expectations.

Similarly, under Assumptions 6-10 and 12, and because P̃g is a function of∆Z, (Qs,g)s∈{1,...,S},

E(∆Yg|∆Z, (Qs,g)s∈{1,...,S}) = P̃gθ
Y + αg∆Z̃g. (8.5)

Then, the proofs of Equations (5.11) and (5.12) are similar to those of Equations (5.9)

and (5.10).
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Web Appendix: not for publication

A Empirical Application: Canonical Bartik design

In this section, we revisit the canonical application in Bartik (1991), where the Bartik

instrument is used to estimate the inverse elasticity of labor supply.

A.1 Data

Our data construction closely follows Goldsmith-Pinkham et al. (2020). We construct a

decennial continental US commuting-zone (CZ) level panel data set, from 1990 to 2010,

with CZ wages and employment levels. For 1990 and 2000, we use the 5% IPUMS sample

of the U.S. Census. For 2010, we pool the 2009-2011 ACSs (Ruggles et al. 2019). Sectors

are IND1990 industries. We follow Autor & Dorn (2013) to reallocate Public Use Micro

Areas level observations of Census data to the CZ level. We also follow Autor et al. (2013)

to aggregate the Census industry code ind1990 to a balanced panel of industries for the

1990 and 2000 Censuses and the 2009-2011 ACS, with new industry code ind1990dd.A.1

In our final dataset, we have 3 periods, 722 CZs and 212 industries.

The outcome variable is ∆Yg,t = ∆ logwg,t, the change in log wages in CZ g from t−10

to t, for t ∈ {2000, 2010}. The treatment variable is ∆Dg,t = ∆ logEg,t, the change in log

employment in CZ g from t− 10 to t. We use people aged 18 and older who are employed

and report usually working at least 30 hours per week in the previous year to generate

employment and average wages. We define Qs,g as the employment share of industry s in

CZ g in 1990, and then construct the Bartik instrument using 1990-2000 and 2000-2010

leave-one-out sectoral employment growth rates. Specifically, to construct the nationwide

employment growth rate of industry s for CZ g, we use the change in log employment in

industry s over all CZs excluding CZ g, following Adão et al. (2019).A.2

A.2 Testing the identifying assumptions

We start by assessing the plausibility of the random shock assumption in Adão et al.

(2019) and Borusyak et al. (2022), by testing whether shocks are independent of industries’

characteristics. Table A.1 shows regressions of the nationwide sector-level shocks, namely

the employment growth of each industry from 1990 to 2000 (in Column (1)) and from 2000

A.1Crosswalk files are available online at https://www.ddorn.net/data.htm. The original crosswalk file

for industry code only creates a balanced panel of industries up to the 2006-2008 ACSs. We extend

the crosswalk approach to one additional industry (shoe repair shops, crosswalked into miscellaneous

personal services) to create a balanced panel of industries up to the 2009-2011 ACSs.
A.2As discussed in Adão et al. (2019) and Goldsmith-Pinkham et al. (2020), we use the leave-one-out

definition to construct the national growth rates, in order to avoid the finite sample bias that comes

from using own-observation information. In practice, because we have 722 locations, whether one uses

leave-one-out or not to estimate the national growth rates barely changes the results.
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to 2010 (in Column (2)), on a set of pre-determined industry characteristics measured in

1990.A.3 These industry characteristics are the log of average wages, the proportion of male

workers, the proportion of white workers, the average age of workers, and the proportion

of workers with some college education. The results show that large employment shocks

tend to appear in industries with low average wages and more educated workers, and in

both cases we can reject the hypothesis that the employment shocks are not correlated

with any industry characteristic (p-value < 0.001). Therefore, there are industries with

certain characteristics that make them more likely to receive a large employment shock,

and the random-shock assumption is rejected.

Table A.1: Testing the Random Shock Assumption

(1) (2)

Variables ∆ logE: 1990-2000 ∆ logE: 2000-2010

logw1990 -0.372 -0.375

(0.093) (0.081)

Male1990 0.212 0.337

(0.200) (0.146)

White1990 -0.738 -0.182

(0.547) (0.472)

Age1990 -0.027 0.009

(0.015) (0.011)

Some College1990 1.095 1.122

(0.229) (0.199)

Constant 4.772 2.760

(1.345) (0.964)

Observations 212 212

R-squared 0.161 0.152

F-test P-value 0.0000 0.0000

Notes: The table reports estimates of regressions of the industry-level employment growth during 1990-

2000 and 2000-2010 on a set of pre-determined industry characteristics measured in 1990. The dependent

variable in Column (1) is the change in log nationwide employment in the industry from 1990 to 2000. The

dependent variable in Column (2) is the change in log nationwide employment in the industry from 2000

to 2010. logw1990 denotes log average wages in the industry in 1990. Male1990 denotes the proportion of

male workers in the industry in 1990. White1990 denotes the proportion of white workers in the industry

in 1990. Age1990 denotes the average age of workers in the industry in 1990. Some College1990 denotes

the proportion of workers with at least some college education in the industry in 1990. Robust standard

errors in parentheses. The F-test p-value is the p-value of the joint test that all the coefficients of the

industry characteristics are equal to 0.

Unfortunately, in this application we cannot implement the tests of our parallel-trends

A.3When constructing the industry characteristics, we only use the workers from continental U.S. CZs,

in order to be consistent with our main sample.
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assumptions in Theorem 5, as there are no consecutive time periods where the nationwide

employment remains stable in every industry.

A.3 Results

Columns (1) to (3) of Table A.2 below show the results of the first-stage, reduced-form, and

2SLS Bartik regressions. In Column (1), the first-stage coefficient is 0.818. In Column (2),

the reduced form coefficient is 0.390. Finally, in Column (3), the 2SLS coefficient is 0.477.

If interpreted causally, this 2SLS coefficient means that a 1% increase in employment

leads to a 0.477% increase in wages. Robust standard errors clustered at the CZ level are

shown between parentheses. All coefficients are statistically significant.

Table A.2: Bartik Regressions in the Canonical Setting

Bartik FS Bartik RF Bartik 2SLS Chamberlain 2SLS

(1) (2) (3) (4)

Dependent Variable ∆Dg,t ∆Yg,t ∆Yg,t ∆Yg,t

Bartik Instrument ∆Zg,t 0.818 0.390

(0.055) (0.031)

∆Dg,t 0.477 0.483

(0.039) (0.061)

Observations 1,444 1,444 1,444 722

Notes: Columns (1) to (3) report estimates of Bartik regressions with period fixed effects, using a decennial 
US commuting-zone (CZ) level panel data set from 1990 to 2010. ∆Yg,t is the change in log wages in 
CZ g from t − 10 to t, for t ∈ {2000, 2010}. ∆Dg,t is the change in log employment in CZ g from t − 10 
to t. ∆Zg,t is the Bartik instrument, whose construction is detailed in the text. Columns (1), (2), and 
(3) respectively report estimates of the first-stage, reduced-form, and 2SLS Bartik regression coefficients. 
Standard errors clustered at the CZ level are shown in parentheses. Column (4) reports an alternative 
estimate of the second-stage effect, u sing t he GMM S tata c ommand, a nd w ith t he s ystem o f moment 
conditions in Equation (5.8). The 2T = 6 moment conditions have one observation per CZ, hence the 
number of observations. Heteroskedasticity-robust standard errors are shown in parentheses.

We now investigate if the first-stage, reduced-form, and 2SLS regressions in Table A.2 
respectively estimate convex combinations of first-stage, reduced-form, and second-stage 
effects. We follow Theorem B.1 in the Web Appendix, a straightforward generalization of 
Theorem 1 to applications with more than two periods, to estimate the weights attached 
to the first-stage regression in Table A .2. Panel A of Table A.3 reports summary statistics 
on those weights. Column (1) shows that without making any assumption on the first-
stage effects, t he fi rst-stage re gression es timates a we ighted su m of  27 3,187 first-stage 
effects, where 134,493 effects receive a negative weight, and where negative weights sum 
to -1.249. Column (2) shows that under the assumption that first-stage effects do not vary
across sectors (βs,g,t = βg,t), the first-stage r egression e stimates a  weighted sum o f 1,444 
first-stage effects, where 446 effects still receive a negative weight, and where negative
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weights sum to -0.040. Assuming that first-stage effects do not vary over time reduces the

number and the sum of negative weights even further, as shown in Column (3). Finally,

Column (4) trivially shows that if the first-stage effect is fully homogeneous (βs,g,t = β),

the first-stage regression estimates β. Similarly, we can follow Theorem B.2 in the Web

Appendix to estimate the weights attached to the reduced-form regression in Table A.2.

We do no report those weights, because they are identical to those in Panel A of Table

A.3, except that they are obtained under assumptions on the reduced-form effects γs,g,t.

Then, we follow Theorem 4 to estimate the weights attached to the 2SLS regression in

Table A.2. Panel B of Table A.3 reports summary statistics on those weights. Column (1)

shows that without making any assumption on the first-stage effects, we cannot estimate

the number of negative weights or their sum. On the other hand, Column (2) shows

that under the assumption that first-stage effects do not vary across sectors and are

all positive (βs,g,t = βg,t ≥ 0), the 2SLS regression estimates a weighted sum of 1,444

second-stage effects, where 446 effects receive a negative weight, even though we cannot

estimate the sum of those negative weights. Similarly, Column (3) shows that under the

assumption that first-stage effects do not vary across sectors and over time and are all

positive (βs,g,t = βg ≥ 0), and that second-stage effects do not vary over time (αg,t = αg),

the 2SLS regression estimates a weighted sum of 722 second-stage effects, where 75 effects

receive a negative weight. Finally, Column (4) shows that if the first-stage effect is fully

homogeneous (βs,g,t = β), the 2SLS regression estimates a weighted sum of 1,444 second-

stage effects, where 446 effects receive a negative weight, and where negative weights sum

to -0.04. Overall, Table A.3 shows that under parallel-trends assumptions, the Bartik

regressions in Table A.2 do not estimate convex combinations of effects.
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Table A.3: Summary Statistics on the Weights Attached to Bartik Regressions in Table

A.2

Panel A: Weights Attached to the First-Stage Regression

Assumption on first-stage effects None βs,g,t = βg,t βs,g,t = βg βs,g,t = β

(1) (2) (3) (4)

Number of negative weights 134,493 446 75 0

Number of positive weights 138,694 998 647 1

Sum of negative weights -1.249 -0.040 -0.010 0

Panel B: Weights Attached to the 2SLS Regression

Assumption on first-stage effects None βs,g,t = βg,t ≥ 0 βs,g,t = βg ≥ 0 βs,g,t = β

Assumption on second-stage effects None None αg,t = αg None

(1) (2) (3) (4)

Number of negative weights ? 446 75 446

Number of positive weights ? 998 647 998

Sum of negative weights ? ? ? -0.040

Notes: Panel A of the table reports summary statistics on the weights attached to the first-stage regression

in Table A.2. The weights are estimated following Theorem B.1 in the Web Appendix. In Column (1), no

assumption is made on the first-stage effects. In Column (2), it is assumed that first-stage effects do not

vary across sectors (βs,g,t = βg,t). In Column (3), it is assumed that first-stage effects do not vary across

sectors and over time (βs,g,t = βg). Finally, in Column (4) it is assumed that the first-stage effects are

fully homogeneous (βs,g,t = β). Panel B of the table reports summary statistics on the weights attached

to the 2SLS regression in Table A.2. The weights are estimated following Theorem 4. In Column (1),

no assumption is made on first- and second-stage effects. In Column (2), it is assumed that first-stage

effects do not vary across sectors and are positive (βs,g,t = βg,t ≥ 0). In Column (3), it is assumed

that first-stage effects do not vary across sectors and over time and are positive (βs,g,t = βg ≥ 0), and

that second-stage effects do not vary over time (αg,t = αg). Finally, in Column (4) it is assumed that

the first-stage effects are fully homogeneous (βs,g,t = β). In Panel B, question marks indicate that the

quantity under consideration cannot be estimated.

Finally, in Column (4) of Table A.2, we follow Corollary 1 and present our first al-

ternative estimator of the second stage effect. The system of moment conditions has

one observation per CZ, hence the number of observations. Because the estimation only

uses one observation per CZ, the heteroskedasticity-robust standard error shown between

parenthesis below the estimate relies on the assumption that observations are independent

across CZ, and is therefore comparable to the CZ-clustered standard errors in Columns (1)

to (3). Our first alternative estimator is very close to the 2SLS coefficient in Table 3. We

compute our second alternative estimator, which is robust to heterogeneous effects across
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location and over time, provided all locations experience the same evolution of their first-

and second-stage effects over time. We find that it is equal to 0.464, so it is extremely

close to the Bartik 2SLS regression coefficient and to our first alternative estimator.

Overall, Tables A.2 and A.3 suggest that under our parallel-trends assumptions, the

Bartik regressions in Table A.2 are robust to heterogeneous effects across CZs. Under the

assumption that first- and second-stage effects only vary across CZs, Column (3) of Table

A.3 shows that the sum of the negative weights attached to the first-stage and reduced-

form Bartik regressions is quite small, around -0.010. The implicit weights attached to

Bartik regressions could still be problematic, as the weights are correlated with variables

that may themselves be correlated with CZs’ second-stage effects. For instance, the corre-

lation between the weights in Table A.3 Panel A Column (3) and CZs’ unemployment rate

in 1990 is equal to -0.07 (p-value=0.08). Commuting zones with a higher unemployment

rate may have a lower second-stage effect, as their labor market is less tight. That would

lead, say, the Bartik reduced-form regression to overestimate the average reduced-form

effect 1
G

∑G
g=1 γg, by putting less weight on those CZs. Column (4) of Table A.2 appeases

that concern: under the assumption that first- and second-stage effects only vary across

CZs, the correlated random coefficient estimators of the average first-stage, reduced-form,

and second-stage effects are remarkably close to the Bartik regression coefficients.

Table A.3 may also suggest that the Bartik regressions in Table A.2 may be reasonably

robust to heterogeneous effects over time: even if one allows first- and second-stage effects

to vary across CZs and over time, Column (2) of Table A.3 shows that the sum of the

negative weights attached to the first-stage and reduced-form Bartik regressions is still

quite small, around -0.040.

On the other hand, Table A.3 strongly suggests that the Bartik regressions in Table

A.2 are not robust to heterogeneous first-stage effects across sectors. If first-stage effects

vary across sectors, locations, and time, Column (1) of Table A.3 shows that the sum

of the negative weights attached to the first-stage and reduced-form Bartik regressions

becomes very large. It seems that whether Bartik regressions can or cannot receive a

causal interpretation in this application crucially depends on whether it is plausible to

assume homogeneous first-stage effects across sectors.

B Identification Results with Multiple Periods

In this section, we use the same notation, definitions, and assumptions as in Section 4.3 of

the paper. We first consider the Bartik first-stage regression. Let ∆Z .,t =
1
G

∑G
g=1∆Zg,t.

Theorem B.1 Suppose Assumptions 6, 7, 10 hold.

1. Then,

βD
C = E

(
G∑

g=1

T∑
t=2

S∑
s=1

Qs,g∆Zs,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2

∑S
s=1Qs,g∆Zs,t(∆Zg,t −∆Z .,t)

βs,g,t

)
.
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2. If one further assumes that βs,g,t = βg,t,

βD
C = E

(
G∑

g=1

T∑
t=2

∆Zg,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2∆Zg,t(∆Zg,t −∆Z .,t)

βg,t

)
.

3. If one further assumes that βs,g,t = βg,

βD
C = E

(
G∑

g=1

(
T∑
t=2

∆Zg,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2∆Zg,t(∆Zg,t −∆Z .,t)

)
βg

)
.

Then we consider the reduced-form Bartik regression. Let γs,g,t = αg,tβs,g,t.

Theorem B.2 Suppose Assumptions 6, 8, 9, 10 hold.

1. Then,

βY
C = E

(
G∑

g=1

T∑
t=2

S∑
s=1

Qs,g∆Zs,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2

∑S
s=1Qs,g∆Zs,t(∆Zg,t −∆Z .,t)

γs,g,t

)
.

2. If one further assumes that βs,g,t = βg,t, and let γg,t = αg,tβg,t,

βY
C = E

(
G∑

g=1

T∑
t=2

∆Zg,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2∆Zg,t(∆Zg,t −∆Z .,t)

γg,t

)
.

3. If one further assumes that βs,g,t = βg and αg,t = αg, and let γg = αgβg,

βY
C = E

(
G∑

g=1

(
T∑
t=2

∆Zg,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2 ∆Zg,t(∆Zg,t −∆Z .,t)

)
γg

)
.
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C Proofs of results in Web Appendix

C.1 Theorem B.1

Note that by the Frisch-Waugh theorem,

β̂D
C =

∑G
g=1

∑T
t=2∆Dg,t (∆Zg,t −∆Z .,t)∑G

g=1

∑T
t=2∆Zg,t (∆Zg,t −∆Z .,t)

,

where ∆Zg,t − ∆Z .,t is the residual from a regression of ∆Zg,t on period fixed effects.

Therefore,

βD
C = E

(∑G
g=1

∑T
t=2∆Dg,t (∆Zg,t −∆Z .,t)∑G

g=1

∑T
t=2 ∆Zg,t (∆Zg,t −∆Z .,t)

)

= E

∑G
g=1

∑T
t=2 (∆Zg,t −∆Z .,t)E

(
∆Dg,t|∆Z, (Qs,g′)g′∈{1,...,G},s∈{1,...,S}

)
∑G

g=1

∑T
t=2 ∆Zg,t (∆Zg,t −∆Z .,t)

 . (C.1)

The second equality comes from the law of iterated expectations, and the fact that ∆Zg,t

and ∆Zg,. are functions of
(
∆Z, (Qs,g′)g′∈{1,...,G},s∈{1,...,S}

)
. Then,

G∑
g=1

T∑
t=2

(∆Zg,t −∆Z .,t)E
(
∆Dg,t|∆Z, (Qs,g′)g′∈{1,...,G},s∈{1,...,S}

)
=

G∑
g=1

T∑
t=2

(∆Zg,t −∆Z .,t)E
(
∆Dg,t(0)|∆Z, (Qs,g′)g′∈{1,...,G},s∈{1,...,S}

)
+

G∑
g=1

T∑
t=2

(∆Zg,t −∆Z .,t)E

(
S∑

s=1

Qs,g∆Zs,tβs,g,t|∆Z, (Qs,g′)g′∈{1,...,G},s∈{1,...,S}

)

=
G∑

g=1

T∑
t=2

(∆Zg,t −∆Z .,t)
(
E
(
∆Dg,t(0)|∆Z, (Qs,g)s∈{1,...,S}

))
+

G∑
g=1

T∑
t=2

(∆Zg,t −∆Z .,t)
S∑

s=1

Qs,g∆Zs,tβs,g,t

=
G∑

g=1

T∑
t=2

(∆Zg,t −∆Z .,t)µ
D
t +

G∑
g=1

T∑
t=2

(∆Zg,t −∆Z .,t)
S∑

s=1

Qs,g∆Zs,tβs,g,t

=
G∑

g=1

T∑
t=2

(∆Zg,t −∆Z .,t)
S∑

s=1

Qs,g∆Zs,tβs,g,t. (C.2)

The first equality follows from Assumption 6. The second equality follows from Assump-

tion 10. The third equality follows from Assumption 7. The fourth equality is by algebra.
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Plugging (C.2) into (C.1),

βD
C = E

∑G
g=1

∑T
t=2(∆Zg,t −∆Z .,t)

(∑S
s=1Qs,g∆Zs,tβs,g,t

)
∑G

g=1

∑T
t=2∆Zg,t(∆Zg,t −∆Z .,t)


= E

∑G
g=1

∑T
t=2(∆Zg,t −∆Z .,t)

(∑S
s=1Qs,g∆Zs,tβs,g,t

)
∑G

g=1

∑T
t=2

∑S
s=1Qs,g∆Zs,t(∆Zg,t −∆Z .,t)


= E

(
G∑

g=1

T∑
t=2

S∑
s=1

Qs,g∆Zs,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2

∑S
s=1Qs,g∆Zs,t(∆Zg,t −∆Z .,t)

βs,g,t

)
.

Note that when βs,g,t = βg,t:

βD
C = E

(
G∑

g=1

T∑
t=2

S∑
s=1

Qs,g∆Zs,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2

∑S
s=1 Qs,g∆Zs,t(∆Zg,t −∆Z .,t)

βs,g,t

)

= E

(∑G
g=1

∑T
t=2(∆Zg,t −∆Z .,t)βg,t

∑S
s=1 Qs,g∆Zs,t∑G

g=1

∑T
t=2∆Zg,t(∆Zg,t −∆Z .,t)

)

= E

(∑G
g=1

∑T
t=2(∆Zg,t −∆Z .,t)βg,t∆Zg,t∑G

g=1

∑T
t=2 ∆Zg,t(∆Zg,t −∆Z .,t)

)

= E

(
G∑

g=1

T∑
t=2

∆Zg,t(∆Zg,t −∆Z .,t)∑G
g=1

∑T
t=2 ∆Zg,t(∆Zg,t −∆Z .,t)

βg,t

)
.

C.2 Theorem B.2

The proof is similar to that of Theorem B.1, so it is omitted.
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