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Abstract

A principal designs an information structure and chooses transfers to an agent that

are contingent on the action of a receiver. The principal faces a trade-off between, on

the one hand, designing an information structure maximizing non-monetary payoffs,

and on the other hand, minimizing the information rent that must be conceded to the

agent in order to implement the information structure which the principal designed.

We examine how this trade-off shapes communication. Our model can be applied to

study the relationship between, e.g.: political organizations and the public relations

companies that campaign on their behalf, firms and the companies marketing their

products, consultancies and the analysts they employ.
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1 Introduction

Communication often takes place through third parties that must be incentivized extrin-

sically. For example, public relations companies have become major actors on the political

scene, oftentimes conducting entire campaigns on behalf of traditional parties, advocacy

groups and special interest groups;1 governments in autocratic (or illiberal) regimes design

censorship and/or propaganda, but typically rely on the media to actually carry those out;2

banks and consultancies employ analysts providing expert advice in their name;3 large

firms employ specialized companies to conduct marketing campaigns on their behalf. This

reliance on third parties to inform voters and customers raises potential organizational is-

sues, as third parties either have to be monitored, or appropriately incentivized to generate

information as they are expected to. How is communication shaped by the agency problem

which results from contracting with third parties?

To address this question, we develop a model of a principal choosing an information

structure, τ∗, with a view to influencing a receiver’s belief concerning an unknown state

of the world. Said information structure is implemented by an agent, who may choose to

shirk. If the agent shirks, the receiver’s belief is organically affected by the surrounding

environment, in keeping with a given information structure, τ̆ , say. The focus of our paper

is on the case in which effort is not contractible and where, instead, the principal is con-

strained to provide incentives to the agent through transfers contingent on the receiver’s

action.

In our setting, each information structure induces a joint distribution of the receiver’s

action and the state, that pins down the non-monetary payoff of the principal; the prin-

cipal’s agency cost of implementing τ∗, on the other hand, is determined by the marginal
distributions of the receiver’s action under, respectively, τ∗ and τ̆ . The closer said marginal

distributions, the more the principal needs to pay the agent in order to induce effort. We

show in Section 3 that when the agent is risk neutral, the problem of the principal takes a

tractable form. The agent is rewarded exclusively for inducing the receiver to take a given

action, a†, say, while τ∗ is distorted (relative to the first-best information structure) so as to

increase the probability of a†. The central trade-off of our analysis then takes the following

form: increasing the probability of a† reduces the non-monetary payoff of the principal,

1See, e.g., Sheingate (2016).
2We thank Gabriele Gratton for this example.
3We thank an anonymous referee for this example.
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but enables him to lower the information rent left to the agent. The larger the agent’s ef-

fort cost, the greater the pressure on the principal to distort the information structure so

as to reduce the agent’s information rent. In particular, in sharp contrast with traditional

models of moral hazard, increasing effort cost sometimes ends up making the agent worse

off.

Section 4 presents a general solution method for the principal’s problem. In essence,

the problem of the principal reduces to finding a binary splitting of the prior belief on two

posteriors, q̂ and q†, such that the principal obtains his concavified non-monetary payoff
conditional on q̂, but no more than his “raw” non-monetary payoff conditional on q†.4 Sec-

tion 5 fully solves two prominent examples illustrating our method and the implications

of the aforementioned trade-off in the context of political campaigning.

In Section 5, the principal is a political organization (e.g., a political party, or a special

interest group), the receiver a median voter, and the agent a public relations company

(PRC) hired by the organization in order to sway public opinion in favor of a particular

outcome. We first consider a setting with two states (L and R) and two possible outcomes

(L and R). This setting could capture a referendum, for instance. The preferences of the

organization are partially aligned with those of the median voter, in the sense that, in each

state, the organization and the voter agree on the best outcome (in Figure 1a, the solid line

segments depict the organization’s raw non-monetary payoffs). Hence, in the absence of an

agency problem (i.e. when effort is contractible), the organization chooses a fully revealing

information structure, inducing the voter to pick the socially optimal outcome in each state

(in Figure 1a, the dashed line segment represents the resulting payoffs of the organization).

We show that the central trade-off of our analysis then tilts the outcome of the vote towards

the outcome that is ex-ante preferred by the organization (inducing payoffs represented

by the dotted line segment). We thus find that, in this case, the organization chooses an

information structure inducing the median voter to sometimes pick an outcome that is

suboptimal ex post both for the voter and the organization.

We then examine a setting with three possible outcomes, L, M and R, which could for

instance represent different candidates in an election. We assume that L is the median

voter’s preferred outcome in state L, and R the median voter’s preferred outcome in state

R. However, in the face of uncertainty, the voter prefers M to both extremes. By contrast,

4By “raw” non-monetary payoffs, we mean the principal’s (expected) non-monetary payoffs expressed as
a function of the receiver’s posterior belief. The concavified non-monetary payoff function is the smallest
concave function everywhere at least as large as the raw non-monetary payoff function.
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Figure 1

the organization’s preferences are state-independent: L is worse than M, which is itself

worse than R (in Figure 1b, the solid line segments depict the organization’s raw non-

monetary payoffs); but M is “closer” to R than L, meaning that in the absence of an agency

problem the organization chooses an information structure inducing the voter to pick ei-

ther R or M (in Figure 1b, the dashed line segment represents the resulting payoffs of the

organization). We show that in this case the central trade-off of our analysis polarizes the

outcome of the vote, leading the organization to choose an information structure causing

the median voter to always pick one of the extremes (inducing payoffs represented by the

dotted line segment). Intuitively, although M is relatively favorable to the organization,

inducing it forces the organization to simultaneously lower the probability of R, which, in

turn, raises the PRC’s information rent.

Whether the agency problem facing the political organization helps or harms the me-

dian voter depends on the example considered: from the median voter’s viewpoint, said

agency problem is welfare reducing in the first example considered above, but welfare

enhancing in the second example.

The special case in which the non-monetary payoffs of the principal coincide with those

of the receiver is examined independently in Section 6, along with several extensions; for

example, the cost of effort is allowed to depend on the choice of information structure, and

the action of the receiver is allowed to have a direct impact on the welfare of the agent.
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Section 7 concludes. All proofs not included in the text are in the appendix.

Related Literature. We contribute to the information design literature by exploring the

implications of the observation that, in many situations, the designer might have to rely on

a third party in order to implement his choice of information structure. Our paper con-

tributes to a recent research program accounting for the fact that the design of information

not only affects decisions downstream of information production, but also shapes incen-

tives upstream of information production. In a seminal paper, Kremer, Mansour and Perry

(2014) consider a designer seeking to use past consumers’ experience to inform future

consumers’ choice. The designer would therefore like early consumers to experiment new

products; however, as experimentation must be incentive compatible for the consumers,

the designer is constrained in his choice of information structure. Rosar (2017) provides

another important example, in which a designer can choose a test of an individual’s abil-

ity, but must account for the fact that said individual could prefer not to be tested. As

later studies emphasized, even when the test cannot be avoided, the kind of test chosen

by the designer might influence the individual’s behavior in various ways, either by af-

fecting the individual’s incentives to invest in her own ability (as in Rodina and Farragut

(2017), Boleslavsky and Kim (2020) and Bizzotto and Vigier (2021)) or by affecting the

individual’s incentives to manipulate the test (as in Perez-Richet and Skreta (2020)), or a

combination of the two (as in Kleinberg and Raghavan (2020)). Yoder (2020) is also closely

connected: there, the designer contracts with a researcher that is privately informed about

her cost of experimentation, and thus faces a screening problem that distorts the optimal

experiment; a related problem is examined in Rappoport and Somma (2017). Finally, in

Zapechelnyuk (2020), quality certification not only informs consumers but also serves to

stimulate producers to supply better quality products.

Our paper is also connected to the vast literature exploring how to motivate informa-

tion acquisition.5 Most of this literature differs from our work in that the principal cannot

change the technology by which agents acquire and disclose information. Two notable ex-

ceptions are Angelucci (2017), and Herresthal (2020): in the former, agents can either be

required to work as a team (in order to produce a common signal), or to generate individ-

ual signals; in the latter, the agent’s choice of experimentation can be made public or kept

private.

5See, e.g., Szalay (2005), Zermeño (2011) and Carroll (2019), among many others.
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Finally, our work relates to a growing literature exploring communication taking place

via third parties in politics. A first strand of literature, mostly empirical, examines the

changing nature of political campaigning following the advent of public relations compa-

nies (Hillygus and Shields (2009), Gibson and Rommele (2009), Strömbäck and Kiousis

(2012), Tenscher, Koc-Michalska, Lilleker, Mykkänen, Walter, Findor and Jalali (2016),

Grusell and Nord (2020)). A second strand of literature, theoretically studies media con-

trol in autocratic or illiberal regimes; notable recent contributions include Shadmehr and

Bernhardt (2015), Boleslavsky, Shadmehr and Sonin (2020), Gratton and Lee (2020), and

Kolotilin, Mylovanov and Zapechelnyuk (2021). In these papers, the focus is on censor-

ship, i.e., situations in which autocratic regimes cancel messages ex post. Our model, on

the other hand, is closer to propaganda design.

2 General Framework

The general model comprises three risk-neutral players: a principal, an agent and a re-

ceiver. The receiver chooses an action a ∈ A affecting her payoffs and those of the principal,

both of which also depend on the state of the world ω ∈ Ω with probability distribution

p ∈ ∆Ω. Let A =
{
a1, . . . , am

}
and Ω =

{
ω1, . . . ,ωn

}
; so m and n denote the number of possible

actions and states.

Let Tx denote the set of splittings of the belief x ∈ ∆Ω, that is, the set of probability

distributions on ∆Ω averaging to x. In the spirit of Aumann, Maschler and Stearns (1995)

and Kamenica and Gentzkow (2011), the principal chooses τ∗ ∈ Tp. However, the ultimate

information structure depends on the agent’s effort choice e ∈ {0,1}: either the agent ex-

erts effort (e = 1), in which case the receiver’s posterior belief is drawn according to τ∗, or

the agent shirks (e = 0), in which case said posterior is drawn according to some τ̆ ∈ Tp
representing information generated organically by the surrounding environment. For ex-

pository simplicity, τ̆ induces a uniformly distributed action of the receiver.6

Exerting effort causes disutility c > 0 for the agent. The central friction of the model

resides in the fact that e is not contractible. The only contractible is the receiver’s action

a. The agent is thus incentivized through an action-contingent transfer t∗(a). The players’

payoffs are given by v(a,ω)− t∗(a) for the principal, u(a,ω) for the receiver, and t∗(a)− c1e=1

6In general, the principal may be able to exploit the non-uniform distribution induced on A when the
agent shirks in order to reduce the agency cost of inducing e = 1. Other than this, the main insights are
exactly the same as when τ̆ induces a uniformly distributed action; see Subsection 6.1.
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for the agent.7 Throughout, we use q to denote a generic posterior belief in ∆Ω, and denote

by A : ∆Ω →P (A) the function mapping each posterior belief to the corresponding set of

receiver-optimal actions, that is,

A(q) := argmax
aj∈A

n∑
i=1

qiu(aj ,ωi).

A tuple (τ, t,α) comprising a splitting τ ∈ Tp, a transfer scheme t : A→R, and an action

recommendation function a : supp τ → A will be referred to as a plan, and be represented

through the shorthand notation Ξ. Three kinds of constraints will play a central role: (i)

limited liability precludes negative transfers to the agent; (ii) obedience constraints ensure

that the receiver chooses an optimal action regardless of the realized posterior; (iii) incen-

tive compatibility assures that the agent prefers exerting effort over shirking. A plan Ξ

satisfying (i)-(iii) will be called a feasible plan.

Taking a mechanism design approach, we frame the problem of the principal as that

of picking one plan within the set of feasible plans, and let Ξ∗ := (τ∗, t∗,α∗) denote the

principal’s chosen plan. Hence, our focus is on the problem:

max
Ξ

∑
q

τ(q)
[ n∑
i=1

qiv
(
α(q),ωi

)
− t

(
α(q)

)]
, (PP0)

s.t.


t(aj) ≥ 0, ∀aj ∈ A,
α(q) ∈ A(q), ∀q ∈ supp τ,∑
q τ(q)t

(
α(q)

)
− c ≥ 1

m

∑
j t(aj).

Either the maximum value of (PP0) is greater than the maximum expected payoff that the

principal can obtain when the agent shirks, in which case the principal chooses (τ∗, t∗,α∗) =

(τ, t,α), where (τ, t,α) denotes a solution of (PP0), or said value is less than what the prin-

cipal can obtain by letting the agent shirk, and in that case the principal sets t∗(a) = 0 for

all a ∈ A, thereby inducing the agent to shirk.

7In line with our lead application, we assume that the agent is unbiased and does not care about the re-
ceiver’s action per se. According to Thomas B. Edsall on the New York Times blog, The conversion of the
lobbyist from a backslapper into the “man in the gray flannel suit” has already had a significant effect on
American politics. The most important is that the influence industry has become unexpectedly depoliticized
and disaffected. The case in which the agent is biased introduces an additional “efficiency motive” for dis-
torting τ∗ that is independent of the model’s agency problem. This case is discussed briefly in Subsection
6.3.
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Notation. We record here the basic notation and terminology used throughout the anal-

ysis. Slightly abusing notation, let

v(q) := max
aj∈A(q)

n∑
i=1

qiv(aj ,ωi), and A(q) := arg max
aj∈A(q)

n∑
i=1

qiv(aj ,ωi).

Thus A(q) indicates the actions which the principal prefers among the set of receiver-

optimal actions given q, and v(q) the corresponding expected payoff.

We use standard notation, v̂, to represent the concavification of the function v, and let

T v̂x denote the set of v-concavifying splittings of x. Thus, τ ∈ T v̂x if and only if τ ∈ Tx and∑
τ(q)v(q) = v̂(x). The distortion loss D(Ξ) associated with the feasible plan Ξ = (τ, t,α) is

defined as the difference between the first-best non-monetary payoff of the principal and

the corresponding payoff given Ξ:

D(Ξ) := v̂(p)−
∑
q

n∑
i=1

τ(q)qiv
(
α(q),ωi

)
.

3 General Analysis

We first establish the existence of a solution of the principal’s problem in which the agent

is rewarded exclusively for inducing the receiver to take a given action, say, a†. Intuitively,

the agent being risk neutral, paying her only when the likelihood of e = 1 is maximal

minimizes the principal’s agency cost of inducing e = 1.

Lemma 1. There exists a plan Ξ = (τ, t,α) solving (PP0), and a† ∈ A, such that t(aj) = 0 for all
aj ∈ A \ {a†}. Moreover, for any such Ξ and a†: P(a = a† | Ξ) ≥ P(a = aj | Ξ) for all aj ∈ A.

Clearly, any Ξ solving (PP0) must be such that the incentive compatibility constraint is

binding; if Ξ moreover satisfies the conditions of the last lemma, then P(a = a† | Ξ)t(a†)−c =

m−1t(a†), giving, after simple algebra,

P(a = a† | Ξ)t(a†) = c+R
(
P(a = a† | Ξ)

)
,

where

R(w) :=


c

mw−1 if w > 1
m ,

+∞ if w ≤ 1
m .
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Hence, in the previous lemma, R
(
P(a = a† | Ξ)

)
represents the agent’s information rent

under the plan Ξ.

The previous remarks suggest that the principal might gain by gearing Ξ∗ so as to in-

crease the probability of a particular action in an attempt to reduce the agent’s informa-

tion rent. Consequently, principal-optimal plans will in general exist that comprise “sub-

optimal” action recommendations, in the sense of violating the condition α∗(q) ∈ A(q) at

some posterior belief q ∈ supp τ∗. The purpose of the next lemma is to guarantee the

existence of a principal-optimal plan satisfying the latter condition at all q ∈ supp τ∗.

Lemma 2. There exists a plan (τ, t,α) solving (PP0) such that α(q) ∈ A(q), for all q ∈ supp τ .

Henceforth, to shorten notation, let w(τ) := maxq τ(q). The combination of Lemmata 1

and 2 greatly simplifies the analysis, and enables us to reduce the principal’s problem to

max
τ∈Tp

∑
q

τ(q)v(q)−R
(
w(τ)

)
, (PP1)

as summarized in the following lemma.

Lemma 3. Any τ solving (PP1) also forms part of a plan Ξ solving (PP0).8

We can now formulate the main trade-off of our model. In what follows, let M(w)

denote the minimum distortion loss achievable among all feasible plans in which at least

one posterior belief is generated with probability at least as large as w, that is,

M(w) := min
{
D(Ξ) | Ξ = (τ, t,α) is feasible and w(τ) ≥ w

}
.

Note that M(w) is non-decreasing in w, since increasing w tightens the inequality con-

straint in the program defining it.

Proposition 1. Let w solve
min
w

{
M(w) +R(w)

}
, (1)

and consider an arbitrary splitting τ ∈ argmaxτ∈Tp
{∑

q τ(q)v(q) | w(τ) ≥ w
}
. Then τ forms

part of a plan Ξ solving (PP0), and such that the agent is rewarded exclusively for inducing the
receiver to take a given action a† occurring with probability w.

8The converse is not true. However, if τ forms part of a plan solving (PP0), then
∑
q τ(q)v(q) =

∑
q τ̃(q)v(q)

for some τ̃ solving (PP1).
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Unlike traditional models of information design, in our model, the chosen splitting

τ∗ affects not only the principal’s payoff resulting directly from the receiver’s action, but

affects also the agent’s information rent. The greater the weight attached by τ∗ to one

particular action, the smaller the rent that must be conceded to the agent in order to induce

e = 1. The principal thus faces a trade-off, captured by (1), between minimizing the loss

from distortion (relative to the first-best splitting) or the agent’s information rent.

Since R(w) increases with c (regardless of w), the greater c the greater the pressure on

the principal to distort the chosen splitting τ∗ with a view to reducing the agent’s informa-

tion rent. Consequently, any increase of the effort cost results in a weakly greater distortion

loss. Interestingly, unlike traditional models of moral hazard, here increasing c can also

reduce the information rent that the principal concedes to the agent. These results are

summarized in the next proposition.

Proposition 2. Raising c results in a weakly greater distortion loss, and can result in a lower
information rent for the agent.

A cautionary note is perhaps warranted. As distortions take the form of biasing τ∗ in

the direction of a particular action, one is led to ask whether varying effort cost induces

systematic distortions of the optimal splitting. For instance, one is tempted to intuitively

think that, when v is convex, increasing c should induce a mean-preserving contraction

of τ∗. Roughly, the previous intuition is correct only as long as the payment action does

not change.9 If v is not convex, on the other hand, then increasing c can even induce a

mean-preserving spread of the optimal splitting (see Subsection 5.2 for an example).

4 Solving the Principal’s Problem

We now build on the analysis of the previous section to provide a general solution method

for the principal’s problem (PP0). The binary splitting of the prior supported on the pos-

terior beliefs q† and q̂ will be represented by the pair {q†, q̂}. For any {q†, q̂}, we then define

w(q†, q̂) by the relation

p = w(q†, q̂)q† +
(
1−w(q†, q̂)

)
q̂.

9For a simple example illustrating this point consider a setting with m = n = 2, p = 1/4 and v(q) =
max{1/8 − q,0}. It is then easy to show that there exists c0 > 0 such that: for c < c0, τ∗ splits p on x(c)
and 1 (where x(c) increases with c), whereas for c > c0, τ∗ splits p on 0 and y(c) (where y(c) decreases with c).
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Below, 1x denotes the splitting of x ∈ ∆Ω assigning probability 1 to x; we start this section

with the following preliminary result.

Lemma 4. There exists c such that τ∗ = 1p for c ≥ c, whereas any principal-optimal splitting is
informative for c < c. If v is concave, then c = 0.

Henceforth, assume c < c. Thus, given τ solving (PP1), we can pick q† ∈ argmaxq τ(q),

and let q̂ := p−w(τ)q†

1−w(τ) . Then {q†, q̂} is a binary splitting of the prior belief, w(τ) = w(q†, q̂),

and, by writing

∑
q

τ(q)v(q) = w(τ)v(q†) +
(
1−w(τ)

)∑
q,q†

τ(q)
1−w(τ)

v(q),

we see that∑
q

τ(q)v(q)−R
(
w(τ)

)
≤ w(τ)v(q†) +

(
1−w(τ)

)
v̂(q̂)−R

(
w(τ)

)
= w(q†, q̂)v(q†) +

(
1−w(q†, q̂)

)
v̂(q̂)−R

(
w(q†, q̂)

)
.

Similarly, given a binary splitting {q†, q̂} of the prior belief, let τ̂ denote an arbitrary split-

ting in T v̂q̂ and define τ̃ := w(q†, q̂)1q† +
(
1−w(q†, q̂)

)
τ̂ . Then

w(q†, q̂)v(q†) +
(
1−w(q†, q̂)

)
v̂(q̂)−R

(
w(q†, q̂)

)
≤

∑
q

τ̃(q)v(q)−R
(
w(τ̃)

)
.

Combining the previous observations shows that to any τ solving (PP1) is associated a

binary splitting solving

max
{q†,q̂}

w(q†, q̂)v(q†) +
(
1−w(q†, q̂)

)
v̂(q̂)−R

(
w(q†, q̂)

)
. (PP2)

More importantly, we show in the next proposition that the converse is true as well: to any

{q†, q̂} solving (PP2) is associated at least one splitting τ solving (PP1). In other words, the

problem of the principal can be reduced to finding a binary splitting of the prior belief

solving (PP2), as summarized in the following proposition.

Proposition 3. Assume c < c. Consider {q†, q̂} solving (PP2). Let τ̂ ∈ T v̂q̂ , and τ = w(q†, q̂)1q† +(
1−w(q†, q̂)

)
τ̂ . Then τ forms part of a plan Ξ solving (PP0), and such that the agent is rewarded

10



exclusively for inducing the receiver to take a given action a† occurring with probability w(q†, q̂).

From Proposition 3, we immediately obtain the following procedure for solving (PP0):

Step I: compute v̂, the concavification of the payoff function v;

Step II: find a binary splitting {q†, q̂} of the prior belief that solves (PP2);

Step III: find a v-concavifying splitting τ̂ of q̂;

Step IV: let τ = w(q†, q̂)1q† +
(
1−w(q†, q̂)

)
τ̂ , and select any action recommendation function α

that satisfies α(q) ∈ A(q) for all q ∈ supp τ ;

Step V: choose the plan Ξ = (τ, t,α), where t
(
α(q†)

)
= mc(mw(q†, q̂) − 1)−1 and t(aj) = 0 for

aj , α(q†).

5 Political Campaigning

In this section, we abandon our general analysis in favor of a more narrow setting that

enables us to illustrate in practice (a) the central trade-off highlighted in Section 3, (b) the

procedure presented in section 4.

In this section, the role of the principal is played by some political organization (e.g., a

political party, or a special interest group), and that of the receiver is played by a median

voter. The agent of our model represents a public relations company (PRC), hired by the

organization in order to sway public opinion in favor of one of m outcomes. An outcome

could represent a particular policy, or a candidate in an election. The binary state is uni-

formly distributed; we let L andR stand for ω1 and ω2, respectively. Lastly, for expository

simplicity, beliefs will here be represented by the probability attached to state R.

5.1 The Limits of Informative Campaigning

We first consider a setting with two possible outcomes (L and R), a referendum say. The

preferences of the organization are partially aligned with those of the median voter, in the

sense that, in each state, the organization and the median voter agree on the best outcome.

Concretely, the median voter must choose between outcomes L and R. The voter’s pre-

ferred outcome is L if q < 1/2, and R if q > 1/2. Both the organization and the median voter

11



prefer outcome L when the state is L and outcome R when the state is R. However, the or-

ganization’s payoffs are such that, ex ante, the organization favors outcome R. Specifically,

we normalize the organization’s payoffs from outcome R to be 3 in state R and 0 in state

L; its payoffs from outcome L are 2 in state L and 0 in state R. The solid line segments in

Figure 1a depict the organization’s payoffs in terms of the median voter’s posterior belief.

The concavification of the function v is in this case given by 2 + q.

We next elicit the organization’s optimal splitting by solving the reduced problem (PP2).

Lemma 5. If {q†, q̂} solves (PP2) then q̂ = 0 and q† ∈ (1/2,1).

Proof: First, note that if {q†, q̂} is such that one of the two posterior beliefs is equal to 1 and

the other equal to 0, then {q†, q̂} cannot solve (PP2). Indeed, in this case, w(q†, q̂) = 1/2, and

so R
(
w(q†, q̂)

)
= +∞.

Next, we prove that any {q†, q̂} solving (PP2) must satisfy q† > 1/2 and q̂ < 1/2. We will

do this by showing that, for all x ∈ (0,1/2] and all y ∈ (0,1/2], where x and y are not both

equal to 1/2, the splitting {12 +x, 1
2 −y} strictly dominates {12 −x,

1
2 +y} for the problem (PP2).

Note first thatw(1
2 +x, 1

2−y) = w(1
2−x,

1
2 +y) = y

x+y =: w. Hence, {12 +x, 1
2−y} strictly dominates

{12 − x,
1
2 + y} for the problem (PP2) if and only if

3w(1
2 + x) + (1−w)(2 + 1

2 − y) > w(2− 1
2 + x) + (1−w)(2 + 1

2 + y).

Substituting w = y
x+y in the previous expression yields 2xy

x+y > 0.

We now show that if {q†, q̂} solves (PP2) then either q† = 1 or q̂ = 0. Consider q† ∈ (1/2,1)

and q̂ ∈ (0,1/2). Define w := w(q†, q̂) and y(x) := p−wx
1−w . Then, by choosing ε sufficiently

small, notice that x ∈ (1/2,1) and y(x) ∈ (0,1/2) for all x ∈ [q† − ε,q† + ε]. Note too that

{x,y(x)} is a binary splitting of p with w(x,y(x)) = w, so for all x ∈ [q† − ε,q† + ε]:

w(x,y(x))v(x) +
(
1−w(x,y(x))

)
v̂
(
y(x)

)
−R

(
w(x,y(x))

)
= 3wx+ (1−w)

(
2 + y(x)

)
−R(w)

= 2wx+
5
2
− 2w −R(w).

Hence,
{
q† + ε,y(q† + ε)

}
strictly dominates {q†, q̂} for the problem (PP2). This establishes

that if {q†, q̂} solves (PP2) then either q† = 1 or q̂ = 0.

Lastly, note that the alternative q† = 1 is ruled out, since w(1, q̂) < 1/2 for all q̂ ∈ (0,1/2),

and so R
(
w(1, q̂)

)
= +∞. �
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We can now state this subsection’s main result.

Proposition 4. If c ≥ 1
2 then τ∗ = 1p. Otherwise τ∗ splits p on 0 and 1

2 + x, where x ∈ (0,1/2)

decreases with c.

The first-best solution is here straightforward: since in each state the organization and

the median voter agree on the best outcome, the organization chooses a splitting fully re-

vealing the state to the median voter. With agency however, the organization is unable to

implement the fully revealing splitting. The reason is that, in this case, the marginal dis-

tribution of the voter’s choice is the same whether or not the PRC exerts effort; so the PRC

prefers shirking regardless of the transfer scheme. The organization is thus constrained to

choose a biased informative structure, sometimes inducing the voter to select outcome R

(which, ex ante, is preferred by the organization) in state L although, ex post, the organi-

zation and the median voter agree that the best outcome is then L.

In Figure 1a, the double arrow indicates the distortion loss suffered by the organization

from splitting p on 0 and 1/2 + x, where x < 1/2, instead of fully revealing the state to the

median voter. Note that in the present setting the organization’s agency problem vis-a-vis

the PRC makes the median voter unambiguously worse off, since it induces the organization

to choose a splitting generating less information than the organization would choose in the

absence of an agency problem.

5.2 Partisan Politics

We now examine a setting with three possible outcomes, L, M, and R, which could for

instance represent different candidates in an election. The voter’s preferred outcome is L

for q < 1− q, M for q ∈ (1− q,q) and R for q > q, where q ∈ (1/2,1). However, the organiza-

tion’s preferences are state independent: R is the organization’s most-preferred outcome,

followed by M and L. We normalize the organization’s payoffs to be 1 for outcome R, 0 for

outcome L, and vM for outcome M. To shorten the exposition, we assume throughout this

subsection that 2(1− q) > vM > (1− q)/q.10 The solid line segments of Figure 1b depict the

organization’s payoffs in terms of the median voter’s posterior belief. The concavification

of the function v is in this case given by vM
1−qq if q ≤ 1−q, vM +

(
1−vM
2q−1

)
(q − 1 + q) if q ∈ [1−q,q],

and 1 if q ≥ q.

10The case vM > 2(1 − q) is similar, with Lemma 7 reversed, namely, in that case, for all x ∈ (0,1 − q],
{1− q,q + x} strictly dominates {q,1− q − x} for the problem (PP2). The case VM < (1− q)/q is less interesting,
as in that case cav v is linear on [0,q].
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We next elicit the organization’s optimal splitting by solving the reduced problem (PP2).

We start with two lemmata, establishing that any solution {q†, q̂} of the problem (PP2) either

satisfies q† = q and q̂ ∈ [0,1− q] (Lemma 6), or q† > 1− q and q̂ ∈ [q,1] (Lemma 7).

Lemma 6. If {q†, q̂} solves (PP2) and q† > q̂, then q† = q and q̂ ∈ [0,1− q].

Proof: Consider first q† > q. Then, for any ε < q†−q and any q̂ < 1/2, the splitting {q†−ε, q̂}
strictly dominates {q†, q̂} for the problem (PP2), since v(q† − ε) = v(q†) = 1 > vM and w(q† −
ε, q̂) > w(q†, q̂). Hence no {q†, q̂} with q† > q is a solution of (PP2).

Next, consider q† ∈ (1/2, q). Firstly, reasoning as in the previous paragraph shows that,

for any q̂ ∈ [0,1 − q], {q†, q̂} cannot be a solution of (PP2). Now let q̂ ∈ (1 − q,1/2), define

w := w(q†, q̂) and y(x) := p−wx
1−w . Then, by choosing ε sufficiently small, notice that x ∈ (1/2,q)

and y(x) ∈ (1− q,1/2) for all x ∈ [q† − ε,q† + ε]. Note too that {x,y(x)} is a binary splitting of

p with w(x,y(x)) = w, so for all x ∈ [q† − ε,q† + ε]:

w(x,y(x))v(x) +
(
1−w(x,y(x))

)
v̂
(
y(x)

)
−R

(
w(x,y(x))

)
= wvM + (1−w)

[
vM +

(1− vM
2q − 1

)
(y(x)− 1 + q)

]
−R(w)

= vM +
(1− vM

2q − 1

)[
p −wx − (1− q)(1−w)

]
−R(w).

Hence,
{
q† − ε,y(q† − ε)

}
strictly dominates {q†, q̂} for the problem (PP2). Combining the

remarks made in this paragraph shows that no {q†, q̂} with q† ∈ (1/2,q) is a solution of

(PP2). It ensues that if {q†, q̂} solves (PP2) and q† > q̂, then q† = q.

Finally, notice that, for any q̂ ∈ (1− q,1/2), the splitting {q,1− q} strictly dominates {q, q̂}
for the problem (PP2), since w(q,1− q) > w(q, q̂) whereas

w(q,1− q)v(q) +
(
1−w(q,1− q)

)
v̂(1− q) = w(q, q̂)v(q) +

(
1−w(q, q̂)

)
v̂(q̂).

�

Lemma 7. If {q†, q̂} solves (PP2), q† < q̂ and {q†, q̂} , {1− q,q}, then q† > 1− q and q̂ ∈ [q,1].

Proof: Consider first q̂ ∈ (1/2, q). Then, for any q† ∈ [0,1− q], the splitting {q†, q̂} is strictly

dominated by {1− q,q} for the problem (PP2), since vM > (1− q)/q and w(1− q,q) > w(q†, q̂).

Moreover, the same arguments as those used in the proof of Lemma 6 establish that no

splitting {q†, q̂} with q̂ ∈ (1− q,1/2) is a solution of (PP2). Thus no {q†, q̂} with q̂ ∈ (1/2, q) is

a solution of (PP2).
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Next, consider q̂ ∈ [q,1]. For any q† < 1−q, the splitting {1−q, q̂} strictly dominates {q†, q̂}
for the problem (PP2), since vM > (1− q)/q and w(1− q, q̂) > w(q†, q̂).

Combining the remarks in the previous paragraphs establishes that if {q†, q̂} solves

(PP2), q† < q̂ and {q†, q̂} , {1− q,q}, then q† ≥ 1− q and q̂ ∈ [q,1]. We now show that q† must

be strictly greater than 1−q, by proving that for all x ∈ (0,1−q], the splitting {1−q,q+x} is

strictly dominated by {q,1− q − x} for the problem (PP2). Note first that

w(q,1− q − x) = w(1− q,q+ x) =
2(q+ x)− 1

2(2q − 1) + 2x
=: w.

Hence, given x ∈ (0,1− q], {1− q,q+ x} is strictly dominated by {q,1− q− x} for the problem

(PP2) if and only if

w+ (1−w)
(

1− q − x
1− q

)
vM > wvM + (1−w).

Substituting w = 2(q+x)−1
2(2q−1)+2x in the last expression yields 2(1− q) > vM . �

Combining Lemmata 6 and 7 yields this subsection’s main result.

Proposition 5. There exist 0 < c1 < c2 < c3 such that:

• for c < c1, τ∗ splits p on 1− q and q;

• for c1 < c < c2, τ∗ splits p on 0, 1− q and q;

• for c2 < c < c3, τ∗ splits p on 0 and q.

For c > c3, either τ∗ = 1p or some splitting {x,y} where x > 1− q and y ≥ q forms part of a plan
solving (PP0).

The broad logic of the proposition is the following. As long as c < c1 the organization

chooses the first-best splitting {1 − q,q}, concavifying v at p = 1/2. Outcomes M and R

are then generated with 50 % probability each, and the PRC obtains an information rent

equal to 2c. At c = c1, the organization’s marginal gain from reducing said rent exactly

compensates the distortion loss incurred when “resplitting” 1 − q on 0 and q. Between

c = c1 and c = c2, the organization thus gradually reduces the probability of outcome M in

favor of the two extremes. In the range c2 < c < c3, outcome M never occurs: outcome R is

generated with probability (2q)−1, while outcome L is generated with probability 1−(2q)−1.

For c > c3, the pressure to contain the PRC’s information rent is such that the organization
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all but gives up its most-preferred outcome, and inducesM with probability equal or close

to 1.11

In Figure 1b, the double arrow indicates the distortion loss suffered by the organization

from splitting p on 0 and q instead of splitting p on 1−q and q. At c = c2 this loss is exactly

compensated by the resulting reduction of the information rent left to the PRC in order to

incentivize effort. In the cost range c2 < c < c3, the organization’s agency problem vis-a-vis

the PRC thus causes complete polarization of the outcome. Note that in this range, said

agency problem actually makes the median voter better off, by inducing the organization

to choose a splitting generating more information than the organization would generate in

the absence of an agency problem.

6 Extensions

6.1 Asymmetric Action Distribution

We simplified the exposition of the baseline model by assuming that the splitting τ̆ (de-

scribing the distribution of the receiver’s posterior belief in case e = 0) induces a uniformly

distributed action of the receiver. We briefly discuss here how to generalize the analysis.

The incentive compatibility constraint now takes the form
∑
q τ(q)t

(
α(q)

)
−c ≥

∑
q τ̆(q)t

(
α(q)

)
.

Since the agent is risk neutral, the principal can always minimize the cost of inducing e = 1

by rewarding the agent exclusively for inducing the receiver to take a given action, a†, say.

However, with asymmetric action distribution under e = 0, the action maximizing the like-

lihood that e = 1 need no longer be the most probable action under e = 1: the relevant

variable is now P(a = a† | Ξ)/P(a = a† | τ̆). Hence, to solve the principal’s problem we must

now define one information rent function per possible action aj ∈ A:

Raj (w) :=


cP(a=a†|τ̆)
w−P(a=a†|τ̆)

if w > P(a = a† | τ̆),

+∞ if w ≤ P(a = a† | τ̆).

The reduced problem of the principal then becomes

max
{q†,q̂},a†∈A(q†)

w(q†, q̂)v(q†) +
(
1−w(q†, q̂)

)
v̂(q̂)−Ra†

(
w(q†, q̂)

)
.

11Depending on the parameters, c3 = c or c3 < c.
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If a† and {q†, q̂} comprise a solution of the previous problem then, for any τ̂ ∈ T v̂q̂ , the

splitting τ = w(q†, q̂)1q†+
(
1−w(q†, q̂)

)
τ̂ forms part of a plan Ξ solving the principal’s initial

problem. Note that if there exists a† such that P(a = a† | τ̆) = 0, then the first-best splitting

forms part of a plan Ξ solving the principal’s initial problem: the agent is paid c/P(a = a† |
τ∗) for inducing the receiver to take the action a†, and obtains no information rent.

6.2 Full Alignment of the Principal with the Receiver

In this subsection we examine in more details the case in which v = u, that is, in which the

non-monetary payoffs of the principal coincide with those of the receiver. For instance,

the principal might be a benevolent political organization, whose interests fully align with

those of the median voter. We show that in this case the problem of the principal drastically

simplifies.

For each ωi ∈Ω, pick aωi ∈ argmaxaj∈A v(aj ,ωi). Then, as v = u:

v(q) = max
aj∈A

n∑
i=1

qiv(aj ,ωi). (2)

and

v̂(q) =
n∑
i=1

qiv(aωi ,ωi). (3)

Plugging (2) and (3) into (PP2) and changing the maximization variables, this reduced

problem becomes

max
q†∈∆Ω,
w∈[0,1],
a†∈A

n∑
i=1

wq†i v(a†,ωi) +
n∑
i=1

(pi −wq†i )v(aωi ,ωi)−R(w),
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and, changing the maximization variables once more,

max
x∈Rn,
w∈[0,1],
a†∈A

n∑
i=1

xiv(a†,ωi) +
n∑
i=1

(pi − xi)v(aωi ,ωi)−R(w),

s.t.


∑
ω x(ω) = p,

0 ≤ x ≤ µ0.

We thus obtain a simple linear program in x. Passing to the dual gives

max
w∈[0,1],
a†∈A

min
λ

n∑
i=1

pi
[
λ− `(a†,ωi)

]+
+ v̂(p)−wλ−R(w),

where `(a†,ωi) := v(aωi ,ωi)− v(a†,ωi) represents the principal’s loss from action a† in state

ωi . Notice that the maximand is convex in λ and concave in w; hence, by virtue of the

minimax Theorem, we can switch the order of the minimization over λ and the maximiza-

tion over w. By doing this, we obtain a straightforward optimization problem in w, whose

first-order condition is λ + R′(w) = 0, giving w = m−1 +
√

c
mλ . Intuitively, increasing the

probability w of the action a† at which the agent is rewarded lowers the latter’s informa-

tion rent, but implies increasing the distortion loss at a rate equal to the dual variable λ

representing the shadow cost of distortion. Finally, substituting w = m−1 +
√

c
mλ in the

previous program, we obtain

max
a†∈A

min
λ

n∑
i=1

pi
[
λ− `(a†,ωi)

]+
+ v̂(p)−λm−1 − 2

√
cλ
m
. (4)

If (a†,λ) solve (4), we can now retrieve a solution of (PP2) by simply letting w(q†, q̂) =

m−1 +
√

c
mλ and q† = x/w(q†, q̂), where 0 ≤ x ≤ p,

∑n
i=1xi = p, and

xi =

 0 if λ < `(a†,ωi),

pi if λ > `(a†,ωi).
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6.3 Biased Agent

The baseline model assumed that the receiver’s action affects the agent’s welfare only

through the payment of the principal. In this subsection, we briefly consider the case

in which the action of the receiver has a direct impact on the welfare of the agent.

Let b(a) represent the agent’s bias towards action a, so that the agent’s payoffs are now

given by t∗(a)− c1e=1 + b(a). Let

Vb(q,w) := max
aj∈A(q)

n∑
i=1

qiv(aj ,ωi) +
b(aj)

mw − 1
,

with Vb(q,w) = +∞ for w ≤ 1/m, and

Rb(w) :=


c+ 1

m

∑m
j=1 b(aj )

mw−1 if w > 1
m ,

+∞ if w ≤ 1
m .

The reduced problem of the principal becomes in this case

max
{q†,q̂}

w(q†, q̂)Vb
(
q†,w(q†, q̂)

)
+
(
1−w(q†, q̂)

)
V̂b

(
q̂,w(q†, q̂)

)
−Rb

(
w(q†, q̂)

)
,

where V̂b(·,w) denotes the concavification of the function Vb(·,w). Intuitively, the agent’s

bias introduces an additional efficiency motive for distorting τ∗ relative to the first-best split-

ting. However, note that, unlike the “informational rent motive” on which our paper fo-

cuses, said efficiency motive is independent of the underlying agency problem, and would

still exist if effort were contractible.

6.4 Splitting-Dependent Effort Cost

In this subsection we show how the model can be adapted to incorporate a splitting-

dependent effort cost.

Fix an arbitrary interior belief p̃ ∈ ∆Ω and let z : ∆Ω→ ∆Ω map posterior beliefs of the

receiver to posterior beliefs of an observer whose prior belief is p̃. Then

zi(q) :=
qi p̃i
pi

 n∑
k=1

qkp̃k
pk

−1

.

19



Lastly, let H : ∆Ω→R+ be strictly concave and define, for all τ ∈ Tp,

C(τ) :=H(p̃)−
∑
q

τ(q)H
(
z(q)

)
.

We can now assume, following Gentzkow and Kamenica (2014), that each τ ∈ Tp is associ-

ated with a cost C(τ)−C(τ̆). As R is concave, the more informative the splitting the greater

the cost. We obtain, for H(x) = −[x logx + (1 − x) log(1 − x)], a cost proportional to relative

Shannon entropy.

Next, let

Π(q,w) := v(q)−
( mw
mw − 1

)
H

(
z(q)

)
,

and

RH (w) :=
( mw
mw − 1

)∑
q

τ̆(q)H
(
z(q)

) .
The reduced problem of the principal then becomes

max
{q†,q̂}

w(q†, q̂)Π
(
q†,w(q†, q̂)

)
+
(
1−w(q†, q̂)

)
Π̂

(
q̂,w(q†, q̂)

)
−RH

(
w(q†, q̂)

)
,

where Π̂(·,w) denotes the concavification of the function Π(·,w).

7 Conclusion

This paper developed a general model of information design with agency. A principal

chooses an information structure with a view to influencing a receiver, and hires an agent

to implement said information structure. The effort of the agent cannot be contracted

upon, and so the principal incentivizes the agent by rewarding her based on the action

of the receiver. The principal then faces a trade-off between designing an information

structure maximizing non-monetary payoffs, and minimizing the information rent that

must be conceded to the agent in order to induce effort. While stylized, this general model

captures for instance the broad features of the problem facing political organizations hiring

public relations companies in order to sway public opinion.
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Appendix

Proof of Lemma 1: Suppose (τ̃ , t̃, α̃) solves (PP0). Define f̃ (aj) :=
∑
q:α̃(q)=aj τ̃(q),φ := maxaj∈A f̃ (aj),

and denote by J̇ (respectively, J̈) the set of indices j such that f̃ (aj) , 0 (respectively,

f̃ (aj) = φ). Then (τ̃ , t, α̃) solves (PP0) if and only if t solves

min
t

m∑
j=1

f̃ (aj)t(aj), (CM)

s.t.

 t(aj) ≥ 0, ∀aj ∈ A,∑m
j=1 f̃ (aj)t(aj)− c ≥ 1

m

∑m
j=1 t(aj).

Next, note that t solves (CM) if and only if (i) t(aj) = 0 for all j < J̇ , and (ii)
(
f̃ (a1)t(a1), . . . , f̃ (am)t(am)

)
solves

min
z∈Rm

∑
j∈J̇

zj , (CMZ)

s.t.


zj ≥ 0, ∀j,
zj = 0 for all j < J̇ ,∑
j∈J̇ zj

(
1− 1

mf̃ (aj )

)
≥ c.

However, z solves (CMZ) if and only if zj = 0 for all j < J̈ and
∑
j∈J̈ zj = cmφ/(mφ− 1).

Combining the previous remarks, we see that (τ̃ , t, α̃) solves (PP0) if and only if t(aj) = 0

for all j < J̈ and
∑
j∈J̈ t(aj) = cm/(mφ− 1). �

Proof of Lemma 2: Pick Ξ = (τ, t,α) solving (PP0), and satisfying t(aj) = 0, ∀ aj ∈ A \ {a†},
for some a† ∈ A (we know such a plan exists, by Lemma 1). Moreover, suppose there

exists q̇ ∈ supp τ such that α(q̇) < A(q̇) (otherwise there is nothing to prove). The following

notation will be used throughout the proof: let a denote a given action in A(q̇), and Q(a) :=

{q ∈ supp τ | α(q) = a}. Our goal will be to show that we can construct a plan solving (PP0)

and satisfying the condition stated in the lemma.

We first establish the following claim: there exists q̈ ∈ supp τ \ {q̇} such that α(q̈) = α(q̇).

Suppose by way of contradiction that the claim is false. There are two cases to consider:

α(q̇) = a† (call this case 1), and α(q̇) , a† (call this case 2). In case 1, consider Ξ̃ = (τ̃ , t̃, α̃)

such that (i) τ̃ = τ , (ii) α̃(q) = α(q) for all q , q̇, (iii) α̃(q̇) = a, (iv) t̃
(
a(q̇)

)
= mc

[
m
(
τ̃(q̇) +

21



∑
q∈Q(a) τ̃(q)

)
−1

]−1
, (v) t̃(aj) = 0 for all aj , a. It is then easy to check that Ξ̃ is a feasible plan

that yields to the principal a strictly greater expected payoff than Ξ, thus contradicting the

optimality of the latter plan. Case 2, is further divided into two subcases, depending on

whether a = a† (call this subcase 2.1) or a , a† (call this subcase 2.2). In subcase 2.1,

consider Ξ̃ = (τ̃ , t̃, α̃) such that (i) τ̃ = τ , (ii) α̃(q) = α(q) for all q , q̇, (iii) α̃(q̇) = a, (iv)

t̃
(
a(q̇)

)
=mc

[
m
(
τ̃(q̇) +

∑
q∈Q(a) τ̃(q)

)
− 1

]−1
, (v) t̃(aj) = 0 for all aj , a. It is again easy to check

that Ξ̃ is a feasible plan that yields to the principal a strictly greater expected payoff than

Ξ, thus contradicting the optimality of the latter plan. Lastly, in subcase 2.2, consider

Ξ̃ = (τ̃ , t̃, α̃) such that (i) τ̃ = τ , (ii) α̃(q) = α(q) for all q , q̇, (iii) α̃(q̇) = a, (iv) t̃ = t. The plan

Ξ̃ is clearly feasible, and yields to the principal a strictly greater expected payoff than Ξ,

contradicting once more the optimality of the latter plan. This finishes to show that the

initial claim is true, namely, that there exists q̈ ∈ supp τ \ {q̇} such that α(q̈) = α(q̇).

Next, consider the plan Ξ̃ = (τ̃ , t̃, α̃) obtained from Ξ by “merging” q̇ and q̈ into

...
q :=

τ(q̇)q̇+ τ(q̈)q̈
τ(q̇) + τ(q̈)

in the following way: (i) τ̃(
...
q ) = τ(q̇) + τ(q̈) + τ(

...
q ), (ii) τ̃(q̇) = τ̃(q̈) = 0, (iii) τ̃(q) = τ(q) for all

q < {q̇, q̈,
...
q }, (iv) α̃(

...
q ) = α(q̇), (v) α̃(q) = α(q) for all q ,

...
q , (vi) t̃ = t. The subset of posterior

beliefs on which the action α(q̇) is receiver optimal is convex; hence, α(q̇) ∈ A(
...
q ). The plan

Ξ̃ is thus feasible, and yields to the principal the same expected payoff as Ξ. So Ξ̃ solves

(PP0). If α̃(q) ∈ A(q) for all q ∈ supp τ̃ , then we are done. Otherwise, repeating the previous

steps with Ξ̃ instead of Ξ gives us a solution Ξ̃′ comprising a splitting τ̃ ′ whose support

contains one less element than τ̃ . As supp τ̃ is finite, continuing this way eventually yields

a solution of (PP0) satisfying the condition stated in the lemma. �

Proof of Lemma 3: Pick a plan Ξ = (τ, t,α) solving (PP0) and satisfying the condition stated

in Lemma 2. Repeating the steps in the proof of Lemma 1 shows that we may, without loss

of generality, assume that there exists a† ∈ A such that t(aj) = 0 for all aj ∈ A\{a†}. Lastly, as

the subset of posterior beliefs on which the action a† is receiver optimal is convex, we may,

again without loss of generality, assume that there exists a unique q† such that α(q†) = a†.

For such a plan Ξ, the maximand in (PP0) can be expressed as
∑
q τ(q)v(q)−

[
R
(
w(τ)

)
+ c

]
.

Next, pick τ̃ solving (PP1), q̃† ∈ argmaxq τ̃(q) and ã† ∈ A(q̃†). Now let Ξ̃ = (τ̃ , t̃, α̃)

denote the plan comprising τ̃ as well as transfers and recommendations such that (i)

t̃(ã†) = mc/(mw(τ̃) − 1), (ii) t̃(aj) = 0 for all aj , ã†, (iii) α̃(q) ∈ A(q) for all q ∈ ∆Ω and

22



α̃(q̃†) = ã†. This plan is clearly feasible, and yields to the principal an expected payoff
equal to

∑
q τ̃(q)v(q)−

[
R
(
w(τ̃)

)
+ c

]
. Hence:

∑
q

τ̃(q)
[ n∑
i=1

qiv
(
α̃(q),ωi

)
− t̃

(
α̃(q)

)]
=

∑
q

τ̃(q)v(q)−
[
R
(
w(τ̃)

)
+ c

]
≥

∑
q

τ(q)v(q)−
[
R
(
w(τ)

)
+ c

]
=

∑
q

τ(q)
[ n∑
i=1

qiv
(
α(q),ωi

)
− t

(
α(q)

)]
.

Since Ξ solves (PP0), and Ξ̃ is feasible, we conclude that Ξ̃ solves (PP0) as well. �

Lemma 8. Consider w > 1
m . If τ ∈ argmaxτ∈Tp

{∑
q τ(q)v(q)

∣∣∣ w(τ) ≥ w
}
then M(w) = v̂(p) −∑

q τ(q)v(q).

Proof: Pick τ ∈ argmaxτ∈Tp

{∑
q τ(q)v(q)

∣∣∣ w(τ) ≥ w
}
, and let α denote an arbitrary ac-

tion recommendation function satisfying α(q) ∈ q for all q ∈ ∆Ω. Next, define Q(aj) := {q ∈
supp τ | α(q) = aj}, and let a† ∈ argmaxaj∈A

∑
q∈Q(aj ) τ(q). Lastly, let t(a†) =mc

[
m

∑
q∈Q(a†) τ(q)−

1
]−1

and t(aj) = 0 for all aj , a†. The plan Ξ = (τ, t,α) is feasible, with D(Ξ) = v̂(p) −∑
q τ(q)v(q). Hence,

M(w) ≤ v̂(p)−
∑
q

τ(q)v(q). (5)

Now pick

Ξ̃ ∈ argmin
{
D(Ξ) | Ξ = (τ, t,α) is feasible and w(τ) ≥ w

}
,

that is, such that D(Ξ̃) = M(w). Let Q̃(aj) := {q ∈ supp τ̃ | α̃(q) = aj}, and define, for all j

such that Q̃(aj) , ∅,

qj :=

∑
q∈Q̃(aj ) τ̃(q)q∑
q∈Q̃(aj ) τ̃(q)

.

Lastly, define τ̇ ∈ ∆∆Ω by τ̇(qj) =
∑
q∈Q̃(aj ) τ̃(q). As the subset of posterior beliefs on which

a given action aj is receiver optimal is convex, notice that

D(Ξ̃) ≥ v̂(p)−
∑
q

τ̇(q)v(q). (6)
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Combining (5) and (6) yields

v̂(p)−
∑
q

τ̇(q)v(q) ≤D(Ξ̃) =M(w) ≤ v̂(p)−
∑
q

τ(q)v(q).

Yet, as is easily checked: τ̇ ∈ Tp and w(τ̇) ≥ w. Hence, by definition of τ : v̂(p)−
∑
q τ(q)v(q) ≤

v̂(p)−
∑
q τ̇(q)v(q). It ensues that all weak inequalities in the last highlighted expression can

be replaced by equalities. �

Proof of Proposition 1: Let w solve (1). Then note that we must have w > 1
m . Pick

τ ∈ argmax
τ∈Tp

{∑
q

τ(q)v(q)
∣∣∣ w(τ) ≥ w

}
.

As R is a strictly decreasing function, applying Lemma 8 yields

M(w) +R(w) ≥ v̂(p)−
∑
q

τ(q)v(q) +R
(
w(τ)

)
(7)

We claim that τ solves (PP1). Suppose by way of contradiction that the claim is false,

and let τ̃ do better than τ for the problem (PP1):∑
q

τ̃(q)v(q)−R
(
w(τ̃)

)
>
∑
q

τ(q)v(q)−R
(
w(τ)

)
. (8)

By Lemma 8:

M
(
w(τ̃)

)
+R

(
w(τ̃)

)
≤ v̂(p)−

∑
q

τ̃(q)v(q) +R
(
w(τ̃)

)
. (9)

Then combining (7), (8) and (9) yields

M
(
w(τ̃)

)
+R

(
w(τ̃)

)
≤ v̂(p)−

∑
q

τ̃(q)v(q) +R
(
w(τ̃)

)
< v̂(p)−

∑
q

τ(q)v(q) +R
(
w(τ)

)
≤M(w) +R(w),

contradicting the optimality of w for (1). This establishes the claim that τ solves (PP1). By

Lemma 3, τ then also forms part of a plan Ξ solving (PP0). �
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Proof of Proposition 2: Pick a plan Ξ = (τ, t,α) solving (PP0). Let Q(aj) := {q ∈ supp τ |
α(q) = aj}, and define, for all j such that Q(aj) , ∅,

qj :=

∑
q∈Q(aj ) τ(q)q∑
q∈Q(aj ) τ(q)

.

Now consider Ξ̃ = (τ̃ , t̃, α̃) such that (i) τ̃(qj) =
∑
q∈Q(aj ) τ(q), (ii) α̃(q) ∈ A(q) for all q ∈ ∆Ω,

(iii) t̃(a†) = mc
[
m

∑
q:α̃(q)=a† τ̃(q) − 1

]−1
for some action a† ∈ argmaxaj∈A

∑
q:α̃(q)=aj τ̃(q), (iii)

t̃(aj) = 0 for all aj , a†. Clearly, Ξ̃ is a feasible plan. Moreover, as the subset of posterior

beliefs on which a given action aj is receiver optimal is convex,

∑
q

τ̃(q)v(q) =
∑
q

n∑
i=1

τ̃(q)qiv
(
α̃(q),ωi

)
≥

∑
q

n∑
i=1

τ(q)qiv
(
α(q),ωi

)
. (10)

Lastly, since

max
aj∈A

P(a = aj | Ξ̃) ≥max
aj∈A

P(a = aj | Ξ), (11)

similar arguments to those in the proof of Lemma 1 establish∑
q

τ(q)t
(
α(q)

)
≥

∑
q

τ̃(q)t̃
(
α̃(q)

)
. (12)

As Ξ is optimal for (PP0), the previous observations imply that the inequalities in (10), (11)

and (12) must hold with equality. Hence (i) D(Ξ) = D(Ξ̃), and (ii) the principal’s expected

payoff under Ξ can be written as
∑
q τ̃(q)v(q)−

[
R
(
w(τ̃)

)
+ c

]
.

Next, let w solve (1), and pick τ̇ ∈ argmaxτ∈Tp

{∑
q τ(q)v(q)

∣∣∣ w(τ) ≥ w
}
. Proposition

1, Lemma 8 and the remarks in the proof of Lemma 3 show that τ̇ forms part of a plan

Ξ̇ solving (PP0) that yields to the principal an expected payoff that can be expressed as

25



∑
q τ̇(q)v(q)−

[
R
(
w(τ̇)

)
+ c

]
= v̂(p)−M(w)− [R(w) + c]. We then obtain∑

q

τ̇(q)v(q)−
[
R
(
w(τ̇)

)
+ c

]
= v̂(p)−M(w)− [R(w) + c]

≥ v̂(p)−M
(
w(τ̃)

)
−
[
R
(
w(τ̃)

)
+ c

]
≥ v̂(p)−D(Ξ̃)−

[
R
(
w(τ̃)

)
+ c

]
=

∑
q

τ̃(q)v(q)−
[
R
(
w(τ̃)

)
+ c

]
.

Since the first and last expressions in the sequence above both equal the maximum value

of (PP0), all inequalities must hold with equality. AsD(Ξ) =D(Ξ̃), we conclude thatD(Ξ) =

L(w̃) for some w̃ solving (1).

Now suppose c2 > c1, and that Ξi solves (PP0) for c = ci , i = 1,2. Then, applying the

previous remark gives w̃1 and w̃2 such that w̃i solves (1) for c = ci , and D(Ξi) = M(w̃i).

Moreover, the Monotone Selection Theorem of Milgrom and Shannon (1994) assures that

w̃2 ≥ w̃1. Since L is non-decreasing, we thus obtain

D(Ξ2) =M(w̃2) ≥M(w̃1) =D(Ξ1),

which shows that raising c results in a weakly greater distortion loss.

The second part of the proposition (raising c can result in a lower information rent

for the agent) is shown by way of the following example with n = 2 states, and m = 4

actions. The prior belief p = (3/4,1/4). To simplify notation, in this example let q denote

the posterior probability attached to ω = ω2. The receiver-optimal actions mapping A :

∆Ω→ P is given by A(0) = a1, A(1/4) = a3, A(1) = a4, and A(q) = a2 for all q < {0,1/4,1}.
The principal’s preferences are state-independent and summarized by v(a1) = v(a4) = 1,

v(a2) = 0 and v(a3) = 1 − ε, where 0 < ε < 1/4. Then, as is easily checked, either c < 6ε in

which case the unique solution of (PP0) splits the prior on 0 and 1 and pays the agent if

and only if a = a1, or c > 6ε in which case the unique solution generates no information

and pays the agent if and only if a = a3. Consequently, the agent’s information rent is 1/2

for c < 6ε but only 1/3 for c > 6ε. �

Proof of Lemma 4: Follows from the Monotone Selection Theorem of Milgrom and Shan-

non (1994). �
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Proof of Proposition 3: As c < c, 1p does not form part of a plan solving (PP0). Hence, by

Lemma 3, 1p does not solve (PP1). Let {q†, q̂} denote a solution of (PP2), τ̂ ∈ T v̂q̂ , a† ∈ A(q†)

and τ = w(q†, q̂)1q† +
(
1−w(q†, q̂)

)
τ̂ . Then∑

q

τ(q)v(q)−R
(
w(τ)

)
≥ w(q†, q̂)v(q†) +

(
1−w(q†, q̂)

)
v̂(q̂)−R

(
w(q†, q̂)

)
. (13)

We claim that τ solves (PP1). Suppose by way of contradiction that the claim is false,

and let τ̃ ∈ Tp do better than τ for the problem (PP1):∑
q

τ̃(q)v(q)−R
(
w(τ̃)

)
>
∑
q

τ(q)v(q)−R
(
w(τ)

)
. (14)

Pick q̃† ∈ argmaxq τ̃(q), define w̃ := τ̃(q̃†), and let ˆ̃q := p−w̃q̃†
1−w̃ . Then {q̃†, ˆ̃q} is a binary splitting

of p, w̃ = w(q̃†, ˆ̃q) and, by writing

∑
q

τ̃(q)v(q) = w̃v(q̃†) + (1− w̃)
∑
q,q̃†

τ̃(q)
1− w̃

v(q),

we see that∑
q

τ̃(q)v(q)−R
(
w(τ̃)

)
≤ w̃v(q̃†) + (1− w̃)v̂( ˆ̃q)−R(w̃)

= w(q̃†, ˆ̃q)v(q̃†) +
(
1−w(q̃†, ˆ̃q)

)
v̂( ˆ̃q)−R

(
w(q̃†, ˆ̃q)

)
. (15)

Combining (13), (14) and (15) then gives

w(q̃†, ˆ̃q)v(q̃†) +
(
1−w(q̃†, ˆ̃q)

)
v̂( ˆ̃q)−R

(
w(q̃†, ˆ̃q)

)
> w(q†, q̂)v(q†) +

(
1−w(q†, q̂)

)
v̂(q̂)−R

(
w(q†, q̂)

)
,

contradicting the optimality of {q†, q̂} for the problem (PP2). This establishes the claim that

τ solves (PP1). Repeating the arguments used in the proof of Lemma 3 then shows that the

plan Ξ = (τ, t,α) solves (PP0), where transfers and recommendations are determined by (i)

α(q) ∈ A(q) for all q ∈ ∆Ω and α(q†) = a†, (ii) t(a†) =mc
[
m

∑
q:α(q)=a† τ(q)− 1

]−1
, (iii) t(aj) = 0

for all aj , a†. �

Proof of Proposition 4: Consider c < c. By Lemma 5, any solution {q†, q̂} of the reduced

problem (PP2) is such that q̂ = 0 and q† = 1
2 + x, for some x ∈ (0,1/2). Using w(1

2 + x,0) =
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1
2x+1 =: w, for such a binary splitting the maximand in (PP2) can be written as

3w(1
2 + x) + (1−w)(1

2 + x)− c
2w−1 = 5

2 −w −
c

2w−1 .

The first-order condition on w gives

2c
(2w − 1)2 − 1 = 0.

Thus w = 1
2 +

√
c
2 and x = 1−

√
2c

2(1+
√

2c)
. �

Proof of Proposition 5: If c > c then τ∗ = 1p, so consider c < c in the rest of the proof.

Applying Lemmata 6 and 7 and the observations made in Section 4, we may retrieve τ∗ by

direct comparison of (a) the principal’s expected payoff resulting from the optimal splitting

{q†, q̂} for problem (PP2) within the class of binary splittings satisfying q† = q and q̂ ∈
[0,1− q], and (b) the principal’s expected payoff resulting from the optimal splitting {q†, q̂}
within the class of binary splittings satisfying q† > 1− q and q̂ = 1. Below, we first find (a),

then (b).

The optimal splitting in (a) is entirely determined by w(q†, q̂) = w(q, q̂) =: w, via q̂ =
1−2wq
2(1−w) . Note that q̂ ∈ [0,1− q]⇔ w ∈ [1

2 ,
1

2q ]. Therefore, the optimal splitting in (a) solves:

max
w∈[ 1

2 ,
1

2q ]
w+

(1− 2wq
2(1− q)

)
vM −

c
3w − 1

.

The maximand above is a concave function of w. The first-order condition yields

w(c) =
1
3


√

3c
q

1−qvM − 1
+ 1

 .
Define c1 and c2 by w(c1) = 1/2 and w(c2) = 1/(2q); then c2 > c1, since w is increasing.

Straightforward algebra gives c1 = 1
12

(
q

1−qvM − 1
)

and c2 = 1
3

(
3

2q − 1
)2 ( q

1−qvM − 1
)
.

Similarly, the optimal splitting in (b) is entirely determined by w(q†, q̂) = w(q†,1) =:W ,

via q† = 2W−1
2W . Note that q† ∈ (1− q,1/2)⇔W ∈

(
1

2q ,1
)
. Therefore, the optimal splitting in

(b) solves

max
W∈

(
1

2q ,1
) WvM + (1−W )− c

3W − 1
.
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The first-order condition yields

W (c) =
1
3

(√ 3c
1− vM

+ 1
)
.

Lastly, define c̃ by W (c̃) = 1/(2q). Then c̃ = 1
3

(
3

2q−1

)
(1 − vM). One checks that c̃ > c2 ⇔

2(1−q) > vM . This shows c̃ > c2. This remark, in turn, establishes that, if {q†,1} solves (PP2)

and satisfies q† > 1−q, then c > c2. So the cutoff c3 in the statement of the proposition must

be strictly greater than c2. �
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J., Carlos Róka (2016) The professionals speak: Practitioners’ perspectives on profes-

sional election campaigning, European Journal of Communication, 31, 95–119.

Yoder, N. (2020) Designing incentives for heterogeneous researchers, mimeo.

Zapechelnyuk, A. (2020) Optimal quality certification, American Economic Review: Insights,
2, 161–176.

Zermeño, L. (2011) A principal-expert model and the value of menus, mimeo.

31


	Introduction
	General Framework
	General Analysis
	Solving the Principal's Problem
	Political Campaigning
	The Limits of Informative Campaigning
	Partisan Politics

	Extensions
	Asymmetric Action Distribution
	Full Alignment of the Principal with the Receiver
	Biased Agent
	Splitting-Dependent Effort Cost

	Conclusion

