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Setup We consider a design with two time periods, such that D1 = 0 and D2 > 0: no
unit is treated at period 1, and all units receive a positive treatment dose at period 2. This
corresponds to an heterogeneous adoption design, where all units adopt the treatment at period
2 but with varying treatment intensities. We assume that D2 is continuously distributed on R+.
Accordingly, P (D2 = 0) = 0: there are no stayers such that D1 = D2. On the other hand, we
assume that there are quasi-stayers: fD2(0) > 0 and d 7→ fD2(d) is continuous, where fD2(.) is
the density of the period-two treatment. The potential outcome at period t under treatment d

is Yt(d), and the observed outcome is Yt := Yt(Dt).

Target parameter Our target parameter is

θ0 := E[Y2(D2) − Y2(0)],

the average effect, at period 2, of switching the treatment from 0 to its actual value. We
conjecture that the estimation strategy we propose below would still apply, up to a normalization,
if one were to consider instead

E[Y2(D2) − Y2(0)]
E[D2]

= E

[
D2

E[D2]
× Y2(D2) − Y2(0)

D2

]
,

a weighted average of the slopes of units’ potential outcomes functions between 0 and their actual
treatments, where units with a larger period-two treatment receive more weight. On the other
hand, we conjecture that the estimation strategy we propose below would not readily extend
if one were to consider E[(Y2(D2) − Y2(0))/D2], the unweighted average of the slopes of units’
potential outcomes functions between 0 and their actual treatments.
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Identifying assumption and estimation strategy We assume strong exogeneity:

E[Y2(0) − Y1(0)|D2] = E[Y2(0) − Y1(0)] =: µ.

Then θ0 = E[Y2 − Y1] − µ. µ is for instance identified by E[Y2 − Y1|D2 = 0], thus implying
that θ0 is also identified. However, estimating E[Y2 − Y1|D2 = 0] is not straightforward, as
P (D2 = 0) = 0: there are no stayers. Instead, we propose to use observations with D2 lower
than some bandwidth h to estimate E[Y2 − Y1|D2 = 0]. We derive below an optimal bandwidth
h, namely a bandwidth minimizing an asymptotic approximation of the mean-squared error of
the resulting estimator of θ0, in the spirit of the work of Imbens & Kalyanaraman (2012) for
regression discontinuity designs.

Optimal bandwidth to estimate θ0 We assume we have an iid sample (D2i, Y1i, Y2i)i=1,...,n.
We estimate θ0 by:

θ̂h = 1
n

n∑
i=1

(Yi2 − Yi1) − µ̂h,

with µ̂h the intercept in the local linear regression of Yi2 − Yi1 on Di2 for the i’s s.t. Di2 ≤ h:

µ̂h = 1
nh

∑
i:Di2≤h

(Yi2 − Yi1) − D2h

V̂h(D2)
Ĉovh(Y2 − Y1, D2),

where nh = #{i : Di2 ≤ h}, D2h = ∑
i:Di2≤h Di2/nh and

V̂h(D2) = 1
nh

∑
i:Di2≤h

(Di2 − D2h)2,

Ĉovh(Y2 − Y1, D2) = 1
nh

∑
i:Di2≤h

(Di2 − D2h)(Yi2 − Yi1).

We now derive asymptotic approximations of the bias and variance of θ̂h, conditional on D :=
(D12, ..., Dn2), when n → +∞ and h → 0. Let f(d) = E[Y2 − Y1|D2 = d], so that µ = f(0) and
assume that f is twice differentiable at 0. Then:

−Bias(θ̂h|D) = Bias(µ̂h|D)

= 1
nh

∑
i:Di2≤h

f(Di2) − D2h

V̂h(D2)
1
nh

∑
i:Di2≤h

f(Di2)(Di2 − D2h) − f(0)

≃ f(0) − f(0) + f ′(0)D2h − f ′(0) D2h

V̂h(D2)
V̂h(D2) + f ′′(0)

2 D2
2h

− f ′′(0)D2h

2V̂h(D2)
Ĉovh(D2

i2, Di2)

= f ′′(0)
2

[
D2

2h − D2h

V̂h(D2)
Ĉovh(D2

i2, Di2)
]

,
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where the approximation follows from a Taylor expansion of order 2.

Now, remark that as h → 0,

E[Dk
2 |D2 ≤ h] =

∫ h
0 ukfD2(u)du∫ h

0 fD2(u)du

∼fD2(0)
∫ h

0 ukdu

fD2(0)
∫ h

0 du

∼ hk

k + 1 ,

where the equivalence follows by continuity of fD2 at 0. This implies that E[D2
2|D2 ≤ h]/E[D2|D2 ≤

h]2 → 4/3 as h → 0. Therefore, as h → 0,

E[D2|D2 ≤ h]2
V (D2|D2 ≤ h]) → 3. (1)

This implies after some algebra that

Bias(θ̂h|D) ∼ f ′′(0)h2

12 .

Now, we consider the conditional variance of θ̂h. Let σ2(d) := V (Y2 − Y1|D2 = d), assumed to
be continuous at d = 0, and let σ2 := E[σ2(D2)]. We have:

V (θ̂h|D) = 1
n2

n∑
i=1

σ2(D2i) + V (µ̂h|D) − 2
n

Cov
 ∑

i:Di2≤h

(Yi2 − Yi1), µ̂h|D


= σ2 + op(1)

n
+

V
(∑

i:Di2≤h Yi2 − Yi1|D
)

nh

( 1
nh

− 2
n

)
+
(

D2h

V̂h(D2)

)2 1
n2

h

∑
i:Di2≤h

(Di2 − D2h)2

× σ2(Di2) − 2D2h

nhV̂h(D2)

( 1
nh

− 1
n

) ∑
i:Di2≤h

(
D2i − D2h

)
σ2(D2i)

= σ2

n
+ (σ2(0) + o(1))

( 1
nh

− 2
n

)
+ σ2(0) + o(1)

nh

(
D2h

)2

V̂h(D2)
+ op

( 1
n

)

= 4σ2(0)
nhfD2(0) (1 + op(1)) .

The second equality follows from the law of large numbers. The third follows from Taylor
expansions of order 0. The fourth follows from nh/n = op(1), nh = nP (D2 ≤ h)(1 + op(1)) =
nhfD2(0)(1 + op(1)) (where the last equality follows again by continuity of fD2 at 0), and (1).
Hence,

MSE(θ̂h|D) ≃ 4σ2(0)
nhfD2(0) + f ′′(0)2h4

144 .
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The optimal h∗ of the approximation satisfies

0 = −4σ2(0)
nh∗2fD2(0) + f ′′(0)2h∗3

36 .

Hence,

h∗ =
[

144σ2(0)
nf ′′(0)2fD2(0)

]1/5

.

Estimation of the optimal bandwidth Estimating h∗ requires estimating σ2(0), f ′′(0), and
fD2(0). σ2(0) may be estimated as the difference between the intercept in a local linear regression
of (Yi2 − Yi1)2 on Di2 and the square of the intercept in a local linear regression of Yi2 − Yi1 on
Di2. f ′′(0) may be estimated as the coefficient on D2

i2 in a local quadratic regression of Yi2 − Yi1

on Di2 and D2
i2. Finally, fD2(0) may be estimated using a kernel density estimator.

Next steps This project is still at a very preliminary stage, and many important steps still
need to be conducted. First, in lieu of the heuristic derivation of the optimal bandwidth above, a
formal derivation will have to be provided. Second, the asymptotic distribution of n2/5(θ̂h∗ − θ0)
will have to be provided. This distribution will have a first-order bias, which will have to be
estimated to construct valid confidence intervals, in the spirit of the work of Calonico et al. (2014)
for regression discontinuity designs. Third, in regression discontinuity designs, the treatment
effect estimator is the difference between two estimators converging at the non-parametric n2/5

rate. Here, θ̂h∗ is the difference between an estimator converging at the parametric rate and
an estimator converging at the non-parametric rate. Therefore, the asymptotic distribution of
θ̂h∗ only depends on that of the second estimator. This is slightly unusual, and may reduce the
ability of this asymptotic distribution to replicate the finite sample distribution of θ̂h∗ , an issue
that we shall investigate via simulations.
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