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Eduardo Perez-Richet† Vasiliki Skreta‡
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Abstract

We study the optimal design of tests with manipulable inputs. Tests
take a unidimensional state of the world as input, and output an informative
signal to guide a receiver’s approve or reject decision. The receiver wishes
to only approve states that comply with her baseline standard. An agent
with a preference for approval can covertly falsify the state of the world
at a cost. We characterize receiver-optimal tests and show they rely on
productive falsification by compliant states. They work by setting a more
stringent operational standard, and granting noncompliant states a positive
approval probability to deter them from falsifying to the standard. We also
study how falsification-detection technologies improve optimal tests. They
allow the designer to build an implicit cost of falsification into the test, in
the form of signal devaluations. Exploiting this channel requires enriching
the signal space.
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1 Introduction

In modern economies, decisions are increasingly guided by tests, ratings, and al-

gorithms. Yet, these information-production technologies are vulnerable to input

manipulations, that is, falsification. Consider, for instance, the problem of regulat-

ing vehicles’ emissions. Compliance with emission standards must be checked by

testing. However, emissions tests have proved to be manipulable through defeat de-

vices1 that artificially reduce vehicles’ emissions in testing conditions. Accounting

for possible input manipulations is an integral part of designing tests that provide

valuable information. We propose a theory in which an agent can manipulate a

test by covertly falsifying its inputs. We show optimal tests must induce productive

falsification, that is, falsification that serves the interests of the designer. We also

examine how the availability of a falsification-detection technology may improve

optimal tests and affect their nature. We show enriching the set of signals and

shaping the test so that signals are progressively devalued in proportion to the

amount of falsification is then optimal, thereby allowing the designer to build an

implicit cost of falsification into the test.

Our analysis is based on a model of test manipulation as costly falsification

of inputs. We now motivate this choice with additional examples. Financial in-

stitutions may hide assets or misreport their holdings when facing stress tests.

Teachers may teach their students to the test, effectively falsifying their true abil-

ity. Online shoppers may adapt their browsing behavior to get better deals from

pricing algorithms.2 Falsification costs may reflect expected fines or reputational

damage in case manipulations are discovered, explicit financial or technological

costs, psychological lying costs,3 or the opportunity cost of altering one’s behavior

as in the online-shopping example. We examine the impact of their magnitude.

We show that, whereas higher falsification costs benefit the designer, they have a

non-monotonic effect on the agent’s payoff.

1“ . . . with defeat devices programmed into the vehicles’ complex emissions control software.
The devices cause the vehicles to produce compliant results during emissions testing. But when
not running a test, the vehicles’ emissions controls perform differently, and less effectively. . . ”
Source: The United States department of Justice; see also https://www.justice.gov/opa/

press-release/file/1316601/download.
2As another example, the German artist Simon Weckert hacked the Google Maps algorithm

for a performance, creating a fake traffic jam by walking a cart filled with cell phones along a
street of Berlin.

3Evidence that lying is costly is documented in Abeler, Nosenzo, and Raymond (2019), for
example.
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We study a designer-agent-receiver model. A state of the world is drawn from

a bounded interval that contains both positive and negative states. The designer,

seeking to maximize the receiver’s welfare, commits to a test (a Blackwell exper-

iment) that takes the state of the world as an input, and outputs an informative

signal. Based on this signal, the receiver makes a binary approve-reject decision.

Her gain from approval is equated with the state of the world, so her baseline stan-

dard for approval is 0, and her first-best is to approve positive, henceforth compli-

ant, states, and reject negative, henceforth noncompliant, states. The agent has

a state-independent preference for approval. Knowing its design, he can covertly

falsify the state of the world that goes into the test. We say that falsification is

productive whenever it raises the approval probability of compliant states while

preserving that of noncompliant ones compared to no falsification.

In the emissions example, the test designer is the regulator (the EPA in the

US).4 The state of the world is the difference between the emission standard and

the true emission level. The EPA also acts as the receiver, deciding whether a

vehicle conforms to environmental standards.5 The agent is a car manufacturer,

who can resort to defeat devices to falsify emission levels while being tested.

We assume the cost of falsification, γc(t|s), depends on the (true) source state s

and the target state t, and is increasing in the distance between t and s. The scaling

factor γ captures the magnitude of falsification costs. We make two additional

assumptions: First, for noncompliant states, falsifying as the highest state is more

costly than falsifying as the lowest state. Second, the cost function satisfies the

triangular inequality for upward falsification. Given our monotonicity assumption,

we can interpret the triangular inequality as a form of increasing returns to the

scale of falsification.

Theorem 1 characterizes a receiver-optimal test. A recommendation principle

allows us to focus on obedient tests with two signals, approve and reject. The

optimal test recommends approval with top approval probability p for states above

an operational standard ŝ, and with nominal probability
{
p− γc(ŝ|s)

}+
for other

4“All new cars and trucks sold in the U.S. must be certified to meet federal emis-
sion standards, such as limits on the amount of smog-forming and greenhouse gas emis-
sions that they can produce. Most testing is performed by auto manufacturers at their
own facilities. EPA then audits the data and performs its own testing on some of the
vehicles to confirm the manufacturers’ results.” https://www.epa.gov/greenvehicles/

testing-national-vehicle-and-fuel-emissions-laboratory
5We show the designer’s problem and optimal outcome are identical if the designer can commit

both to a test and a contingent approval rule (Proposition 1), so our results are valid whether
or not the designer and the agent are the same entity, as long as they have aligned preferences.
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states.6 For every state below ŝ with a positive nominal approval probability, the

agent is then indifferent between two optimal falsification strategies: not falsifying,

or falsifying to the standard ŝ. Then, breaking this indifference in the receiver’s

favor is optimal, requiring that noncompliant states do not falsify while compliant

states below ŝ falsify to ŝ. Falsification is then productive because it allows all

compliant states to be approved with top probability p, whereas noncompliant

states are approved with their nominal probability.

The optimal values of p and ŝ depend on the magnitude of falsification costs.

If falsification costs are high, the optimal outcome is obtained by setting p = 1

and the standard ŝ so that γc(ŝ|0) = 1, which is just high enough to deter all non-

compliant states from falsifying to ŝ. Productive falsification by compliant states

then implies they are all approved with certainty, whereas noncompliant states

are rejected with certainty due to the high falsification cost, yielding the receiver’s

first-best. With intermediate falsification costs, setting the highest possible opera-

tional standard and p = 1 is optimal. All compliant states are then approved with

certainty, but some noncompliant states must be approved with positive probabil-

ity to deter them from falsifying to the standard. When falsification costs are low,

setting the highest operational standard and approving some noncompliant states

with positive probability is still optimal. But the top approval probability must

also be reduced (p < 1) to avoid approving extremely low states with positive

probability, leading compliant states to be rejected with positive probability.

The intuition underlying the optimal test is that, by assigning the top ap-

proval probability p only to compliant states above ŝ and letting lower compliant

states falsify to the standard, the designer minimizes the approval probability of

noncompliant states. If, instead, the test directly assigned probability p to all

compliant states, some noncompliant states would falsify and get approved with

probability p. We show inducing productive falsification is in fact necessary for

optimal testing, so the truth-telling implication of the revelation principle fails in

our framework.

We proceed to examine the effect of falsification-detection technologies on test

design. Sophisticated tests and algorithms may include falsification-detection ca-

pabilities. We can think of such tests as relying on additional inputs that indicate

whether the agent is falsifying the state, and to what extent. We model these tech-

nologies by simply assuming they make the agent’s falsification strategy observ-

6Throughout the paper, we denote z+ = max{z, 0}.
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able to the receiver. Thus, we study optimal test design under overt falsification.

Overtness endows the designer with a new lever in the form of signal devaluations.

Indeed, because deviations from an anticipated falsification strategy are observed,

they lead the receiver to adjust her expectation following each signal. Devaluations

occur when the posterior mean following a signal is adjusted downward, possibly

leading the receiver to switch from approval to rejection. By building the threat

of devaluation into the test, the designer creates an implicit cost of falsification

that makes deviations less attractive, and improves test performance. To take

advantage of this devaluation channel, however, the designer must use more than

two signals.

To illustrate this idea, we characterize an optimal test when the state-space is

binary in Theorem 2, and show it uses a continuum of signals that get progressively

devalued as the amount of falsification increases. This characterization is possible

because, in the binary-state setting, a falsification-proofness principle akin to the

truth-telling implication of the revelation principle holds.

We then go back to the continuous-state model, where neither the falsification-

proofness principle nor the recommendation principle hold. In Proposition 9,

we show how to improve on the test from Theorem 1 by adding a third signal

that leverages the devaluation channel. We thus obtain a new test that relies on

both productive falsification and devaluations. The gains allowed by falsification

detection are most important when falsification costs are low. If falsification is

costless, relying on such technologies is the only way to deliver useful information

to the receiver.

Our analysis contributes to practical test design by conceptualizing two levers

to improve test performance: productive falsification and devaluations. Our test

is equivalent to a mechanism in the tradition of Myerson (1982), and the litera-

ture on mediation and communication equilibria (Aumann, 1974; Forges, 1986).

Indeed, as the principal in Myerson (1982), our designer commits to a mapping

that takes the agent’s report as input and outputs messages to the receiver. In

this literature, the revelation principle is twofold, combining a truth-telling (or

falsification-proofness) principle and a recommendation principle. This contrasts

with our framework where costly falsification causes the falsification-proofness

principle to fail with more than two states, and overt falsification causes the rec-

ommendation principle to fail.7 Hence, we contribute to mechanism design theory

7Without costly falsification or overtness, a Myersonian principal cannot achieve anything in
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by deriving optimal mechanisms in situations where the revelation principle fails.

We also contribute to the literature on mechanism design with costly reporting, or

falsification, by providing the first (to our knowledge) characterization of an opti-

mal mechanism that induces falsification. Lacker and Weinberg (1989) incorporate

costly state falsification in a model of risk-sharing contracts and characterize op-

timal falsification-proof contracts, but also show they may be outperformed by

contracts that induce falsification.8

Related literature. By introducing agency, in the form of costly state falsifi-

cation, to the standard information design9 setting of Kamenica and Gentzkow

(2011) or Bergemann and Morris (2016), we add to a growing literature on in-

formation design when an agent can react to the experiment by undertaking an

action that alters its informational content. For example, the agent can choose

whether to take the test in Rosar (2017), or to disclose additional information in

Bizzotto, Rüdiger, and Vigier (2020) and Terstiege and Wasser (2020).10

Frankel and Kartik (2021) and Ball (2020) study the optimal design of linear

scores in a setting in which the agent has a privately known gaming ability (akin

to our publicly known cost-scaling parameter γ) and the receiver has a continuum

of actions and seeks to most accurately match the agent’s fundamental type, which

is the analog of our state of the world, and is multidimensional in Ball (2020). The

logic of their results is that information about gaming ability tends to crowd out

information about fundamental type. Under their assumptions, falsification does

not distort information when gaming ability is public because higher types falsify

higher. This is in stark contrast to our model, despite the fact that we study

similar agency frictions. Another distinction is that we characterize optimal tests

without restrictions on the class of tests the designer can choose from.

The two aforementioned papers build on Frankel and Kartik (2019), who study

the effect of gaming without taking a design perspective. In an analogous vein, Hu,

Immorlica, and Vaughan (2019) analyze strategic manipulations of a given classi-

fication algorithm, and Cunningham and Moreno de Barreda (2015) equilibrium

our framework (see Remark 1).
8The relatively small economics and computer science literature on mechanism design with

reporting costs (Kephart and Conitzer, 2016; Deneckere and Severinov, 2017; Severinov and Tam,
2019) focuses on mechanisms with transfers. All these papers provide conditions on reporting
costs to ensure truth-telling is without loss.

9See Bergemann and Morris (2019) and Kamenica (2019) for reviews of this literature
10Other examples include Lipnowski, Ravid, and Shishkin (2019) and Nguyen and Tan (2020),

where the agent is the sender, who can manipulate the output of the experiment.
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state falsification in a model with a fixed testing technology.

Falsification can be interpreted as lying, which connects our paper to the lit-

erature on strategic communication and interactions with costly lying (Kartik,

Ottaviani, and Squintani, 2007; Kartik, 2009; Sobel, 2020). The key difference

from these works is that we design optimal channels (tests) rather than relying

on direct unmediated communication. Falsification can also be thought of as sig-

nalling (Spence, 1973), in a model in which each type of the agent (state of the

world) corresponds to a distinct natural (least costly) action, and the test takes

these actions as inputs. The agent might then find choosing a different action so

as to influence the decision of the receiver is optimal. The cost of falsification is

simply the opportunity cost of deviating from the natural action.

2 The covert-falsification model

A decision maker, henceforth receiver, can choose between two actions, which we

label approve and reject. The receiver’s payoff depends on a state of the world. She

faces an agent with a state-independent preference for approval. The receiver can

rely on information provided by a test that takes the state of the world as an input

and outputs a signal. The agent can, however, manipulate the test by covertly

falsifying the state of the world. We seek to solve the problem of a designer who

can commit to a test so as to maximize the receiver’s payoff.

States and payoffs. We normalize the receiver’s rejection payoff to 0, and

equate the state of the world s ∈ S with her payoff from approval, where S =[
−s, s

]
, and −s < 0 < s. We let S− = [−s, 0) and S+ = [0, s], and henceforth

refer to states in S− as negative, or noncompliant, and to states in S+ as positive,

or compliant. Thus, the receiver wishes to approve compliant states, and reject

noncompliant states. We say 0 is the baseline standard for approval. The agent

obtains payoff 1 upon approval, and 0 otherwise.

Prior. The prior distribution of states of the world is a probability measure π,

which we assume to be atomless and have full support on S. We denote its cdf as

Fπ, and its mean as µπ = Eπ(s). If µπ < 0, we let s0 denote the largest state such

that the receiver would approve if she knew all lower states are excluded. Hence,

s0 is the unique state such that Eπ(s|s ≥ s0) = 0. For convenience, we adopt the
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convention that s0 = −s when µπ ≥ 0.

Tests. A test is a Blackwell experiment (Blackwell, 1951, 1953): a measurable

space of signals X, and a Markov kernel τ from S to X, so that τ(s) ∈ ∆X

denotes the distribution of signals generated by state s. The prior π and the test

τ together define a joint probability measure on X × S that we denote by τπ.

Falsification. A falsification strategy φ is a Markov kernel from S to S. If T is

a Borel subset of S and s ∈ S a state of the world, φ(T |s) denotes the probability

that the true state s, or source, is falsified as a target state in T . We denote by

φ(s) ∈ ∆S the distribution of falsified states generated by the true state s. The

truth-telling strategy is the Markov kernel δ that maps each state s to the Dirac

measure δs, which puts probability 1 on target state s. Together, the prior π and

the falsification strategy φ define the joint probability measure φπ on S × S.

Falsifying s as t comes at cost γc(t|s), where c : S × S → R+ is a measur-

able function, and γ ≥ 0 is a scaling parameter that captures the magnitude of

falsification costs. The cost of falsification strategy φ is then C(φ) = γ
∫
S×S c dφπ.

Information structures. Together, a falsification strategy φ and a test τ define

an information structure embodied by the Markov kernel τφ : S → X, which,

combined with the prior π, defines a joint distribution τφπ on X × S. Then,

τφ(s) ∈ ∆X denotes the distribution of signals generated by state s. Note that,

although τφ cannot be more Blackwell informative than τ , it is not necessarily

less Blackwell informative. In particular, the receiver may prefer τφ to τ . This

possibility plays an important role in our results as we find that optimal tests

induce productive falsification by the agent.

Approval. The action space of the receiver is A = {a, r}, where a stands for

approval and r for rejection. An approval strategy of the receiver is a Markov

kernel α from X to A. We denote by δA the Markov kernel from A to itself that,

to each action a ∈ A, assigns the Dirac measure δa, which puts probability 1 on

a. If the signal space is X = A, we refer to δA as the obedient strategy for the

receiver.

Outcome and expected payoffs. An outcome ω is a Markov kernel from S

to A, which defines the approval probability of any state. Then, ωπ is a joint

8
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Figure 1: Outcomes, tests, and strategies

distribution on A × S. Falsification costs aside, both players only care about

outcomes. Specifically, the receiver’s payoff is V (ω) = Eωπ(s|a), and the approval

probability under ω is Π(ω) = ωπ({a} × S). Together, a test τ , a falsification

strategy φ, and an approval strategy α determine an outcome ατφ. The agent’s

payoff is then U(ατφ, φ) = Π(ατφ)− C(φ).

Timing. The timing of the game is as follows:

1. Test: A test τ is exogenously given and publicly observable.

2. Falsification: The agent covertly chooses a falsification strategy φ.

3. State: The state s is realized according to π.

4. Testing and results: The falsification strategy generates a falsified state

of the world t according to φ(s), and the test generates a publicly observable

signal x about the falsified state of the world according to τ(t).

5. Receiver decision: The receiver forms beliefs and chooses to approve or

reject.

For convenience, we assume the agent chooses his falsification strategy ex ante, be-

fore the state is realized. However, this choice of timing is inconsequential because

ex ante and interim falsification (knowing the state) are essentially equivalent.11

Solution concept and equilibrium. Our solution concept is perfect Bayesian

equilibrium. A pair (φ, α) is an equilibrium under τ if (i) the receiver’s posterior

is derived using Bayes’ rule given τφ whenever possible, (ii) the receiver approves

optimally given her belief, and (iii) the agent’s falsification strategy φ is optimal

given the receiver’s approval strategy.

11See Lemma S1.2 in the Online Appendix.
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Posterior beliefs. For each signal x occurring with positive probability under

τφπ, a receiver anticipating φ forms a posterior belief in ∆S according to Bayes’

rule whenever possible, that is, for every x ∈
⋃
s∈S supp τφ(s), and arbitrarily

otherwise. In both cases, we denote this belief by τφπx. Let µ(x|τφ) =
∫
S
s dτφπx

denote the associated posterior mean.

Receiver-optimality. Given τ , the approval strategy α of a receiver anticipat-

ing φ is optimal if and only if it satisfies α(a|x) = 1 if µ(x|τφ) > 0, and α(a|x) = 0

if µ(x|τφ) < 0. The receiver’s value function only depends on the information

structure, and we denote it by V (τφ) = maxα V
(
ατφ

)
.

Equilibrium feasibility. We say that a pair (τ, φ) is equilibrium feasible, or

that φ is equilibrium feasible under τ , if an approval strategy α exists such that

(φ, α) is an equilibrium under τ , that is, if and only if

∃α,


∀x, µ(x|τφ) > 0⇒ α(a|x) = 1,

∀x, µ(x|τφ) < 0⇒ α(a|x) = 0,

∀φ′, U(ατφ, φ) ≥ U(ατφ′, φ′).

(EF)

The designer’s problem. We consider a test designer who seeks to maximize

the receiver’s payoff. His problem is then to find an information structure (τ, φ)

that maximizes V (τφ) subject to (EF). In the remainder of this paper, we refer

to such an information structure as optimal. By extension, we also refer to the

test τ as optimal.

Falsification costs. We assume the cost function satisfies some basic properties.

First, truth-telling is costless, c(s|s) = 0. Second, it is monotonic in the sense that

falsifying to and from states that are further away is strictly more costly. Formally,

c(t|s) < c(t′|s) for all s, t, t′ such that t′ < t ≤ s or s ≤ t < t′; and c(t|s) < c(t|s′)
for all s, s′, t such that s′ < s ≤ t or t ≤ s < s′. Finally, it is continuous. We

also make two more substantial assumptions that play an important role for our

results.

Definition 1. The cost function

10



(i) has the costlier-to-top property if

c(s|0) ≥ min{c(−s|0), 1}; (CTT)

(ii) satisfies the upward triangular inequality if, for every s ≤ m ≤ t,

c(t|m) + c(m|s) ≥ c(t|s). (UTI)

The costlier-to-top property says that falsifying from the baseline standard to

the highest state is more costly than falsifying to the lowest state that is worth

falsifying to. By monotonicity, this comparison extends to all noncompliant states.

(CTT) thus captures in a relatively unrestrictive manner the intuitive idea that

falsifying upward is more costly than falsifying downward.

The upward triangular inequality can be interpreted as putting a bound on

the cost increase of falsifying further up, as c(t|s) − c(m|s) ≤ c(t|m). If the

cost function is differentiable, it implies that the cost increase of falsifying to a

marginally higher target state is bounded by the cost of a marginal falsification

from the initial target: ct(t|s) ≤ ct(t|t). In particular, the cost of a marginal

upward falsification must then be everywhere positive.

Consider a cost function such that, for t ≥ s, c(t|s) = f(s)g(t− s), where f is

a positive-valued and g is a nonnegative-valued increasing function with g(0) = 0.

Then, it satisfies (UTI) whenever g is concave, or more generally subadditive, and

f is nondecreasing. Subadditivity then captures increasing returns to scale in the

size of falsification.12

3 Test design under covert falsification

We start with two key preliminary results that simplify the analysis. First, we es-

tablish a recommendation principle that allows us to restrict attention to tests that

equate signals to action recommendations. Second, we show ex-ante and interim

falsification are essentially equivalent. We then solve the designer’s problem.

12Note that convexity in the size of falsification can also be accommodated provided that
the cost scaler increases sufficiently fast with the source as is the case with the cost function
c(t|s) = e2βs/α

{
α(t− s) + β(t− s)2

}
for t ≥ s, where α > 0 and β ≥ 0.
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3.1 Preliminary results

Recommendation principle. Mimicking standard results in Myerson (1982)

and Kamenica and Gentzkow (2011), we establish a recommendation principle.

According to this principle, if a test τ gives rise to an equilibrium (φ, α), it can

equivalently be replaced by the garbled test ατ , with signal space X = A, that

gives rise to an equilibrium consisting of the same falsification strategy φ for the

agent and the obedient approval strategy δA for the receiver. Both equilibria are

outcome equivalent since ατφ = δA(ατ)φ and therefore lead to the same payoffs

for both players. Whereas the result that obedience is a best response to φ under

the new test is standard, the result that φ remains a best response to δA is specific

to our setting, and leverages the fact that, in equilibrium, covert deviations from

φ do not affect the receiver’s decisions.13

For the remainder of our analysis, we therefore, in a slight abuse of notation,

redefine tests as measurable functions τ : S → [0, 1], where τ(s) is the probability

that the test recommends approval in state s. We refer to this probability as

the nominal approval probability of state s. Because X = A, the composition

of a test τ and a falsification strategy φ defines an outcome ω = τφ. We say

that ω = τφ is an equilibrium outcome if (τ, φ) is equilibrium feasible. The true

approval probability, henceforth also denoted by ω(s), may differ from the nominal

probability.

With this redefinition, we can write the agent’s payoff as

U(τφ, φ) =

∫
S×S

τ(t)dφπ(t, s)− C(φ),

and the receiver’s payoff as

V (τφ) =

∫
S×S

sτ(t)dφπ(t, s).

Obedience requires the receiver’s posterior mean following the approve signal to be

nonnegative,
∫
S×S sτ(t)dφπ(t, s) ≥ 0, and her posterior mean following the reject

signal to be nonpositive,
∫
S×S s(1 − τ(t))dφπ(t, s) = µπ −

∫
S×S sτ(t)dφπ(t, s) ≤

0. Piecing these two inequalities together, the obedience constraint puts a lower

bound on the receiver’s payoff, requiring that she obtains at least her payoff in the

13The formal statement (Lemma S1.1) and proof of this result are in the Online Appendix.
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absence of information:

V (τφ) ≥ max{µπ, 0}. (RO)

Equivalence of ex-ante and interim falsification. Working with the recom-

mendation principle, the receiver’s obedience constraint takes care of the receiver’s

side of the equilibrium feasibility condition (EF), which can therefore be reduced

to requiring optimality of the agent’s falsification strategy φ:∫
S×S

{
τ(t)− γc(t|s)

}
dφπ(t, s) ≥

∫
S×S

{
τ(t)− γc(t|s)

}
dφ′π(t, s), ∀φ′. (EF’)

If, instead, the agent chooses φ at the interim stage, after observing the state, the

condition for φ to be interim equilibrium feasible is

φ
(
argmaxt τ(t)− γc(t|s) | s

)
= 1, ∀s. (IEF)

Standard arguments show14 (EF’) is equivalent to the interim condition holding

for almost every s. Because falsification from a subset of states with measure 0

has no effect on the players’ ex-ante payoffs, we restrict attention to falsification

strategies that satisfy (IEF).

Costless falsification. We briefly consider costless falsification (γ = 0) as a

benchmark. In this case, the truth-telling implication of the revelation principle

applies and, combined with (IEF), implies the test must give a constant approval

probability to all states. By the recommendation principle, this probability must

be 0 if µπ < 0, and 1 if µπ > 0.

Remark 1 (Costless falsification). When falsification is costless, the unique equi-

librium outcome is uninformative, and the receiver rejects if µπ < 0, and approves

if µπ > 0. Her payoff is equal to max{µπ, 0}. �

The designer’s program. By the recommendation principle and interim-ante

equivalence, we can find an optimal test by solving the following designer’s pro-

gram:

sup
τ,φ

V (τφ) s.t. (IEF), (RO) (P)

14For a formal statement and a proof, see Lemma S1.2 in the Online Apendix.
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Next, we argue (RO) is redundant and can be relaxed without loss of generality.

Indeed, a test with a constant nominal approval probability is uninformative and

satisfies (IEF) because it makes falsification irrelevant for the agent. Furthermore,

the uninformative test achieves the lower bound required by (RO). Any solution

to the relaxed program

sup
τ,φ

V (τφ) s.t. (IEF) (P ′)

must give the receiver a higher payoff than the uninformative test, and therefore

also satisfy (RO). Hence, it is also a solution to (P).

Interestingly, this redundancy implies the designer does not benefit from more

commitment power. Indeed, the program of a designer with the power to commit

to an approval strategy of the receiver based on reports about the state, or to a

test and an approval strategy together, is exactly (P ′).

Proposition 1 (Value of commitment). Commitment to an approval strategy, or

to a test and an approval strategy, has no additional value than commitment to a

test for the designer.

The relaxed program (P ′) can also be interpreted as that of a principal seek-

ing to allocate a good to an agent of type s, where s is the principal’s payoff of

allocating the good to the agent. The principal’s payoff from the outside option

(not allocating the good) is 0; the agent gets a state-independent payoff from get-

ting the good. The principal commits to an allocation probability τ that depends

on the agent’s report and misreporting is costly. Indeed, in such a problem the

principal maximizes
∫
S×S sτ(t)dφπ(t, s) which is equal to V (τφ) subject to (IEF).

This interpretation connects our analysis to the literature on the design of op-

timal allocation rules without transfers. Ben-Porath, Dekel, and Lipman (2014)

solve such a problem by exploiting costly verification, whereas Kattwinkel (2019)

exploits private information of the principal correlated with the agent’s type. We

exploit costly reporting costs.

3.2 An optimal test

We start by introducing a simple class of tests. We then show we can restrict

attention to this class, and characterize the optimal test within this class. Finally,

we study its properties.
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Figure 2: On the left panel, the blue curve shows the nominal approval probabilities
of τp,ŝ, whereas the red dotted curve shows approval probabilities under the equilibrium
outcome ωp,ŝ. On the right panel, the red curve illustrates the falsification strategy φp,ŝ.

The cost function is γc(t|s) = 1.2|t−s|
1+|t−s| if t ≥ s.

An optimal class of tests. We consider a class of tests characterized by two

parameters: a top nominal approval probability p ∈ [0, 1] and an operational stan-

dard ŝ ∈ S+. A test sets the nominal approval probability of states above the

operational standard to p and gives states below ŝ the lowest nominal approval

probability that deters them from falsifying to the standard:

τp,ŝ(s) =


p if s ≥ ŝ

p− γc(ŝ|s) if s ∈
[
š(p, ŝ), ŝ

]
0 if s < š(p, ŝ)

,

where š(p, ŝ) is equal to the state s ∈ S− that solves γc(ŝ|s) = p when it exists.

Otherwise, we set š(p, ŝ) equal to −s.
Under (UTI), a test τp,ŝ makes truth-telling optimal in all states. To see why,

we only need to consider the payoff of falsifying s as t > s, with s, t ∈
[
š(p, ŝ), ŝ

]
15:

τp,ŝ(t)− γc(t|s) = p− γc(ŝ|t)− γc(t|s) ≤ p− γc(ŝ|s) = τp,ŝ(s),

where the inequality is implied by (UTI).

By construction, τp,ŝ also makes the agent indifferent between falsifying to

the operational standard and truth-telling for states in
[
š(p, ŝ), ŝ

]
. Therefore,

the agent has multiple optimal falsification strategies. Among these, the designer

15Other cases follow from cost monotonicity, and the flatness of the test outside of this interval.
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can break indifferences in favor of the receiver, requiring the agent to only falsify

compliant states below ŝ to the standard. Let

φp,ŝ(s) =

δŝ if s ∈ [0, ŝ]

δs otherwise

denote this strategy. The resulting outcome ωp,ŝ = τp,ŝφp,ŝ is that all compli-

ant states are approved with top probability p, whereas noncompliant states are

approved with their nominal approval probability, as illustrated in Figure 2. For-

mally,

ωp,ŝ =


p if s ≥ 0

p− γc(ŝ|s) if s ∈
[
š(p, ŝ), 0

)
0 if s < š(p, ŝ)

.

In summary, we have shown these are equilibrium outcomes, as stated in the

following lemma.

Lemma 1. If the cost function satisfies (UTI), the falsification strategy φp,ŝ sat-

isfies (IEF) under τp,ŝ.

Optimal test. Optimizing the receiver’s payoff within the class of equilibrium

outcomes {ωp,ŝ} reduces the original infinite dimensional problem to a two dimen-

sional one. Our next result, Theorem 1, characterizes an outcome ωp,ŝ within our

class that solves the designer’s program (P). To simplify the exposition, we only

state the theorem in the case where µπ < 0, and refer the reader to Theorem 3 in

the Appendix for a complete statement and a proof.

Theorem 1. Suppose the cost function satisfies (UTI) and (CTT). Then,
(
τ ∗γ , φ

∗
γ

)
solves (P), where τ ∗γ = τp∗γ ŝ∗γ , φ∗γ = φp∗γ ŝ∗γ , ŝ∗γ = max

{
s ∈ S : γc(s|0) ≤ 1

}
, and

p∗γ = min
{
γc(s|s0), 1

}
.

We denote the optimal equilibrium outcome by ω∗γ = τ ∗γφ
∗
γ. The shape of the

optimal test and outcome are illustrated in Figure 3. We can divide the range of

γ into three regions as follows.

In the high-cost region, γ ≥ 1/c(s|0), setting p∗γ = 1, and ŝ∗γ > 0 to solve

16
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Figure 3: Optimal test and outcome in the different regions, where π = U([−3, 2]) so

s0 = −2, c(t|s) = |t−s|
1+|t−s| if t ≥ s, and γ ∈ {1, 1.3, 2}.

γc(ŝ∗|0) = 1 is optimal, so that

τ ∗γ (s) =


1 if s ≥ ŝ∗γ

1− γc(ŝ∗γ|s) if s ∈
[
0, ŝ∗γ

]
0 if s < 0

.

The optimal outcome is the receiver’s first-best ω∗γ(s) = 1s≥0, so noncompliant

states are rejected and compliant states approved with certainty. To reach first-

best, the designer only needs to raise the operational standard ŝ∗γ above the baseline

standard, and let the agent do the correction by falsifying. Indeed, a test that

recommends rejection below and approval above ŝ∗γ, both with certainty, also yields

the optimal outcome16 ω∗γ.

In the intermediate-cost region, 1/c(s|s0) ≤ γ < 1/c(s|0), setting p∗γ = 1 and

ŝ∗γ = s is optimal, so that

τ ∗γ (s) =
{

1− γc(s|s)
}+
,

with corresponding equilibrium outcome:

ω∗γ(s) =


1 if s ≥ 0

γ
{

1− c(s|s)
}

if s ∈
[
š(1, s), 0

)
0 if s < š(1, s)

.

Hence, optimality requires setting the highest possible operational standard. Com-

pliant states are approved with certainty, but some noncompliant states must be

16See our discussion on multiplicity of optimal tests and their characterization below.
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approved with positive probability to deter them from falsifying to the standard.

In the low-cost region, γ < 1/c(s|s0), setting p∗γ = γc(s|s0) and ŝ∗γ = s is

optimal, so that

τ ∗γ (s) =

γ
{
c(s|s0)− c(s|s)

}
if s ∈

[
s0, s

]
0 if s < s0

,

with corresponding equilibrium outcome:

ω∗γ(s) =


γc(s|s0) if s ≥ 0

γ
{
c(s|s0)− c(s|s)

}
if s ∈

[
s0, 0

)
0 if s < s0

.

As in the intermediate-cost region, optimality requires setting the highest possi-

ble operational standard and approving some noncompliant states with positive

probability. But now, it also requires rejecting compliant states with positive

probability to deter very low states (below s0) from falsifying to the standard. To

illustrate this trade-off, consider using instead the test τp,s, with p = p∗γ + ε, for a

small ε > 0. Under this test, the true approval probability of all states above s0

increases by ε, leading to a null gain as ε
∫ s
s0
sdFπ(s) = 0. But the receiver also

incurs a strict loss over states below s0, as some of those states are approved with

positive probability.

Characterization of optimal tests. Our optimal test is not unique. The

optimal equilibrium outcome, however, is essentially unique. Furthermore, we can

characterize the set of optimal tests that do not penalize the agent relative to the

test of Theorem 1. To see why our optimal test is not unique, consider two types

of variations. First, we can lower the nominal approval probability of compliant

states below ŝ∗γ without changing the agent’s equilibrium falsification strategy or

the outcome. Indeed, this operation only strengthens the incentive of these states

to falsify to the standard.17 Second, when the standard is not set to the highest

state (in the high-cost region), we can also lower the nominal approval probability

of states above ŝ∗γ so as to make them falsify (downward) to the standard, without

changing the equilibrium outcome or the receiver’s payoff. However, this operation

17To complete the argument, we show the modification cannot incentivize the agent to change
his falsification strategy in any other way.
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lowers the agent’s payoff, because he needs to falsify more. If we rule out optimal

tests that unnecessarily penalize the agent, only variations of the first type are

possible. Variations of this type are in some sense more robust since they can

make the incentive for productive falsification strict. See Proposition S1.1 in the

Online Appendix for a formal statement and a proof.

A corollary of this characterization is that productive falsification is necessary

for optimality. Optimal tests that do not penalize the agent must induce essentially

the same falsification strategy. Other optimal tests induce even more falsification.

Theorem 1: proof overview. We next provide a sketch of the proof, which can

be found in its entirety in the Appendix. Working with the relaxed program (P ′),
the main step to prove Theorem 1 consists in showing that for every equilibrium

outcome ω = τφ, we can find an outcome ωp,ŝ that makes the receiver better off.

Consider such an equilibrium outcome ω = τφ. Assume, for simplicity, φ is

degenerate and the function τ admits a unique maximizer ŝτ = argmaxs τ(s) on

S, and let p = τ(ŝτ ). Then, we can distinguish three cases, depending on the

location of ŝτ . To provide intuition about the role of the (CTT) assumption, we

next discuss two of these cases.

Suppose first that ŝτ ≥ 0 and γc(ŝτ |0) ≤ p. Then, we set the standard ŝ =

ŝτ . Under the outcome ωp,ŝ, each compliant state is approved with probability

p, which is at least as high as under ω. However, some noncompliant states

are approved with positive probability. Let s ∈ [š(p, ŝ), 0) be such a state. Let

t(s) = argmaxt′ τ(t′)− γc(t′|s) be an optimal falsification target for s under τ , so

ω(s) = τ(t(s)). Then, by optimality of t(s),

ω(s) ≥ τ(t(s))− γc(t(s)|s) ≥ τ(ŝ)− γc(ŝ|s) = p− γc(ŝ|s) = ωp,ŝ(s).

So, s is approved with lower probability under ωp,ŝ than under ω.

Suppose next that ŝτ < 0 and γc(ŝτ |0) ≤ p. Then, we choose the standard

ŝ > 0 such that c(ŝ|0) = c(ŝτ |0). (CTT) ensures that doing so is possible. Under

ωp,ŝ, each compliant state is approved with probability p, which is higher than

under ω. As in the former case, consider a noncompliant state s approved with

positive probability under ω. Then,

ω(s) = τ
(
t(s)
)
≥ τ(t(s))− γc(t(s)|s) ≥ τ(ŝτ )− γc(ŝτ |s) ≥ p− γc(ŝ|s) = ωp,ŝ(s),
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where the second inequality is due to the optimality of falsifying as t(s), and the

third inequality is due to cost monotonicity. Again, the approval probability of

noncompliant states is lowered under ωp,ŝ.

3.3 Properties of optimal tests

We discuss the shape of the optimal test, its welfare properties, and comparative

statics with respect to the cost parameter γ. We state our results under the

assumption µπ < 0, but it is easy to adapt the results.18

Comparative statics and asymptotics. The receiver’s payoff under the op-

timal outcome is

V ∗γ =

∫
S

sω∗γ(s)dFπ(s).

Because the agent is indifferent between φ∗γ and truth-telling, we can evaluate his

payoff as if he were using the truth-telling strategy; hence,

U∗γ =

∫
S

τ ∗γ (s)dFπ(s).

Proposition 2 (Comparative statics). V ∗γ is increasing in γ in the low, and

intermediate-cost regions, but constant and equal to the full-information payoff

in the high-cost region. U∗γ is increasing in γ in the low, and high-cost regions,

and decreasing in the intermediate-cost region.

It is natural that the receiver’s payoff increases as falsification becomes more

costly. The agent’s payoff, however, is non-monotonic in the cost. To see why,

note the cutoff state š∗γ = š
(
p∗γ, ŝ

∗
γ

)
at which the nominal approval probability

starts increasing is fixed to 0 in the high-cost region, and to s0 in the low-cost

region. Therefore, a steeper cost function (higher γ) leads to higher nominal

approval probabilities for all states above this cutoff. In the intermediate-cost

region, by contrast, the top approval probability is fixed to 1, and it is awarded

exclusively to the highest state, whereas the positive probability cutoff š∗γ increases

with γ. A steeper cost function therefore leads to decreasing the nominal approval

probabilities of all states. The next result considers limit tests and payoffs, and

18When µπ ≥ 0, the low cost region does not exist, but the comparative statics of Proposition 2
is otherwise unchanged. The only difference in Proposition 3 is that the uninformative payoffs
are 1 for the agent and µπ for the receiver.
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its proof is immediate by taking limits in γ for the optimal test and outcome

functions.

Proposition 3 (Asymptotics). Both the outcome and the test converge to the

uninformative test as γ → 0. As γ → ∞, the outcome converges to 1s≥0 and the

test to 1s>0. Payoffs converge accordingly, to the uninformative payoffs in the first

case: limγ→0 U
∗
γ = limγ→0 V

∗
γ = 0, and to the full-information payoffs in the latter:

limγ→∞ V
∗
γ = Eπ(s|s ≥ 0) and limγ→∞ U

∗
γ = Pπ(s ≥ 0).

Welfare. Falsification is a friction that generates inefficiencies. Our optimal

outcome is constrained efficient by definition, because it maximizes the receiver’s

payoff under falsification. However, it is never unconstrained efficient, and the

welfare loss generated by falsification can be decomposed into two channels: First,

a direct loss due to the cost of productive falsification by the agent; second, an

informational loss arising indirectly from distortions the designer needs to build

into the outcome to optimally manage the falsification friction.

We measure total welfare loss, the direct falsification loss, and the informational

loss as follows. First, we equate the direct loss to the total falsification cost incurred

by the agent C(φ∗γ). The agent’s payoff net of this cost is his expected approval

probability Π∗γ = Eπ

(
ω∗γ(s)

)
, so by restoring the falsification cost to the agent,

we reach the point
(
V ∗γ ,Π

∗
γ

)
in the payoff space. Starting from this point, we

measure the informational loss as the sum of payoff gains to both players that can

be obtained by moving to the closest point on the unconstrained Pareto frontier.

To do so, we start by measuring the payoff gain the receiver could obtain by

freely reorganizing approval probabilities according to an outcome function ω′,

while keeping the expected approval probability of the agent constant Π(ω′) =

Π∗γ. Because the receiver prefers to concentrate the probability of approval on

higher states, a solution to this reorganization problem is the threshold function

ω′(s) = 1s≥s̃ for s̃ ≥ s0 such that Pπ(s ≥ s̃) = Π∗γ. This reorganization might lead

to an approval threshold s̃ > 0 if the approval probability Π∗γ is too low, which is

the case for low values of γ. Then, choosing instead s̃ = 0 leads to higher payoff

gains for both players, and we measure the informational loss as the sum of these

gains. To summarize, we measure total welfare loss as:

WL = C(φ∗γ)︸ ︷︷ ︸
direct loss

+ V (ω′)− V ∗γ + Π(ω′)− Π∗γ︸ ︷︷ ︸
informational loss

,
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where ω′ = 1s≥s̃ and s̃ = max{s ∈ [s0, 0] : Pπ(s ≥ s̃) ≥ Π∗γ}.
This decomposition implies that our constrained optimal outcome suffers from

an informational loss in the low, and intermediate-cost regions but not in the

high-cost region. The direct loss, however, is always present. It is increasing

in the low, and intermediate-cost regions, decreases in the high-cost region, and

asymptotically vanishes as falsification becomes arbitrarily costly.

Figure 4 illustrates both the comparative statics and asymptotic behavior of

payoffs, as well as the welfare loss due to falsification. The grey area depicts the

set of feasible payoffs in the absence of falsification. As it shows, the falsification

cost borne by the agent can be heavy: in the high-cost region (III), the agent

may lose more than half his full-information payoff in falsification cost, while the

receiver still benefits from her full-information payoff.
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Figure 4: The grey area depicts the set of attainable payoffs under all possible in-
formation structures in the absence of falsification. The orange path shows the payoffs
from the optimal test as a function of γ. The curve starts at the no-information payoffs
for γ = 0, moves successively across the low-cost region (I), the intermediate-cost region
(II) and the high-cost region (III), and heads toward the full-information payoffs as γ
increases. γ : 0→ 5; c(t|s) = |t− s|/(1 + |t− s|), if t ≥ s; π = Uniform(−3, 2).

4 Test design with falsification detection

We seek to understand how the availability of a falsification-detection technology

affects test design. To focus on the effect of detection in its purest form, we

assume a technology that perfectly reveals the falsification strategy of the agent

to the receiver, so that falsification is overt rather than covert. The timing of the
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game is the same, but the receiver now learns the agent’s falsification strategy

φ before choosing her action. Her posterior beliefs therefore reflect actual rather

than anticipated falsification.19 In most of this section, to simplify the exposition,

we assume upward-only falsification: the agent can only falsify to higher states.20

A few remarks are in order. First, the optimal equilibrium of Theorem 1

remains an equilibrium in the overt case.21 Thus, the ability to detect falsification

does not hurt the receiver, and indeed, the same test remains optimal in the high-

cost region where it attains first-best. We show it can be improved when the

cost is lower. Second, neither the recommendation principle nor the ante-interim

equivalence hold any longer, making the analysis of the overt case substantially

more difficult. Third, the result of Proposition 1 on the value of more commitment

no longer holds: if the designer can commit to the receiver’s action, committing

to reject whenever falsification is present delivers the first-best outcome.

Intuitively, falsification detection provides the designer with a new lever in the

form of signal devaluations. Indeed, deviations from equilibrium by the agent lead

the receiver to revise the posterior mean associated with a given signal downward

(devaluation), or upward (appreciation), and adjust her action accordingly. By

ensuring deviations induce detrimental devaluations, the designer can therefore

impose implicit devaluation costs to the agent in addition to the explicit falsifi-

cation costs. In this section, we show how the designer can use these implicit

devaluation costs to improve on the best equilibrium outcome of the covert case.

We proceed as follows. To address the technical difficulties, we first study a

binary-state version of our model. This simplifies the analysis by the availability

of a falsification-proofness principle that allows us to restrict attention to tests

that the agent has no incentive to falsify. In this setup, we characterize an opti-

mal test relying on the idea of devaluations. Our characterization shows using the

devaluation channel requires a rich signal space: although adding a third signal is

sufficient to allow the designer to get a significant improvement from the devalu-

ation effect, optimality requires using tests with a granular signal space, even in

our simple binary-state binary-action framework. We then go back to our initial

model with a continuum of states, and show how to use ideas from the binary-state

19For a full definition of equilibrium under overt falsification, see Online Appendix S2.
20A condition on downward falsification costs ensuring our results hold when downward falsi-

fication is possible always exists. We state this condition explicitly for the binary-state case in
Proposition 8.

21It also remains optimal in the covert case under upward-only falsification, as we show in
Theorem S1.1 of the Online Appendix.
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model to improve on the optimal test of the covert case from Theorem 1 when

falsification costs are low.

4.1 Falsification detection in the binary-state model

The binary-state model. In this model, the state space is S = {−s, s}.
Slightly abusing notation, we denote by π the prior probability of the high state

π(s). We assume µπ = πs− (1− π)s < 0, and we let ϕ0 = πs
(1−π)s

denote the prob-

ability with which the low state needs to be pooled with the high state to bring

the expectation attached to the pool to 0.22 We let φ = φ(s| − s), φ = φ(−s|s),
c = γc(s| − s), and c = γc(−s|s). With upward-only falsification, a falsification

strategy is simply defined by the probability φ, and truth-telling corresponds to

φ = 0.

Fully-informative and binary-signal tests. To gain intuition, consider first

a fully informative test with X = {x, x} and τ(x|s) = τ(x| − s) = 1. Suppose

c < 1. Following the high signal x, the receiver’s expected payoff from approval is
πs−(1−π)φs

π+(1−π)φ
, so she approves if φ ≤ ϕ0. Because the agent can only falsify upward,

the receiver is certain the state is −s after x, and rejects. The agent’s payoff is

therefore equal to
{
π+φ(1−π)(1−c)

}
1φ≤ϕ0 , so he optimally chooses φ = ϕ0, which

is the falsification level that makes the receiver indifferent between both actions

when receiving the high signal. The resulting information structure is the one the

agent would design if given the opportunity (as in Kamenica and Gentzkow, 2011).

It is agent-optimal and receiver-pessimal. The receiver’s payoff is zero, as without

any information. When falsification is costless, the agent obtains his first-best

payoff. As the falsification cost increases, the agent’s payoff falls, but the test and

the receiver’s payoff remain unchanged. Note this is in fact the best outcome for

both the agent and the receiver under any binary-signal test.

A three-signal test. Under overt falsification, enriching the test with additional

signals can make the receiver better off. The intuition is that additional signals

allow the designer to get more traction from the devaluation effect. We next

illustrate this idea with a three-signal test that dominates all binary-signal tests.

As a corollary, it proves the recommendation principle no longer holds in the overt

case.

22ϕ0 is analogous to s0 in the continuous-state model.
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Figure 5: Three-signal test: The expectation column shows the devaluation effect of
upward falsification on posterior means.

Consider a test with discrete signal space X = {x, ∅, x}, and such that τ(s) is

the probability distribution (0, p, 1 − p), and τ(−s) = (1 − p, p, 0), as illustrated

in Figure 5. We set p/p = ϕ0, so that, in the absence of falsification:

Eτπ(s|x) = s, Eτπ(s|∅) = 0, Eτπ(s|x) = −s,

leading the receiver to approve after ∅ and x, and reject otherwise. With upward-

only falsification, for any φ > 0, we have:

Eτφπ(s|x) ∝
(
πs−φ(1−π)s

)
, Eτφπ(s|∅) ∝ φ

(
πs−(1−π)s

)
< 0, Eτφπ(s|x) = −s.

Therefore, any amount of falsification triggers the devaluation of signal ∅, leading

the receiver to reject. The agent trades off this implicit cost of falsification against

the benefit of increasing the probability that signal −s generates signal x. If the

agent chooses φ > 0, he must ensure Eτφ(s|x) ≥ 0 so the receiver approves after

x, implying φ ≤ ϕ0. The agent’s payoff for 0 ≤ φ ≤ ϕ0 is therefore

π(1− p) + πp1φ=0 +(1− π)φ
{

1− p− c
}
.

Hence, setting p ≥ s(1−c)
s+2s

ensures the agent has no incentive to falsify. The re-

ceiver is then certain the state is compliant when she gets the high signal and is

strictly better off under this test than with no information or any binary-signal

test. Furthermore, the receiver is better off with smaller values of p (and hence

p), because it lowers her probability of approving noncompliant states. Therefore,

the best test she can pick in this class is obtained by setting p = s(1−c)
s+2s

. With this

test, the receiver obtains s+(1+c)s
s+2s

πs, which is strictly positive even if c = 0.

Pushing the intuition that additional signals are key to leveraging devaluations,

the optimal test we derive next uses a continuum of signals. The reader can now
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either proceed to Section 4.2 where we characterize the optimal test in the binary-

state model, or proceed directly to Section 4.3 where we derive a three signal

test that simultaneously relies on devaluation and productive falsification in the

continuum of states setting.

4.2 Optimal testing in the binary-state model

A falsification-proofness principle. In the binary-state case, we can rely on

a revelation-principle type of result allowing us to restrict attention to tests that

induce truth-telling as an equilibrium falsification strategy.23 To understand why

it holds in the binary-state case, suppose a falsification strategy φ is equilibrium

feasible under test τ . Then, consider the alternative test τ ′ = τφ. Any information

structure τ ′φ′ attainable under τ ′ can be attained under τ by using the falsification

strategy φφ′, generating the same best-response from the receiver in each case.

However, in the binary-state case, C(φ′) ≥ C(φφ′) − C(φ), implying φ′ can be a

profitable deviation from truth-telling under τ ′ only if φφ′ is a profitable deviation

from φ under τ , a contradiction. Therefore, τ ′ yields an equilibrium under which

the agent does not falsify and the receiver obtains the same payoff as under τφ.

Note that, in contrast to the usual revelation principle, the payoff of the agent is

higher under τ ′δ than under τφ because he saves C(φ). The receiver’s payoff and

the outcome are identical.

Normalizing signals as means. As in much of the information design lit-

erature, we can use the mean-based (or, equivalently, in the binary-state case,

belief-based) approach to simplify our problem.24 We thus describe tests by the

distribution of posterior means they generate, which amounts to normalizing sig-

nals as means. A test is therefore represented as a distribution of posterior means

with cdf H over [−s, s] with the martingale property that
∫ s
−s xdH(x) = µπ, which

is equivalent to (integrating by parts)∫ s

−s
H(x)dx = s− µπ. (MP)

23We establish this principle in Proposition S2.1 of the Online Appendix. It holds under
either overt or covert falsification. With more than two states, the cost inequality C(φ′) ≥
C(φφ′) − C(φ) may fail: if φ falsifies m to t and φ′ falsifies s to m, with s < m < t, then φφ′

must falsify both s and m to t.
24See Lemma S2.1 in the Online Appendix for a formal treatment.
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As in Kolotilin (2018) and Gentzkow and Kamenica (2016), this test can be equiv-

alently represented by the function H(x) =
∫ x
−sH(y)dy from [−s, s] to [0, s− µπ],

which is nondecreasing and convex, with H(−s) = 0 and H(s) = s − µπ. Let

∆B denote the set of nondecreasing convex functions from [−s, s] to [0, s − µπ]

that satisfy these properties. This representation is known to be without loss of

generality in the absence of falsification. With falsification, we need to show that

pooling together all signals leading to the same posterior mean does not modify

the falsification incentives of the agent. Using this representation, we hereafter

equate signals with the posterior mean they generate given the test (and in the

absence of falsification).

Rewriting Payoffs. Under test H, and in the absence of falsification (φ = 0),

the receiver’s payoff is25

V (H, 0) =

∫ s

0

xdH(x) = µπ +H(0)

and the agent’s payoff is

U(H, 0) = 1−H`(0),

where H`(x) = limy→x
y<x

H(y) is also the left derivative of H at x and gives the

probability of generating a posterior mean strictly below x.

Equilibrium characterization. Increasing φ sends the noncompliant state to-

ward any positive signal x at a higher rate, thus lowering the posterior mean formed

by the receiver when observing x. If x is sufficiently close to 0, this devaluation

leads the receiver to no longer approve x. In effect, falsification results in a new

threshold signal x̂
(
φ
)

such that the receiver only approves for signals x ≥ x̂
(
φ
)
.

Interestingly, this threshold depends on falsification only: it is independent of the

test.

Lemma 2. If φ > ϕ0, all signals lead to rejection. If φ ≤ ϕ0, a threshold x̂
(
φ
)

=
−µπsφ

π(s+s)−φs exists such that the receiver approves for signals x ≥ x̂
(
φ
)
, and rejects

otherwise.

Lemma 2 implies falsification levels outside of [0, ϕ0] are dominated for the

agent. Furthermore, because a one-to-one relationship exists between any falsifi-

25The second expression for the receiver’s payoff is obtained using integration by parts.
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cation level φ in this range and the threshold it generates on [0, s], we can refor-

mulate the agent’s falsification problem as the choice of an approval threshold26

x ∈ [0, s] for the receiver, induced by falsification level:

φ̂(x) =
(s+ µπ)x

(x− µπ)s
.

Proposition 4 (Equilibrium characterization). Given a test H, an equilibrium is

characterized by an approval threshold x ∈ [0, s] for the receiver, and a falsification

level φ ∈ [0, ϕ0] such that φ = φ̂(x), and x maximizes the agent’s payoff:

U
(
H, φ̂(x)

)
= 1−

(
1 +

x

s

)
H`(x) +

x

s(x− µπ)
H(x)− (1− π)(s+ µπ)x

(x− µπ)s
c.

The only part of the proposition that needs an explanation is the calculation

of the agent’s payoff. Given the prior, falsification level, and threshold, we only

need to know the distributions of signals generated by each of the two states s and

−s to perform this computation. Their cdfs are, respectively,27

H(x) =
1

µπ + s

{
(x+ s)H(x)−H(x)

}
(CDF)

and

H(x) =
1

s− µπ
{

(s− x)H(x) +H(x)
}
. (CDF)

The designer’s program. Using the falsification-proofness principle, we can

formulate the designer’s program as that of choosing a test function H ∈ ∆B to

maximize H(0), under the falsification-proofness constraint that the agent has no

incentive to induce any falsification threshold other than 0:

max
H∈∆B

H(0)

s.t. U
(
H, 0

)
≥ U

(
H, φ̂(x)

)
, ∀x ∈ [0, s]. (FPIC)

26In a slight abuse of notation, we denote this threshold by x, because every nonnegative signal
can be induced as a threshold by some falsification strategy.

27To understand these expressions, note the joint probability that the state is compliant and
the signal below x can be written both as πH(x) and as

∫ x
−s β(z)dH(z), where β(z) = z+s

s+s is

the updated probability of the compliant state conditional on having received signal z, and must
therefore satisfy β(z)s− (1− β(z))s = z. Integration by parts leads to the final formula.
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Using the expression of the agent’s payoff in Proposition 4, the constraint becomes:

H`(x)− x

(s+ x)(x− µπ)
H(x) ≥ s

s+ x
H`(0)− θcx

(x− µπ)(s+ x)
, ∀x ∈ [0, s]

(FPIC’)

where θ = (s− µπ)(s+ µπ)/(s+ s).

Next, we derive a solution to the designer’s program in two steps. First, we

show we can restrict attention to tests that generate a single negative signal,

or equivalently to tests such that H is linear over negative signals. Second, we

show distributing positive signals so as to make the agent indifferent across all

undominated falsification levels is optimal, or, equivalently, making the incentive

constraint of the agent (FPIC’) bind everywhere.

Linearization for negative signals. First, we can focus on test functions H
that are linear on [−s, 0]. Indeed, for any test function H ∈ ∆B that satisfies

(FPIC’), the test function

H̃(x) =


H(0)
s

(x+ s) if x ≤ 0

H(x) if x > 0

is in ∆B, delivers the same payoff to the receiver as H, a higher payoff to the agent

because H̃`(0) = H(0)/s ≤ H`(0) by convexity of H, satisfies (FPIC’) by the same

argument, and is linear below 0.

Going back to the interpretation of test functions, this linearization implies we

can focus on tests that generate a single negative signal equal to −s. This signal

is generated only by the low state.

Making the agent indifferent. Next, we characterize the unique test function

that is linear below 0 and makes the agent indifferent across all thresholds induced

by undominated falsification levels. By linearity, we can denote its slope below 0

by κ ≥ 0, which is also the size of the atom it places on the negative signal. Our

test function must then solve the indifference differential equation28

H(x)− x

(s+ x)(x− µπ)
H(x) =

κs

s+ x
− θcx

(x− µπ)(s+ x)
(IDE)

28Note the subscript ` is no longer needed, because writing that H` satisfies this equality
implies it is continuous, and therefore, H` = H.
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on [0, s], with initial condition H(0) = κs. This linear differential equation has

a unique solution parameterized by κ. For this solution to be a test function, it

must satisfy the martingale property H(s) = s−µπ, which pins down κ to a value

that we denote by κ∗c , yielding the unique test function

H∗c(x) = κ∗c(x+ s) +
(
κ∗c(µπ + s)− θc

){(x− µπ
−µπ

) µπ
µπ+s

(
x+ s

s

) s
µπ+s

− 1

}
1x>0,

where

κ∗c =

s− µπ + θc

{(
s−µπ
−µπ

) µπ
µπ+s

(
s+s
s

) s
µπ+s − 1

}
s− µπ + (s+ µπ)

(
s−µπ
−µπ

) µπ
µπ+s

(
s+s
s

) s
µπ+s

.

An optimal test. We show H∗c is in fact optimal.

Theorem 2. H∗c is the unique test function that solves (IDE) on [0, s], and it

solves the designer’s problem under upward-only falsification.

To understand why, note that in the class of partially linear tests we identified,

the receiver’s payoff depends on the size κ of the atom on the unique rejected

signal −s, which is only generated by the low state. H∗c puts an atom of size

κ∗c on this signal, and makes the agent indifferent across all approval thresholds

he could induce through falsification. Increasing the size of this atom implies

violating the falsification proofness condition for at least one falsification-induced

threshold. For intuition, note that if H is a test that puts an atom of size κ > κ∗c

on the rejected signal, a signal x′ between 0 and s must exist such that H first

crosses H∗c from above at x′ (if nowhere else, (MP) implies the two curves cross at

s). Furthermore, the left derivative H`(x
′) must be lower than H∗c (x′). However,

combined with the fact that H∗c makes the agent indifferent across all thresholds,

this inequality implies the agent prefers inducing falsification threshold x′ to not

falsifying under H.

Properties of the test H∗c . The following proposition derives some key prop-

erties of our optimal test. We depict its conditional and unconditional cdfs and

densities in Figure 6.

Proposition 5 (Properties of CDF and PDF). H∗c has support {−s} ∪
[
0, s
]
,

with atoms at −s and s, and a positive, continuously differentiable, and decreasing
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density on
[
0, s
)
. H

∗
c has support

[
0, s
]
, with a positive, continuously differentiable,

and decreasing density on
[
0, s
)
, and a single atom at s. H∗c has support {−s} ∪[

0, s
]
, with a single atom at −s, and a positive, continuously differentiable, and

decreasing density on
[
0, s
)
. Furthermore, H

∗
c first-order stochastically dominates

H∗c.

In spite of the binary-state and binary-action environment, the optimal test

has a continuum of positive signals, and a single negative signal. A clustering of

signals occurs close to 0 as illustrated in Figure 6. Furthermore, the test makes the

agent indifferent across all undominated falsification levels29 as it satisfies (IDE).

Granularity of positive signals, as well as the shape of the test, which is dictated

by indifference, contribute to maximizing the implicit falsification cost at every

falsification level. Increasing φ devalues positive signals up to a threshold that

does not depend on the test. When a signal is missing, the falsification level

that would make this signal the new approval threshold is strictly dominated. By

putting weight on such a signal, the designer can increase the associated implicit

falsification cost, and at the same time lower the probability that the noncompliant

state generates positive signals, thus increasing the receiver’s payoff.
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Figure 6: PDF and CDF of the optimal test under overt falsification. −s = −2,
s = 2, π = 0.3.

Next, we examine the effect of falsification costs on payoffs. In contrast to

the covert case, higher falsification costs are always detrimental to the agent and

beneficial to the receiver.

29Indifference of the “agent” at the optimal information structure also appears in Roesler and
Szentes (2017) and Ortner and Chassang (2018).
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Proposition 6 (Comparative statics). The optimal test H∗c is increasing in c in

the Blackwell informativeness order, and converges to the fully informative test

function as c→ 1. The receiver’s payoff is also increasing in c. The agent’s payoff

is decreasing in c. Furthermore, H∗c is more Blackwell informative than any other

optimal test function at c.

We proceed to discuss the welfare properties of the optimal test. In contrast

to the covert case, the falsification friction does not induce any inefficiency. In-

deed, falsification-proofness implies the absence of a direct loss, and there is no

informational loss, because the compliant state is approved with certainty. Note

that in the binary-state model, the direct loss is also absent in the covert case by

the falsification-proofness principle, but informational inefficiencies persist when

the falsification cost is low.30

Proposition 7 (Welfare). The optimal test H∗c is unconstrained efficient. It de-

livers at least half of the receiver’s payoff under full information, and this bound

is tight when c = 0.

The optimal test restores at least half of the receiver’s full information payoff,

even if falsification is costless. This is again in stark contrast with the covert case,

as the receiver can then get no information at all under costless falsification. Next,

we provide a necessary and sufficient condition on costs for H∗c to remain optimal

when both upward and downward falsification are allowed.

Proposition 8 (Robustness to upward falsification). With both upward and down-

ward falsification, constants A > 0 and B exist such that the test H∗c is optimal if

and only if Ac+Bc ≥ 1.

To understand this result, note first that deviating to a falsification strategy

(φ, φ) such that φ + φ ≤ 1 is dominated by the strategy (φ, 0), because it leads

the receiver to use a threshold x̂ ≥ x̂
(
φ
)
, while lowering the probability that

the compliant state generates passing signals. Since (φ, 0) is, by construction,

unprofitable, (φ, φ) is also unprofitable. Therefore, we only need to show that

under the condition of the proposition, deviations such that φ + φ > 1 are also

non-profitable. The best of these deviations is such that φ = 1 − ϕ0 and φ = 1.

It gives the agent his best possible approval probability π + (1 − π)ϕ0, at cost

30We provide a comparison of attainable payoffs under covert and overt falsification in the
binary-state model in Online Appendix S3.
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πc + (1 − π)(1 − ϕ0)c. By comparing this payoff with the truth-telling payoff

1− κ∗c , we obtain the condition of the proposition.

4.3 Falsification detection in the continuous-state model

To illustrate how devaluations help the designer in the continuous-state model,

we focus on the low-cost region where the optimal outcome in the covert case,

ω∗γ from Theorem 1, mandates both rejecting compliant states and approving

some noncompliant states with positive probability. We construct a sequence

of three-signal tests that rely on devaluations, and mirror the three-signal test

from Section 4.1. However, they are modified to accommodate the continuum of

states and, more importantly, to leverage productive falsification as τ ∗γ . We show

outcomes from this sequence converge to an outcome under which compliant states

are approved with certainty, and the receiver is better off than in the covert case.

In contrast to the covert case, in which the optimal test is uninformative when

falsification is costless, the tests we construct provide useful information to the

receiver even under costless falsification.

We assume µπ < 0 and γc(s|s0) < 1, so that we are in the low-cost region. We

work with the signal space X = {x, ∅, x}. For each sufficiently small ε > 0, and

each p < 1− γc(s|0), we define the test τ̂p,ε as follows (see Figure 7):

• τ̂p,ε(∅|s) = p and τ̂p,ε(x|s) = 1− p,

• For all s ∈ [0, s), τ̂p,ε(∅|s) = p and τ̂p,ε(x|s) = 1− p,

• For all s ∈ [−s, s0 − ε), τ̂p,ε(x|s) = 1,

• For all s ∈ [s0 − ε, 0), τ̂p,ε(∅|s) = rε(p) and τ̂p,ε(x|s) = 1 − rε(p), and rε(p)

satisfies

rε(p)

(
−
∫ 0

s0−ε
sdFπ(s)

)
= p

∫ s

0

sdFπ(s). (M0)

In the absence of falsification, x leads to a positive posterior mean, and x to a

negative posterior mean, whereas (M0) ensures that ∅ leads to mean 0 and implies

rε(p) < p. The receiver then rejects compliant states in [0, s) with probability

1− p. But this inefficiency is overcome by productive falsification.

Productive falsification. The test τ̂p,ε (see part A of Figure 7) ensures the

agent prefers falsifying all states s ∈ [0, s) as s, because it increases their approval

33



s

0

z(p)

s0
s0 − ε

−s

s

−s

Falsification

φ∗

φz(p)

Eτ̂p,επ(s|x)

s

−s

Test τ̂p,ε

x

∅

x

1−p

p

p

p

1−
p

1−prε

rε

1−
r
ε

1−rε

1
1

A

B

Eτ̂p,εφ∗π(s|x)

s

0

−s

x

∅

x

Eτ̂p,εφzπ(s|x)

s

−s

x

∅

x

Figure 7: Incentives for productive falsification are built into part A of the test, whereas
the threat of devaluation is built into part B and ensures that φ∗ is optimal. Under φ∗,
all compliant states (productively) falsify as s. Signal ∅ is devalued when noncompliant
states are falsified as s, as with φz(p). This is illustrated in the last column which shows
posterior means under φz(p).

probability by 1− p > γc(s|0) > γc(s|s). Let φ∗ denote this falsification strategy.

Under φ∗, x still leads to a positive posterior mean, whereas ∅ still leads to a

posterior mean of 0. Hence, all compliant states are approved with certainty,

whereas noncompliant states above s0−ε are approved with probability rε(p), and

lower noncompliant states are rejected with certainty. Next, we find conditions

such that the threat of devaluation ensure φ∗ is indeed the agent’s best response.

Devaluation. For φ∗ to be a best response, devaluation must in particular dis-

suade the agent from falsifying noncompliant states as s. If a mass of noncompli-

ant states above s0 − ε falsify as s, it increases the rate at which they generate ∅
as p > rε(p), leading the receiver to form a negative posterior mean following ∅.
Hence, falsifying noncompliant states as s bears both the explicit falsification cost,

and the implicit falsification cost of devaluating signal ∅. Because any amount of

falsification by noncompliant states leads to this devaluation, the best strategy of

the agent that falsifies noncompliant states is then to falsify noncompliant states

as much as the explicit cost allows as long as the posterior mean associated with

x remains positive. The optimal deviation from φ∗ is therefore to falsify as s all

states (compliant and noncompliant) between z(p) = min{s ≥ s0 : γc(s|s) ≤ 1−p}
and s (strategy φz(p) in Figure 7). It has the benefit of increasing the probability
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that noncompliant states generate x, at the cost of devaluing signal ∅. Ensuring

the agent is worse off under this strategy than under φ∗, and that φ∗ is therefore

a best response to τ̂p,ε, puts a lower bound pε on p. Indeed, the gain over φ∗ from

this strategy is∫ 0

s0

{
1− p− γc(s|s)

}+
dFπ(s)− p

[
1− Fπ(0)

]
− rε(p)

[
Fπ(0)− Fπ(s0 − ε)

]
,

where the first term captures the new payoff for noncompliant falsifying as s,

whereas the two remaining terms capture the loss from devaluation. This gain is

decreasing in p, so a minimal value pε of p exists ensuring a negative gain. The

lower bound pε is then the value of p that makes the gain equate 0.

Because rε(p) is increasing in p, lower values of p ensure a higher payoff for

the receiver. To maximize the receiver’s payoff while ensuring φ∗ is an equilibrium

response, we therefore choose p to be equal to the lower bound pε. This choice

provides us with the family of tests τ̂pε,ε and equilibrium outcomes ω̂pε,ε = τ̂pε,εφ
∗.

The next proposition formally establishes these claims and shows the receiver’s

payoff from these outcomes increases as ε decreases to 0. Furthermore, the limit

payoff dominates the receiver’s payoff from ω∗γ.

Proposition 9. For every sufficiently small ε > 0, ω̂pε,ε is an equilibrium outcome.

The receiver’s payoff V (ω̂pε,ε) is decreasing in ε. Furthermore, in the low-cost

region, her limit payoff is higher than under ω∗γ, that is limε→0 V (ω̂pε,ε) > V ∗γ .

The test τ̂pε,ε improves performance by relying both on productive falsification

and devaluations. Compared to τ ∗γ , we add a middle signal fated for approval.

This operation provides incentives for productive falsification by making every

state above s0 − ε, except the top state, randomly generate either the low or the

middle signal with almost equal probabilities when ε→ 0. Compliant states then

have a strict incentive to falsify to the top state to be approved with certainty.

The middle signal is constructed to make the receiver indifferent between his two

actions when only compliant states falsify, but to be devalued whenever some

noncompliant states falsify to the top. This devaluation effect is achieved by giving

noncompliant states above s0 − ε a marginally lower probability of generating ∅
than compliant states. Note the limit test with ε = 0 mutes the devaluation

effect because compliant and noncompliant states then generate ∅ with the same

probability, so it is important that ε > 0. The limit outcome of these tests can

be arbitrarily closely approximated, and it is that compliant states are approved
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with certainty and noncompliant states above s0 with uniform probability p0 =

limε→0 pε, whereas lower states are rejected with certainty.

5 Conclusion

In the emissions cheating scandal, falsification by car manufacturers was detri-

mental as it enabled vehicles with noncompliant emission levels to pass the en-

vironmental test. Our analysis suggests that tests designed without accounting

for falsification perform poorly when falsification is possible. In our model, the

receiver-optimal test without falsification recommends approval for all compliant

states, and rejection for noncompliant ones. Under falsification, however, this test

induces detrimental falsification by noncompliant states sufficiently close to the

baseline standard.

Our results point to practical and simple features that can significantly im-

prove the performance of emissions (and other) tests. Under covert falsification,

the structure of the optimal test in Theorem 1 suggests raising the operational

standard above the baseline standard. A test with a high standard, on one hand

deters detrimental falsification, whereas on the other hand is relies on productive

falsification to generate approvals of compliant states. With high falsification costs

simply raising the standard suffices to eliminate approvals of noncompliant states.

With lower falsification costs, optimality additionally requires randomly approving

a fringe of noncompliant states to deter detrimental falsification. When falsifica-

tion costs are even lower, randomly rejecting compliant states becomes necessary

to prevent extremely low states from falsifying to the standard.

When a falsification-detection technology is available, Theorem 2 and Propo-

sition 9 show the threat of devaluation provides a powerful channel to improve

test performance, which is especially appealing when falsification costs are low. In

practice, a testing agency could accompany test outputs with a report on detected

amounts of falsification, or even perform the devaluation on the receiver’s behalf

by directly reporting the expectation she should form following each output. A

rich set of test outputs is key to harnessing this tool. Adding only a few signals

might already yield strong benefits in practice. Indeed, in the binary-state case,

a numerical analysis shows the three-signal test of Section 4.1 delivers at least

80% of the value of the optimal test to the receiver. Although we did not ex-

plicitly model the case of imperfect detection technologies, intuition suggests the
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devaluation lever should remain operational in this context.

Appendix

Proof of Theorem 1. We prove a more general version of the theorem that also covers

the case µπ ≥ 0.

Theorem 3. Suppose the cost function satisfies (UTI) and (CTT). Then, (τ∗γ , φ
∗
γ) =

(τp∗γ ,ŝ∗γ , φp∗γ ,ŝ∗γ ) solves (P), where

(i) ŝ∗γ = max
{
s ∈ S : γc(s|0) ≤ 1

}
and p∗γ = min

{
γc(s|s0), 1

}
if µπ < 0.

(ii) ŝ∗γ = max
{
s ∈ S : γc(s|0) ≤ 1

}
and p∗γ = 1 if µπ ≥ 0.

Proof. We first show that for every pair (τ, φ) that satisfies (IEF), an outcome ωp,ŝ exists

that makes the receiver better off. Then, we optimize the receiver’s payoff within this

class. The proof follows the outline given in the paper, but accounts for the possibility

of τ being discontinuous.

Step 1: Optimality of Class. Suppose ω = τφ is an equilibrium outcome. Let

p = sups∈S τ(s), which exists because τ(·) is bounded. For every ε > 0, let S(ε) =
{
s ∈

S : τ(s) ≥ p − ε
}

, and let S̄(ε) be the closure of S(ε). By definition of p, each S(ε),

and hence, each S̄(ε), is nonempty. Furthermore, S̄(ε) is clearly nonincreasing in ε for

the inclusion order. Therefore, by Cantor’s intersection theorem, S̄ =
⋂
ε>0 S̄(ε) is a

nonempty compact subset of S.

If some s ∈ S+ exists such that γc(s|0) ≥ p, we can set ŝ ∈ S+ to be the unique state

such that γc(ŝ|0) = p. Then, under the outcome ωp,ŝ, every compliant state is approved

with probability p, whereas every noncompliant state is rejected with certainty, making

the receiver as least as well off as under ω. Otherwise, (CTT) implies γc(s|0) ≤ p for

every s ∈ S. Then, we consider two cases:

First, suppose S̄ ∩ S+ 6= ∅. This set is then a nonempty compact set, and we let

ŝ be its minimal element. Then, under ωp,ŝ, every compliant state is approved with

probability p, which is at least as high as under τφ. Next, we show noncompliant states

pass with lower probability under ωp,ŝ. To see why, let {tn} be a sequence of nonnegative

states that converges to ŝ and such that the sequence pn = τ(tn) converges to p. Such

a sequence exists because ŝ ∈ S̄ ∩ S+. Then, for every noncompliant state s, and every

n, supt τ(t)− γc(t|s) ≥ pn − γc(tn|s), and going to the limit in n implies

ω(s) ≥ sup
t

τ(t)− γc(t|s) ≥ p− γc(ŝ|s) = ωp,ŝ(s).
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Otherwise, we must have S̄ ⊂ S−, and then we let s̃ = max S̄ < 0 and let ŝ > 0 be

the unique compliant state such that c(ŝ|0) = c(s̃|0), which must exist by (CTT). Then

again, under ωp,ŝ, every compliant state is approved with probability p, which is at least

as high as under ω. Next, we show noncompliant states pass with lower probability

under ωp,ŝ. To see why, let {tn} be a sequence of states that converges to s̃ and such

that the sequence pn = τ(tn) converges to p. Such a sequence exists because s̃ ∈ S̄.

Then, for every noncompliant state s, and every n, supt τ(t)− γc(t|s) ≥ pn − γc(tn|s),
and going to the limit in n implies

ω(s) ≥ sup
t

τ(t)− γc(t|s) ≥ p− γc(s̃|s) ≥ p− γc(ŝ|s) = ωp,ŝ(s).

Because, in each case, noncompliant states are approved with lower probability, and

compliant states with higher probability, the receiver is better off under ωp,ŝ.

Step 2: Choosing parameters optimally. Let Vp,ŝ = V (ωp,ŝ) denote the receiver’s

payoff from an equilibrium outcome in our class. We distinguish four parameter regions

and a change of p or ŝ that increases the receiver’s payoff in each of these regions.

Together, these four operations imply the optimal values for ŝ and p given in the theorem.

First, suppose µπ < 0 and γc(ŝ|s0) < p. Then, setting p′ = γc(ŝ|s0) is strictly better.

Indeed,

Vp′,ŝ − Vp,ŝ = (p′ − p)
∫ s

s0

sdFπ(s)︸ ︷︷ ︸
=0

−
∫ s0

š(p,ŝ)
sωp,ŝ(s)dFπ(s)︸ ︷︷ ︸

<0

> 0.

Second, suppose p < min{1, γc(ŝ|s0)}. Then, setting p′ = min{1, γc(ŝ|s0)} is strictly

better. Indeed,

Vp′,ŝ − Vp,ŝ = (p′ − p)
∫ s

š(p′,ŝ)
sdFπ(s)︸ ︷︷ ︸
≥0

+

∫ š(p,ŝ)

š(p′,ŝ)
(p− γc(ŝ|s))︸ ︷︷ ︸

<0

sdFπ(s) > 0.

Third, suppose µπ ≥ 0 and γc(ŝ| − s) ≤ p < 1. Then, setting p′ = 1 (strictly if

µπ > 0) is strictly better. Indeed,

Vp′,ŝ − Vp,ŝ = (p′ − p)
∫ s

−s
sdFπ(s) = (p′ − p)µπ.

Finally, suppose γc(ŝ|0) < p. Then, setting ŝ′ = max{s ≤ s : γc(s|0) ≤ p} is strictly

better. Indeed, this strictly lowers the approval probability of noncompliant states above

š(p, ŝ) while keeping the approval probability of compliant states constant at p.
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Proof of Theorem 2.

Step 1: H∗c solves (IDE). (IDE) is a linear differential equation with a well-known

unique solution:

H(x) =

{
κs

(
1 +

∫ x

0

1

(s+ y)ζ(y)
dy︸ ︷︷ ︸

χ(x)

)
− θc

∫ x

0

y

(y − µπ)(y + s)ζ(y)
dy︸ ︷︷ ︸

ξ(x)

}
ζ(x),

where

ζ(x) = exp

(∫ x

0

y

(y − µπ)(y + s)
dy

)
.

A bit of algebra yields our closed-form expression for H∗c . First,

log ζ(x) =

∫ x

0

y

(y − µπ)(y + s)
dy =

[
µπ

µπ + s
log(y − µπ) +

s

s+ µπ
log(y + s)

]x
0

,

leading to ζ(x) =
(
x−µπ
−µπ

) µπ
µπ+s

(
x+s
s

) s
µπ+s

. Next

ξ(x) =

[
− exp

(
−
∫ y

0

z

(z − µπ)(z + s)
dz

)]x
0

= 1− 1

ζ(x)
.

Finally, using the closed-form for ζ,

χ(x) = (−µπ)
µπ
µπ+s s

s
µπ+s

∫ x

0
(y − µπ)

− µπ
µπ+s (y + s)

− s
µπ+s

−1
dy

= (−µπ)
µπ
µπ+s s

s
µπ+s

[
1

s

(
y − µπ
y + s

) s
µπ+s

]x
0

=

(
−µπ
s

) µπ
µπ+s

(
x− µπ
x+ s

) s
µπ+s

+
µπ
s
.

Plugging these expressions back into our expression for H(x) yields our closed-form

expression, and we get H∗c by choosing κ as indicated, yielding the expression. κ∗c can

be written in closed form as in the body of the paper, or in the following form, which

will be useful in proofs

κ∗c =
s− µπ

s
(
1 + χ(s)

)
ζ(s)

+ θc
ζ(s)− 1

sζ(s)
(
1 + χ(s)

) = κ∗0 + θc
ζ(s)− 1

sζ(s)
(
1 + χ(s)

) . (1)

Step 2: H∗c is a test function. By construction, H∗c(s) = 0 and H∗c(s) = s −
µπ. Furthermore, we see from its closed-form expression that H∗c is twice continuously
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differentiable, with

H∗c (x) = κ∗c +
(
κ∗c(µπ + s)− θc

) x

(x+ s)(x− µπ)

(
x− µπ
−µπ

) µπ
µπ+s

(
x+ s

s

) s
µπ+s

1x>0,

and, differentiating once more,

h∗c(x) =
(
κ∗c(µπ + s)− θc

) 1

(x+ s)(x− µπ)

(
x− µπ
−µπ

)− s
µπ+s

(
x+ s

s

)− µπ
µπ+s

1x>0 . (2)

This density has the same sign as
(
κ∗c(µπ + s) − θc

)
for x > 0, implying it is strictly

positive because

κ∗c(µπ + s) > θc⇔ s− µπ > θc

(
1 +

s− µπ
s+ µπ

)
= c(s− µπ)

⇔ c < 1.

Hence, H∗c is convex and increasing. Therefore, it must lie below the fully informative

test function HFI . It remains to show that H∗c also lies above the uninformative test

function HNI . Here, we only show this is true when c = 0. We show in step 3 that, for

every c ∈ (0, 1), HFI ≥ H∗c ≥ H∗0, which will expand the conclusion to any c.

For c = 0, it is sufficient to show that H∗0 (s) ≤ 1 (note that in our notations, it can

be strictly below 1, denoting the presence of an atom at s). To see why, first note that,

by (IDE), H∗0 (s) = s
s+s + κ∗0

s
s+s . Hence, to show H∗0 (s) ≤ 1, it is sufficient to show that

κ∗0 ≤ 1. We can use our closed-form solution to write

s− µπ = H∗0(s) = κ∗0(s+ s)− κ∗0(µπ + s) + κ∗0(µπ + s)

(
s− µπ
−µπ

) µπ
µπ+s

(
s+ s

s

) s
µπ+s

= κ∗0(s− µπ) + κ∗0(s− µπ)

(
s+ µπ
−µπ

)(
s− µπ
−µπ

) −s
µπ+s

(
s+ s

s

) s
µπ+s

= κ∗0(s− µπ)

{
1 +

(
s+ µπ
−µπ

)(
s− µπ
−µπ

) −s
µπ+s

(
s+ s

s

) s
µπ+s

︸ ︷︷ ︸
≥0

}

implying the result.

Step 3: Optimality for the receiver. To see why H∗c is optimal, suppose H is

another test function such that H(0) > H∗c(0). Without loss of generality, we can

take this function to be linear below 0, and let κ be its slope below 0. Then, κ > κ∗c

as κs = H(0) > H∗c(0) = κ∗cs. Let x′ = min{x ∈ [0, s] : H(x) = H∗c(x)} be the

smallest crossing point between H and H∗c . It exists as the minimum of a nonempty
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(H(s) = H∗c(s)) and compact (by continuity of H−H∗c) real subset. Then, we must have

H`(x
′) = lim

x→x′
x<x′

H(x′)−H(x)

x′ − x
≤ lim

x→x′
x<x′

H∗c(x′)−H∗c(x)

x′ − x
= H∗c (x′).

Then,

H`(x
′)− x

(s+ x)(x− µπ)
H(x′) ≤ H∗c (x′)− x

(s+ x)(x− µπ)
H∗c(x′)

=
κ∗cs

s+ x
− θcx

(x− µπ)(s+ x)

<
κs

s+ x
− θcx

(x− µπ)(s+ x)
,

where the equality is due to the fact that H∗c satisfies (IDE). However, this inequality

implies H does not satisfy (FPIC’).

Proof of Proposition 9.

Step 1: We show that for each ε > 0, (τ̂pε,ε, φ
∗) is equilibrium feasible.

Note first that any upward falsification strategy of noncompliant states leads to

devaluating signal ∅, regardless of how compliant states are falsifying. Therefore, the

only falsification strategies of noncompliant states that are possibly beneficial for the

agent must target s. To be beneficial, such a strategy must ensure the posterior mean

associated with x remains positive. Consider a falsification strategy such that a mass m

of noncompliant states falsify as s, and assume it keeps the posterior mean associated

with x above 0. Then, consider the alternative falsification strategy that concentrates

this mass on the higher noncompliant states, that is where only states in [z, 0) with

m = Fπ(0)−Fπ(z) falsify as s. The falsification cost of this alternative strategy must be

lower by cost monotonicity. Furthermore, the posterior mean following x must increase,

because falsification originates from higher noncompliant states, so both strategies lead

to the same ex-ante approval probability. Hence, the alternative falsification strategy

dominates the former, implying we can restrict attention to falsification strategies such

that the mass of falsifying noncompliant states is concentrated on an interval [z, 0).

Suppose no noncompliant state falsifies as s. Then, falsifying any mass of states

in [0, s) as s leads to a gain equal to 1 − p − γc(s|s) for each state, which is positive

given our assumption that p < 1− γc(s|0). Indeed, the posterior mean following ∅ is 0,

whereas the posterior mean associated with x remains positive. Therefore, falsifying all

states in [0, s) as s is optimal.

If an interval [z, 0) of noncompliant states falsifying as s exists, signal ∅ is devaluated,

so states in [0, s) are rejected unless they also falsify as s. Because the latter can only
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increase the posterior mean associated with x, the gain for each compliant state falsified

to s is 1− p− γc(s|s) > 0. Therefore, falsifying all states in [0, s) as s is optimal.

Overall, these arguments imply we can restrict attention to the family of falsification

strategies

φz(s) =

δs if s ≥ z

δs otherwise,
,

with z ≤ 0. Note φ∗ = φ0. Whenever z < 0, signal ∅ is devaluated. If z < s0, signal x

is also devaluated and rejection is certain, so we can restrict attention to z ≥ s0. The

agent’s payoff is then∫ s

z
{1− p− c(s|s)}dFπ(s)− rε(p)

[
Fπ(0)− Fπ(s0 − ε)

]
,

which is maximized by choosing z equal to z(p) = min{s ≥ s0 : γc(s|s) ≤ 1 − p}.
Overall, we have shown the best deviation from φ∗ is φz(p). The net gain of the agent if

she deviates to φz(p) is

Γ(p, ε) =

∫ 0

s0

{
1− p− γc(s|s)

}+
dFπ(s)− p

[
1− Fπ(0)

]
− rε(p)

[
Fπ(0)− Fπ(s0 − ε)

]
=

∫ 0

s0

{
1− p− γc(s|s)

}+
dFπ(s)− p

[
1− Fπ(0)

]
+ p

∫ s
0 sdFπ(s)

Eπ

(
s|0 ≥ s ≥ s0 − ε

) .
This function is decreasing and continuous in p and −ε. Furthermore, Γ(0, ε) > 0 >

Γ(1−γc(s|0), ε), so a unique value pε ∈
(
0, 1−γc(s|0)

)
exists such that Γ(pε, ε) = 0, and

to ensure φz(p) is not a profitable deviation, we must therefore choose p ≥ pε. Hence,

ω̂p,ε is equilibrium feasible for every p ≥ pε.

Step 2: The receiver’s payoff is decreasing in ε.

The receiver’s payoff from the equilibrium outcome ω̂p,ε is∫ s

0
sdFπ(s) + rε(p)

∫ 0

s0−ε
sdFπ(s) = (1− p)

∫ s

0
sdFπ(s),

which is decreasing in p. Hence for any ε > 0, the best equilibrium outcome is ω̂pε,ε.

Furthermore, pε is increasing in ε, so the receiver’s payoff at the equilibrium outcome

ω̂pε,ε is also decreasing in ε. As ε → 0, pε converges to p0 ≤ pε, where p0 is the

unique value of p such that Γ(p, 0) = 0, and the receiver’s payoff converges to V̂ =

(1− p0)
∫ s

0 sdFπ(s).

Step 3: The limit payoff of the receiver is strictly higher than V ∗γ in the low-cost region.
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The value of p0 is characterized by the formula

Γ(p0, 0) =

∫ 0

z(p0)

{
1− p0 − γc(s|s)

}
dFπ(s)− p0

[
1− Fπ(s0)

]
= 0,

implying

p0 =

∫ 0
z(p0)

{
1− γc(s|s)

}
dFπ(s)

1− Fπ(s0) + Fπ(0)− Fπ(z(p0))
<

∫ 0
s0

{
1− γc(s|s)

}
dFπ(s)

Fπ(0)− Fπ(s0)
, (3)

because, in the low-cost region, we have γc(s|s) ≤ γc(s|s0) ≤ 1, for all s ∈ [s0, 0]. The

difference between the limit receiver payoff V̂ and V ∗γ in the low-cost region is

V̂ − V ∗γ = (1− p0)

∫ s

0
sdFπ(s)−

(
γc(s|s0)

∫ s

s0

sdFπ(s)−
∫ 0

s0

γc(s|s)sdFπ(s)

)
= (1− p0)

∫ 0

s0

(−s)dFπ(s)−
∫ 0

s0

γc(s|s)(−s)dFπ(s)

=

∫ 0

s0

{
1− γc(s|s)

}
(−s)dFπ(s)− p0

∫ 0

s0

(−s)dFπ(s)

>

∫ 0

s0

{
1− γc(s|s)

}
(−s)dFπ(s)−

∫ 0
s0

{
1− γc(s|s)

}
dFπ(s)

Fπ(0)− Fπ(s0)

∫ 0

s0

(−s)dFπ(s)

≥ 0,

where the first inequality is from (3), and we repeatedly use that
∫ s
s0
sdFπ(s) =∫ 0

s0
sdFπ(s) +

∫ s
0 sdFπ(s) = 0. For the last inequality, consider the two probability

distributions on [s0, 0] defined by

dG(s) =
dFπ(s)

Fπ(0)− Fπ(s0)
, and dH(s) =

(
1− γc(s|s)

)
dFπ(s)∫ 0

s0

{
1− γc(s|s)

}
dFπ(s)

.

The ratio dG(s)
dH(s) is proportional to 1/

(
1− γc(s|s)

)
, which is increasing in s, implying G

dominates H in the likelihood ratio order, so EG(s) ≥ EH(s), which yields the desired

inequality.
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