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Abstract

We propose difference-in-differences estimators in designs where the treatment is contin-
uously distributed at every period, as is often the case when one studies the effects of taxes,
tariffs, or prices. We assume that between consecutive periods, the treatment of some units,
the switchers, changes, while the treatment of other units remains constant. We show that
under a placebo-testable parallel-trends assumption, averages of the slopes of switchers’
potential outcomes can be nonparametrically estimated. We generalize our estimators to
the instrumental-variable case. We use our estimators to estimate the price-elasticity of
gasoline consumption.
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1 Introduction

A popular method to estimate the effect of a treatment on an outcome is to estimate a two-way
fixed effects (TWFE) regression that controls for unit and time fixed effects:

Yi,t = αi + γt + βT W F EDi,t + ui,t,

where Di,t is the treatment of unit i at time t. de Chaisemartin and D’Haultfœuille (2023a) find
that 26 of the 100 most cited papers published by the American Economic Review from 2015
to 2019 have estimated at least one TWFE regression. de Chaisemartin and D’Haultfœuille
(2020), Goodman-Bacon (2021), and Borusyak et al. (2024) have shown that under a parallel
trends assumption, TWFE regressions are not robust to heterogeneous effects: they may estimate
a weighted sum of treatment effects across periods and units, with some negative weights. Owing
to the negative weights, βT W F E could be, say, negative, even if the treatment effect is positive
for every unit × period. Importantly, the result in de Chaisemartin and D’Haultfœuille (2020)
applies to binary, discrete, and continuous treatments.

Several alternative heterogeneity-robust difference-in-difference (DID) estimators have been pro-
posed (see Table 2 of de Chaisemartin and D’Haultfœuille, 2023b). Some apply to binary and
staggered treatments (see Sun and Abraham, 2021; Callaway and Sant’Anna, 2021; Borusyak
et al., 2024). Some apply to designs where all units start with a treatment equal to 0, and
then get treated with heterogeneous, potentially continuously distributed treatment intensities
(see de Chaisemartin and D’Haultfœuille, 2023a; Callaway et al., 2021; de Chaisemartin and
D’Haultfœuille, 2024). However, treatments continuously distributed at every period, including
the first one in the data, are ubiquitous in applied work. For instance, taxes (see Li et al., 2014)
or tariffs (see Fajgelbaum et al., 2020) are often continuously distributed at all periods. No
difference-in-difference estimator robust to heterogeneous effects is available for such designs.
Proposing such estimators is the purpose of this paper.

We assume that we have a panel data set, whose units could be geographical locations such
as counties. We start by considering the case where the panel has two time periods. From
period one to two, the treatment of some units, hereafter referred to as the switchers, changes.
On the other hand, the treatment of other units, hereafter referred to as the stayers, does not
change. We consider two target parameters. The first one is the average slope of switchers’
period-two potential outcome function, from their period-one to their period-two treatment,
hereafter referred to as the Average of Slopes (AS). Our second target is a weighted average of
switchers’ slopes, where switchers receive a weight proportional to the absolute value of their
treatment change, hereafter referred to as the Weighted Average of Slopes (WAS). We propose
a novel parallel trends assumption on the outcome evolution of switchers and stayers with the
same period-one treatment, in the counterfactual where switchers’ treatment would not have
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changed. Because it conditions on units’ period-one treatment, this parallel-trends assumption
does not impose any restriction on effect heterogeneity. This parallel trends assumption is also
placebo testable, by comparing switchers’ and stayers’ outcome evolutions before switchers’
treatment changes. We view the possibility of placebo-testing it as an important advantage
of our assumption, as placebo tests are an essential step in establishing the credibility of an
identifying assumption in observational studies (Imbens et al., 2001; Imbens and Xu, 2024).
We show that under our placebo-testable parallel-trends assumption, the AS and the WAS are
identified. This contrasts with other target parameters, like the dose-response function or the
average marginal effect, which can only be identified under non-placebo-testable assumptions.

Economically, the AS and the WAS can serve different purposes, so neither parameter dominates
the other. Under shape restrictions on the potential outcome function, the AS can be used to
infer the effect of other treatment changes than those that took place from period one to two.
Instead, the WAS can be used to conduct a cost-benefit analysis of the treatment changes that
effectively took place. On the other hand, when it comes to estimation, the WAS unambiguously
dominates the AS. First, we show that it can be estimated at the standard parametric rate even
if switchers can experience an arbitrarily small change of their treatment between consecutive
periods. Second, we show that under some conditions, the asymptotic variance of the WAS
estimator is strictly lower than that of the AS estimator. Third, unlike the AS, the WAS is
amenable to doubly-robust estimation, which comes with a number of advantages.

Then, we consider the instrumental-variable (IV) case. For instance, one may be interested in
estimating the price-elasticity of a good’s consumption. If prices respond to demand shocks, the
counterfactual consumption trends of units experiencing and not experiencing a price change
may not be parallel. On the other hand, the counterfactual consumption trends of units expe-
riencing and not experiencing a tax change may be parallel. Then, taxes may be used as an
instrument for prices. In such cases, we show that the reduced-form WAS effect of the instru-
ment on the outcome divided by the first-stage WAS effect is equal to a weighted average of
switchers’ outcome-slope with respect to the treatment, where switchers with a larger first-stage
effect receive more weight. Hereafter, we refer to this effect as the IV-WAS effect. The ratio of
the reduced-form and first-stage AS effects is also equal to a weighted average of slopes, with ar-
guably less natural weights, so in the IV case the WAS seems both economically and statistically
preferable to the AS. Importantly, we show that the reduced-form parallel-trends assumption
implicitly restricts treatment-effect heterogeneity. Such restrictions can be alleviated by con-
trolling for groups baseline treatment in the IV specification, but the resulting estimator still
restricts effects’ heterogeneity across units.

We consider other extensions. First, we extend our results to applications with more than two
time periods. Importantly, with several time periods our estimators rely on a parallel-trends
assumption over consecutive periods, rather than over the entire duration of the panel. Second,
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we propose a placebo estimator of the parallel-trends assumption underlying our estimators.

Finally, we use the yearly, 1966 to 2008 US state-level panel dataset of Li et al. (2014) to estimate
the effect of gasoline taxes on gasoline consumption and prices. Using the WAS estimators, we
find a significantly negative effect of taxes on gasoline consumption, and a significantly positive
effect on prices. The AS estimators are close to, and not significantly different from, the WAS
estimators, but they are also markedly less precise: their standard errors are almost three times
larger than that of the WAS estimators. This shows that our theoretical result on the precision
ranking of the WAS and AS estimators, which we derive under strong assumptions, still holds
in a real-life application where those assumptions probably do not hold. The precision losses
attached to using the AS have consequences. The AS estimator of the effect of taxes on prices
is not statistically significant, so with that estimator one cannot use taxes as an instrument to
estimate the price-elasticity of consumption, because the instrument does not have a first-stage.
This contrasts with the WAS, whose first-stage t-stat is around 7. We compute an IV-WAS
estimator of the price elasticity of gasoline consumption, and find a fairly small elasticity of
-0.67, in line with previous literature (for instance, Hausman and Newey, 1995, find a long-run
elasticity of -0.81). Our placebo estimators are small, insignificant, and fairly precisely estimated,
thus suggesting that our parallel trends assumption is plausible.

Our estimators are computed by the did_multiplegt_stat Stata package, available from the
SSC repository. Our package allows estimators with control variables and weights, see the help
file and the package’s companion paper for further details.

Related Literature.

Our paper builds upon several previous papers in the panel data literature. Chamberlain (1982)
seems to be the first paper to have proposed an estimator of the AS parameter. Under the
assumption of no counterfactual time trend, the estimator therein is a before-after estimator.
Then, our paper is closely related to the work of Graham and Powell (2012), who also propose
DID estimators of the AS (see their Equation (21)) when the treatment is continuously dis-
tributed at every time period. Their estimators rely on a linear effect assumption and assume
that units experience the same evolution of their treatment effect over time, a parallel-trends-on-
treatment-effects assumption. By contrast, our estimator of the AS does not place any restriction
on treatment effects. But our main contribution to this literature is to introduce the WAS, and
to contrast the pros and cons of the AS and WAS estimators. Our results are also related to
Hoderlein and White (2012), who consider the average marginal effect of a continuous treatment
with panel data. However, their target parameters and identifying assumptions are different.
For instance, they rule out systematic changes of the outcome over time.

With respect to the aforementioned heterogeneity-robust DID literature, we make two contribu-
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tions. First, in the non-IV case we propose estimators that can be used even if units’ treatment
varies at baseline. Thus we usefully complement previous literature, that has mostly focused
on the case where all units have a baseline treatment equal to zero (see Sun and Abraham,
2021; Callaway and Sant’Anna, 2021; Borusyak et al., 2024; Callaway et al., 2021; de Chaise-
martin and D’Haultfœuille, 2024). One exception predating this paper is de Chaisemartin and
D’Haultfœuille (2020), who allow for a non-binary discrete treatment at baseline in their Web
Appendix, and propose estimators comparing switchers and stayers with the same baseline
treatment. However, that paper does not allow for continuously distributed treatments, and
comparing switchers and stayers with the same baseline treatment is no longer feasible with a
continuously distributed treatment.1 Second, in the IV case, previous IV-DID literature has only
considered classical designs with two periods and binary instrument and treatment (de Chaise-
martin, 2010; Hudson et al., 2017), as well as fuzzy DID designs, a special case of IV-DIDs
(de Chaisemartin and D’Haultfœuille, 2018). Instead, this paper proposes broadly applicable
IV-DID estimators, and also highlights that IV-DID estimators impose restrictions on treatment
effect-heterogeneity, which can be mitigated by controlling for the baseline treatment.

Importantly, our estimators require that there be some stayers, whose treatment does not change
between consecutive periods. This assumption is unlikely to be met when the treatment is say,
precipitations: for instance, US counties never experience the exact same precipitations over two
consecutive years. In de Chaisemartin et al. (2023), we discuss the (non-trivial) extension of the
results in this paper to applications without stayers.

Organization of the paper. In Section 2, we present the set-up, introduce notation and
discuss our main assumptions. In Section 3, we introduce the AS and discuss its identification
and estimation. Section 4 then turns to the WAS. Section 5 extends our previous results to an
instrumental variable set-up. We consider other extensions in Section 6. Finally, our application
is developed in Section 7. The proofs are collected in the appendix.

2 Set-up, assumptions, and building-block identification result

2.1 Set-up

A representative unit is drawn from an infinite super population, and observed at two time
periods. This unit could be an individual or a firm, but it could also be a geographical unit,

1Another exception, posterior to this paper, is de Chaisemartin and D’Haultfœuille (2023a), who extend the
estimators in this paper to models with dynamic effects in Section 1.10 of their Web Appendix.
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like a county or a region.2 All expectations below are taken with respect to the distribution
of variables in the super population. We are interested in the effect of a continuous and scalar
treatment variable on that unit’s outcome. Let D1 (resp. D2) denote the unit’s treatment at
period 1 (resp. 2), and let D1 (resp. D2) be the set of values D1 (resp. D2) can take, i.e. its
support. Let S = 1{D2 ̸= D1} be an indicator equal to 1 if the unit’s treatment changes from
period one to two, i.e. if they are a switcher.

For any d ∈ D1 ∪ D2, let Y1(d) and Y2(d) respectively denote the unit’s potential outcomes at
periods 1 and 2 with treatment d, and let Y1 and Y2 denote their observed outcomes at periods
1 and 2. Our potential outcome notation assumes that Y1 does not depend on units’ period-
two treatment, thus ruling out anticipation effects, a commonly-made assumption in the DID
literature. Our notation also assumes that Y2 does not depend on units’ period-one treatment,
thus ruling out dynamic effects. When the treatment is continuously distributed at period one,
allowing for dynamic effects opens up the so-called initial-conditions problem. As units receive
heterogeneous doses at period one, they may have experienced treatment changes before period
one. With dynamic effects such changes may still affect their outcome over the study period, but
they cannot be accounted for because they are not observed. Ruling out dynamic effects allows
us to abstract from this thorny issue, but could yield misleading results if dynamic effects are
present. To alleviate this concern, in Section 6.3 we propose a modified version of our estimators,
robust to dynamic effects up to a pre-specified treatment lag.

In what follows, all equalities and inequalities involving random variables are required to hold
almost surely. Finally, for any random variable observed at the two time periods (X1, X2), let
∆X = X2 −X1 denote the change of X from period 1 to 2.

2.2 Assumptions

We make the following assumptions.3

Assumption 1 (Parallel trends) For all d1 ∈ D1, E(∆Y (d1)|D1 = d1, D2) = E(∆Y (d1)|D1 =
d1).

Assumption 1 is a parallel trends assumption, requiring that ∆Y (d1) be mean independent of
D2, conditional on D1 = d1.

Assumption 2 (Bounded treatment, Lipschitz and bounded potential outcomes)

1. D1 and D2 are bounded subsets of R.
2In that case, one may want to weight the estimation by counties’ or regions’ populations. Extending the

estimators we propose to allow for such weighting is a mechanical extension.
3Throughout the paper, we implicitly assume that all potential outcomes have an expectation.
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2. For all t ∈ {1, 2} and for all (d, d′) ∈ D2
t , there is a random variable Y ≥ 0 such that

|Yt(d) − Yt(d′)| ≤ Y |d− d′|, with sup(d1,d2)∈Supp(D1,D2) E[Y |D1 = d1, D2 = d2] < ∞.

Assumption 2 ensures that all the expectations below are well defined. It requires that the set of
values that the period-one and period-two treatments can take be bounded. It also requires that
the potential outcome functions be Lipschitz (with a unit-specific Lipschitz constant). This will
automatically hold if d 7→ Y2(d) is differentiable with respect to d and has a bounded derivative.

Finally, for estimation and inference we assume we observe an iid sample with the same distri-
bution as (Y1, Y2, D1, D2):

Assumption 3 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2)1≤i≤n, that are independent and
identically distributed vectors with the same probability distribution as (Y1, Y2, D1, D2).

Importantly, Assumption 3 allows for the possibility that Y1 and Y2 (resp. D1 and D2) are
serially correlated, as is commonly assumed in DID studies (see Bertrand et al., 2004).

2.3 Building-block identification result

Assumption 1 implies the following lemma, our building-block identification result.

Lemma 1 If Assumption 1 holds, then for all (d1, d2) ∈ D1×D2 such that d1 ̸= d2 and P (S|D1 =
d1) < 1,

TE(d1, d2|d1, d2) :=E
(
Y2(d2) − Y2(d1)

d2 − d1

∣∣∣∣∣D1 = d1, D2 = d2

)

=E
(

∆Y − E(∆Y |D1 = d1, S = 0)
d2 − d1

∣∣∣∣∣D1 = d1, D2 = d2

)
.

Proof:

E (Y2(d2) − Y2(d1)|D1 = d1, D2 = d2)
=E (∆Y |D1 = d1, D2 = d2) − E (∆Y (d1)|D1 = d1, D2 = d2)
=E (∆Y |D1 = d1, D2 = d2) − E (∆Y (d1)|D1 = d1, D2 = d1)
=E (∆Y |D1 = d1, D2 = d2) − E (∆Y |D1 = d1, S = 0)
=E (∆Y − E (∆Y |D1 = d1, S = 0)|D1 = d1, D2 = d2) ,

where the second equality follows from Assumption 1. This proves the result □

Intuitively, under Assumption 1 the counterfactual outcome evolution switchers would have ex-
perienced if their treatment had not changed is identified by the outcome evolution of stayers
with the same period-one treatment. If a unit’s treatment changes from two to five, we can re-
cover its counterfactual outcome evolution if its treatment had not changed, by using the average
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outcome evolution of all stayers with a baseline treatment of two. Then, a DID estimand compar-
ing switchers’ and stayers’ outcome evolutions identifies E (Y2(d2) − Y2(d1)|D1 = d1, D2 = d2),
and we can scale that effect by d2 − d1 to identify a slope rather than an unnormalized effect.

Note that in a canonical DID design where D1 = 0 and D2 ∈ {0, 1}, Lemma 1 only applies to
(d1, d2) = (0, 1), TE(0, 1|0, 1) reduces to the ATT, and the estimand reduces to the canonical
DID estimand comparing the outcome evolutions of treated and untreated units. Note also that
in a design where all units are untreated at period one, d1 = 0, and

TE(0, d2|0, d2) = E

(
Y2(d2) − Y2(0)

d2

∣∣∣∣∣D2 = d2

)
,

an effect closely related to the ATT (d|d) effect in Callaway et al. (2021). Thus, the effects we
consider are extensions of those effects to applications with a treatment continuous at all periods.

Lemma 1 shows that under Assumption 1,

(d1, d2) 7→ TE(d1, d2|d1, d2)

is identified. Of course, one may be interested in other parameters, like

(d, d′) 7→ TE(d, d′) := E

(
Y2(d) − Y2(d′)

d− d′

)
,

a function which, unlike (d1, d2) 7→ TE(d1, d2|d1, d2), applies to the entire population rather than
to specific subpopulation that depend on (d1, d2). Alternatively, one could also be interested in
the average marginal effect

E (Y ′
2(D2)) .

What is the appeal of TE(d1, d2|d1, d2) with respect to those other parameters? Conditional on
D1 = d1, D2 = d2, Y2(d2) is observed, so estimating TE(d1, d2|d1, d2) only requires estimating
Y2(d1), switchers’ counterfactual outcomes if their treatment had not changed. By definition,
Y1(d1) is observed. If the data contains a third period 0 and the treatment of some units does not
change from period 0 to 1, then Y0(d1) is also observed for some switchers and stayers. Then, as
explained in further details in Section 6.2, one can placebo-test Assumption 1, by comparing the
outcome evolutions of switchers and stayers from period 0 to 1. This shows that TE(d1, d2|d1, d2)
is identified under a placebo-testable parallel-trends assumption. On the other hand, estimating
TE(d, d′) requires estimating, for most units, two unobserved counterfactual outcomes. This can-
not be achieved under a placebo-testable assumption as we only observe one potential outcome at
each date. When D1 = 0, Callaway et al. (2021) propose a “strong parallel-trends” assumption
under which the dose-response function, a parameter closely related to TE(0, d′) are identi-
fied, but their “strong parallel-trends” assumption is not placebo testable. Similarly, estimating
E
(

Y2(D2)−Y2(d′)
D2−d′

)
requires estimating Y2(d′), which cannot be achieved under a placebo-testable
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assumption because Y1(d′) is not observed for all units. As Y ′
2(D2) = limd′→D2

Y2(D2)−Y2(d′)
D2−d′ , the

same issue applies to E (Y ′
2(D2)).

Variability in TE(d1, d2|d1, d2) across values of (d1, d2) conflates a dose-response relationship
that may be of economic interest, and a selection bias due to the fact that units with different
period one and two treatments may have heterogeneous treatment effects (Callaway et al., 2021).
Moreover, Lemma 1 shows that estimating TE(d1, d2|d1, d2) requires estimating the values of two
conditional expectations with respect to continuous variables, at points D1 = d1, D2 = d2 and
D1 = d1. Unless one is willing to make parametric functional-form assumptions, the resulting
estimator will converge at a slower rate than the standard

√
n− parametric rate. For these two

reasons, in this paper we focus on averages of the slopes TE(d1, d2|d1, d2), that can be estimated
non-parametrically at the standard

√
n− parametric rate, and we do not focus on the function

(d1, d2) 7→ TE(d1, d2|d1, d2).

Finally, our DID estimands compare switchers and stayers with the same period-one treatment.
Instead, one could propose estimands comparing switchers and stayers, without conditioning on
their period-one treatment. To recover the counterfactual outcome trend of a switcher going
from two to five units of treatment, one could use a stayer with treatment equal to three at both
dates. On top of Assumption 1, such estimands rest on two supplementary conditions:

(i) E(∆Y (d)|D1 = d) = E(∆Y (d)).

(ii) For all (d, d′) ∈ D2
1, E(∆Y (d)) = E(∆Y (d′)).

(i) requires that all units experience the same evolution of their potential outcome with treat-
ment d, while Assumption 1 only imposes that requirement for units with the same baseline
treatment. Assumption 1 may be more plausible: units with the same period-one treatment
may be more similar and more likely to be on parallel trends than units with different period-
one treatments. (ii) requires that the trend affecting all potential outcomes be the same: to
rationalize a DID estimand comparing a switcher going from two to five units of treatment to a
stayer with treatment equal to three, E(∆Y (2)) and E(∆Y (3)) should be equal. Rearranging,
(ii) is equivalent to

E(Y2(d) − Y2(d′)) = E(Y1(d) − Y1(d′)) : (1)

the treatment effect should be constant over time, a strong restriction on treatment effect het-
erogeneity. Assumption 1, on the other hand, does not impose any restriction on treatment
effect heterogeneity, as it only restricts one potential outcome per unit.
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3 Estimating the average of switchers’ slopes

3.1 Target parameter

In this section, our target parameter is

δ1 := E

(
Y2(D2) − Y2(D1)

D2 −D1

∣∣∣∣∣S = 1
)
, (2)

the average of the slopes of switchers’ potential outcome functions, between their period-one
and their period-two treatments. Hereafter, δ1 is referred to as the Average of Slopes (AS).

The AS is a local effect: it only applies to switchers, and it measures the effect of changing their
treatment from its period-one to its period-two value, not of other changes of their treatment.
Still, the AS can be used to point or partially identify the effect of other treatment changes
under shape restrictions. First, assume that the potential outcomes are linear: for t ∈ {1, 2},

Yt(d) = Yt(0) +Btd,

where Bt is a slope that may vary across units and may change over time. Then, δ1 =
E (B2|S = 1): the AS is equal to the average, across switchers, of the slopes of their poten-
tial outcome functions at period 2. Therefore, for all d ̸= d′,

E(Y2(d) − Y2(d′)|S = 1) = (d− d′)δ1 :

under linearity, knowing the AS is sufficient to recover the ATE of any uniform treatment change
among switchers. Of course, this only holds under linearity, which may not be a plausible
assumption. Assume instead that d 7→ Y2(d) is convex. Then, for any ϵ > 0,

E (Y2(D2 + ϵ) − Y2(D2)|S = 1) ≥ ϵδ1.

Accordingly, under convexity one can use the AS to obtain lower bounds of the effect of changing
the treatment from D2 to larger values than D2. For instance, in Fajgelbaum et al. (2020), one
can use this strategy to derive a lower bound of the effect of increasing tariffs’ to even higher
levels than those decided by the Trump administration. Under convexity, one can also use the
AS to derive an upper bound of the effect of changing the treatment from D1 to a lower value
than D1. And under concavity, one can derive an upper (resp. lower) bound of the effect of
changing the treatment from D2 (resp. D1) to a larger (resp. lower) value.4 Importantly, the AS
is identified even if those linearity or convexity/concavity conditions fail. But those non-placebo
testable conditions are necessary to use the AS to identify or bound the effects of alternative
policies.

4See D’Haultfœuille et al. (2023) for bounds of the same kind obtained under concavity or convexity.
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3.2 Identification

To identify the AS, we use a DID estimand comparing switchers and stayers with the same
period-one treatment. This requires that there be no value of the period-one treatment D1 such
that only switchers have that value, as stated formally below.

Assumption 4 (Support condition for AS identification) P (S = 1) > 0, P (S = 1|D1) < 1.

Assumption 4 implies that P (S = 0) > 0, meaning that there are stayers whose treatment does
not change. While we assume that D1 and D2 are continuous, we also assume that the treatment
is persistent, and thus ∆D has a mixed distribution with a mass point at zero.

To identify the AS, we also start by assuming that there are no quasi-stayers: the treatment of
all switchers changes by at last c from period one to two, for some strictly positive c.

Assumption 5 (No quasi-stayers) ∃c > 0: P (|∆D| > c|S = 1) = 1.

We relax Assumption 5 just below.

Theorem 1 If Assumptions 1-5 hold,

δ1 = E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣S = 1
)
.

If there are quasi-stayers, the AS is still identified. For any η > 0, let Sη = 1{|∆D| > η} be an
indicator for switchers whose treatment changes by at least η from period one to two.

Theorem 2 If Assumptions 1-4 hold,

δ1 = lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)
.

If there are quasi-stayers whose treatment change is arbitrarily close to 0 (i.e. f|∆D||S=1(0) > 0),
the denominator of (∆Y − E(∆Y |D1, S = 0))/∆D is close to 0 for them. On the other hand,

∆Y − E(∆Y |D1, S = 0)
=Y2(D2) − Y2(D1) + ∆Y (D1) − E(∆Y (D1)|D1, S = 0)
≈∆Y (D1) − E(∆Y (D1)|D1, S = 0),

so the ratio’s numerator may not be close to 0. Then, under weak conditions,

E

(∣∣∣∣∣∆Y − E(∆Y |D1, S = 0)
∆D

∣∣∣∣∣
∣∣∣∣∣S = 1

)
= +∞.

Therefore, we need to trim quasi-stayers from the estimand in Theorem 1, and let the trimming
go to 0, as in Graham and Powell (2012) who consider a related estimand with some quasi-stayers.
Accordingly, with quasi-stayers the AS is irregularly identified by a limiting estimand.
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3.3 Estimation and inference

With no quasi-stayers, E ((∆Y − E(∆Y |D1, S = 0))/∆D|S = 1) can be estimated in three steps.
First, one estimates E(∆Y |D1, S = 0) using a non-parametric regression of ∆Yi on Di,1 among
stayers. Second, for each switcher, one computes Ê(∆Y |D1 = Di,1, S = 0), its predicted outcome
evolution given its baseline treatment, according to the non-parametric regression estimated
among stayers. Third, one lets

δ̂1 := 1
ns

∑
i:Si=1

∆Yi − Ê(∆Y |D1 = Di,1, S = 0)
∆Di

,

where ns = #{i : Si = 1}.

To estimate E(∆Y |D1, S = 0), we consider a series estimator based on polynomials in D1,
(pk,Kn(D1))1≤k≤Kn . We make the following technical assumption.

Assumption 6 (Conditions for asymptotic normality of AS estimator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] < ∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I.

3. P (S = 1) > 0 and supd∈I P (S = 1|D1 = d) < 1.

4. The functions d 7→ E[(1 − S)∆Y |D1 = d], d 7→ E[S|D1 = d] and d 7→ E[S/∆D|D1 = d]
are four times continuously differentiable.

5. The polynomials d 7→ pk,Kn(d), 1 ≤ k ≤ Kn, are orthonormal on I and K12
n /n → +∞,

K7
n/n → 0.

Point 3 is a slight reinforcement of Assumption 4. In Point 5, K12
n /n → ∞ requires that Kn, the

order of the polynomial in D1 we use to approximate E(∆Y |D1, S = 0), goes to +∞ when the
sample size grows, thus ensuring that the bias of our series estimator of E(∆Y |D1, S = 0) tends
to zero. K7

n/n → 0 ensures that Kn does not go to infinity too fast, thus preventing overfitting.

Theorem 3 If Assumptions 1-3 and 5-6 hold,
√
n
(
δ̂1 − δ1

)
d−→ N (0, V (ψ1)),

where

ψ1 := 1
E(S)

{(
S

∆D − E
(

S

∆D

∣∣∣∣D1

) (1 − S)
E[1 − S|D1]

)
[∆Y − E(∆Y |D1, S = 0)] − δ1S

}
.
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Theorem 3 shows that without quasi-stayers, the AS can be estimated at the
√
n−rate, and gives

an expression of its estimator’s asymptotic variance. With quasi-stayers, we conjecture that the
AS cannot be estimated at the

√
n−rate. This conjecture is based on a result from Graham

and Powell (2012). Though their result applies to a broader class of estimands, it implies in
particular that with quasi-stayers,

lim
η↓0

E

(
∆Y − E(∆Y |S = 0)

∆D

∣∣∣∣∣Sη = 1
)

cannot be estimated at a faster rate than n1/3. The estimand in the previous display is closely
related to our estimand

lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)

in Theorem 2, and is equal to it if E(∆Y |D1, S = 0) = E(∆Y |S = 0). Then, even though
the assumptions in Graham and Powell (2012) differ from ours, it seems reasonable to assume
that their general conclusion still applies to our set-up: here as well, owing to δ1’s irregular
identification, this parameter can probably not be estimated at the parametric

√
n−rate with

quasi-stayers. This is one of the reasons that lead us to consider, in the next section, another
target parameter that can be estimated at the parametric

√
n−rate with quasi-stayers.

4 Estimating a weighted average of switchers’ slopes

4.1 Target parameter

In this section, our target parameter is

δ2 :=E
(

|D2 −D1|
E(|D2 −D1||S = 1) × Y2(D2) − Y2(D1)

D2 −D1

∣∣∣∣∣S = 1
)

=E (sgn(D2 −D1)(Y2(D2) − Y2(D1))|S = 1)
E(|D2 −D1||S = 1)

=E (sgn(D2 −D1)(Y2(D2) − Y2(D1)))
E(|D2 −D1|)

.

δ2 is a weighted average of the slopes of switchers’ potential outcome functions from their period-
one to their period-two treatments, where slopes receive a weight proportional to switchers’
absolute treatment change from period one to two. Accordingly, we refer to δ2 as the Weighted
Average of Slopes (WAS). δ2 = δ1 if and only if

cov
(
Y2(D2) − Y2(D1)

D2 −D1
, |D2 −D1|

∣∣∣∣∣S = 1
)

= 0 : (3)
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the WAS and AS are equal if and only if switchers’ slopes are uncorrelated with |D2 −D1|.

Economically, the AS and WAS serve different purposes. As discussed above, under shape
restrictions on the potential outcome function, the AS can be used to identify or bound the
effect of other treatment changes than the actual change switchers experienced from period one
to two. The WAS cannot serve that purpose, but under some assumptions, it may be used to
conduct a cost-benefit analysis of the treatment changes that took place from period one to two.
To simplify the discussion, let us assume in the remainder of this paragraph that D2 ≥ D1.
Assume also that the outcome is a measure of output, such as agricultural yields or wages,
expressed in monetary units. Finally, assume that the treatment is costly, with a cost linear in
dose, uniform across units, and known to the analyst: the cost of giving d units of treatment to
a unit at period t is ct ×d for some known (ct)t∈{1,2}. Then, D2 is beneficial relative to D1 if and
only if E(Y2(D2) − c2D2) > E(Y2(D1) − c2D1) or, equivalently,

δ2 > c2 :

comparing δ2 to c2 is sufficient to evaluate if changing the treatment from D1 to D2 was beneficial.

4.2 Identification

Let S+ = 1{D2 −D1 > 0}, S− = 1{D2 −D1 < 0} and

δ2+ := E (Y2(D2) − Y2(D1)|S+ = 1)
E(D2 −D1|S+ = 1) ,

δ2− := E (Y2(D1) − Y2(D2)|S− = 1)
E(D1 −D2|S− = 1) .

Hereafter, units with S+ = 1 are referred to as “switchers up”, while units with S− = 1 are
referred to as “switchers down”. Thus, δ2+ is the WAS of switchers up, and δ2− is the WAS of
switchers down. One has

δ2 =P (S+ = 1|S = 1)E(D2 −D1|S+ = 1)
E(|D2 −D1||S = 1) δ2+

+P (S− = 1|S = 1)E(D1 −D2|S− = 1)
E(|D2 −D1||S = 1) δ2−. (4)

To identify δ2+ (resp. δ2−) we use DID estimands comparing switchers up (resp. switchers down)
to stayers with the same period-one treatment. This requires that there be no value of D1 such
that some switchers up (resp. switchers down) have that baseline treatment while there is no
stayer with the same baseline treatment, as stated in Point 1 (resp. 2) of Assumption 7 below.

Assumption 7 (Support conditions for WAS identification)

1. 0 < P (S+ = 1), and 0 < P (S+ = 1|D1) implies that 0 < P (S = 0|D1).
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2. 0 < P (S− = 1), and 0 < P (S− = 1|D1) implies that 0 < P (S = 0|D1).

Theorem 4 1. If Assumptions 1-2 and Point 1 of Assumption 7 hold,

δ2+ = E (∆Y − E(∆Y |D1, S = 0)|S+ = 1)
E(∆D|S+ = 1) (5)

=
E (∆Y |S+ = 1) − E

(
∆Y P (S+=1|D1)

P (S=0|D1)
P (S=0)

P (S+=1)

∣∣∣S = 0
)

E(∆D|S+ = 1) . (6)

2. If Assumptions 1-2 and Point 2 of Assumption 7 hold,

δ2− = E (∆Y − E(∆Y |D1, S = 0)|S− = 1)
E(∆D|S− = 1) (7)

=
E (∆Y |S− = 1) − E

(
∆Y P (S−=1|D1)

P (S=0|D1)
P (S=0)

P (S−=1)

∣∣∣S = 0
)

E(∆D|S− = 1) . (8)

3. If Assumptions 1-2 and Assumption 7 hold,

δ2 =E [sgn(∆D) (∆Y − E(∆Y |D1, S = 0))]
E[|∆D|] (9)

=
E [sgn(∆D)∆Y ] − E

[
∆Y P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1) P (S = 0)
∣∣∣S = 0

]
E[|∆D|] . (10)

Point 1 of Theorem 4 shows that δ2+, the WAS of switchers-up, is identified by two estimands,
a regression-based and a propensity-score-based estimand. Point 2 of Theorem 4 shows that
δ2−, the WAS of switchers down, is identified by two estimands similar to those identifying δ2+,
replacing S+ by S−. Finally, if the conditions in Point 1 and 2 of Theorem 4 jointly hold, it
directly follows from (4) that δ2, the WAS of all switchers, is identified by a weighted average of
the estimands in Equations (5) and (7), and by a weighted average of the estimands in Equations
(6) and (8). Those weighted averages simplify into the expressions given in Point 3 of Theorem 4.
Point 3 of Theorem 4 also implies that δ2 is identified by the following doubly-robust estimand:

E
[(
S+ − S− − P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1) (1 − S)
)

(∆Y − E(∆Y |D1, S = 0))
]

E[|∆D|] . (11)

4.3 Estimation and inference

The regression-based estimands identifying δ2+ and δ2− can be estimated following almost the
same steps as in Section 3.3. Specifically, let

δ̂r
2+ :=

1
n+

∑
i:Si+=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1

n+

∑
i:Si+=1 ∆Di

δ̂r
2− :=

1
n−

∑
i:Si−=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1

n−

∑
i:Si−=1 ∆Di

,
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where n+ = #{i : Si+ = 1} and n− = #{i : Si− = 1}, and where Ê(∆Y |D1, S = 0) is the series
estimator of E(∆Y |D1, S = 0) defined in Section 3.3 of the paper. Then, let

ŵ+ =
n+
n

× 1
n+

∑
i:Si+=1 ∆Di

n+
n

× 1
n+

∑
i:Si+=1 ∆Di − n−

n
× 1

n−

∑
i:Si−=1 ∆Di

,

and let

δ̂r
2 =ŵ+δ̂

r
2+ + (1 − ŵ+)δ̂r

2−

be the corresponding estimator of δ2.

We now propose estimators of the propensity-score-based estimands identifying δ2+ and δ2− in
Equations (6) and (8). Let P̂ (S+ = 1) = n+/n (resp. P̂ (S− = 1) = n−/n, P̂ (S = 0) =
(n − ns)/n) be an estimator of P (S+ = 1) (resp. P (S− = 1), P (S = 0)). Let P̂ (S+ = 1|D1)
(resp. P̂ (S− = 1|D1), P̂ (S = 0|D1)) be a non-parametric estimator of P (S+ = 1|D1) (resp.
P (S− = 1|D1), P (S = 0|D1)) using a series logistic regression of Si+ (resp. Si−, 1 − Si) on
polynomials in D1 (pk,Kn(D1))1≤k≤Kn . We make the following technical assumption.

Assumption 8 (Conditions for asymptotic normality of propensity-score WAS estimator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] < ∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I

3. 0 < E[S+] < 1, 0 < E[S−] < 1, E[S] > 0 and supd∈I E[S|D1 = d] < 1.

4. The functions d 7→ E[∆Y (1 − S)|D1 = d], d 7→ E[S|D1 = d], d 7→ E[S+|D1 = d] and
d 7→ E[S−|D1 = d] are four times continuously differentiable.

5. The polynomials d 7→ pk,Kn(d), k ≤ 1 ≤ Kn are orthonormal on I and Kn = Cnν where
1/10 < ν < 1/6.

Let

δ̂ps
2+ :=

1
n+

∑
i:Si+=1 ∆Yi − 1

n−ns

∑
i:Si=0 ∆Yi

P̂ (S+=1|D1=Di1)
P̂ (S=0|D1=Di1)

P̂ (S=0)
P̂ (S+=1)

1
n+

∑
i:Si+=1 ∆Di

δ̂ps
2− :=

1
n−

∑
i:Si−=1 ∆Yi − 1

n−ns

∑
i:Si=0 ∆Yi

P̂ (S−=1|D1=Di1)
P̂ (S=0|D1=Di1)

P̂ (S=0)
P̂ (S−=1)

1
n−

∑
i:Si−=1 ∆Di

,

and let

δ̂ps
2 =ŵ+δ̂

ps
2+ + (1 − ŵ+)δ̂ps

2−
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be the corresponding estimator of δ2. Let

ψ2+ := 1
E(∆DS+)

{(
S+ − E(S+|D1)

(1 − S)
E(1 − S|D1)

)
(∆Y − E(∆Y |D1, S = 0)) − δ2+∆DS+

}

ψ2− := 1
E(∆DS−)

{(
S− − E(S−|D1)

(1 − S)
E(1 − S|D1)

)
(∆Y − E(∆Y |D1, S = 0)) − δ2−∆DS−

}

ψ2 := 1
E(|∆D|)

{(
S+ − S− − E(S+ − S−|D1)

(1 − S)
E(1 − S|D1)

)

× (∆Y − E(∆Y |D1, S = 0)) − δ2 |∆D|
}
.

Theorem 5 1. If Assumptions 1-3 and 6 hold,
√
n
(
(δ̂r

2+, δ̂
r
2−)′ − (δ2+, δ2−)′

)
d−→ N (0, V ((ψ2+, ψ2−)′)).

and
√
n
(
δ̂r

2 − δ2
)

d−→ N (0, V (ψ2)).

2. If Assumptions 1-3 and 8 hold,
√
n
(
(δ̂ps

2+, δ̂
ps
2−)′ − (δ2+, δ2−)′

)
d−→ N (0, V ((ψ2+, ψ2−)′)).

and
√
n
(
δ̂ps

2 − δ2
)

d−→ N (0, V (ψ2)).

Based on (11), we can also estimate δ2 using the following doubly-robust estimator:

δ̂dr
2 =

∑
i

(
Si+ − Si− − P̂ (S+=1|D1=D1i)−P (Si−=1|D1=D1i)

P (Si=0|D1=D1i) (1 − Si)
)

(∆Yi − Ê(∆Yi|D1 = D1i, Si = 0))∑
i |∆Di|

.

This estimator has an important advantage. While our regression-based (resp. propensity-score-
based) estimator is nominally non-parametric, in practice it requires choosing a polynomial order
to estimate E(∆Y |D1, S = 0) (resp. P (S+ = 1|D1) and P (S− = 1|D1)), and the rate conditions
on Kn in Assumptions 6 (resp. 8) do not give specific guidance on the choice of this tuning
parameter. With the doubly-robust estimator above, one can choose this tuning parameter in a
data-driven manner, using cross-validation (CV). Results in Section 4 of Andrews (1991) imply
that a series estimator of a nonparametric regression model with a polynomial order chosen by
CV is optimal: the ratio of its mean-squared error and that of an oracle estimator using the best
polynomial order given the sample size converges to one. Then, as D1 is a scalar variable, series
estimators of E(∆Y |D1, S = 0), P (S+ = 1|D1), and P (S− = 1|D1) with CV-chosen polynomial
orders converge at a rate strictly faster than n1/4, as long as one assumes that those nuisance
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functions are twice differentiable. Then, we conjecture that one can show, following arguments
similar to those in Farrell (2015), that δ̂dr

2 with CV-chosen polynomial orders in the estimation
of the nuisance functions is

√
n−consistent, with asymptotic variance V (ψ2).

Finally, we now show that under some assumptions, the asymptotic variance of the WAS esti-
mator is lower than that of the AS estimator.

Proposition 1 If Assumption 1 holds, (Y2(D2) − Y2(D1))/(D2 −D1) = δ for some real number
δ, V (∆Y (D1)|D1, D2) = σ2 for some real number σ2 > 0, D2 ≥ D1, and ∆D ⊥⊥ D1,

V (ψ1) =σ2
[
E(1/(∆D)2|S = 1)

P (S = 1) + (E(1/∆D|S = 1))2

P (S = 0)

]

≥σ2 1
(E(∆D|S = 1))2

[
1

P (S = 1) + 1
P (S = 0)

]
= V (ψ2),

with equality if and only if V (∆D|S = 1) = 0.

Of course, the constant treatment effect and the homoscedasticity assumptions underlying Propo-
sition 1 are strong, but one often has to make strong assumptions to be able to rank estimators’
variances. The question then is whether this ranking still holds in real-life applications, where
those assumptions are unlikely to hold. Put differently, all models are wrong but some are useful,
and the question is whether Proposition 1 is useful. In our empirical application, we find that
the variance of δ̂1 is indeed much larger than that of δ̂dr

2 , as predicted by Proposition 1.

5 Instrumental-variable estimation

There are instances where the parallel-trends condition in Assumption 1 is implausible, but one
has at hand an instrument satisfying a similar parallel-trends condition. For instance, one may
be interested in estimating the price-elasticity of a good’s consumption, but prices respond to
supply and demand shocks, and therefore do not satisfy Assumption 1. On the other hand, taxes
may not respond to supply and demand shocks and may satisfy a parallel-trends assumption.

5.1 Notation and assumptions

Let (Z1, Z2) denote the instrument’s values at period one and two and Zt be the support of Zt.
For any z ∈ Z1 ∪ Z2, let D1(z) and D2(z) respectively denote the unit’s potential treatments at
periods 1 and 2 with instrument z. Let SC = 1{D2(Z2) ̸= D2(Z1), Z2 ̸= Z1} be an indicator
equal to 1 for switchers-compliers, namely units whose instrument changes from period one to
two and whose treatment is affected by that change in the instrument.
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We replace Assumption 1 by the following assumption.5

Assumption 9 (Reduced-form and first-stage parallel trends) For all z ∈ Z1,

1. E(Y2(D2(z)) − Y1(D1(z))|Z1 = z, Z2, D1) = E(Y2(D2(z)) − Y1(D1(z))|Z1 = z,D1).

2. E(D2(z) −D1(z)|Z1 = z, Z2, D1) = E(D2(z) −D1(z)|Z1 = z,D1).

Point 1 of Assumption 9 requires that Y2(D2(z)) − Y1(D1(z)), units’ outcome evolutions in
the counterfactual where their instrument does not change from period one to two, be mean
independent of Z2, conditional on Z1 and D1. Unlike Assumption 1, this condition imposes
some restrictions on treatment effect heterogeneity, and the goal of conditioning on D1 is to
minimize the stringency of those restrictions. To see this, note that the two following conditions
are sufficient for Point 1 of Assumption 9 to hold:

E(Y2(D1(z)) − Y1(D1(z))|Z1 = z, Z2, D1) = E(Y2(D1(z)) − Y1(D1(z))|Z1 = z,D1) (12)
E(Y2(D2(z)) − Y2(D1(z))|Z1 = z, Z2, D1) = E(Y2(D2(z)) − Y2(D1(z))|Z1 = z,D1). (13)

(12) requires that Y2(D1(z)) − Y1(D1(z)), units’ outcome evolutions in the counterfactual where
their instrument and their treatment does not change from period one to two, be mean inde-
pendent of Z2, conditional on Z1 and D1. Thanks to the conditioning on D1, (12) is a standard
parallel trends assumption that does not impose any restriction on treatment effect heterogene-
ity, like Assumption 1. If D1 was not conditioned upon, (12) would require parallel trends among
units with different baseline treatments, which implicitly assumes homogeneous treatment effects
over time, as discussed in Section 2. (13), on the other hand, is a restriction on treatment effect
heterogeneity across units. Essentially, it requires that switching the treatment from D1(Z1)
to D2(Z1), the natural treatment change happening over time even without any change in the
instrument, has an effect on the outcome that is mean independent of Z2 conditional on Z1

and D1. Importantly, note that Point 1 of Assumption 9 is placebo testable, by comparing the
outcome evolutions of instrument-switchers and instrument-stayers before instrument-switchers
experience a change of their instrument. Finally, Point 2 of Assumption 9 requires that units’
treatment evolutions under Z1 be mean independent of Z2, conditional on Z1 and D1. Because
D1 is conditioned upon, this parallel trends condition is equivalent to a sequential exogeneity
assumption (see Robins, 1986; Bojinov et al., 2021).

Point 1 of Assumption 9 is related to identifying assumptions previously proposed in the lit-
erature. de Chaisemartin (2010) and Hudson et al. (2017) also consider IV-DID estimands, in
classical designs with two periods and a binary instrument that turns on for some units at period
two. Both papers introduce a “reduced-form” parallel trends assumption similar to Point 1 of

5Note that with our notation where potential outcomes do not depend on z, we also implicitly impose the
usual exclusion restriction.
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Assumption 9, but without noting that it imposes restrictions on effects’ heterogeneity, even in
the simple designs considered by those papers.

We also make the following assumptions.

Assumption 10 (Monotonicity and strictly positive first-stage) i) For all (z, z′) ∈ Z2
2 , z ≥

z′ ⇒ D2(z) ≥ D2(z′), and ii) E(|D2(Z2) −D2(Z1)|) > 0.

i) is a monotonicity assumption similar to that in Imbens and Angrist (1994). It requires that
increasing the period-two instrument weakly increases the period-two treatment. This condition
is plausible when the instrument is taxes and the treatment is prices, as is the case in our
application. ii) requires that the instrument has a strictly positive first stage.

Assumption 11 (Bounded instrument, Lipschitz and bounded reduced-form potential outcomes
and potential treatments)

1. Z1 and Z2 are bounded subsets of R.

2. For all t ∈ {1, 2} and for all (z, z′) ∈ Z2
t , there is a random variable Y ≥ 0 such that

|Yt(Dt(z)) − Yt(Dt(z′))| ≤ Y |z − z′|, with sup(z1,z2)∈Supp(Z1,Z2) E[Y |Z1 = z1, Z2 = z2] < ∞.

3. For all t ∈ {1, 2} and for all (z, z′) ∈ Z2
t , there is a random variable D ≥ 0 such that

|Dt(z) −Dt(z′)| ≤ D|z − z′|, with sup(z1,z2)∈Supp(Z1,Z2) E[D|Z1 = z1, Z2 = z2] < ∞.

Assumption 11 is an adaptation of Assumption 2 to the IV setting we consider in this section.

Assumption 12 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2, Zi,1, Zi,2)1≤i≤n, that are indepen-
dent and identically distributed with the same probability distribution as (Y1, Y2, D1, D2, Z1, Z2).

5.2 Target parameter

In this section, our target parameter is

δIV :=E
(

|D2(Z2) −D2(Z1)|
E(|D2(Z2) −D2(Z1)||SC = 1) × Y2(D2(Z2)) − Y2(D2(Z1))

D2(Z2) −D2(Z1)

∣∣∣∣∣SC = 1
)
.

δIV is a weighted average of the slopes of compliers-switchers’ period-two potential outcome
functions, from their period-two treatment under their period-one instrument, to their period-
two treatment under their period-two instrument. Slopes receive a weight proportional to the
absolute value of compliers-switchers’ treatment response to the instrument change. δIV is just
equal to the reduced-form WAS effect of the instrument on the outcome, divided by the first-
stage WAS effect of the instrument on the treatment. With a binary instrument, such that
Z1 = 0 and Z2 ∈ {0, 1}, our IV-WAS effect coincides with that identified in Corollary 2 of
Angrist et al. (2000), in a cross-sectional IV model.
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We could also consider a reduced-form AS divided by a first-stage AS. The resulting target is
a weighted average of the slopes Y2(D2(Z2))−Y2(D2(Z1))

D2(Z2)−D2(Z1) , with weights proportional to D2(Z2)−D2(Z1)
Z2−Z1

.
It seems more natural to us to weight compliers-switchers’ slopes by the absolute value of their
first-stage than by the slope of their first-stage.6

5.3 Identification

Let SI = 1{Z2 − Z1 ̸= 0}, SI
+ = 1{Z2 − Z1 > 0}, and SI

− = 1{Z2 − Z1 < 0}.

Assumption 13 (Support conditions for IV-WAS identification)

1. 0 < P (SI
+ = 1), and 0 < P (SI

+ = 1|Z1, D1) implies that 0 < P (SI = 0|Z1, D1).

2. 0 < P (SI
− = 1), and 0 < P (SI

− = 1|Z1, D1) implies that 0 < P (SI = 0|Z1, D1).

Theorem 6 If Assumptions 9-11 and 13 hold,

δIV =
E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, D1, S

I = 0)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, D1, SI = 0))] (14)

=
E [sgn(∆Z)∆Y ] − E

[
∆Y P (SI

+=1|Z1,D1)−P (SI
−=1|Z1,D1)

P (SI=0|Z1,D1) P (SI = 0)
∣∣∣∣SI = 0

]
E [sgn(∆Z)∆D] − E

[
∆DP (SI

+=1|Z1,D1)−P (SI
−=1|Z1,D1)

P (SI=0|Z1,D1) P (SI = 0)
∣∣∣∣SI = 0

] . (15)

The regression-based (resp. propensity-score-based) estimand identifying δIV is just equal to
the regression-based (resp. propensity-score-based) estimand identifying the reduced-form WAS
effect of the instrument on the outcome controlling for D1, divided by the regression-based (resp.
propensity-score-based) estimand identifying the first-stage WAS effect controlling for D1.

5.4 Estimation and inference

Let

δ̂r
IV =

1
n

∑n
i=1 sgn(∆Zi)

(
∆Yi − Ê(∆Y |Z1 = Zi,1, D1 = Di,1, S

I = 0)
)

1
n

∑n
i=1 sgn(∆Zi)

(
∆Di − Ê(∆D|Z1 = Zi,1, D1 = Di,1, SI = 0)

) , (16)

where Ê(∆Y |Z1, D1, S
I = 0) and Ê(∆D|Z1, D1, S

I = 0) are series estimators ofE(∆Y |Z1, D1, S
I =

0) and E(∆D|Z1, D1, S
I = 0) defined analogously to the series estimator in Section 3.3.

6If the first-stage effect is homogenous and linear, the weights in the IV-AS effect reduce to one, and one
recovers a standard AS effect. However, linearity and homogeneity of the first-stage effect are strong assumptions.
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Let us define

δ̂ps
IV =

1
n

∑n
i=1 sgn(∆Zi)∆Yi − 1

n

∑
i:SI

i =0 ∆Yi
P̂ (SI

+=1|Z1=Zi1,D1=Di1)−P̂ (SI
−=1|Z1=Zi1,D1=Di1)

P̂ (SI=0|Z1=Zi1,D1=Di1)

1
n

∑n
i=1 sgn(∆Zi)∆Di − 1

n

∑
i:SI

i =0 ∆Di
P̂ (SI

+=1|Z1=Zi1,D1=Di1)−P̂ (SI
−=1|Z1=Zi1,D1=Di1)

P̂ (SI=0|Z1=Zi1,D1=Di1)

, (17)

where P̂ (SI
+ = 1|Z1, D1) (resp. P̂ (SI

− = 1|Z1, D1), P̂ (SI = 0|Z1, D1)) is a series logistic re-
gression estimator of P (SI

+ = 1|Z1, D1) (resp. P (SI
− = 1|Z1, D1), P (SI = 0|Z1, D1)) defined

analogously to the series logistic regression estimators in Section 4.3.

For any variable X, let

δX = E
[
sgn(∆Z)

(
∆X − E(∆X|Z1, D1, S

I = 0)
)]

ψX = 1
E(|∆Z|)

{(
SI

+ − SI
− − E(SI

+ − SI
−|Z1, D1)

(1 − SI)
E(1 − SI |Z1, D1)

)

× (∆X − E(∆X|Z1, D1, S
I = 0)) − δX |∆Z|

}
.

Then, let

ψIV = ψY − δIV ψD

δD

.

Under technical conditions similar to those in Assumptions 6 and 8, one can show that
√
n
(
δ̂r

IV − δIV

)
d−→ N (0, V (ψIV )),

√
n
(
δ̂ps

IV − δIV

)
d−→ N (0, V (ψIV )).

6 Extensions

In this section, we return to the case where the treatment, rather than an instrument, satisfies
a parallel-trends condition. Combining the extensions below with the IV case is possible.

6.1 More than two time periods

In this section, we assume the representative unit is observed at T > 2 time periods. Let
(D1, ..., DT ) denote the unit’s treatments and Dt = Supp(Dt) for all t ∈ {1, ..., T}. For any
t ∈ {1, ..., T}, and for any d ∈ Dt let Yt(d) denote the unit’s potential outcome at period t

with treatment d. Finally, let Yt denote their observed outcome at t. For any t ∈ {2, ..., T}, let
St = 1{Dt ̸= Dt−1} be an indicator equal to 1 if the unit’s treatment switches from period t− 1
to t. Let also S+,t = 1{Dt > Dt−1} and S−,t = 1{Dt < Dt−1}. We assume that the assumptions
made in the paper, rather than just holding for t = 1 and t = 2, actually hold for all pairs of
consecutive time periods (t− 1, t). For instance, we replace Assumption 1 by:
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Assumption 14 (Parallel trends) For all t ≥ 2, for all d ∈ Dt−1, E(∆Yt(d)|Dt−1 = d,Dt) =
E(∆Yt(d)|Dt−1 = d).

Assumption 14 requires that E(∆Yt(d)|Dt−1 = d,Dt = d′) be constant across d′: groups of
units with the same period-t − 1 treatment but different period-t treatments all have the same
expected outcome evolution in the counterfactual where their period-t− 1 treatment would not
have changed. Importantly, note that because Assumption 14 is conditional on Dt−1, it cannot
be “chained” across pairs of time periods: it requires parallel trends over pairs of consecutive
time periods, not over the entire duration of the panel. To preserve space, we do not restate our
other assumptions with more than two periods.

Let

δ1,t = E

(
Yt(Dt) − Yt(Dt−1)

Dt −Dt−1

∣∣∣∣∣St = 1
)
,

δ2,t = E (sgn(Dt −Dt−1)(Yt(Dt) − Yt(Dt−1)))
E(|Dt −Dt−1|)

.

Let

δT ≥3
1 =

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

δ1,t,

δT ≥3
2 =

T∑
t=2

E(|∆Dt|)∑T
k=2 E(|∆Dk|)

δ2,t

be generalizations of the AS and WAS effects to applications with more than two periods. Note
that in line with the spirit of the two effects, we propose different weights to aggregate the AS
and WAS across time periods. For the AS, the weights are just proportional to the proportion
of switchers between t − 1 and t. For the WAS, the weights are proportional to the average
absolute value of the treatment switch from t− 1 to t.

Theorem 7 If Assumption 14 and generalizations of Assumptions 2-5 to more than two periods
hold,

δT ≥3
1 =

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

E

(
∆Yt − E(∆Yt|Dt−1, St = 0)

∆Dt

∣∣∣∣∣St = 1
)
.

Theorem 8 If Assumption 14 and generalizations of Assumptions 2 and 7 to more than two
periods hold,

δT ≥3
2 =

T∑
t=2

E(|∆Dt|)∑T
k=2 E(|∆Dk|)

E (sgn(∆Dt) (∆Yt − E(∆Yt|Dt−1, St = 0)))
E(|∆Dt|)

=
T∑

t=2

E(|∆Dt|)∑T
k=2 E(|∆Dk|)

E [sgn(∆Dt)∆Yt] − E
[
∆Yt

P (S+,t=1|Dt−1)−P (S−,t=1|Dt−1)
P (St=0|Dt−1) P (St = 0)

∣∣∣St = 0
]

E(|∆Dt|)
.

23



Theorems 7 and 8 are straightforward generalizations of Theorems 1 and 4 to settings with more
than two time periods.

Let

ψ1,t = 1
E(St)

{(
St

∆Dt
− E

(
St

∆Dt

∣∣∣∣Dt−1

) (1 − St)
E[1 − St|Dt−1]

)
[∆Yt − E(∆Yt|Dt−1, St = 0)] − δ1,tSt

}
,

ψ2,t = 1
E(|∆Dt|)

{(
S+,t − S−,t − E(S+,t − S−,t|Dt−1) (1 − St)

E(1 − St|Dt−1)

)
(∆Yt − E(∆Yt|Dt−1, St = 0)) − δ2,t|∆Dt|

}
.

After some algebra, one can show that the influence function of the AS estimator with several
periods is

ψT ≥3
1 :=

∑T
t=2(P (St = 1)ψ1,t + (δ1,t − δT ≥3

1 )(St − P (St = 1)))∑T
t=2 P (St = 1)

, (18)

while the influence function of the WAS estimators with several periods is

ψT ≥3
2 :=

∑T
t=2 E(|∆Dt|)ψ2,t + (δ2,t − δT ≥3

2 )(|∆Dt| − E(|∆Dt|))∑T
t=2 E(|∆Dt|)

. (19)

Importantly, those influence functions allow the unit’s treatments and outcomes to be arbitrarily
serially correlated.

6.2 Placebo tests

With several time periods, one can test the following condition, which is closely related to
Assumption 14:

Assumption 15 (Testable parallel trends) For all t ≥ 3, t ≤ T , for all d ∈ Dt−1, E(∆Yt−1(d)|Dt−2 =
Dt−1 = d,Dt) = E(∆Yt−1(d)|Dt−2 = Dt−1 = d).

To test that condition, one can compute a placebo version of the estimators described in the
previous subsection, replacing ∆Yt by ∆Yt−1, and restricting the sample, for each pair of con-
secutive time periods (t− 1, t), to units whose treatment did not change between t− 2 and t− 1.
Thus, the placebo compares the average ∆Yt−1 of the t−1-to-t switchers and stayers, restricting
attention to t− 2-to-t− 1 stayers. If one finds that from t− 2-to-t− 1, t− 1-to-t switchers and
stayers are on parallel trends, this lends credibility to Assumption 14.

Assumption 14 can only be placebo tested among t − 2-to-t − 1 stayers. Then, as a robustness
check one may restrict the estimation of δ1 and δ2 to t− 2-to-t− 1 stayers, to ensure that effects
are only estimated in a subsample for which the identifying assumption can be placebo tested.
The resulting estimator relies on the following identifying assumption:

∀t ≥ 3, t ≤ T, d ∈ Dt−1 : E(∆Yt(d)|Dt−2 = Dt−1 = d,Dt) = E(∆Yt(d)|Dt−2 = Dt−1 = d),

the exact analogue of Assumption 15 but one period ahead.
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6.3 Estimators robust to dynamic effects up to a pre-specified treatment lag.

Importantly, the robustness check in the previous section also yields an estimator robust to
dynamic effects up to one treatment lag. If units’ current and first treatment lag affect their
current outcome, our t− 1-to-t estimators in the subsample of t− 2-to-t− 1 stayers are unbiased
for effects of the current treatment on the outcome under the following assumption:

∀t ≥ 3, t ≤ T, d ∈ Dt−1 : E(Yt(d, d)−Yt−1(d, d)|Dt−2 = Dt−1 = d,Dt) = E(Yt(d, d)−Yt−1(d, d)|Dt−2 = Dt−1 = d).

Similarly, if one wants to allow for effects of the first and second treatment lags on the outcome,
one just needs to restrict the estimation sample to t − 3-to-t − 1 stayers. However, the more
robustness to dynamic effects one would like to have, the smaller the estimation sample becomes.

7 Application

Data and research questions. We use the yearly 1966-to-2008 panel dataset of Li et al.
(2014), covering 48 US states (Alaska and Hawaii are excluded). In view of the long duration
of this panel, it is important to keep in mind that our estimators only assume parallel trends
across pairs of consecutive years, not over the panel’s entire duration. For each state×year cell
(i, t), the data contains Zi,t, the total (state plus federal) gasoline tax in cents per gallon, Di,t,
the log tax-inclusive price of gasoline, and Yi,t, the log gasoline consumption per adult. Our goal
is to estimate the effect of gasoline taxes on gasoline consumption and prices, and to estimate
the price-elasticity of gasoline consumption, using taxes as an instrument. Instead, Li et al.
(2014) jointly estimate the effect of gasoline taxes and tax-exclusive prices on consumption,
using a TWFE regression with two treatments. Between each pair of consecutive periods, the
tax-exclusive price changes in all states, so this treatment does not have stayers and its effect
cannot be estimated using the estimators proposed in this paper. Thus, our estimates cannot
be compared to those of Li et al. (2014).

Switching cells, and how they compare to the entire sample. Let S be the set of
switching (i, t) cells such that Zi,t ̸= Zi,t−1 but Zi′,t = Zi′,t−1 for some i′. The second condition
drops from the estimation seven pairs of consecutive time periods between which the federal
gasoline tax changed, thus implying that all states experienced a change of their tax. S includes
384 cells, so effects of taxes on gasoline prices and consumptions can be estimated for 19% of the
2,016 state×year cells for which Zi,t − Zi,t−1 can be computed. Table 1 below compares some
observable characteristics of switchers and stayers. Switchers seem slightly over-represented in
the later years of the panel: t is on average 2.5 years larger for switchers than for stayers, and the
difference is significant. On the other hand, switchers are not more populated than stayers, and
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their gasoline consumption and gasoline price in 1966 are not significantly different from that of
stayers. Thus, there is no strong indication that the cells in S are a very selected subgroup.

Table 1: Comparing switchers and stayers

Dependent Variables: t Adult Population log(quantity)1966 log(price)1966

Constant 1,986.7 3,691,608.0 -0.5161 3.471
(0.2739) (577,164.0) (0.0210) (0.0054)

1{Zi,t ̸= Zi,t−1} 2.481 39,588.0 -0.0099 0.0014
(0.7519) (320,342.1) (0.0096) (0.0029)

N 2,016 2,016 2,016 2,016

Notes: The table show the results of regressions of some dependent variables on a constant and an indicator for
switching cells. The standard errors shown in parentheses are clustered at the state level.

Distribution of taxes. As an example, the top panel of Figure 1 below shows the distribution
of Zg,1987 for 1987-to-1988 stayers, while the bottom panel shows the distribution for 1987-to-
1988 switchers. The figure shows that there are many values of Zg,1987 such that only one or
two states have that value, so Zg,1987 is close to being continuously distributed. Moreover, all
switchers g are such that

min
g′:Zg′,1988=Zg′,1987

Zg′,1987 ≤ Zg,1987 ≤ max
g′:Zg′,1988=Zg′,1988

Zg′,1987.

Thus, Assumption 4 seems to hold for this pair of years. (1987, 1988) is not atypical. While
Zi,t varies less across states in the first years of the panel, there are many other years where
Zi,t is close to being continuously distributed. Similarly, almost 95% of cells in S are such that
ming′:Zi′,t=Zi′,t−1 Zi′,t−1 ≤ Zi,t−1 ≤ maxg′:Zi′,t=Zi′,t−1 Zi′,t−1. Dropping the few cells that do not
satisfy this condition barely changes the results presented below.
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Figure 1: Gasoline tax in 1987 among 1987-to-1988 switchers and stayers

Distribution of tax changes. Figure 2 below shows the distribution of Zi,t − Zi,t−1 for the
384 cells in S. The majority experience an increase in their taxes, but 38 cells experience a
decrease. The average value of |Zi,t −Zi,t−1| is equal to 1.61 cents, while prior to the tax change,
switchers’ average gasoline price is equal to 112 cents: our estimators leverage small changes
in taxes relative to gasoline prices. Finally, min(i,t)∈S |Zi,t − Zi,t−1| = 0.05 : some switchers
experience a very small change in their taxes.
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Figure 2: Distribution of tax changes between consecutive periods
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Reduced-form and first-stage AS and WAS estimates. Table 2 below shows the AS and
doubly-robust WAS estimates of the reduced-form (Panel A) and first-stage (Panel B) effects of
taxes on quantities and prices. We follow results from Section 5, and estimate the reduced-form
and the first-stage controlling for lagged prices Dt−1, to ensure that the resulting IV estimator is
robust to heterogeneous effects over time. Reduced-form and first-stage estimators where Dt−1

is not controlled for are not very different, but controlling for Dt−1 reduces the standard error
of the first-stage estimator. In Column (1), the estimators are computed using a polynomial of
order 1 in (Zt−1, Dt−1) to estimate E(∆Yt|Zt−1, Dt−1, St = 0), E(∆Dt|Zt−1, Dt−1, St = 0), and
the propensity scores P (S+,t = 1|Zt−1, Dt−1), P (S−,t = 1|Zt−1, Dt−1), and P (St = 0|Zt−1, Dt−1).
In Column (2), a polynomial of order 2 is used in those estimations. 10-folds cross-validation
selects a polynomial of order two for E(∆Dt|Zt−1, Dt−1, St = 0), and a polynomial of order
one for all the other conditional expectations. Thus, polynomials of order 1 and 2 are in line
with those selected by cross validation. Standard errors clustered at the state level, computed
following (18) and (19), are shown below the estimates, between parentheses. All estimations
use 1632 (48× 35) first-difference observations: 7 periods have to be excluded as they do not
have stayers. Finally, the last line of each panel shows the p-value of a test that the AS and WAS
effects are equal. In Panel A Column (1), the AS estimate indicates that increasing gasoline
tax by 1 cent decreases quantities consumed by 0.55 percent on average for the switchers. That
effect is significant at the 5% level, but it becomes smaller and insignificant when one uses a
quadratic model to estimate E(∆Yt|Zt−1, Dt−1, St = 0). The WAS estimates are slightly lower
than, but close to, the AS estimates, and they are significant irrespective of the polynomial
order used in the estimation. As predicted by Proposition 1, the standard errors of the WAS
estimators are almost 3 times smaller than that of the AS estimators. Equality tests that the
AS and WAS effects are equal are not rejected. In Panel B, the AS estimates of the first-stage
effect are insignificant. Importantly, this implies that an IV-AS estimator of the price elasticity
of gasoline consumption cannot be used: this estimator does not have a significant first stage.
The WAS estimates are significant, and they indicate that if gasoline tax increases by 1 cent on
average, prices increase by around 0.5 percent on average for the switchers. Again, the differences
between the AS and WAS effects of taxes on prices are insignificant.
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Table 2: Effects of gasoline tax on quantities consumed and prices

(1) Linear model (2) Quadratic model

Panel A: Reduced-form effect of taxes on quantities consumed

AS -0.0055 -0.0034
(0.0027) (0.0032)

WAS -0.0038 -0.0034
(0.0010) (0.0011)

Observations 1,632 1,632
P-value 0.4482 0.9974

Panel B: First-stage effect of taxes on prices

AS 0.0042 0.0047
(0.0024) (0.0025)

WAS 0.0056 0.0056
(0.0009) (0.0008)

Observations 1,632 1,632
P-value 0.4729 0.6798

Notes: All estimators in the table are computed using the data of Li et al. (2014). Panel A (resp. B) shows the
AS and doubly-robust WAS estimates of the reduced-form (resp. first-stage) effect of taxes on quantities (resp.
prices). All estimates control for the lag of prices. In Column (1), estimates are computed using a polynomial of
order 1 in (Zt−1, Dt−1) to estimate E(∆Yt|Zt−1, Dt−1, St = 0) and the propensity scores P (S+,t = 1|Zt−1, Dt−1),
P (S−,t = 1|Zt−1, Dt−1), and P (St = 0|Zt−1, Dt−1). In Column (2), estimates are computed using a polynomial
of order 2 in those estimations. Standard errors clustered at the state level, computed following (18) and (19) are
shown below the estimates, between parentheses. All estimations use 1632 (48× 35) first-difference observations:
7 periods have to be excluded as they do not have stayers. Finally, the last line of each panel shows the p-value
of a test that the AS and WAS effects are equal.

Placebo analysis. Table 3 below shows placebo AS and doubly-robust WAS estimates of the
reduced-form and first-stage effects. The placebo estimators are analogous to the actual estima-
tors, but they replace ∆Yt by ∆Yt−1, and they restrict the sample, for each pair of consecutive
time periods (t−1, t), to states whose taxes did not change between t−2 and t−1. The placebo
WAS estimates are small and insignificant, both for quantities and prices. The placebo AS es-
timates are larger for quantities, but they are insignificant, and less precisely estimated. This
placebo analysis shows that before switchers change their gasoline taxes, switchers’ and stayers’
consumption of gasoline and gasoline prices do not follow detectably different evolutions. As
a robustness check, we reestimate the AS and WAS in the placebo subsample, to ensure that
effects are estimated in a subsample for which the identifying assumption can be placebo tested,
and also because in that subsample estimators remain valid if the first lag of taxes affect current
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gasoline prices and quantities. WAS reduced-form effects are very close to those in Table 2. WAS
first-stage effects are 25 to 35% smaller, though they are still positive and highly significant.

Table 3: Placebo effects of gasoline tax on quantities consumed and prices

(1) Linear model (2) Quadratic model

Panel A: Reduced-form placebo effect of taxes on quantities consumed

AS 0.0039 0.0055
(0.0035) (0.0036)

WAS 0.0001 0.0012
(0.0017) (0.0017)

Observations 1,059 1,059

Panel B: First-stage placebo effect of taxes on prices

AS 0.0006 0.0009
(0.0056) (0.0053)

WAS 0.0014 0.0013
(0.0017) (0.0015)

Observations 1,059 1,059

Notes: The table shows the placebo AS and doubly-robust WAS estimates of the reduced-form and first-stage
effects of taxes on quantities and prices. The estimators and their standard errors are computed as the actual
estimators, replacing ∆Yt by ∆Yt−1, and restricting the sample, for each pair of consecutive time periods (t−1, t),
to states whose taxes did not change between t− 2 and t− 1.

IV-WAS estimate of the price-elasticity of gasoline consumption. Table 4 shows
doubly-robust IV-WAS estimates of the price-elasticity of gasoline consumption. As the in-
strument’s first stage is not very strong and the sample effectively only has 48 observations,
asymptotic approximations may not be reliable for inference. In line with that conjecture, we
find that the bootstrap distributions of the three estimators in Table 4 are non-normal, with
some outliers. Therefore, we use the percentile bootstrap for inference, clustering the bootstrap
at the state level. Reassuringly, these confidence intervals have nominal coverage in simulations
tailored to our application.7 The IV-WAS estimates are negative, significant, and larger than

7Here is the DGP used in our simulations. We estimate TWFE regressions of Yi,t on state and year fixed effects
and Zi,t, and ofDi,t on state and year fixed effects and Zi,t. We let γ̂Y

i +λ̂Y
t +β̂Y Zi,t+ϵYi,t and γ̂D

i +λ̂D
t +β̂DZi,t+ϵDi,t

denote the resulting regression decompositions. In each simulation, the simulated instrument is just the actual
instrument, while the simulated outcomes and treatments are respectively equal to Y s

i,t = γ̂Y
i + λ̂Y

t + β̂Y Zi,t +ϵY,s
i,t ,

and Ds
i,t = γ̂D

i + λ̂D
t + β̂DZi,t + ϵD,s

i,t , where the vector of simulated residuals (ϵY,s
g,1 , ..., ϵ

Y,s
g,T , ϵ

D,s
g,1 , ..., ϵ

D,s
g,T ) is drawn

at random and with replacement from the estimated vectors of residuals ((ϵYg′,1, ..., ϵ
Y
g′,T , ϵ

D
g′,1, ..., ϵ

D
g′,T ))g′∈{1,...,G}.

Thus, the first-stage and reduced-form effects, the correlation between the reduced-form and first-stage residuals,
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-1, though their confidence intervals contain -1. We compare those estimates to a 2SLS-TWFE
estimator, computed via a 2SLS regression of Yi,t on Di,t and state and year fixed effects, using
Zi,t as the instrument. The 2SLS-TWFE coefficient is equal to -1.0836 (bootstrap confidence
interval=[−2.1207,−0.4405]), which is 60% larger in absolute value than the IV-WAS estimate
in Column (1), and almost 80% larger than that in Column (2), though the 2SLS-TWFE coeffi-
cient does not significantly differ from the two IV-WAS estimates (P-value = 0.320 and 0.232 ,
respectively). Interestingly, the confidence interval of the 2SLS-TWFE coefficient is almost 80%
wider than that of the IV-WAS coefficient in Column (1) and 27% wider than that in Column
(2), thus showing that using a more robust estimator does not always come with a substantive
precision cost.

Table 4: IV estimators of the price-elasticity of gasoline consumption

(1) Linear model (2) Quadratic model
IV-WAS -0.6773 -0.6130

[-1.2101,-0.2622] [-1.3183,-0.0004]
Observations 1,632 1,632

Notes: The table shows doubly-robust IV-WAS estimates of the price-elasticity of gasoline consumption, com-
puted using the data of Li et al. (2014). Bootstrap confidence intervals are shown below the estimates. They are
computed with 500 bootstrap replications, clustered at the state level.

8 Conclusion

We propose new difference-in-difference (DID) estimators for continuous treatments. We assume
that between pairs of consecutive periods, the treatment of some units, the switchers, changes,
while the treatment of other units, the stayers, does not change. We propose a parallel trends
assumption on the outcome evolution of switchers and stayers with the same baseline treatment.
Under that assumption, two target parameters can be estimated. Our first target is the average
slope of switchers’ period-two potential outcome function, from their period-one to their period-
two treatment, referred to as the AS. Our second target is a weighted average of switchers’
slopes, where switchers receive a weight proportional to the absolute value of their treatment
change, referred to as the WAS. Economically, the AS and WAS serve different purposes, so
neither parameter dominates the other. On the other hand, when it comes to estimation, the
WAS unambiguously dominates the AS. First, it can be estimated at the parametric rate even if
units can experience an arbitrarily small treatment change. Second, under some conditions, its
asymptotic variance is strictly lower than that of the AS estimator. Third, unlike the AS, it is

and the residuals’ serial correlation are the same as in the sample.
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amenable to doubly-robust estimation. In our application, we use US-state-level panel data to
estimate the effect of gasoline taxes on gasoline consumption. The standard error of the WAS
is almost three times smaller than that of the AS, and the two estimates are close.

We also consider the instrumental-variable case, as there are instances where units experienc-
ing/not experiencing a treatment change are unlikely to be on parallel trends, but one has at
hand an instrument such that units experiencing/not experiencing an instrument change are
more likely to be on parallel trends. Then, we propose widely applicable IV-DID estimators,
that are robust to heterogeneous effects over time but impose some restrictions on effects’ het-
erogeneity across units.
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9 Proofs

Hereafter, Supp(X) denotes the support of X. Note that under Assumption 2, one can show
that for all (t, t′) ∈ {0, 1}2, E(Yt(Dt′)) exists.

9.1 Theorem 1

The result is just a special case of Theorem 2, under Assumption 5 □

9.2 Theorem 2

First, observe that the sets {Sη = 1} are decreasing for the inclusion and {S = 1} = ∪η>0{Sη =
1}. Then, by continuity of probability measures,

lim
η↓0

P (Sη = 1) = P (S = 1) > 0, (20)

where the inequality follows by Assumption 4. Thus, there exists η > 0 such that for all
η ∈ (0, η), P (Sη = 1) > 0. Hereafter, we assume that η ∈ (0, η).

We have Supp(D1|Sη = 1) ⊆ Supp(D1|S = 1) and by Assumption 4, Supp(D1|S = 1) ⊆
Supp(D1|S = 0). Thus, for all (d1, d2) ∈ Supp(D1, D2|Sη = 1), d1 ∈ Supp(D1|S = 0), so
E(Y2(d1) − Y1(d1)|D1 = d1, S = 0) = E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d1) is well-defined.
Moreover, for almost all such (d1, d2),

E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d2) =E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d1)
=E(∆Y |D1 = d1, S = 0), (21)

where the first equality follows from Assumption 1. Now, by Point 2 of Assumption 2, [Y2(D2)−
Y2(D1)]/∆D admits an expectation. Moreover,

E

(
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
)

=E
(
E(Y2(D2) − Y1(D1)|D1, D2) − E(Y2(D1) − Y1(D1)|D1, D2)

∆D

∣∣∣∣∣Sη = 1
)

=E
(
E(∆Y |D1, D2) − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)

=E
(

∆Y − E(∆Y |D1, S = 0)
∆D

∣∣∣∣∣Sη = 1
)
, (22)

where the first equality follows from the law of iterated expectations, the second follows from
(21), and the third again by the law of iterated expectations. Next,

δ1 = Pr(Sη = 1|S = 1)E
[
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
]

+ E

[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]
.
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Moreover,∣∣∣∣∣E
[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]∣∣∣∣∣ ≤ E

[
(1 − Sη)

∣∣∣∣∣Y2(D2) − Y2(D1)
∆D

∣∣∣∣∣
∣∣∣∣∣S = 1

]
≤ E

[
(1 − Sη)Y |S = 1

]
,

where the second inequality follows by Assumption 2. Now, by (20) again, limη↓0(1 − Sη)Y = 0
a.s. Moreover, (1 − Sη)Y ≤ Y with E[Y |S = 1] < ∞. Then, by the dominated convergence
theorem,

lim
η↓0

E

[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]

= 0.

We finally obtain

δ1 = lim
η↓0

E

[
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
]
. (23)

The result follows by combining (22) and (23) □

9.3 Theorem 3

Let ∆Y = Y2 − Y1, ∆D = D2 −D1, µ1(D1) = E[(1 − S)Y |D1], µ2(D1) = E[1 − S|D1]. In what
follows we let µ(D1) = (µ1(D1), µ2(D1))′. From Theorem 1, the parameter δ1 is characterized
by the condition:

0 = E

[
S

∆D

(
∆Y − δ1∆D − µ1(D1)

µ2(D1)

)]
Define:

g(Z, δ, µ) = S

∆D

(
∆Y − µ1(D1)

µ2(D2)

)
− Sδ1

where Z = (Y1, Y2, D1, D2). Also define:

L(Z, µ, δ1, µ̃) = − S

∆D · 1
µ̃2(D1)

(
µ1(D1) − µ̃1(D1)

µ̃2(D1)
µ2(D1)

)

We verify conditions 6.1 to 6.3, 5.1(i) and 6.4(ii) to 6.6 in Newey (1994). Following his notation,
we let µ0 = (µ10, µ20)′ and δ10 represent the true parameters, and g(Z, µ) = g(Z, δ10, µ).

Step 1. We verify condition 6.1. First, since S is binary E[(S − E[S|D1])2|D1] = V [S|D1] ≤
1/4. On the other hand, E[((1 − S)∆Y − E[(1 − S)∆Y |D1])2|D1] ≤ E [∆Y 2|D1] < ∞ by part
2 of Assumption 6. Thus, condition 6.1 holds.
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Step 2. We verify condition 6.2. Since pK(d1) is a power series, the support of D1 is compact
and the density of D1 is uniformly bounded below, by Lemma A.15 in Newey (1995) for each K
there exists a constant nonsingular matrix AK such that for PK(d1) = AKp

K(d1), the smallest
eigenvalue of E[PK(D1)PK(D1)′] is bounded away from zero uniformly over K, and PK(D1) is
a subvector of PK+1(D1). Since the series-based propensity scores estimators are invariant to
nonsingular linear transformations, we do not need to distinguish between PK(d1) and pK(d1)
and thus conditions 6.2(i) and 6.2(ii) are satisfied. Finally, because p1K(d1) ≡ 1 for all K, for
a vector γ̃ = (1, 0, 0, . . . , 0) we have that γ̃′pk(d1) = γ̃1 ̸= 0 for all d1. Since AK is nonsingular,
letting γ = A−1

K
′
γ̃, γ′P k(d1) = γ̃′A−1

K PK(d1) is a non-zero constant for all d1 and thus condition
6.2(iii) holds.

Step 3. We verify condition 6.3 for d = 0. Since pK(d1) is a power series, the support of D1

is compact and the functions to be estimated have 4 continuous derivatives, by Lemma A.12 in
Newey (1995) there is a constant C > 0 such that there is π with

∥∥∥µ− (pK)′π
∥∥∥ ≤ CK−α, where

in our case α = s/r = 4 since the dimension of the covariates is 1 and the unknown functions
are 4 times continuously differentiable. Thus, condition 6.3 holds.

Step 4. We verify condition 5.1(i). By part 3 of Assumption 6, µ20(D1) = E[1 − S|D1] = 1 −
E[S|D1] ≥ 1 − cM for some constant cM>0. Let C = 1 − cM . For µ such that ∥µ− µ0∥∞ < C/2,

|g(Z, µ) − g(Z, µ0) − L(Z, µ− µ0, δ10, µ0)|

=
∣∣∣∣ S∆D

∣∣∣∣
∣∣∣∣∣µ1(D1)
µ2(D1)

− µ10(D1)
µ20(D1)

− 1
µ20(D1)

(
µ1(D1) − µ10(D1) − µ10(D1)

µ20(D1)
(µ2(D1) − µ20(D1))

)∣∣∣∣∣
≤ 1
c

∣∣∣∣∣µ1(D1)
µ2(D1)

− µ10(D1)
µ20(D1)

− 1
µ20(D1)

(
µ1(D1) − µ10(D1) − µ10(D1)

µ20(D1)
(µ2(D1) − µ20(D1))

)∣∣∣∣∣
≤ 1
c

· 2 (1 + |µ10(D1)| / |µ20(D1)|)
C2 max {|µ1(D1) − µ10(D1)| , |µ2(D1) − µ20(D1)|}2

≤ 1
c

· 2 (1 + |µ10(D1)| / |µ20(D1)|)
C2 ∥µ− µ0∥2

∞

where the first inequality follows from Assumption 5 and the second inequality follows from
Lemma S3 in the Web Appendix of de Chaisemartin and D’Haultfœuille (2018). Thus, condition
5.1(i) holds.

Step 5. We verify condition 6.4(ii). First, E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞. For power
series, by Lemma A.15 in Newey (1995), ζd(K) = sup|λ|=d,x∈I

∥∥∥∂λpK(x)
∥∥∥ ≤ CK1+2d so setting

d = 0,

ζ0(K)
(
(K/n)1/2 +K−α

)
≤ CK

(
(K/n)1/2 +K−α

)
= C

√K3

n
+K1−α

 → 0
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since α = 4 > 1/2, K7/n → 0 and K → ∞. Finally,

√
nζ0(K)2

(
K

n
+K−2α

)
≤ C2√nK2

(
K

n
+K−2α

)
= C

√K6

n
+
√

n

K4α−4

 → 0

since K7/n → 0 and for α = 4, K4α−4/n = K12/n → ∞. Hence condition 6.4(ii) holds.

Step 6. We verify condition 6.5 for d = 1 and where |µ|d = sup|λ|≤d,x∈I

∥∥∥∂λµ(x)
∥∥∥. Since

E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞,

|L(Z, µ, δ10, µ0)| =
∣∣∣∣∣ S∆D · 1

µ20(D1)

(
µ1(D1) − µ10(D1)

µ20(D1)
µ2(D1)

)∣∣∣∣∣
≤ 1
c(1 − cM)

(
1 +

∣∣∣∣∣µ10(D1)
µ20(D1)

∣∣∣∣∣
)

|µ|1 .

Next, the same linear transformation of pK as in Step 2, namely PK is, by Lemma A.15 in

Newey (1995), such that
∣∣∣PK

k

∣∣∣
d

≤ CK1/2+2d. As a result,
(∑

k

∣∣∣PK
k

∣∣∣2
1

)1/2
≤ CK1+2d. Then, for

d = 1,
(∑

k

∣∣∣PK
k

∣∣∣2
1

)1/2
√K

n
+K−α

 ≤ CK3

√K
n

+K−α

 = C

√K7

n
+K3−α

 → 0

since K7/n → 0 and K3−α = K−1 → 0 for α = 4. Thus, condition 6.5 holds.

Step 7. We verify condition 6.6. Condition 6.6(i) holds for

δ(D1) = [−E[S/∆D|D1]/µ20(D1)](1,−µ10(D1)/µ20(D1)).

Because the involved functions are continuously differentiable, by Lemma A.12 from Newey
(1995) there exist πK and ξK such that:

E
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]

≤
∥∥∥δ − ξKp

K
∥∥∥2

∞
≤ CK−2α

and
E
[∥∥∥µ0(D1) − πKp

K(D1)
∥∥∥2
]

≤
∥∥∥µ0 − πKp

K
∥∥∥2

∞
≤ CK−2α

were we recall that α = 4. Thus, the first part of condition 6.6(ii) follows from

nE
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]
E
[∥∥∥µ0(D1) − πKp

K(D1)
∥∥∥2
]

≤ CnK−16 → 0.

Next,
ζ0(K)4K

n
≤ C

K5

n
→ 0
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and finally
ζ0(K)2E

[∥∥∥µ0(D1) − πKp
K(D1)

∥∥∥2
]

≤ CK2−2α → 0

and
E
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]

≤ CK−2α → 0.

Thus, condition 6.6 holds.
By inspection of the proof of Theorem 6.1 in Newey (1994), condition 6.4(ii) implies 5.1(ii)
therein, conditions 6.5 and 6.2 imply 5.2 therein, and condition 6.6 implies 5.3 therein. Then,
conditions 5.1-5.3 inNewey (1994) hold, and thus by his Lemma 5.1,

1√
n

∑
i

g(Zi, δ10, µ̂) = 1√
n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1) →d N (0, V )

where

α(Z) = δ(D1)
∆Y (1 − S) − µ10(D1)

(1 − S) − µ20(D1)

 = −
E
(

S
∆D

∣∣∣D1
)

E[1 − S|D1]
(1 − S)(∆Y − µ0(D1))

and V = E
[
(g(Zi, µ0) + α(Zi)) (g(Zi, µ0) + α(Zi))′

]
. Finally note that:

√
n(δ̂1 − δ10) = n∑

i Si

· 1√
n

∑
i

g(Zi, δ10, µ̂) = 1
E[S] · 1√

n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1)

and the result follows defining ψ1 = [g(Zi, µ0) + α(Zi)]/E[S]. □

9.4 Theorem 4

We only prove the first point, as the proof of the second point is similar and (9)-(10) follow by
combining these two points. Moreover, the proof of (5) is similar to the proof of Theorem 1 so
it is omitted. We thus focus on (6) hereafter.

For all d1 ∈ Supp(D1|S+ = 1), by Point 1 of Assumption 7, d1 ∈ Supp(D1|S = 0). Thus,
E(∆Y |D1 = d1, S = 0) is well-defined. Then, using the same reasoning as that used to show
(21) above, we obtain

E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1) = E(∆Y |D1 = d1, S = 0).

Now, let Supp(D1|S+ = 1)c be the complement of Supp(D1|S+ = 1). For all d1 ∈ Supp(D1|S =
0) ∩ Supp(D1|S+ = 1)c, P (S+ = 1|D1 = d1) = 0. Then, with the convention that E(∆Y |D1 =
d1, S+ = 1)P (S+ = 1|D1 = d1) = 0,

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)
=E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).
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Combining the two preceding displays implies that for all d1 ∈ Supp(D1|S = 0),

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)
=E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).

Hence, by repeated use of the law of iterated expectation,

E

(
∆Y P (S+ = 1|D1)

P (S = 0|D1)
P (S = 0)
P (S+ = 1)

∣∣∣∣∣S = 0
)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S = 0|D1)
P (S = 0)
P (S+ = 1)

∣∣∣∣∣S = 0
)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S = 0|D1)
1 − S

P (S+ = 1)

)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S+ = 1)

)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1) S+

P (S+ = 1)

)
=E (Y2(D1) − Y1(D1)|S+ = 1) .

The result follows after some algebra. □

9.5 Theorem 5

We prove the result for the propensity-score-based estimator and drop the “ps” subscript to
reduce notation. Let µ1(d) = E[S+|D1 = d], µ2(d) = E[1 − S|D1 = d], µ3(d) = E[S−|D1 = d]
and µY (D1) = E[∆Y (1 −S)|D1]. The logit series estimators of the unknown functions µj(d) are
given by µ̂j(d) = Λ(PK(d)′π̂j) where Λ(z) = 1/(1 + e−z) is the logit function and

0 =
∑

i

(Sji − Λ(PK(D1i)′π̂j))PK(D1i)

for Sji equal to 1−Si, Si+ or Si−. Under Assumption 8, there exists a constant πj,K that satisfies:∥∥∥∥∥log
(

µj

1 − µj

)
− (PK)′πj,K

∥∥∥∥∥
∞

= O(K−α)

and we let µji,K = Λ(PK(D1i)′πj,K). We suppress the n subscript on K to reduce notation and
let µji := µj(D1i) and µ̂ji := µ̂j(D1i). Under Assumption 8 part 1, Lemma A.15 in Newey (1995)
ensures that the smallest eigenvalue of E[PK(D1)PK(D1)′], is bounded away from zero uniformly
over K. In addition, Cattaneo (2010) shows that under Assumption 8, the multinomial logit
series estimator satisfies:

∥µj,K − µj∥∞ = O(K−α), ∥π̂j − πj,K∥ = OP

√K
n

+K−α+1/2


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and

∥µ̂j − µj∥∞ = OP

ζ(K)
√K

n
+K−α+1/2


where ζ(K) = supd∈I

∥∥∥PK(d)
∥∥∥. Newey (1994) also shows that for orthonormal polynomials, ζ(K)

is bounded above by CK for some constant C, which implies in our case that ∥µ̂j − µj∥∞ =
OP

(
K
(√

K
n

+K−α+1/2
))

. Throughout the proof, we also use the fact that by a second-order
mean value expansion, there exists a π̃j such that:

µ̂ji − µji,K = Λ(PK(D1i)′π̂j) − Λ(PK(D1i)′πj,K)
= Λ̇(PK(D1i)′πj,K)PK(D1i)′(π̂j − πj,K) + Λ̈(PK(D1i)′π̃j)(PK(D1i)′(π̂j − πj,K))2

where both Λ̇(z) and Λ̈(z) are bounded.
We start by considering the δ2+ parameter and omit the “ps” superscript to reduce notation.
Recall that

δ̂2+ = 1∑
i ∆DiSi+

∑
i

{
∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

}
.

Thus,

√
n(δ̂2+ − δ2+) = 1

E[∆DS+] · 1√
n

∑
i

{
∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

− δ2+E[∆DS+]
}

+ oP (1).

Define:
Vi = ∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

− δ2+E[∆DS+].

Let ψ2+,i be the influence function defined in the statement of the theorem. Using the identity:

1
b̂

− 1
b

= − 1
b2 (b̂− b) + 1

b2b̂
(b̂− b)2
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we have, after some rearranging,
1√
n

∑
i

Vi = E[∆DS+] · 1√
n

∑
i

ψ2+,i

− 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i)

+ 1√
n

∑
i

(∆Yi(1 − Si) − µY i)
µ1i

µ2
2i

(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1 − Si)
µ1i

µ2
2iµ̂2i

(µ̂2i − µ2i)2

+ 1√
n

∑
i

∆Yi(1 − Si)
µ2

2i

(µ̂1i − µ1i)(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1 − Si)
µ2

2iµ̂2i

(µ̂1i − µ1i)(µ̂2i − µ2i)2

+ 1√
n

∑
i

µY i

µ2i

(Si+ − µ̂1i)

− 1√
n

∑
i

µYi
µ1i

µ2
2i

(1 − Si − µ̂2i).

which we rewrite as:
1√
n

∑
i

Vi = E[∆DS+] · 1√
n

∑
i

ψ2+,i +
7∑

j=1
Aj,n

where each Aj,n represents one term on the above display. We now bound each one of these
terms.

Term 1. For the first term, we have that:

−A1,n = 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i)

= 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i,K)

+ 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

= A11,n + A12,n.

Now, by a second-order mean value expansion,

A11,n = 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′(π̂K − πK)

+ 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̈(PK(D1i)′π̃)(PK(D1i)′(π̂K − πK))2

= A111,n + A112,n.
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Next note that

|A111,n| ≤ ∥π̂K − πK∥
∥∥∥∥∥ 1√

n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′

∥∥∥∥∥ .
Now, ∥π̂K − πK∥ = OP

((√
K/n+K−α+1/2

))
. Let

Ui = (U1
i , ...U

K
i )′ :=

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′.

We have E[Ui] = E[E[Ui|D1i]] = 0 and

E
[
∥Ui∥2

]
≤E

(∆Yi(1 − Si)
µ2i

− µY i

µ2i

)2 ∥∥∥PK(D1i)
∥∥∥2


≤CE
[∥∥∥PK(D1i)

∥∥∥2
]

=CE
[
trace{PK(D1i)′PK(D1i)}

]
=C × trace

(
E
[
PK(D1i)PK(D1i)′

])
=CK, (24)

since the polynomials can be chosen such that E
[
PK(D1i)PK(D1i)′

]
= IK , see Newey (1997),

page 161. Hence,

E

∥∥∥∥∥ 1√
n

∑
i

Ui

∥∥∥∥∥
2
 =E

 K∑
j=1

(
1√
n

∑
i

U j
i

)2


=
K∑

j=1

1
n

∑
i,i′
E
[
U j

i U
j
i′

]

=
K∑

j=1

1
n

n∑
i=1

E
[
U j2

i

]
=E

[
∥U1∥2

]
.

Therefore, by Markov’s inequality,

A111,n = OP

K1/2

√K
n

+K−α+1/2

 .
Next,

|A112,n| ≤ C
√
n ∥π̂K − πK∥2 1

n

∑
i

∣∣∣∣∣∆Yi(1 − Si)
µ2i

− µY i

µ2i

∣∣∣∣∣ ∥∥∥PK(D1i)
∥∥∥2

= OP

[
√
n
(
K

n
+K−2α+1

)
E

(∣∣∣∣∣∆Yi(1 − Si)
µ2i

− µY i

µ2i

∣∣∣∣∣ ∥∥∥PK(D1i)
∥∥∥2
)]

= OP

(√
nK

(
K

n
+K−2α+1

))
,
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where the first inequality follows by Cauchy-Schwarz inequality, the second by Markov’s inequal-
ity and the third by the same reasoning as to obtain (24). Hence,

A11,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
.

Finally, for A12,n we have that

E

[(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

∣∣∣∣∣D1

]
= 0

and

E

∥∥∥∥∥
(

∆Yi(1 − Si)
µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

∥∥∥∥∥
2
 ≤ C ∥µ1,K − µ1∥2

∞ = O(K−2α)

and therefore

A1,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K−α).

Term 2. This follows by the same argument as that of Term 1 and we obtain:

A2,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K−α).

Term 3. For the third term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2,
for n large enough

|A3,n| ≤
√
n ∥µ̂2 − µ2∥2

∞
1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))
.

Term 4. For the fourth term,

|A4,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥∞

1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))

Term 5. For the fifth term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2,
for n large enough

|A5,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥2

∞
1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(
√
nK3

((
K

n

)3/2
+K−3α+3/2

))
.
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Term 6. For the sixth term, let γ6,K be the population coefficient from a (linear) series ap-
proximation to the function µY (D1)/µ2(D1). Then we have that

A6,n = 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i) + 1√

n

∑
i

PK(D1i)′γ6,K(Si+ − µ̂1i)

= 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i)

because the last term in the second line equals zero by the first-order conditions of the logit
series estimator. Next, we have that

1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i) = 1√

n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ1i)

− 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(µ̂1i − µ1i)

= A61,n + A62,n.

Now, for A61,n, we have that

E

[(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ1i)

∣∣∣∣∣D1

]
= 0

and

E

(Si+ − µ1i)2
∥∥∥∥∥
(
µY i

µ2i

− PK(D1i)′γ6,K

)∥∥∥∥∥
2
 ≤ O(K−2α)

so that
A61,n = OP (K−α).

On the other hand, for A62,n, we have that

|A62,n| ≤
√
n

∥∥∥∥∥µY

µ2
− (PK)′γ6,K

∥∥∥∥∥
∞

∥µ̂1 − µ1∥∞ = OP

√
nK1−α

√K
n

+K−α+1/2


from which

A6,n = OP

√
nK1−α

√K
n

+K−α+1/2

+K−α

 .
Term 7. This follows by the same argument as that of Term 6 and we obtain

A7,n = OP

√
nK1−α

√K
n

+K−α+1/2

+K−α

 .
Collecting all the terms, if follows that under the conditions

K6

n
→ 0, K4α−6

n
→ ∞, α > 3
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we obtain
√
n(δ̂2+ − δ2+) = 1√

n

∑
i

ψ2+,i + oP (1).

Setting α = 4, this implies
K6

n
→ 0, K10

n
→ ∞.

These conditions are satisfied when K = nν for 1/(4α− 6) < ν < 1/6 or in this case 1/10 < ν <

1/6.
By an analogous argument, we can show that under the same conditions

√
n(δ̂2− − δ2−) = 1√

n

∑
i

ψ2−,i + oP (1)

and the result follows by a multivariate CLT. Finally, notice that letting µ1−(d) = E[S−|D1 = d]
and µ̂ji− = µ̂1−(D1i), and using that sgn(∆Di) = Si+ − Si− and |∆Di| = ∆Di(Si+ − Si−), after
some simple manipulations:

δ̂2 = 1∑
i |∆Di|

∑
i

{
∆Yi(Si+ − Si−) − ∆Yi(1 − Si)

(
µ̂1i − µ̂1i−

µ̂2i

)}

which is analogous to δ̂2+ replacing Si+ by (Si+ −Si−) and the denominator by ∑i |∆Di|. Thus,
under the same conditions

√
n(δ̂2 − δ2) = 1√

n

∑
i

ψ2,i + oP (1)

where ψ2,i is defined in the statement of the theorem □

9.6 Proposition 1

If D2 ≥ D1 and ∆D ⊥⊥ D1,

ψ1 = 1
E(S)

{(
S

∆D − E
(
S

∆D

) (1 − S)
E[1 − S]

)
[∆Y − E(∆Y |D1, S = 0)] − δ1S

}
,

ψ2 = 1
E(∆D)

{(
S − E(S) (1 − S)

1 − E(S)

)
× (∆Y − E(∆Y |D1, S = 0)) − δ2∆D

}
.

If (Y2(D2) − Y2(D1))/(D2 − D1) = δ, then δ1 = δ2 = δ, and ∆Y = ∆Y (D1) + ∆Dδ, so after
some algebra the previous display simplifies to

ψ1 = 1
∆D

(
S

E(S) − (1 − S)
E[1 − S]

∆D
E(S)E

(
S

∆D

))
× (∆Y (D1) − E(∆Y (D1)|D1, S = 0)).

ψ2 = 1
E(∆D)

(
S − (1 − S) E(S)

1 − E(S)

)
× (∆Y (D1) − E(∆Y (D1)|D1, S = 0)).
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Then, under Assumption 1,

E(ψ1|D1, D2) = E(ψ2|D1, D2) = 0.

Then, using the law of total variance, the fact that V (∆Y (D1)|D1, D2) = σ2, and some algebra,

V (ψ1) =E(V (ψ1|D1, D2))

=σ2E


 S

∆D
− 1−S

1−E(S)E
(

S
∆D

)
E(S)

2
=σ2

[
E(1/(∆D)2|S = 1)

P (S = 1) + (E(1/∆D|S = 1))2

P (S = 0)

]
,

and

V (ψ2) =E(V (ψ2|D1, D2))

=σ2E


S − (1 − S) E(S)

1−E(S)

E(∆D)

2
=σ2 1

(E(∆D|S = 1))2

[
1

P (S = 1) + 1
P (S = 0)

]
.

The inequality follows from the convexity of x 7→ x2, the convexity of x 7→ 1/x on R+ \ {0} and
∆D|S = 1 ∈ R+ \ {0}, Jensen’s inequality, and x 7→ x2 increasing on R+, which together imply
that

E(1/(∆D)2|S = 1) ≥ (E(1/∆D|S = 1))2 ≥ 1
(E(∆D|S = 1))2 .

Finally, Jensen’s inequality is strict for strictly convex functions, unless the random variable is
actually constant. The last claim of the proposition follows.

9.7 Theorem 6

The parameter δIV can be written as:

δIV = E[sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1))) |SC = 1]
E[|D2(Z2) −D2(Z1)| |SC = 1] . (25)

The regression-based estimand is:

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0, D1))]
.
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Following previous arguments, the conditional expectations are well-defined under Assumption
13. For the denominator,

E
[
sgn(∆Z)

(
∆D − E(∆D|Z1, S

I = 0, D1)
)]

=E [sgn(∆Z) (D2(Z2) −D2(Z1))] + E
[
sgn(∆Z)

(
D2(Z1) −D1(Z1) − E(∆D|Z1, S

I = 0, D1)
)]

=E [sgn(∆Z) (D2(Z2) −D2(Z1))]

because

E
[
sgn(∆Z)

(
D2(Z1) −D1(Z1) − E(∆D|Z1, S

I = 0, D1)
)]

=E
{
E
[
sgn(∆Z)

(
D2(Z1) −D1(Z1) − E(∆D|Z1, S

I = 0, D1)
)

|Z1, Z2, D1
]}

=E
{
sgn(∆Z)

(
E (∆D(Z1)|Z1, Z2, D1) − E(∆D(Z1)|Z1, S

I = 0, D1)
)}

=0,

by Assumption 9. On the other hand,

E [sgn(∆Z) (D2(Z2) −D2(Z1))] =E [sgn(∆Z) (D2(Z2) −D2(Z1)) |D2(Z2) ̸= D2(Z1)]
× P (D2(Z2) ̸= D2(Z1))

=E [|D2(Z2) −D2(Z1)| |SC = 1]P (SC = 1),

where the last equality follows from monotonicity (Assumption 10) and the definition of switchers-
compliers. Next, the numerator is:

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1 = 0)
)]

=E
[
sgn(∆Z)

(
Y2(D2(Z2)) − Y1(D1(Z1)) − E(∆Y |Z1, S

I = 0, D1 = 0)
)]

=E [sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1)))] ,

using the parallel trends assumption as before. Then,

E [sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1)))]
=E [sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1))) |SC = 1]P (SC = 1),

and thus, in view of (25),

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0, D1))]
= δIV .

For the propensity-score estimand, notice that

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0, D1)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0, D1))]

=
E [sgn(∆Z)∆Y ] − E

[
sgn(∆Z)E(∆Y |Z1, S

I = 0, D1)
]

E [sgn(∆Z)∆D] − E [sgn(∆Z)E(∆D|Z1, SI = 0, D1)]
.
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Then, using sgn(∆Z) = SI
+ − SI

−, the law of iterated expectations and Assumption 9,

E
[
sgn(∆Z)E(∆D|Z1, S

I = 0, D1)
]

= E

[
(SI

+ − SI
−)E

(
∆D(1 − SI)

P (SI = 0|Z1, D1)

∣∣∣∣∣Z1, D1

)]

= E

[
E(SI

+ − SI
−|Z1, D1)E

(
∆D(1 − SI)

P (SI = 0|Z1, D1)

∣∣∣∣∣Z1, D1

)]

= E

[
E

(
∆D(1 − SI)E(SI

+ − SI
−|Z1, D1)

P (SI = 0|Z1, D1)

∣∣∣∣∣Z1, D1

)]

= E

[
∆D(1 − SI)E(SI

+ − SI
−|Z1, D1)

P (SI = 0|Z1, D1)

]

= E

[
∆DE(SI

+ − SI
−|Z1, D1)

P (SI = 0|Z1, D1)
P (SI = 0)

∣∣∣∣∣SI = 0
]

= E

[
∆DP (SI

+ = 1|Z1, D1) − P (SI
− = 1|Z1, D1)

P (SI = 0|Z1, D1)

∣∣∣∣∣SI = 0
]

× P (SI = 0),

as required. The same argument replacing ∆D by ∆Y completes the proof □

9.8 Theorem 7

Using the same steps as in the proof of Theorem 1, one can show that for all t ≥ 2,

δ1t = E

(
Yt − Yt−1 − E(Yt − Yt−1|Dt−1, St = 0)

Dt −Dt−1

∣∣∣∣∣St = 1
)
.

This proves the result □

9.9 Theorem 8

The proof is similar to that of Theorem 7, and is therefore omitted.
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