
HAL Id: hal-03873930
https://sciencespo.hal.science/hal-03873930

Preprint submitted on 27 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Not all Differences-in-differences are Equally
Compatible with Outcome-based Selection Models

Clément de Chaisemartin, Xavier d’Haultfoeuille

To cite this version:
Clément de Chaisemartin, Xavier d’Haultfoeuille. Not all Differences-in-differences are Equally Com-
patible with Outcome-based Selection Models. 2022. �hal-03873930�

https://sciencespo.hal.science/hal-03873930
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Not all Differences-in-differences are Equally Compatible
with Outcome-based Selection Models

Clément de Chaisemartin Xavier D’Haultfœuille∗

We are interested in the effect of a binary treatment on an outcome. For every (g, t) ∈ {1, ..., G}×
{1, ..., T}, let Dg,t denote the value of the treatment in group g at period t. For any d ∈ {0, 1}, let
Yg,t(d) denote the potential outcome of group g at period t if Dg,t = d. The observed outcome is
Yg,t = Yg,t(Dg,t). Implicitly, our potential outcome notation rules out dynamic and anticipatory
effects: groups’ period-t outcome is only affected by their current treatment, it does not depend
on their past and future treatments. We assume that groups’ treatments and outcomes are
random. This is in line with the standard modelling framework in panel data models, and nests
as a special case the modelling framework in differences-in-differences models, where groups’
treatments are often implicitly conditioned upon.

Throughout the note, we maintain the following assumptions.

Assumption 1 (Independent groups) The vectors (Yg,t(0), Yg,t(1), Dg,t)t∈{1,...,T } are mutually in-
dependent.

Assumption 2 (Parallel trends) For all (g, t) ∈ {1, ..., G} × {2, ..., T}, E(Yg,t(0) − Yg,t−1(0))
does not vary across g.

Assumption 1 requires that potential outcomes and treatments of different groups be indepen-
dent, but it allows these variables to be correlated over time within each group. This is a
commonly-made assumption in difference-in-differences (DID) analysis, where standard errors
are usually clustered at the group level (see Bertrand, Duflo and Mullainathan, 2004). As-
sumption 2 requires that the expectation of the untreated outcome follow the same evolution
over time. It is a generalization of the standard common trends assumption in DID models
(see, e.g., Abadie, 2005) to settings with multiple periods and groups. Note that with iden-
tically distributed groups, Assumption 2 holds mechanically, but here we allow for potentially
non-identically distributed groups.

We consider two exogeneity assumptions.
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Assumption 3 (Strong exogeneity) For all (g, t) ∈ {1, ..., G} × {2, ..., T},

E(Yg,t(0) − Yg,t−1(0)|Dg,1, ..., Dg,T ) = E(Yg,t(0) − Yg,t−1(0)).

Assumption 3 is related to the strong exogeneity condition in panel data models. It requires
that the evolution of group g’s untreated outcome from t − 1 to t be mean independent of group
g’s treatments from period 1 to T .

Assumption 4 (Weaker exogeneity) For all (g, t) ∈ {1, ..., G} × {2, ..., T},

E(Yg,t(0) − Yg,t−1(0)|Dg,1, ..., Dg,t) = E(Yg,t(0) − Yg,t−1(0)).

Assumption 4 is weaker than Assumption 3. It requires that the evolution of group g’s untreated
outcome from t − 1 to t be mean independent of group g’s treatments from period 1 to t.
Assumption 4 is still stronger than the standard weak exogeneity assumption in panel data
models, which only requires that Yg,t(0)−Yg,t−1(0) be mean independent of group g’s treatments
from period 1 to t − 1.

Moving from Assumption 3 to Assumption 4 restricts the DIDs one can use for identification, and
the set of treatment effects that can be estimated. Assume G = 4 and T = 3. In what follows, we
condition on D1,1 = 0, D1,2 = D1,3 = 1 (group 1 is untreated at period 1 and treated at periods
2 and 3), D2,1 = 0, D2,2 = 1, D2,3 = 0 (group 2 is untreated at periods 1 and 3 and treated at
period 2), D3,1 = 0, D3,2 = 0, D3,3 = 0 (group 3 is never treated), and D4,1 = 1, D4,2 = 0, D4,3 = 0
(group 4 is treated at period 1 and untreated at periods 2 and 3). Then, under Assumptions
1-3, a DID comparing group 1’s period-one-to-three outcome evolution to that of group 2 is
unbiased for group 1’s treatment effect at period 3, conditional on groups’ 1 and 2 period-1-to-3
treatments:

E (Y1,3 − Y1,1 − (Y2,3 − Y2,1)|D1,1 = 0, D1,2 = D1,3 = 1, D2,1 = 0, D2,2 = 1, D2,3 = 0)
=E (Y1,3(1) − Y1,3(0)|D1,1 = 0, D1,2 = D1,3 = 1, D2,1 = 0, D2,2 = 1, D2,3 = 0)
+E (Y1,3(0) − Y1,2(0) + Y1,2(0) − Y1,1(0)|D1,1 = 0, D1,2 = D1,3 = 1)
−E (Y2,3(0) − Y2,2(0) + Y2,2(0) − Y2,1(0)|D2,1 = 0, D2,2 = 1, D2,3 = 0)
=E (Y1,3(1) − Y1,3(0)|D1,1 = 0, D1,2 = D1,3 = 1, D2,1 = 0, D2,2 = 1, D2,3 = 0)
+E (Y1,3(0) − Y1,2(0) + Y1,2(0) − Y1,1(0))
−E (Y2,3(0) − Y2,2(0) + Y2,2(0) − Y2,1(0))
=E (Y1,3(1) − Y1,3(0)|D1,1 = 0, D1,2 = D1,3 = 1, D2,1 = 0, D2,2 = 1, D2,3 = 0) . (1)

The first equality follows from Assumption 1, and from adding and subtracting Y1,3(0), Y1,2(0),
and Y2,2(0). The second equality follows from Assumption 3. The third equality follows from
Assumption 2.
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Equation (1) no longer holds if one replaces Assumption 3 by Assumption 4: Assumption 4 does
not ensure that Y1,2(0) − Y1,1(0) (resp. Y2,2(0) − Y2,1(0)) is mean independent of (D1,1, D1,2, D1,3)
(resp. of (D2,1, D2,2, D2,3)). On the other hand, under Assumptions 1-2 and 4, a DID comparing
group 1’s period-1-to-2 outcome evolution to that of a group 3 is unbiased for group 1’s treatment
effect at period 2, conditional on groups’ 1 and 3 period-1-to-2 treatments:

E (Y1,2 − Y1,1 − (Y3,2 − Y3,1)|D1,1 = 0, D1,2 = 1, D3,1 = 0, D3,2 = 0)
=E (Y1,2(1) − Y1,2(0)|D1,1 = 0, D1,2 = 1, D3,1 = 0, D3,2 = 0)
+E (Y1,2(0) − Y1,1(0)|D1,1 = 0, D1,2 = 1)
−E (Y3,2(0) − Y3,1(0)|D3,1 = 0, D3,2 = 0)
=E (Y1,2(1) − Y1,2(0)|D1,1 = 0, D1,2 = 1, D3,1 = 0, D3,2 = 0)
+E (Y1,2(0) − Y1,1(0))
−E (Y3,2(0) − Y3,1(0))
=E (Y1,2(1) − Y1,2(0)|D1,1 = 0, D1,2 = 1, D3,1 = 0, D3,2 = 0) . (2)

The first equality follows from Assumption 1, and from adding and subtracting Y1,2(0). The
second equality follows from Assumption 4. The third equality follows from Assumption 2.

Under Assumptions 1-2 and 4, we also have that a “backward” DID comparing group 3’s period-
2-to-1 outcome evolution to that of a group 4 is unbiased for group 4’s treatment effect at period
1, conditional on groups’ 1 and 4 period-1-to-2 treatments:

E (Y3,1 − Y3,2 − (Y4,2 − Y4,1)|D3,1 = 0, D3,2 = 0, D4,1 = 1, D4,2 = 0)
=E (Y4,1(1) − Y4,1(0)|D3,1 = 0, D3,2 = 0, D4,1 = 1, D4,2 = 0)
+E (Y3,1(0) − Y3,2(0)|D3,1 = 0, D3,2 = 0)
−E (Y4,2(0) − Y4,1(0)|D4,1 = 1, D4,2 = 0)
=E (Y4,1(1) − Y4,1(0)|D3,1 = 0, D3,2 = 0, D4,1 = 1, D4,2 = 0)
+E (Y3,1(0) − Y3,2(0))
−E (Y4,2(0) − Y4,1(0))
=E (Y4,1(1) − Y4,1(0)|D3,1 = 0, D3,2 = 0, D4,1 = 1, D4,2 = 0) . (3)

The first equality follows from Assumption 1, and from adding and subtracting Y4,1(0). The
second equality follows from Assumption 4. The third equality follows from Assumption 2.

More generally, under Assumptions 1-2 and 4, we can estimate the treatment effects of only two
sets of (g, t) cells. The first set are (g, t) cells such that Dg,t = 1, Dg,t−1 = 0, whose treatment
effect can be estimated using a “forward first-difference DID” comparing g’s t − 1-to-t outcome
evolution to that of groups untreated at t − 1 and t. The second set are (g, t) cells such that
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Dg,t = 1, Dg,t+1 = 0, whose treatment effect can be estimated using a “backward first-difference
DID” comparing g’s t+1-to-t outcome evolution to that of groups untreated at t+1 and t. Under
Assumptions 1-3, we can estimate the treatment effects of a potentially much larger set of cells.
Specifically, we can estimate the treatment effects of all (g, t) cells such that Dg,t = 1, Dg,t′ = 0
for some t′ ̸= t, using a “forward or backward long-difference DID” comparing g’s t′-to-t outcome
evolution to that of groups untreated at t′ and t.

Assumption 4 has less identifying power than Assumption 3, but it is more compatible than As-
sumption 3 with models where groups get treated because their expected benefit from treatment
is larger than the cost, the so-called Roy selection model (see Roy, 1951).

Assumption 5 (Roy selection with independent shocks)

1. For d ∈ {0, 1}, Yg,1(d) = εg,1(d) and Yg,t(d) = Yg,t−1(d)+εg,t(d) for t ≥ 2, with E(εg,t(d)) =
λt(d) for all g, and (εg,t(0), εg,t(1)) mutually independent across t.

2. Dg,1 = 0 and Dg,t = 1{E(Yg,t(1) − Yg,t(0)|Dg,1, ..., Dg,t−1, Yg,1, ..., Yg,t−1) ≥ cg,t} for t ≥ 2.

Point 2 of Assumption 5 is a Roy selection equation, where groups predict their period-t treat-
ment effect using all their past treatments and outcomes. If Assumption 5 holds, Assumption
4 holds while Assumption 3 fails. Accordingly, first-difference DIDs are unbiased while long-
difference DIDs are biased. Of course, Assumption 4 does not hold in any model with Roy
selection. For instance, assuming that the shocks are independent across t is critical: Assump-
tions 4 and 3 both fail with correlated shocks.1 Still, this shows that Assumption 4 is compatible
with some types of Roy selection, something which has not be shown yet for Assumption 3.

Assumption 4 is also more compatible than Assumption 3 with models where groups get treated
because they experience a negative shock, the so-called Ashenfelter’s dip.

Assumption 6 (Ashenfelter’s dip with independent shocks)

1. Yg,1(0) = εg,1(0) and Yg,t(0) = Yg,t−1(0) + εg,t(0) for t ≥ 2, with E(εg,t(0)) = λt(0) for all
g, and εg,t(0) mutually independent across t.

2. Dg,1 = 0 and Dg,t = 1{E(Yg,t(0)|Dg,1, ..., Dg,t−1, (1−Dg,1)Yg,1, ..., (1−Dg,t−1)Yg,t−1) ≤ mg,t}
for t ≥ 2.

1The model Yg,t(d) = Yg,t−1(d) + εg,t(d) is also critical, but without it may be hard to rationalize any parallel
trends assumption. For instance, if Yg,t(0) = ρYg,t−1(0) + εg,t(0) with ρ < 1, parallel trends on Yg,t(0) requires
that groups have the same expectation of (ρ−1)Yg,t−1(0)+εg,t(0), which is hard to rationalize without imposing
that they have the same expectation of Yg,t−1(0) and εg,t(0), a strong assumption at odds with the DID logic.
If Yg,t(0) = ρYg,t−1(0) + εg,t(0), it may be preferable to impose a sequential ignorability assumption, see e.g.
Robins (1986) and Bojinov, Rambachan and Shephard (2021)
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In Point 2 of Assumption 6, groups get treated at period t if their predicted Yg,t(0) given their
past untreated outcomes is below some threshold. Under Assumption 6, if group g is untreated
at period t − 1,

Dg,t = 1{Yg,t−1(0) ≤ mg,t} = 1{εg,t−1 ≤ mg,t − Yg,t−2(0)}.

Accordingly g gets treated at period-t if its period-t−1 shock is low (lower than mg,t −Yg,t−2(0))
and remains untreated otherwise, the so-called Ashenfelter’s dip. If Assumption 6 holds, As-
sumption 4 holds while Assumption 3 fails. Again, assuming independent shocks is critical for
this result to hold, but this at least shows that Assumption 4 is compatible with some types of
Ashenfelter’s dip.

Note that when T = 2, the selection equation in Point 2 of Assumption 6 is similar to a selection
equation previously considered by Ashenfelter and Card (1985) and Ghanem, Sant’Anna and
Wüthrich (2022). Under that selection equation and a model similar to that in Point 1 of
Assumption 6, Ghanem, Sant’Anna and Wüthrich (2022) show that the standard parallel trends
assumption with two periods holds.

To conclude, under a strong-exogeneity assumption one can use first- and long-difference DIDs,
to estimate the treatment effects of a large set of (g, t) cells. On the other hand, under a
weaker exogeneity assumption, one can only use first-difference DIDs to estimate the treatment
effects of a more restricted set of (g, t) cells. However, the weaker-exogeneity assumption may
be more plausible, as under some assumptions on the outcome equation, it is compatible with
two prominent selection models, namely Roy selection and Ashenfelter’s dip. Those results have
consequences for estimators recently proposed in the heterogeneity-robust DID literature. The
heterogeneity-robust DID estimator proposed by de Chaisemartin and D’Haultfœuille (2020)
for the joiners only leverages first-difference DIDs. The authors show that their estimator is
unbiased for joiners’ average treatment effect under Assumption 3. Under Assumption 4, one
could show that their estimator is consistent for that parameter, though it is no longer unbiased.
Accordingly, the consistency of their estimator relies on an exogeneity assumption compatible
with some forms of Roy selection and Ashenfelter’s dip.

5



References

Abadie, Alberto. 2005. “Semiparametric Difference-in-Differences Estimators.” Review of Eco-
nomic Studies, 72(1): 1–19.

Ashenfelter, Orley, and David Card. 1985. “USING THE LONGITUDINAL STRUCTURE
OF EARNINGS TO ESTIMATE THE EFFECT OF TRAINING PROGRAMS.” The Review
of Economics and Statistics, 67(4): 648–660.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. “How much
should we trust differences-in-differences estimates?” The Quarterly Journal of Economics,
119(1): 249–275.

Bojinov, Iavor, Ashesh Rambachan, and Neil Shephard. 2021. “Panel experiments and
dynamic causal effects: A finite population perspective.” Quantitative Economics, 12(4): 1171–
1196.

de Chaisemartin, Clement, and Xavier D’Haultfœuille. 2020. “Two-way fixed effects
estimators with heterogeneous treatment effects.” American Economic Review, 110(9): 2964–
96.

Ghanem, Dalia, Pedro HC Sant’Anna, and Kaspar Wüthrich. 2022. “Selection and
parallel trends.” arXiv preprint arXiv:2203.09001.

Robins, James. 1986. “A new approach to causal inference in mortality studies with a sustained
exposure period-application to control of the healthy worker survivor effect.” Mathematical
modelling, 7(9-12): 1393–1512.

Roy, Andrew Donald. 1951. “Some thoughts on the distribution of earnings.” Oxford economic
papers, 3(2): 135–146.

6


