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Abstract
I consider estimation of the average treatment effect (ATE), in a population composed

of G groups, when one has unbiased and uncorrelated estimators of each group’s condi-
tional average treatment effect (CATE). These conditions are met in stratified randomized
experiments. I assume that the outcome is homoscedastic, and that each CATE is bounded
in absolute value by B standard deviations of the outcome, for some known B. I derive,
across all linear combinations of the CATEs’ estimators, the estimator of the ATE with
the lowest worst-case mean-squared error. This minimax-linear estimator assigns a weight
equal to group g’s share in the population to the most precisely estimated CATEs, and a
weight proportional to one over the estimator’s variance to the least precisely estimated
CATEs. I also derive the minimax-linear estimator when the CATEs’ estimators are pos-
itively correlated, a condition that may be met by differences-in-differences estimators in
staggered adoption designs.

Keywords: bias-variance trade-off, average treatment effect, mean-squared error, minimax-
linear estimator, bounded normal mean model, stratified randomized experiments, differences-
in-differences, staggered adoption designs, shrinkage.

JEL Codes: C21, C23

1 Introduction

I consider the estimation of the average treatment effect (ATE), in a population that can be
divided into G groups. I assume that one has unbiased estimators of the conditional aver-
age treatment effect (CATE) in each group, with heterogeneous levels of statistical precision.

∗This paper was previously circulated under the following title: “The Minimax Estimator of the Average
Treatment Effect, among Linear Combinations of Estimators of Bounded Conditional Average Treatment
Effects”. I am very grateful to Timothy Armstrong, Xavier D’Haultfœuille, and Michal Kolesár for their
helpful comments.

†de Chaisemartin: Sciences Po, Economics Department (email: clement.dechaisemartin@sciencespo.fr)

1

Electronic copy available at: https://ssrn.com/abstract=3846618



This situation often arises in stratified randomized controlled trials (RCTs), where the treat-
ment probability may vary across strata, thus leading to more (resp. less) precisely estimated
CATEs in strata where the treatment probability is close to (resp. far from) 1/2. In such
instances, applied researchers typically regress the outcome on the treatment and strata fixed
effects. This estimator downweights the least balanced strata, and it often has a lower vari-
ance than the unbiased propensity score estimator. But it is also biased if the CATEs vary
across strata. Despite its ubiquitousness, it is unclear whether the fixed effects estimator
still dominates the unbiased one when bias is accounted for. Another instance where one has
unbiased estimators of CATEs with heterogeneous levels of statistical precision are staggered
adoption designs, where units adopt a treatment at heterogeneous dates. Then, the long-run
treatment effects arising at the end of the panel are often less precisely estimated than the
short-run ones, because few units are still untreated and can be used as controls at the end of
the panel. Then again, one may want to downweight those long-run effects to reduce variance,
but doing so may create bias if short- and long-run effects differ.

To study this bias-variance trade-off, I derive the linear combination of CATEs’ estimators
with the lowest worst-case mean-squared error, the minimax-linear estimator.

To do so, I first assume that the estimators of the CATEs are uncorrelated, that the outcome is
homoscedastic, and that each CATE is bounded in absolute value by B standard deviations
of the outcome, for some known constant B. Under those assumptions, I show that the
minimax-linear estimator is a weighted sum of the CATEs’ estimators, with positive weights
that sum to less than 1. The most precisely estimated CATEs receive a weight equal to the
share of the population their group accounts for. The least precisely estimated CATEs receive
a weight proportional to one over the estimator’s variance, and shrunk towards zero. Given
B, the optimal estimator is feasible: it only depends on known quantities.

The assumptions outlined in the previous paragraph may be applicable to stratified RCTs.
There, CATE estimators are unbiased and uncorrelated by design. Moreover, normalizing
by the outcome’s standard deviation is a common practice, and applied researchers often
have a good sense, based on the literature, of the effect size that a given intervention may
produce. In such instances, they may be able to come up with plausible values of B. When
the literature is silent as to which values of B are plausible upper bounds for the CATEs,
researchers can conduct a sensitivity analysis by varying B. Finally, my approach also assumes
homoscedasticity, but I show that with heteroscedasticity, the minimax-linear estimator still
has a lower worst-case MSE than the unbiased one whenever the treated outcome’s variance
is larger than that of the untreated outcome. When the opposite holds, I show that the
minimax-linear estimator still has a lower worst-case MSE, provided the ratio of the treated
and untreated outcomes variances is not below a bound that can be readily computed from
the data. In my application in Section 5, this bound is equal to 0.06, so the treated outcome’s
variance would have to be more than 94% smaller than the untreated outcome’s for the
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minimax-linear estimator to have a higher worst-case MSE than the unbiased one.

In stratified RCTs, my result implies that the minimax-linear estimator is actually “in be-
tween” the unbiased and fixed effects estimators. The unbiased estimator assigns to each
CATE a weight equal to group g’s share in the population, like the minimax-linear estimator
does to the most precisely estimated CATEs, while the fixed effects estimator assigns to each
CATE a weight proportional to one over its variance, like the minimax-linear estimator does
to the least precisely estimated CATEs.

Then, I replace the assumption that the estimators are uncorrelated by the assumption that
they are positively correlated, with covariances known up to the outcome’s variance. Under
this weaker assumption, I show that the minimax-linear estimator, across all linear combina-
tions of the estimators with positive weights, is the solution of an easy-to-numerically-solve
minimization problem, and is still feasible.

This second set-up may be applicable to the differences-in-differences (DID) estimators for
staggered adoption designs proposed by Sun & Abraham (2020), Callaway & Sant’Anna
(2020), and de Chaisemartin & D’Haultfœuille (2020). There, the target parameter is the
average treatment effect on the treated (ATT), and the CATEs are the average treatment
effect at period t among units that started receiving the treatment at period k. If potential
outcomes without treatment are iid, across units and over time, and if the treatment effects
and treatments are non-stochastic, the unbiased estimators of those CATEs proposed by Sun
& Abraham (2020), Callaway & Sant’Anna (2020), and de Chaisemartin & D’Haultfœuille
(2020) are positively correlated, with covariances known up to the outcome’s variance. I
consider a numerical example with 50 units (e.g.: the 50 US states) and five periods, where
10 units respectively become treated at periods 2, 3, 4, and 5, and 10 units remain untreated.
I set B = 0.75, meaning that CATEs should all be lower than 75% of the outcome’s standard
deviation. I find that the minimax-linear estimator downweights some CATEs at period
5. Those are the least precisely estimated CATEs, because there are few units that are still
untreated and can be used as controls at that period. If outcomes are indeed iid, the minimax-
linear estimator has substantially lower variance and worst-case MSE than the unbiased one.
The minimax-linear estimator still has substantially lower variance and worst-case MSE if
each unit’s outcome follows an AR(1), provided the AR(1) coefficient is not too close to 1.

Finally, I consider a number of extensions. I show that assuming that CATEs are positive and
bounded, rather than just assuming that they are bounded, does not change the minimax-
linear estimator. I also characterize the minimax-linear estimator with heteroscedasticity.
Its formula remains the same as under homoscedasticity, but it is not feasible anymore: it
depends on the estimators’ variances, that are typically unknown. A feasible estimator can
easily be computed, by replacing those variances by their estimators.

I use my results to revisit Behaghel et al. (2017), who use a stratified RCT to measure the
effect of a boarding school for disadvantaged students in France on students’ math test scores.
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Their RCT has 363 students and 14 strata. The treatment probability varies substantially
across strata, but no stratum has a treatment probability, say, lower than 0.1 or higher than
0.9. Based on a review of several papers that have estimated CATEs of similar interventions
(see Curto & Fryer Jr, 2014, Dobbie & Fryer Jr, 2011, Angrist et al., 2010, and Abdulka-
diroğlu et al., 2011), I argue in Section 5 that 50% of a standard deviation of students’ test
scores is a plausible upper bound for CATEs in this application. With that value of B, the
robust standard error of the minimax-linear estimator is 9% smaller than that of the unbiased
estimator, and its worst-case MSE under homoscedasticity is 6% smaller. In the subsample
of male students, its robust standard error and worst-case MSE are 15% and 12% smaller.

This paper is related to the pioneering work of Crump et al. (2009), who consider matching
estimators when the treatment probability can be close to zero or one conditional on some
values of the covariates. My estimator can also be used in such instances, provided the
covariates take a finite number of values. Crump et al. (2009) propose to redefine the target
parameter as the ATE in the subpopulation whose ATE can be estimated most precisely. In
other words, Crump et al. (2009) minimize variance, but do not control bias with respect
to the original target parameter (the ATE in the full population). Instead, I propose to use
the minimax-linear estimator. This avoids changing the target parameter. But this requires
taking a stand on how large CATEs may be, by specifying an upper bound B for them.
Below, I show that when B → +∞, meaning that one does not restrict the magnitude of the
CATEs, the minimax-linear estimator converges towards the unbiased one, and the trade-off
between bias and variance becomes trivial. Finally, note that the main result in Crump et al.
(2009) is derived under homoscedasticity, like the main results in this paper.

This paper is also related to a vast literature in statistics and econometrics, that has studied
linear- and affine-minimax estimators. The setting I consider can be cast as a bounded nor-
mal mean model, where realizations of G normally distributed random variables are used to
estimate a linear combination of their means, which are assumed to be bounded.1 Donoho
(1994), who considers a more general setup than the bounded normal mean model, charac-
terizes the risk of the affine-minimax estimator, and shows that it cannot be more than 25%
larger than that of the minimax estimator. Armstrong & Kolesár (2018) consider a similar
set-up as Donoho (1994), and show how to construct optimal confidence intervals. My paper
makes the following contributions. First, it is the first to apply the bounded normal mean
model to derive the minimax-linear estimator of the ATE, under boundedness conditions on
the CATEs. Thus, it complements a growing econometrics literature that has applied the set-
up in Donoho (1994) to other estimation problems.2 Second, the closed-form expression of the
minimax-linear estimator that I derive when CATEs are uncorrelated is, to my knowledge,

1I do not assume that CATEs’ estimators are normally distributed, but as noted by Armstrong & Kolesár
(2021a), this distributional assumption is not of essence to derive the minimax-linear estimator.

2Examples include: ATE estimation under uncounfoundedness when the mean outcome conditional on
the covariates is a Lipschitz function with a bounded Lipschitz constant (see Armstrong & Kolesár, 2021a);
sensitivity analysis in locally misspecified GMM models (see Armstrong & Kolesár, 2021b); DID estimation with
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new. In their Section 4.2., Ibragimov & Khas’minskii (1985) derive a closed-form expression
of the minimax-linear estimator when G = 1. My result generalizes theirs to the case where
G > 1. The question this paper is concerned with, namely trading-off bias and variance
when averaging several CATE estimators, only arises when G > 1, so this extension is of
essence to the problem at hand.3 This closed-form expression unveils a connection between
the minimax-linear estimator and two commonly-used estimators, and may thus improve our
understanding of the former. Third, bounding the CATEs by B standard deviations of the
outcome, rather than by a constant B, is natural given that applied researchers often nor-
malize their outcome by its standard deviation, and allows me to propose minimax-linear
estimators that are feasible given B. In particular, computing those estimators does not re-
quire estimating the outcome’s variance in a first step, unlike other estimators that have been
proposed in this literature (see e.g. Armstrong & Kolesár, 2021a). Fourth, the realization
that with correlated CATE estimators, the minimax-linear estimator with positive weights
can be approximated via a simple numerical method is also, to my knowledge, new.

The remainder of the paper is organized as follows. Section 2 presents the paper’s main
results. Section 3 presents some extensions. Section 4 presents some numerical examples.
Section 5 presents an empirical application.

2 Main results: feasible minimax-linear estimators

Throughout the paper, I consider the following set-up.

Definition 2.1 (Set-up) One is interested in estimating an unknown parameter τ , equal to a
weighted average of unknown parameters (τg)1≤g≤G, with weights (pg)1≤g≤G that are known,
positive, and sum to 1:

τ =
G∑

g=1
pgτg. (2.1)

One observes random variables (τ̂g)1≤g≤G such that E (τ̂g) = τg for all g.

In the applications I consider, τ is an ATE in a population that can be divided into G groups,
τg is the CATE in group g, pg is the share of the population group g accounts for, and τ̂g is
an unbiased estimator of τg. The more abstract set-up in Definition 2.1 is useful to connect
this paper with the bounded normal mean model (see, e.g., Donoho, 1994).

bounded departures from parallel trends (see Rambachan & Roth, 2019); estimation in regression discontinuity
designs with bounded second derivatives of the mean of the potential outcomes conditional on the running
variable (see Armstrong & Kolesár, 2018, Imbens & Wager, 2019, and Noack & Rothe, 2019).

3Relatedly, Berry (1990) studies the minimax estimator in a multivariate bounded normal mean model.
However, the normality assumption is of essence to derive the minimax estimator, so his closed-form expression
differs from mine. Vidakovic (1993) studies the minimax-affine estimator in a multivariate bounded normal
mean model, assuming that the ℓ2 norm of the vector of means are bounded. Instead, I assume that its ℓ∞

norm is bounded, arguably a more natural assumption for the applications I consider.
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2.1 Minimax-linear estimator with uncorrelated and homoscedastic CATE esti-
mators

In this section, I make the following assumption.

Assumption 1 For all g ∈ {1, ..., G}:

1. For all g′ ̸= g, cov
(
τ̂g, τ̂g′

)
= 0.

2. There is a strictly positive unknown real number σ and positive known real numbers
(vg)1≤g≤G such that V (τ̂g) ≤ σ2vg. The upper bound in the previous inequality is sharp.

3. There is a strictly positive known real number B such that |τg| ≤ Bσ.

Assumption 1 requires that the estimators τ̂g be unbiased, uncorrelated across g, and that
their variances can be bounded by the product of an unknown real number σ2 and known
real numbers vg. It also requires that the CATEs be bounded in absolute value by Bσ.

This assumption may for instance be applicable to stratified completely randomized controlled
trials (RCTs), see Section 9.3.2 in Imbens & Rubin (2015). There, groups are equal to the
experimental strata. τg is the CATE in stratum g, and τ̂g is just the difference between
the average outcome of treated and control units in that stratum. Under the assignment
mechanism in Section 9.3.2 in Imbens & Rubin (2015), τ̂g is unbiased for τg, and cov

(
τ̂g, τ̂g′

)
=

0 for all g′ ̸= g. If one further assumes that the outcome is homoscedastic,

V (τ̂g) ≤ σ2
(

1
n0,g

+ 1
n1,g

)
,

where n0,g and n1,g respectively denote the number of treated and control units in stratum
g. The upper bound is sharp: it is reached if the treatment effect is homogeneous in stratum
g, or if the units in stratum g are randomly drawn from a super population. In stratified
RCTs, Point 3 assumes that the CATEs are all bounded in absolute value by B standard
deviations of the outcome. Normalizing by the outcome’s standard deviation is a common
practice in applied research. Based on the literature, researchers often have a pretty good
sense of the effect sizes, in percent of the outcome’s standard deviation, that the intervention
they consider may realistically produce. In such instances, they may be able to come up with
a plausible value for B. When the literature is silent as to which value of B may be a plausible
upper bound for the CATEs, researchers can conduct a sensitivity analysis by varying B.

Beyond stratified RCTs, there are other instances where this setup is applicable, including
for instance treatment effect estimation under uncounfoundedness, when treatment is inde-
pendent of potential outcomes conditional on covariates taking a finite number of values.

For any 1 × G deterministic vector w = (w1, ..., wG), let

τ̂(w) =
G∑

g=1
wg τ̂g. (2.2)
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τ̂(w) is a linear combination of the estimators τ̂g. Lemma 2.1 gives its worst-case MSE.

Lemma 2.1 (Worst-case MSE of τ̂(w))
If Assumption 1 holds, then for any 1 × G deterministic vector w = (w1, ..., wG)

E
(
(τ̂(w) − τ)2

)
≤ MSE(w) ≡ σ2

 G∑
g=1

w2
gvg + B2

 G∑
g=1

|wg − pg|

2
 .

The upper bound in the previous display is sharp: it is attained if τg = σB (1{wg ≥ pg} − 1{wg < pg})
and V (τ̂g) = σ2vg.

Without loss of generality, assume that

p1v1 ≤ p2v2 ≤ ... ≤ pGvG.

Let g = min{g ∈ {1, ..., G} : 1
1

B2 +
∑G

g′=g
1

vg′

∑G
g′=g pg′ ≤ pgvg}. g is well defined, because

1
1

B2 + 1
vG

pG ≤ pGvG. For any h ∈ {1, ..., G}, let wh be such that

wg,h = pg for all g < h

wg,h = 1
vg

1
1

B2 +
∑G

g′=h
1

vg′

G∑
g′=h

pg′ for all g ≥ h. (2.3)

Finally, let
w∗ = argmin

w∈RG

MSE(w).

It follows from Lemma 2.1 that τ̂(w∗) is the minimax-linear estimator of τ .

Theorem 2.2 (Minimax-linear estimator of τ , with bounded CATEs)
If Assumption 1 holds, then τ̂(w∗) = τ̂(wh∗), where h∗ = argmin

h∈{g,...,G}
MSE(wh).

Theorem 2.2 shows that under Assumption 1, the minimax-linear estimator is a weighted sum
of the τ̂gs, with positive weights, that sum to less than 1. For a precisely estimated τ̂g (one
with a low value of pgvg), the optimal weight is just pg. On the other hand, for an imprecisely
estimated τ̂g (one with a high value of pgvg), the optimal weight is proportional to one over
vg, the non-constant part of its variance. For an imprecisely estimated τ̂g, the optimal weight
is also shrunk towards zero, where the shrinkage depends on how close to zero B is.

Importantly, the minimax-linear estimator in Theorem 2.2 is feasible: given B, the optimal
weights w∗ only depend on the known quantities (vg)1≤g≤G and (pg)1≤g≤G. For instance, in a
stratified RCT, vg = 1/n0,g + 1/n1,g and pg = ng/n, where ng = n0,g + n1,g and n =

∑G
g=1 ng.

Accordingly, the weights w∗ are not stochastic, and

V (τ̂(w∗)) ≤ σ2
G∑

g=1
(w∗

g)2
(
σ2

0,g/n0,g + σ2
1,g/n1,g

)
, (2.4)
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where σ2
0,g and σ2

1,g respectively denote the variances of the untreated and treated outcomes
in stratum g. The right hand side in the previous display can easily be estimated, thus
giving rise to a conservative variance estimator V̂ (τ̂(w∗)). If the sample size is large enough
for τ̂(w∗)/V (τ̂(w∗)) to be approximately normally distributed,4 one may use τ̂(w∗) and
V̂ (τ̂(w∗)) to construct conservative confidence intervals for

∑G
g=1 w∗

gτg. Deriving conservative
confidence intervals for τ would require accounting for the estimator’s bias. I refer the reader
to Armstrong & Kolesár (2018) for confidence intervals trading-off bias and variance optimally.

One always has w∗
G < pG, so τ̂(w∗) never coincides with the unbiased estimator τ̂ (p). In

stratified RCTs, τ̂ (w∗) is somewhere “in between” the unbiased and strata fixed effects es-
timators. Let p = (p1, ..., pG). The unbiased estimator is equal to τ̂(p). Let β̂fe be the
coefficient of Dig in the regression of Yig on a constant, Dig and strata fixed effects. Let

wfe =


(

1
n0,1

+ 1
n1,1

)−1

∑G
g=1

(
1

n0,g
+ 1

n1,g

)−1 , ...,

(
1

n0,G
+ 1

n1,G

)−1

∑G
g=1

(
1

n0,g
+ 1

n1,g

)−1

 .

It follows from, e.g., (3.3.7) in Angrist & Pischke (2008), that τ̂(wfe) = β̂fe. τ̂ (w∗) as-
signs to precisely estimated τ̂gs the same weights as the unbiased estimator, but it assigns
to imprecisely estimated τ̂gs weights proportional to those used by the strata fixed effects
estimator, shrunk towards zero. Note that in a stratified RCT, pgvg = 1/(npd,g(1 − pd,g)),
where pd,g = n1,g/ng is the proportion of treated units in strata g. Accordingly, precisely
(resp. imprecisely) estimated τ̂gs are those for which pd,g is close to (resp. far from) 1/2.

Corollary 2.3 below shows that when B → +∞, meaning that one does not restrict the
magnitude of the CATEs, τ̂(w∗) converges towards τ̂ (p), the unbiased estimator.

Corollary 2.3 (Minimax-linear estimator of τ when B → +∞) lim
B→+∞

w∗ = (pg)g∈{1,...,G} .

When the bias that can arise from downweighting one of the τ̂gs goes to infinity, bias dominates
variance and the unbiased estimator becomes optimal.

Operationally, to find the minimax-linear estimator, one just needs to compute g, and then
evaluate MSE(w) at wh for h ∈ {g, ..., G}. The following lemma shows that to compute g,
one just needs to evaluate the inequalities 1∑G

g′=g
1

vg′

∑G
g′=g pg′ ≤ pgvg for g = G−1, g = G−2,

etc., until one finds a first value where the inequality fails. g is equal to that value plus one.

Lemma 2.2

1∑G
g′=g

1
vg′

G∑
g′=g

pg′ ≤ pgvg ⇒ 1∑G
g′=g+1

1
vg′

G∑
g′=g+1

pg′ ≤ pg+1vg+1.

Finally, I give sufficient conditions under which the minimax-linear estimator still has lower
worst-case MSE than the unbiased one with heteroscedasticity. As this is not of essence,
below I omit that CATEs’ variances can sometimes only be conservatively estimated.

4See Li & Ding (2017) for a central limit theorem for completely randomized experiments.
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Assumption 2 1. For all g ∈ {1, ..., G}, there is a strictly positive unknown real number
σ, unknown real numbers (hg)1≤g≤G such that hg ≥ 1 for all g, and positive known real
numbers (v0,g, v1,g)1≤g≤G, such that V (τ̂g) = σ2(v0,g + hgv1,g).

2. For all g ∈ {1, ..., G}, there is a strictly positive unknown real number σ, an unknown
real number h such that 0 ≤ h ≤ 1, and positive known real numbers (v0,g, v1,g)1≤g≤G,
such that V (τ̂g) = σ2(v0,g + hv1,g).

In a stratified RCT, Point 1 of Assumption 2 holds if the untreated outcome’s variance does
not vary across strata, as is the case when in each stratum researchers standardize their
outcome by its standard deviation among the stratum’s control group, and if in each stratum
the variance of the treated outcome is larger than that of the untreated one. Then, σ2 is the
untreated outcome’s variance, while hg is the ratio of the treated and untreated outcomes’
variances in strata g. Point 2 instead holds if the variance of the treated outcome is lower
than that of the untreated one, and if heteroscedasticity is constant across strata.

Corollary 2.4 (Ordering of τ̂ (w∗)’s and τ̂ (p)’s worst-case MSE with heteroskedasticity)

1. If Points 1 and 3 of Assumption 1 and Point 1 of Assumption 2 hold, the worst-case
MSE of τ̂ (w∗) is lower than that of τ̂ (p).

2. If Points 1 and 3 of Assumption 1 and Point 2 of Assumption 2 hold, and if

h ≥
B2
(∑G

g=1 |w∗
g − pg|

)2
−
∑G

g=1((pg)2 − (w∗
g)2)v0,g∑G

g=1((pg)2 − (w∗
g)2)v1,g

,

the worst-case MSE of τ̂ (w∗) is lower than that of τ̂ (p).

In stratified RCTs, Point 1 of Corollary 2.4 implies that the worst-case MSE of τ̂ (w∗) is lower
than that of τ̂ (p), if the variance of the outcome with treatment is larger than that of the
outcome without treatment. If heteroscedasticity goes in the other direction and does not
vary across strata, Point 2 shows that the worst-case MSE of τ̂ (w∗) is still lower than that
of τ̂ (p) if the ratio of the treated and untreated outcomes’ variances is greater than a lower
bound which only depends on the design and can be readily computed. In the application
in Section 5, this lower bound is equal to 0.06 so the worst-case MSE of τ̂ (w∗) can only be
higher than that of of τ̂ (p) under implausible amounts of heteroscedasticity. Overall, it seems
that τ̂ (w∗)’s worst-case MSE is still lower than τ̂ (p)’s under realistic heteroscedasticity.5

5In stratified RCTs, Assumption 2 and Point 3 of Assumption 1 bound the CATEs by B% of the untreated
outcome’s variance. If one uses instead the treated outcome’s variance as the numeraire, the conclusions of
Corollary 2.4 revert: τ̂ (w∗)’s worst-case MSE is always lower than τ̂ (p)’s if the untreated outcome’s variance
is larger than that of the treated outcome, while τ̂ (w∗)’s worst-case MSE is lower than τ̂ (p)’s under a bound
on heteroscedasticity if the opposite holds. Assumption 2 follows the common practice in applied work of
standardizing the outcome by its variance in the control group.
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2.2 Minimax-linear estimator with correlated homoscedastic CATE estimators

In this section, I replace Point 1 of Assumption 1 by the following assumption.

Assumption 3 There are known, positive real numbers (cg,g′)1≤g ̸=g′≤G such that for all g′ ̸=
g, cg,g′ = cg′,g and cov

(
τ̂g, τ̂g′

)
= σ2cg,g′.

Assumption 3 allows for covariances between the τ̂gs, but requires that their covariances be
equal to the product of the outcome’s variance σ2, and known real numbers cg,g′ .

This framework may for instance be applicable to differences-in-differences (DID) estimators
in staggered adoption designs. Assume one has a panel of N units observed over T periods.
The design is staggered, meaning that every unit’s treatment Di,t is weakly increasing over
time: Di,t ≥ Di,t−1. Let ti be the first date at which unit i is treated. For every k ∈ {1, ..., T},
let Nk =

∑N
i=1 1{ti = k} be the number of units that start receiving the treatment at period

k. For every t ≥ k, let τk,t denote the average effect of the treatment at period t among units
that started receiving it at period k. τ , the average treatment effect on the treated (ATT),
can be decomposed as follows:

τ =
∑

k:Nk>0

T∑
t=k

Nk

N1
τk,t, (2.5)

where N1 =
∑

i,t Di,t is the number of treated units. Therefore, (2.1) holds, with a group g

being a pair (k, t).

Callaway & Sant’Anna (2020), Sun & Abraham (2020), and de Chaisemartin & D’Haultfœuille
(2020) propose estimators of τk,t that can all be written as

τ̂k,t = 1
Nk

∑
i:ti=k

(Yi,t − Yi,k−1) − 1
NCt

∑
j∈Ct

(Yj,t − Yj,k−1),

where Ct is a set of control units at t and NCt is the number of units in that set. To simplify, I
assume below that CT ̸= ∅: there are never-treated units. Then, Ct are the never treated units
in Sun & Abraham (2020), the not-yet treated units in de Chaisemartin & D’Haultfœuille
(2020), while Callaway & Sant’Anna (2020) consider both the never- and not-yet treated
units. In all cases, Ct+1 ⊆ Ct. The estimators τ̂k,t are unbiased for τk,t under a parallel trends
assumption (see Callaway & Sant’Anna, 2020).

Assume that the potential outcomes without being ever treated Yi,t(0) are independent across
(i, t) and homoscedastic with variance σ2, that the treatment effects are not stochastic, and
that the treatments are non-stochastic. Those are essentially the assumptions of the Gauss-
Markov Theorem (Borusyak et al., 2021). Then, for any 1 ≤ k ≤ t ≤ T ,

V (τ̂k,t) = 2σ2
( 1

Nk
+ 1

NCt

)
, (2.6)
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and for any 1 ≤ k ≤ t ≤ T , 1 ≤ k′ ≤ t′ ≤ T , k < k′, and t < t′,

cov(τ̂k,t, τ̂k,t′) = σ2
( 1

Nk
+ 1

NCt

)
cov(τ̂k,t, τ̂k′,t) = σ2 1

NCt

cov(τ̂k,t, τ̂k′,t′) = 0, (2.7)

so Point 2 of Assumption 1 and Assumption 3 hold.

Theorem 2.5 (Minimax-linear estimator of τ , with bounded CATEs, correlations, and ho-
moscedasticity)
If Points 2 and 3 of Assumption 1 and Assumption 3 hold, then for any 1 × G deterministic
vector w = (w1, ..., wG)

E
(
(τ̂(w) − τ)2

)
≤ MSE2(w) ≡ σ2

 G∑
g=1

w2
gvg +

G∑
g′ ̸=g

wgwg′cg,g′

+ B2

 G∑
g=1

|wg − pg|

2
 .

The upper bound in the previous display is sharp: it is attained if τg = B (1{wg ≥ pg} − 1{wg < pg})
and V (τ̂g) = σ2vg. Minimizing MSE2(w) across all w such that wg ≥ 0 for all g is equivalent
to minimizing

G∑
g=1

w2
gvg +

G∑
g′ ̸=g

wgwg′cg,g′

+ B2

 G∑
g=1

(pg − wg)

2

, (2.8)

subject to 0 ≤ wg ≤ pg.

While it does not have a closed-form solution, the minimization problem in (2.8) is easy to
solve numerically. Given B, this problem is feasible, as it only depends on known quantities.
Accordingly, the optimal weights are non-stochastic, and the variance of the minimax-linear
estimator can easily be estimated if one has an estimator of the variance-covariance ma-
trix of (τ̂g)g∈{1,...,G}. In the DID staggered design example, the numbers (vg)g∈{1,...,G} and
(cg,g′)1≤g ̸=g′≤G depend on the design, so the optimal weights are non-stochastic conditional on
the design. Note that the estimator in Theorem 2.5 is minimax across all linear combinations
of the τ̂gs with positive weights. Extending that result to allow for negative weights may be
achieved by developing an algorithm similar to the LASSO-LAR algorithm (see Efron et al.,
2004 and Rosset & Zhu, 2007) to minimize MSE2(w), as Armstrong & Kolesár (2021b) do
in the overidentified GMM setup they consider. This extension is left for future work.

3 Extensions

3.1 Feasible minimax-linear estimators with positive CATEs

In this section, I consider again the setup of Section 2.1, but I add the following assumption:
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Assumption 4 For all g ∈ {1, ..., G}, 0 ≤ τg.

Assumption 4 is applicable when CATEs are known to all be positive, on top of being bounded.
It is plausible when the treatment can ex-ante be assumed to not be detrimental. Theorem
3.1 below still holds if one instead assumes that CATEs are all negative. Let

MSE
+(w) = σ2

 G∑
g=1

w2
gvg + B2 max


 G∑

g=1
(wg − pg)1{wg > pg}

2

,

 G∑
g=1

(wg − pg)1{wg < pg}

2

 .

Theorem 3.1 (Minimax-linear estimator of τ , with bounded and positive CATEs) If As-
sumptions 1 and 4 hold, then for any 1 × G deterministic vector w = (w1, ..., wG)

E
(
(τ̂(w) − τ)2

)
≤ MSE

+(w).

The upper bound in the previous display is sharp. τ̂(wh∗) = argmin
w∈RG

MSE
+(w).

Perhaps surprisingly, Theorem 3.1 shows that the minimax-linear estimator is the same when
one assumes positive and bounded CATEs and when one only assumes bounded CATEs.
Assuming τg ≥ 0 can only change the worst-case squared bias of τ̂(w), not its variance.
Accordingly, the conclusion of Theorem 3.1 still holds with correlated CATE estimators:
there as well, assuming positive CATEs does not change the minimax-linear estimator.

Rather than boundedness and sign restrictions, there are alternative restrictions on CATEs
one may wish to consider. For instance, one may wish to assume that each CATE is no more
than Bσ away from the ATE: |τg − τ | ≤ Bσ. Deriving the minimax-linear estimator under
such restrictions is more complicated than under the restrictions I consider in this paper: as τ

is a weighted average of the τgs, deriving a closed form of a sharp upper bound of the squared
bias of τ̂(w) is not straightforward. This extension is left for future work.

3.2 Infeasible minimax-linear estimators without homoscedasticity

A result similar to Theorem 2.2 still holds without the homoscedasticity assumption, and
under a modified version of Point 3 in Assumption 1:

Assumption 5 For all g ∈ {1, ..., G}: there is a strictly positive known real number B such
that |τg| ≤ B.

Without loss of generality, assume that

p1V (τ̂1) ≤ p2V (τ̂2) ≤ ... ≤ pGV (τ̂G).
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Let g2 = min{g ∈ {1, ..., G} : 1
1

B2 +
∑G

g′=g
1

V (̂τg′ )

∑G
g′=g pg′ ≤ pgV (τ̂g)}. For any h ∈ {1, ..., G},

let wh,2 be such that

wg,h,2 = pg for all g < h

wg,h,2 = 1
V (τ̂g)

1
1

B2 +
∑G

g′=h
1

V (τ̂g)

G∑
g′=h

pg′ for all g ≥ h. (3.1)

Finally, let

MSE3(w) =
G∑

g=1
w2

gV (τ̂g) + B2

 G∑
g=1

|wg − pg|

2

and
w∗

2 = argmin
w∈RG

MSE3(w).

Theorem 3.2 (Minimax-linear estimator of τ , with bounded CATEs and heteroskedasticity)
If Point 1 of Assumption 1 and Assumption 5 hold, then for any 1 × G deterministic vector
w = (w1, ..., wG),

E
(
(τ̂(w) − τ)2

)
≤ MSE3(w).

The upper bound in the previous display is sharp: it is attained if τg = B (1{wg ≥ pg} − 1{wg < pg}) .

τ̂(w∗
2) = τ̂(wh∗

2
), where h∗

2 = argmin
h∈{g2,...,G}

MSE3(wh,2).

Theorem 3.2 shows that without the homoscedasticity assumption, the minimax-linear esti-
mator is still a weighted sum of the τ̂g, with positive weights, that sum to less than 1, and
where the most precisely estimated CATEs receive a weight equal to the share of the popu-
lation their group accounts for, while the least precisely estimated CATEs receive a weight
proportional to one over the estimator’s variance.

While the minimax-linear estimator in Theorem 2.2 is feasible, that in Theorem 3.2 is infea-
sible, as it depends on the variances of the τ̂gs, that are unknown. In most instances, it is
possible to estimate those variances,6 to then form a feasible estimator τ̂

(
ŵ∗

2

)
proxying for

τ̂ (w∗
2). Studying the properties of τ̂

(
ŵ∗

2

)
is left for future work.

Finally, one can also relax the assumption that the τ̂gs are uncorrelated, or that their corre-
lations has the specific expression in Assumption 3.

Theorem 3.3 (Minimax-linear estimator of τ , with bounded CATEs, heteroskedasticity, and
correlations)
If Assumption 5 holds, then for any 1 × G deterministic vector w = (w1, ..., wG)

E
(
(τ̂(w) − τ)2

)
≤ MSE4(w) ≡

G∑
g=1

w2
gV (τ̂g) +

G∑
g′ ̸=g

wgwg′cov(τ̂g, τ̂g′)

+B2

 G∑
g=1

|wg − pg|

2

.

6In stratified RCTs with non-stochastic potential outcomes, it is only possible to estimate upper bounds of
the variances, but that does not affect the result in Theorem 3.2, as those upper bounds are sharp.
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The upper bound in the previous display is sharp: it is attained if τg = B (1{wg ≥ pg} − 1{wg < pg}) .

If cov(τ̂g, τ̂g′) ≥ 0 for all (g, g′), then minimizing MSE4(w) across all w such that wg ≥ 0
for all g is equivalent to minimizing

G∑
g=1

w2
gV (τ̂g) +

G∑
g′ ̸=g

wgwg′cov(τ̂g, τ̂g′)

+ B2

 G∑
g=1

(pg − wg)

2

, (3.2)

subject to 0 ≤ wg ≤ pg.

The minimization problem in (3.2) is easy to solve numerically. This problem is not feasible,
as it depends on the variance-covariance matrix of (τ̂g)1≤g≤G, which is typically unknown.
But a feasible estimator can be computed, by replacing those quantities by estimators.

4 Numerical examples

4.1 Stratified RCTs

In this section, I compute w∗ in stratified RCTs, and compare the performance of τ̂(w∗) to
that of the unbiased and fixed effects estimators τ̂(p) and τ̂(wfe). I first consider an RCT
with two strata of 100 units (N = 200). The first strata is perfectly balanced: half of units
are treated. The second strata may be imbalanced, and I vary its treatment probability pimb

from 0.5 to 0.99. In each design, I compute w∗ assuming B = 0.75 and B = 0.5. Then, I
repeat the same exercise but considering an RCT with two strata of 50 units (N = 100). This
gives rise to four sets of estimators, for which results are shown on the four panels of Figure
1 below. On each panel, the blue and brown lines respectively show w∗

1 and w∗
2, the weights

assigned to the balanced and imbalanced strata by the minimax-linear estimator τ̂(w∗), as a
function of pimb. The green and orange lines respectively show the ratio of the standard error
and worst-case MSE of τ̂(w∗) and τ̂(p), under the homoscedasticity condition in Point 2 of
Assumption 1. Finally, the black and red lines respectively show the ratio of the standard
error and worst-case MSE of τ̂(w∗) and τ̂(wfe), under that same assumption.

In all panels, w∗
1 starts below 0.5, and increases with pimb, until it reaches 0.5. w∗

2 on the
other hand is decreasing with pimb: the more imbalanced the second stratum is, the more
the minimax-linear estimator downweights it. Comparing the four panels, one can see that
w∗

2 is increasing in B. The larger B is, the less the minimax-linear estimator downweights
the imbalanced stratum, as downweighting it may result in more bias. w∗

2 is also increasing
in N . The larger N is, the lower the variances of the τ̂g estimators, and the less variance
matters in the bias-variance trade-off. By construction, τ̂(w∗) always has lower worst-case
MSE and standard error than τ̂(p). The magnitude of the difference depends on pimb, B,
and N . For instance, if B = 1 and N = 200, se(τ̂(w∗))/se(τ̂(p)) ≤ 0.9 if pimb is greater
than 0.89. If B = 0.5 and N = 200 (resp. B = 1 and N = 100, B = 0.5 and N = 100)
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se(τ̂(w∗))/se(τ̂(p)) ≤ 0.9 if pimb ≥ 0.77 (resp. pimb ≥ 0.80, pimb ≥ 0.5). τ̂(w∗) also always
has lower worst-case MSE than τ̂(wfe), and this difference is large for values of pimb greater
than 0.75. Perhaps surprisingly, τ̂(w∗) also almost always has lower standard error than
τ̂(wfe). This is due to the shrinkage embedded in τ̂(w∗).
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Figure 1: τ̂(w∗), τ̂(p), and τ̂(wfe) in stratified RCTs

Notes: This figure compares the performance of the minimax-linear estimator τ̂(w∗) to that of the unbiased and

fixed effects estimators τ̂(p) and τ̂(wfe) in stratified RCTs with two strata. On each panel, the blue and brown

lines respectively show w∗
1 and w∗

2 , the weights assigned to the balanced and imbalanced strata by τ̂(w∗), as a

function of the treatment probability in the imbalanced strata. The green and orange lines respectively show

the ratio of the standard error and worst-case MSE of τ̂(w∗) and τ̂(p), under the homoscedasticity condition

in Point 2 of Assumption 1. Finally, the black and red lines respectively show the ratio of the standard error

and worst-case MSE of τ̂(w∗) and τ̂(wfe), under that same assumption. In the top left panel, each strata has

100 units (N = 200) and B = 0.75. In the top right panel, each strata has 100 units (N = 200) and B = 0.5.

In the bottom left panel, each strata has 50 units (N = 100) and B = 0.75. In the bottom right panel, each

strata has 50 units (N = 100) and B = 0.5.

15

Electronic copy available at: https://ssrn.com/abstract=3846618



4.2 Difference-in-difference estimators with a staggered adoption design

In this section, I consider another numerical example: a staggered adoption design with 50
units and five time periods, where 10 units get treated in periods 2, 3, 4, and 5, while 10 units
remain never treated. For (k, t) ∈ {2, ..., 5} × {k, ..., 5}, let τ̂k,t = 1

10
∑

i:ti=k(Yi,t − Yi,k−1) −
1

10(6−t)
∑

i:ti>t(Yi,t − Yi,k−1) be an estimator of the average treatment effect at period t in the
cohort that started receiving the treatment at period k. This estimator is unbiased under a
parallel trends assumption (see Callaway & Sant’Anna, 2020).

If one assumes that units’ potential outcomes without treatment Yi,t(0) are independent across
(i, t) and homoscedastic with variance σ2, that the treatment effects are not stochastic, and
that the treatments are non-stochastic, one can use (2.7) to derive the variance-covariance
matrix of (τ̂k,t)(k,t)∈{2,...,5}×{k,...,5}. Then, for B = 0.75, the solution to the minimization
problem in (2.8) is

w∗ = (0.1, 0.1, 0.1, 0.0148, 0.1, 0.1, 0.0565, 0.1, 0.1, 0.1).

The minimax-linear estimator downweights τ̂2,5 and τ̂3,5, two effects estimated at the last
period of the panel, when few units can be used as controls. Doing so leads to a substantial
gain under Assumption 3: se(τ̂(w∗))/se(τ̂(p)) = 0.83 and mse(τ̂(w∗))/mse(τ̂(p)) = 0.82.

It may often be implausible that the outcomes of the same unit are uncorrelated over time.
To assess if results are sensitive to that assumption, I assume instead that V (Yi,t(0)) = 1 for
all (i, t) and cov(Yi,t(0), Yi,t′(0)) = ρt′−t for all i and 1 ≤ t ≤ t′ ≤ T . Those conditions for
instance hold if Yi,t follows a stationnary AR(1) model with parameter ρ: Yi,1(0) = εi,1, and
Yi,t(0) = ρYi,t−1(0) +

√
1 − ρ2εi,t, with εi,t i.i.d. with mean 0 and variance 1. Under those

assumptions,

V (τ̂k,t) = 2
(
1 − ρt−k+1

)( 1
Nk

+ 1
NCt

)
,

and for any 1 ≤ k ≤ t ≤ T , 1 ≤ k′ ≤ t′ ≤ T , k < k′, and t < t′,

cov(τ̂k,t, τ̂k,t′) =
(
ρt′−t − ρt−k+1 − ρt′−k+1 + 1

)( 1
Nk

+ 1
NCt

)
cov(τ̂k,t, τ̂k′,t) =

(
1 − ρt−k+1 − ρt−k′+1 + ρk′−k

) 1
NCt

cov(τ̂k,t, τ̂k′,t′) = 1{k′ ≤ t}
(
ρt′−t − ρt−k′+1 − ρt′−k+1 + ρk′−k

) 1
NCt

.

With ρ = 0.50, se(τ̂(w∗))/se(τ̂(p)) = 0.80 and mse(τ̂(w∗))/mse(τ̂(p)) = 0.78. Results
are similar with ρ = 0.25 and ρ = 0.75. With ρ = 0.9, se(τ̂(w∗))/se(τ̂(p)) = 0.76 and
mse(τ̂(w∗))/mse(τ̂(p)) = 1.05. The weights w∗ are computed assuming independent out-
comes, but in this numerical example the precision gains attached to using τ̂(w∗) are even
larger with positively correlated outcomes. On the other hand, the worst-case MSE gains at-
tached to using τ̂(w∗) persist with moderately positively correlated outcomes, but disappear
with highly positively correlated outcomes.
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Overall, τ̂(w∗) may lead to substantial precision and MSE gains in staggered adoption designs
with a number of units of the same order as the number of US states.

5 Application

In this section, I use the data from Behaghel et al. (2017) to illustrate the results in the
paper. The authors conducted a stratified RCT to estimate the effect of a boarding school for
disadvantaged students in France. The boarding school’s pedagogy is similar to that of “No
Excuse” charter schools in the US. It has capacity constraints at the gender × grade level,
and in 2009 and 2010, the school had more applicants than seats in 14 gender × grade strata.
In each stratum, seats were randomly offered to some applicants. Thereafter, treatment is
defined as receiving an offer to enter the school. This is not the same thing as entering the
school, an issue I shall return to. Two years after the randomization, 363 applicants out of the
395 that participated in a lottery took a standardized maths test. The number of treatment
and control applicants per strata is shown in Table 1 below. The treatment probability varies
across strata, but there is no strata where it is higher than 0.9 or lower than 0.1.

Table 1: Number of treatment and control applicants in each strata

Strata Control applicants Treated applicants
8th grade, males, 2009 11 15
8th grade, females, 2009 15 3
9th grade, females, 2009 8 22
10th grade, males, 2009 5 22
10th grade, females, 2009 36 27
6th grade, males, 2010 6 9
7th grade, males, 2010 9 8
7th grade, females, 2010 5 10
8th grade, males, 2010 5 19
9th grade, males, 2010 8 6
9th grade, females, 2010 3 13
10th grade, males, 2010 12 16
10th grade, females, 2010 39 24
11th grade, females, 2010 3 4

Notes: Number of treated and control applicants in the 14 strata in Behaghel et al. (2017).

I use the data from Behaghel et al. (2017) to compute the minimax-linear estimator τ̂(w∗).
Here, τg is the intention-to-treat effect of receiving an offer on students’ test scores two years
after the lottery. At that point, the first-stage effect of receiving an offer on the number of
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years spent in the school is equal to 1.01 (standard error=0.16),7 so the τgs can be interpreted
as effects of having spent one year in the boarding school. The first-stage effects may vary
across strata, which would complicate this interpretation. However, I cannot reject that the
first-stages are equal for males and females (t-stat=-1.24), for 2009 and 2010 applicants (t-
stat=-1.06), and for middle- and high-school applicants (t-stat=0.53), so the first-stage effect
indeed seems to be constant across strata.8

Based on the literature, 0.5σ is a plausible upper bound for the CATEs. The paper studying
the closest intervention is Curto & Fryer Jr (2014), who study a “No Excuse” charter boarding
school in Washington DC. In their full sample, they find that one year spent in the school
increases students’ math test scores by 0.23σ. They also estimate CATEs in eight subgroups
of students: males/females, students benefiting/not benefiting from the free lunch program,
students in/not in special education, and students above/below the median at baseline. The
estimated effects in those 8 subgroups are included between 0.04 and 0.36σ, and in 7 of the
8 subgroups one can reject at the 90% level that the effect is greater than 0.5σ, the only
exception being the special education group that only has 30 students. Results from Angrist
et al. (2010), Dobbie & Fryer Jr (2011), and Abdulkadiroğlu et al. (2011), three papers
studying successful non-boarding “No Excuse” charter schools in New-York and Boston, also
suggest that 0.5σ is a plausible upper bound. Together, these papers estimate 14 CATEs of
spending one year in those schools on students’ math test scores. All estimates are included
between 0.18 and 0.36σ, and one can reject at the 90% level that 13 of the 14 CATEs are
greater than 0.5σ. One may argue that the intervention in Behaghel et al. (2017) takes place
in France, a different setting from that in those papers. However, effects of 0.5σ are very
rarely found for educational interventions in high-income countries (see Fryer Jr, 2017). As
a robustness check, I will show that results do not change much with B = 0.6.

Results are shown in Table 2. In the full sample (Panel A), τ̂(w∗) is 13% smaller than τ̂(p).
Its robust standard error, estimated following (2.4), is 9% smaller. Assuming homoskedascity,
we can compute the worst-case MSE of both estimators, expressed in percentage points of the
outcome’s variance. That of τ̂(w∗) is 6% smaller. As shown in Point 1 of Corollary 2.4, with
heteroscedasticity τ̂(w∗)’s worst-case MSE is still lower than τ̂(p)’s if the treated outcome’s
variance is higher than that of the untreated outcome. This may be a plausible assumption
in this context, as quantile treatment effects of this intervention are higher at the top than
at the bottom of the distribution of test scores (see Behaghel et al., 2017). I still compute
the lower bound in Point 2 of Corollary 2.4, and find that it is equal to 0.06: under Point 2
of Assumption 2, the variance of the treated outcome would have to be more than 94% lower

7Numbers differ from those in Behaghel et al. (2017), because they use the doubly-reweighted-ever-offer
(DREO) estimators proposed by de Chaisemartin & Behaghel (2020). As the DREO estimators of the treat-
ment effect in each strata do not satisfy Point 2 of Assumption 1, I use instead the initial offer estimators.
Moreover, Behaghel et al. (2017) have control variables in their specification, while I do not have controls.

8Strata are too small to directly test if the first-stage is the same in all of them.

18

Electronic copy available at: https://ssrn.com/abstract=3846618



than that of the untreated outcome for τ̂(w∗)’s worst-case MSE to be higher than τ̂(p)’s.

Those precision and MSE gains are achieved by downweighting the least balanced strata. The
weights assigned by τ̂(w∗) to 8th-grade-females-2009 and 10th-grade-males-2009 applicants
are roughly half as large as the proportions these strata account for in the sample. The
weights assigned by τ̂(w∗) to all the other strata are equal to their shares in the population.

τ̂(w∗)’s robust standard error is also 3% smaller than that of τ̂(wfe), while its worst-case
MSE is 33% smaller. When one looks at female and male students separately, the precision
and MSE gains attached to using τ̂(w∗) rather than τ̂(p) tend to be larger. For instance,
among boys τ̂(w∗)’s robust standard error and worst-case MSE are respectively 15 and 12%
smaller than that of τ̂(p). Finally, results are similar with B = 0.6. Then, in the full sample
τ̂(w∗)’s robust standard error and worst-case MSE are respectively 7 and 4% smaller than
that of τ̂(p), and 2 and 41% smaller than that of τ̂(wfe).

Table 2: τ̂(w∗), τ̂(p), and τ̂(wfe) in Behaghel et al. (2017)

τ̂(w∗) τ̂(p) τ̂(wfe)
Panel A: Full sample (N=363)
Point estimate 0.097 0.111 0.101
Robust standard error 0.127 0.139 0.130
Worst-case MSE 0.012 0.013 0.019
Panel B: Females (N=212)
Point estimate 0.177 0.190 0.180
Robust standard error 0.146 0.155 0.160
Worst-case MSE 0.021 0.022 0.026
Panel C: Males (N=151)
Point estimate -0.009 0.000 -0.010
Robust standard error 0.216 0.253 0.220
Worst-case MSE 0.028 0.032 0.039

Notes: This table shows τ̂(w∗), τ̂(p), and τ̂(wfe) in Behaghel et al. (2017). τ̂(w∗) is computed with B = 0.5.
The treatment is defined as being offered a seat in the boarding school. The outcome is students’ standardized
maths test scores two years after the lottery. The table shows the point estimates, their robust standard
errors, and their worst-case MSE computed assuming homoscedasticity and expressed in percentage points of
the outcome’s variance. In the first panel, results are shown for the full sample. In the second (resp. third)
panel, results are shown for female (resp. male) students.

6 Conclusion

This paper considers situations where one wants to estimate the ATE in a population that
can be divided into G groups, and one has unbiased estimators of the CATE in each group
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with heterogeneous levels of statistical precision. To trade-off bias and variance, I derive the
minimax estimator of the ATE, across all linear combinations of CATEs’ estimators, assuming
that CATEs are bounded by B standard deviations of the outcome and homoscedasticity.
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Proofs

Proof of Lemma 2.1

E
(
(τ̂(w) − τ)2

)
=V (τ̂(w)) + (E (τ̂(w)) − τ)2

=
G∑

g=1
w2

gV (τ̂g) +

 G∑
g=1

(wg − pg)τg

2

≤σ2
G∑

g=1
w2

gvg +

 G∑
g=1

(wg − pg)τg

2

≤σ2
G∑

g=1
w2

gvg +

 G∑
g=1

|wg − pg||τg|

2

≤σ2

 G∑
g=1

w2
gvg + B2

 G∑
g=1

|wg − pg|

2
 .

The first equality follows from the fact that an estimator’s MSE is the sum of its variance and
squared bias. The second equality follows from the fact w is deterministic, from Equations
(2.2) and (2.1), and from Definition 2.1 and Point 1 of Assumption 1. The first inequality
follows from Point 2 of Assumption 1. The second inequality follows from the fact that for
any real number a, a2 = |a|2, from the triangle inequality, and from the fact that x 7→ x2 is
increasing on R+. The third inequality follows from Point 3 of Assumption 1.

The sharpness of the upper bound follows from plugging τg = σB (1{wg ≥ pg} − 1{wg < pg})
and V (τ̂g) = σ2vg into the second equality in the previous display.

Proof of Theorem 2.2

First, assume that w∗ has at least one coordinate that is strictly larger than the corre-
sponding coordinate of (p1, ..., pG). Without loss of generality, assume that w∗

1 > p1. One
has MSE(w∗) > MSE(p1, w∗

2, ..., w∗
G), a contradiction. Therefore, each coordinate of w∗

is at most as large as the corresponding coordinate of (p1, ..., pG). Accordingly, finding the
minimax-linear estimator is equivalent to minimizing MSE(w) with respect to w, across all
w = (w1, ..., wG) such that wg ≤ pg for all g ∈ {1, ..., G}.

If wg ≤ pg for all g ∈ {1, ..., G},

MSE(w) = σ2

 G∑
g=1

w2
gvg + B2

 G∑
g=1

(pg − wg)

2
 .
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Therefore, w∗ is the minimizer of

G∑
g=1

w2
gvg + B2

 G∑
g=1

(pg − wg)

2

,

subject to
wg − pg ≤ 0 for all g.

The objective function is convex, and the inequality constraints are continuously differentiable
and concave. Therefore, the necessary conditions for optimality are also sufficient.

The Lagrangian of this problem is

L(w,µ) =
G∑

g=1
w2

gvg + B2

 G∑
g=1

(pg − wg)

2

+
G∑

g=1
2µg(wg − pg).

The Karush-Kuhn-Tucker necessary conditions for optimality are

w∗
gvg − B2

1 −
G∑

g=1
w∗

g

+ µg = 0

w∗
g ≤ pg

µg ≥ 0

µg(w∗
g − pg) = 0. (6.1)

Those conditions are equivalent to

w∗
g = min

 1
vg

B2

1 −
G∑

g=1
w∗

g

 , pg

 (6.2)

µg = max

0, B2

1 −
G∑

g=1
w∗

g

− pgvg

 .

One has that

1
vg

B2

1 −
G∑

g=1
w∗

g

 < pg

⇔B2

1 −
G∑

g=1
w∗

g

 < pgvg.

Together with (6.2), the previous display implies that

w∗
g < pg ⇒ w∗

g+1 < pg+1. (6.3)

Let g∗ = min{g ∈ {1, ..., G} : w∗
g < pg}, with the convention that g∗ = G + 1 if the set is

empty. It follows from Equations (6.2) and (6.3) that

w∗
g = pg for all g < g∗

w∗
g = 1

vg
B2

1 −
G∑

g=1
w∗

g

 for all g ≥ g∗. (6.4)
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(6.4) implies that
G∑

g=g∗
w∗

g =
B2∑G

g=g∗
1
vg

1 + B2∑G
g=g∗

1
vg

G∑
g=g∗

pg.

Plugging this equation into (6.4) yields

w∗
g = pg for all g < g∗

w∗
g = 1

vg

1
1

B2 +
∑G

g′=g∗
1

vg′

G∑
g′=g∗

pg′ for all g ≥ g∗. (6.5)

Finally, assume that g∗ < g. Then, w∗
g∗ > pg∗ , a contradiction. Some algebra shows that

MSE(p) − MSE

(
p1, ..., pG−1,

1
vG

1
B2 + 1

vG

pG

)

=p2
GvG −

p2
G

( 1
vG

1
B2 + 1

vG

)2

vG + B2p2
G

( 1
B2

1
vG

+ 1
B2

)2


= p2
G(

1
B2 + 1

vG

)2

(
vG

B4 + 1
B2

)
> 0.

Therefore,

g∗ ∈ {g, ..., G} (6.6)

The result follows from Equations (6.5) and (6.6).

Proof of Corollary 2.3

w∗ belongs to (wh)h∈{1,...,G}. For every h, for all g ≥ h,

lim
B→+∞

wg,h = 1
vg

1∑G
g′=h

1
vg′

G∑
g′=h

pg′ .

Therefore, for every h,

lim
B→+∞

G∑
g=1

wg,h = 1,

which then implies that

lim
B→+∞

G∑
g=1

w∗
g = 1.

As w∗
g ≤ pg and

∑G
g=1 pg = 1, this implies that for every g,

lim
B→+∞

w∗
g = pg.
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Proof of Lemma 2.2

Assume that
1∑G

g′=g
1

vg′

G∑
g′=g

pg′ ≤ pgvg.

Then,

pg+1vg+1

G∑
g′=g+1

1
vg′

=pg+1vg+1

G∑
g′=g

1
vg′

− pg+1
vg+1
vg

=pgvg

G∑
g′=g

1
vg′

+ (pg+1vg+1 − pgvg)
G∑

g′=g

1
vg′

− pg+1
vg+1
vg

≥pgvg

G∑
g′=g

1
vg′

+ pg+1
vg+1
vg

− pg − pg+1
vg+1
vg

≥
G∑

g′=g+1
pg′ .

6.1 Proof of Corollary 2.4

Proof of Point 1
Assume that Points 1 and 3 of Assumption 1 hold. If Point 1 of Assumption 2 were to hold
with hg = 1 for all g, then Point 2 of Assumption 1 would hold with vg = v0,g + v1,g, and
τ̂(w∗) would be minimax-linear. Accordingly, its worst-case MSE under that DGP has to be
lower than that of τ̂(p), which implies that

σ2B2

 G∑
g=1

|w∗
g − pg|

2

≤ σ2
G∑

g=1
((pg)2 − (w∗

g)2)(v0,g + v1,g). (6.7)

As for all g, v1,g ≥ 0, (pg)2 − (w∗
g)2 ≥ 0, and hg ≥ 1 under Point 1 of Assumption 2,

σ2
G∑

g=1
((pg)2 − (w∗

g)2)(v0,g + v1,g) ≤ σ2
G∑

g=1
((pg)2 − (w∗

g)2)(v0,g + hgv1,g). (6.8)

Combining (6.7) and (6.8) and rearranging proves the result.

Proof of Point 2
If Points 1 and 3 of Assumption 1 and Point 2 of Assumption 2 hold, the worst-case MSEs of
τ̂(w∗) and τ̂(p) are respectively equal to

σ2

 G∑
g=1

(w∗
g)2(v0,g + hv1,g) + B2

 G∑
g=1

|w∗
g − pg|

2


26

Electronic copy available at: https://ssrn.com/abstract=3846618



and

σ2
G∑

g=1
(pg)2(v0,g + hv1,g).

Taking the difference between the two preceding displays, setting that difference lower than
0 and rearranging yields the result.

Proof of Theorem 2.5

That E
(
(τ̂(w) − τ)2

)
≤ MSE2(w) follows from the same steps as the proof of Lemma 2.1.

As cg,g′ ≥ 0 for all (g, g′), if wg ≥ 0 for all g, then using a reasoning similar to that in the proof
of Theorem 2.2, one can show that the minimizer of MSE2(w) must be such that each of its
coordinates are lower than the corresponding coordinate of p. Therefore, this minimization
problem is equivalent to that in (2.8).

Proof of Theorem 3.1

0 ≤ τg ≤ Bσ implies that

Bσ(wg − pg)1{wg < pg} ≤ (wg − pg)τg ≤ Bσ(wg − pg)1{wg > pg},

which in turn implies that

Bσ
G∑

g=1
(wg − pg)1{wg < pg} ≤

G∑
g=1

(wg − pg)τg ≤ Bσ
G∑

g=1
(wg − pg)1{wg > pg}. (6.9)

Then, reasoning as in the proof of Lemma 2.1 yields

E
(
(τ̂(w) − τ)2

)
≤MSE

+(w).

When ∣∣∣∣∣∣
G∑

g=1
(wg − pg)1{wg > pg}

∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
G∑

g=1
(wg − pg)1{wg < pg}

∣∣∣∣∣∣ ,
the sharpness of the upper bound follows from plugging τg = σB1{wg ≥ pg} into (6.9). When∣∣∣∣∣∣

G∑
g=1

(wg − pg)1{wg > pg}

∣∣∣∣∣∣ <

∣∣∣∣∣∣
G∑

g=1
(wg − pg)1{wg < pg}

∣∣∣∣∣∣ ,
the sharpness of the upper bound follows from from plugging τg = σB1{wg < pg} into (6.9).

Finally, assume that w∗, the argmin of MSE
+(w), has at least one coordinate that is strictly

larger than the corresponding coordinate of (p1, ..., pG). Without loss of generality, assume
that w∗

1 > p1. One has G∑
g=1

(w∗
g − pg)1{w∗

g > pg}

2

>

 G∑
g=2

(w∗
g − pg)1{w∗

g > pg}

2
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and  G∑
g=1

(w∗
g − pg)1{w∗

g < pg}

2

=

 G∑
g=2

(w∗
g − pg)1{w∗

g < pg}

2

,

so the squared bias of τ̂(w∗) is at least as large as that of τ̂(p1, w∗
2, ..., w∗

G), while its variance
is strictly larger. Then, MSE

+(w∗) > MSE
+(p1, w∗

2, ..., w∗
G), a contradiction. Therefore,

each coordinate of w∗ is at most as large as the corresponding coordinate of (p1, ..., pG).
Accordingly, finding the minimax-linear estimator is equivalent to minimizing MSE

+(w)
with respect to w, across all w = (w1, ..., wG) such that wg ≤ pg for all g ∈ {1, ..., G}. On
that set,

MSE
+(w) =σ2

 G∑
g=1

w2
gvg + B2

 G∑
g=1

(wg − pg)1{wg < pg}

2


=σ2

 G∑
g=1

w2
gvg + B2

 G∑
g=1

(wg − pg)1{wg ≤ pg}

2


=σ2

 G∑
g=1

w2
gvg + B2

 G∑
g=1

(wg − pg)

2


=MSE(w).

This completes the proof.

Proof of Theorem 3.2

That E
(
(τ̂(w) − τ)2

)
≤ MSE3(w) follows from the same steps as the proof of Lemma 2.1.

That MSE3(w) is minimized at wh∗
2

follows from the same steps as the proof of Theorem
2.2.

Proof of Theorem 3.3

That E
(
(τ̂(w) − τ)2

)
≤ MSE4(w) follows from the same steps as the proof of Lemma 2.1.

If cov(τ̂g, τ̂g′) ≥ 0 for all (g, g′) and wg ≥ 0 for all g, then using a reasoning similar to that
in the proof of Theorem 2.2, one can show that the minimizer of MSE4(w) must be such
that each of its coordinates are lower than the corresponding coordinate of p. Therefore, this
minimization problem is equivalent to that in (3.2).
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