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Sciences Po, Department of Economics, CNRS, Paris, France

2021

Abstract

The classical rational choice theory proposes that preferences are context-independent, 
e.g. independent of irrelevant alternatives. Empirical choice data, however, display 
several contextual choice effects that seem inconsistent with rational preferences. We 
study a choice model with a fixed underlying utility function and explain contextual 
choices with a novel information friction: the agent’s perception of the options is 
affected by an attribute-specific noise. Under this friction, the agent learns useful 
information when she sees more options. Therefore, the agent chooses contextually, 
exhibiting intransitivity, joint-separate evaluation reversal, attraction effect, compro-
mise effect, similarity effect, and phantom decoy effect. Nonetheless, because the noise 
is attribute-specific and common across alternatives, the agent’s choice is perfectly ra-
tional whenever an option clearly dominates others.

JEL codes: D81, D83.

1 Introduction

Classically, rationality is defined by consistency axioms. Under consistency, rational prefer-

ences are transitive and independent of contexts, representable by utility functions. How-

ever, empirical research has long found violations of these consistency axioms. For example,

intransitivity was spotted as early as Tversky (1969), and some recent evidence is surveyed

in Rieskamp et al. (2006). Empirical studies on other aspects of contextual dependence

include Huber et al. (1982), Pratkanis and Farquhar (1992) and Hsee (1996). Here, by

contextual effects we mean the following type of observations. In different decision problems

involving objects x and y, their observed choice probabilities or the reported evaluations

differ in a way that implies some objects are evaluated differently. For instance, in Huber et

al. (1982) and Pratkanis and Farquhar (1992), experimenters offer the subjects two choice

problems. One involves only two options x and y and the other includes a third choice z.

They find that the inclusion of z can reverse the relative choice frequency between x and
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y, even though z itself is rarely chosen (attraction effect) or listed as unavailable (phantom

decoy effect). Another example is the joint-separate valuation reversal (henceforth j-s re-

versal) in Hsee (1996). When the willingness to pay for x or y is elicited separately, x can

be valued higher than y, but when elicited together, x becomes inferior to y. Intransitive

choices can also be interpreted as a type of contextual effects.

Within the literature, some contextual effects, such as the similarity effect (Tversky

and Russo, 1969), attraction effect (Huber et al. , 1982) and compromise effect (Simon-

son, 1989), can be rationalized as the maximization of a context-independent preference

under informational constraints (see e.g. Hausman and Wise (1978), Wernerfelt (1995),

Kamenica (2008), Guo (2016), Natenzon (2019)). However, others such as phantom decoy

effect (Pratkanis and Farquhar, 1992), j-s reversal (Hsee, 1996) and stochastic intransitivity

(Tversky, 1969) have not yet been rationalized.1

This paper proposes a model to systematically rationalize and predict the aforemen-

tioned empirical findings. In our model, a decision maker maximizes a context-independent

preference under the constraint of a novel informational friction. We show that the decision

maker can exhibit the stochastic intransitivity, the j-s reversal and the compromise effect

when there are trade-offs between attributes as empirically observed. We define the decoy

choice pattern, a comparative static that captures the attraction effect, the phantom decoy

effect and the compromise effect, and show in Theorem 4.1 that for the relevant choice

problems, the model predicts the decoy choice pattern.2 In comparison to models that re-

quire different parameters to explain different phenomena, our model is parsimonious in the

sense that several contextual effects can be explained within one simple parametric setting.

Despite the explanation power, our model still possesses desirable regularities. For instance,

when there is a dominating alternative, context effects disappear as choices maximize the

context-independent preference with overwhelming probability (see e.g. Theorem 4.2). This

identifies a subclass of choice problems where the classical rationality in choice is retained.

1The “phantom decoy effect” refers to the observation that an unavailable third option, dominating the
target but not the competitor, increases the attractiveness of the target. See evidence in Pratkanis and
Farquhar (1992) and later in Highhouse (1996), Pettibone and Wedell (2000), Pettibone and Wedell (2007)
and Hedgcock et al. (2009) etc.

2Incidentally, Highhouse (1996) has similarly argued that the attraction effect and the phantom decoy
effect are likely caused by the same mechanism.
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Our novel information friction is that the perception of attributes is noisy. Each option

x has precise attribute levels x∗ over which the agent’s utility function is defined. However

the agent cannot observe these precise attributes, but a noisy signal X|x∗. Conditional on

the true attributes, the noisy signals across different alternatives are correlated. Therefore,

although the distribution of X|x∗ is fixed, the agent makes different inferences about x∗

when she is presented with other different alternatives. For example, in the choice problem

{x,y}, the agent observes the signals X, Y but not the actual attribute levels x∗ and y∗.

She forms a posterior belief, say about x∗, conditional on the signals X, Y . When she faces

the choice problem {x, z}, the posterior belief about x∗ is conditioned on X,Z. These

two posterior beliefs about x∗ are generally different, and so are the posterior expected

utilities of x in {x,y} and in {x, z}. Then intuitively, even if the agent is (stochastically)

indifferent both in the choice problem {x,y} and in the problem {x, z}, she would not be

indifferent in {y, z}. In other words, the (stochastic) indifference curves can cross, giving

rise to intransitivity.

From now on, we assume a type of noise termed imperfect perception of attributes. This

noise is specific to each attribute, but not specific to each alternative. In other words, for

each attribute, the noise is common across all items. It perturbs the perceived attribute

levels of the items while keeping their relative differences unchanged. Under this noisy

signal, if the agent over-perceives an attribute in an object, she over-perceives the same

attribute in other objects. This noise in the attributes is qualitatively different from a noise

in utilities. As shown in Proposition 3.3, our model does not satisfy monotonicity, and hence

cannot be interpreted as any random utility model.

The assumption of imperfect perception is intuitively sensible because such correlated

signals arise easily in perception tasks. Imagine when choosing apartments, a decision maker

prefers rooms with abundant natural light. She visits two apartments on the same day, and

sees that apartment x is brighter than y. Although she does not know how bright the

apartments typically are (she does not observe x∗,y∗), she learns the noisy signals from

her visits. Each signal may be inaccurate, but the difference between signals can clearly

indicates which room is typically brighter. After all, she is seeing both apartments at

roughly the same time, under the same weather. There is a natural common component in
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the noise of the signals. The same intuition holds in perceiving other attributes such as the

noisiness of the neighborhood, the length of commuting time etc.

This type of uncertainty in perception can also arise from misinterpreting attributes

measured and displayed in scientific units, such as megabytes of memory space, lumens

of light, and decibels of sound etc. As is similarly argued by Ariely et al. (2003) and

Kamenica (2008), such units can be hard to interpret precisely. When choosing a light

bulb for decoration, the brightness level is important for utility evaluation. However, it

is difficult to read of the brightness in lumens and evaluate directly. When interpreting

these measurements, people are uncertain about how one lumen of light relates to perceived

brightness levels, and may interpret from experience etc. This interpretation process is

noisy, and (under-) over-interpreting a unit can lead to (under-) over-perceived attribute

levels for all the alternatives. Therefore, the uncertainty in the understanding of the units

can cause misinterpretation, resulting in imperfect perception of the attributes.

In general, imperfect perception arises whenever the decision making agent believes that

there is a common component in the uncertainty in attribute perception. We elaborate

further in Section 2.

For a Bayesian agent, this imperfect perception causes a contrast effect in the perception

of each attribute. The contrast effect is a well-known psychological phenomenon that refers

to the strengthening or weakening of the perception of any attribute when the object is

contrasted with surrounding objects of different levels in the same attribute.3 To illustrate

with the apartment example, suppose that the decision maker on the same day also visited

another apartment z that is much brighter than both x and y. The Bayesian decision maker

infers that it is unlikely for any apartment to be so bright on every day, implying an upward

bias in the common component of all the signals. Hence after visiting the apartment z,

she revises downwards the perceived brightness of x and y. The judgments about other

attributes of the apartments can also be affected similarly. For example, an apartment can

be perceived as quieter in the presence of a really noisy one.

When the decision maker’s preference is determined by a single attribute monotonically,

this contrast effect is inconsequential: she always chooses to maximize (or minimize) that

3See e.g. Schwarz and Bless (1992) and Plous (1993) page 38 - 41.
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attribute in the model.4 However, if her preference involves at least two attributes, a

different set of competing options can simultaneously affect the perception of two attributes

differently (increase one and decrease the other). Hence the same two options can have

different posterior expected utilities when contrasted with different sets of alternatives.

The compromise effect is one such example. Suppose in choosing apartments, the de-

cision maker faces a trade-off between natural lighting and quietness. She prefers better

lighting as well as a quieter living place. As before, she observes correlated signals X and

Y in both attributes of the two apartments {x,y}. Suppose x has good natural lighting

but is subject to noises from the street, whereas y has a gloomy interior but is very quiet.

Suppose the decision maker is inclined to choose y between the two. Now introduce a third

option z that is even brighter than x but is also much noisier. As explained previously,

conditional on X, Y and Z, both the (posterior) perceived brightness levels for x and y are

lower than those conditional on only X and Y (the contrast effect in perception of light).

And similarly, with the additional signal Z both the (posterior) perceived quietness for x

and y increase. Now, reducing the perceived brightness of x and y affects both apartments

negatively, but more so for y because of diminishing marginal utility in lighting. And in-

creasing the perceived quietness of x and y affects both apartments positively, but more so

for x, due to the diminishing marginal utility in quietness. Consequently, x has a higher

expected utility level relative to y after z is introduced.

Besides the assumption of imperfect perception, Bayesian rationality is also an important

component of our model. If there is no updating at all, presenting the alternative z will not

affect the preference between x and y. We use Bayesian updating because it is the rational

benchmark in modeling information and learning. Despite the reliance of our model on

Bayesian rationality, we do not claim that in reality people perform sophisticated Bayesian

updating and calculate posterior expectations. Instead, we interpret the model as an as-if

representation of the decision process. Nonetheless, the analysis of this as-if channel does

parallel some intuitive explanations of contextual choices as illustrated above.

We present the general set-up in the Section 2. In Section 3, we apply a parametric

special case of the model to explain intransitive choices, j-s reversal, and compromise effect in

4I.e, if the agent only cares about lighting, she always chooses the brightest apartment with certainty.
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detail. The analysis of the general model is presented in Section 4, where we study the decoy

choice pattern, the choice for dominating options and show how the assumption of imperfect

perception can be weakened. Section 5 contains some further discussion. Additional proofs

are in the appendix.

1.1 Related Literature

This paper contributes to the literature on rationalizing contextual choices by proposing a

new and parsimonious informational channel that complements existing explanations.

Our model differs from the class of reference-dependent models where utilities are directly

assumed to depend on menus. See e.g. Simonson (1989), Tversky and Simonson (1993),

Koszegi and Rabin (2006), Bordalo et al. (2013), Ok et al. (2015) and Tserenjigmid (2016)

etc. In a reference-dependent model, the preference is relative to the reference point which

is typically a function of the choice set. Therefore, the “utility” or “welfare” of options are

not comparable across choice sets. Hence they do not speak up to evaluation tasks such as

j-s reversal – any option in a singleton budget set would have the same “utility”. In contrast,

our model contains a rational behavioral benchmark u(.) that can be used to assess welfare

across different choice problems, so it is relevant for such evaluation tasks. Also different

from reference-dependent models, the fixed u(.) allows us to identify potential mistakes (i.e.

failures to maximize u(.)) or inefficiencies caused by various frictions.

Our model also differs from the general random utility framework of Block and Marschak

(1960) and Falmagne (1978), which includes Thurstone (1927), Luce (1959), Tversky (1972),

Hausman and Wise (1978) and more recently, Gul et al. (2014). As detailed in Section

3.3, because random utility models are monotonic, they cannot explain the increase in

the absolute choice probability in compromise effect. Since our model can explain this

phenomenon (see Proposition 3.3), it is not a random utility mode.

There are also other models that violate monotonicity in the literature, including some

of the reference dependent models discussed above. Rieskamp et al. (2006) surveyed many

well-known models and classified them based on five consistency principles, including mono-

tonicity and stochastic transitivity. According to Rieskamp et al. (2006), all these models,

including Mixed Logit Models, Decision Field Theory (Busemeyer and Townsend, 1993; Roe,
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Busemeyer and Townsend, 2001), Componential Context Theory ( Tversky and Simonson,

1993) etc., satisfy at least one of the two properties (See Table 5 in Rieskamp et al. (2006)),

and are therefore different from our model.

There are papers in the literature rationalizing different contextual choices through in-

formational channels. Wernerfelt (1995) and Kamenica (2008) both study consumer-retailer

games where the set of alternatives conveys information in equilibrium. In contrast, our

model focuses on a single agent decision environment when market interaction is not of

major concern. Guo (2016) and Natenzon (2019) both study informational channels in a

single agent decision environment, and their information structure differ from ours. Guo

(2016) assumes that the available information in different contexts is identical. However,

because the incentive to acquire information changes with contexts, the agent eventually

uses different (acquired) information in decision making. Different from Guo (2016), we

do not study a model of information acquisition. Instead, we show how learning under a

family of exogenous information structure can predict several contextual effects. Therefore,

our mechanism focuses on scenarios where selectively acquiring information is not the main

driver. Also different from our model, Natenzon (2019) studies a transitive choice model

where the agent learns about the mean utilities from a noisy signal. In his paper, the co-

variance structure of the noise is used as free parameters to explain data. In contrast, the

uncertainty in our model lies in the more primitive attribute space. As a result, we explain

different contextual choices, such as intransitivity, j-s reversal and phantom decoy effects

despite our correlation across objects is held fixed.

Most of the models in the literature do not explicitly model attributes, including also the

drift diffusion models in neuroscience (see e.g. Ratcliff (1978), Busemeyer and Townsend

(1993), Usher and McClelland (2004), Woodford (2014), and Fehr and Rangel (2011)),

and extensions or variations of Luce’s logit model (see e.g. Masatlioglu et al. (2012)). In

contrast, because we take attributes as model primitives, we have the advantage to make

strong natural predictions for clearly dominating alternatives (see Theorem 4.2).
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2 The Model, its Assumptions and Motivations

Most empirical research on contextual choices focus on options with two or more attributes.

Therefore, we take the primitives of our model to be the attributes of each object. In

particular, we use Rn for n ≥ 2 to represent the attribute space. The attributes of each

item x are represented as a vector x∗ := (x∗1, . . . , x
∗
n) in the space, with each coordinate

given by the corresponding attribute level. In many of the experiments, contextual choices

can occur when there are only two different attributes. Therefore we restrict our discussion

to R2 in this paper for mathematical simplicity.5

The vector of attributes x∗ is not directly observed by the agent. The agent observes

a noisy signal about the attributes and tries to maximize her payoff given the signals. In

accordance with the classical theory, the agent is assumed to be rational in two senses.

Firstly, she has a context-independent preference over the attribute space that can be rep-

resented by a vNM utility function. Following standard assumptions from consumer theory,

we assume that all attributes are both goods, so that utility is insatiable along all axes.

At the same time, the utility has diminishing returns and there is weak complementarity

between attributes. We call a preference standard if it displays these properties.

Assumption 2.1 (Standard Preference) The decision maker’s preference over distri-

butions on R2 can be represented by a vNM utility function u : R2 → R that is differen-

tiable, increasing (i.e. u1 > 0, u2 > 0), and exhibits decreasing marginal sensitivity (i.e.

u11 < 0, u22 < 0) and weak complementarity (i.e. u12 ≥ 0 ). Any utility function represent-

ing a standard preference is called a standard utility function.

Secondly, the agent is Bayesian rational with a prior belief over R2. The prior distribu-

tion represents the agent’s anticipation about the attribute levels before she observes any

options. We endow the agent with a normal prior distribution. Without loss of generality,

we translate and scale the attribute space such that the prior mean is at the origin and the

prior variance is Ω :=

1 r

r 1

 for some r ∈ (−1, 1).6 By Bayesian rationality, we mean the

5The mechanisms for the main theorems can be extended to higher attribute dimensions.
6Such a correlation can arise when, for example, the two attributes are price and quality. One can

interpret r < 0 as the agent having a prior belief that a good price is associated with low quality.
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convention that the agent has a fixed vNM utility u(.) which she aims to maximize under

imperfect information.7

Assumption 2.2 (Normal-Bayesian Rationality) The decision maker is Bayesian with

a normal prior N (0,Ω) and maximizes posterior expected utility.

Next, we assume a novel type of noise in the perception of attributes. The noise is

specific only to the attributes, and hence is common across alternatives. Let capital letters

(i.e. X = (X1, X2)) denote the noisy signal of an object’s attributes. For instance, in the

choice set {x,y}, the attribute levels x∗ and y∗ are signaled by X = x∗ + ε and Y = y∗ + ε

where ε has the same realization for all objects. Hence the agent perceives better the relative

differences in attributes between the items, i.e. x∗ − y∗ = X − Y , than the the absolute

locations x∗ and y∗ in the attribute space. This common noise across alternatives is assumed

for mathematical simplicity and can be relaxed. Section 4.4 shows that the noise does not

have to be identical across alternatives. Instead, the noise for each attribute needs to be

positively correlated across alternatives.

Assumption 2.3 (Imperfect Perception) For any n alternatives {x1, . . . ,xn} each with

attributes x1∗, . . . ,xn∗ ∈ R2, the agent receives signals X1, . . . , Xn where X i − xi∗ = ε for

all i. The noise term ε ∼ N (0, T−1) is normal with variance matrix

T−1 =

 1/t21 R/(t1t2)

R/(t1t2) 1/t22

 for some
1

t21
+

1

t22
> 0, and some R ∈ (−1, 1).

Several motivating arguments can be made for this assumption. First, as discussed in

the apartment hunting example, our direct perception for many attributes, such as light,

sound and time, can be affected by imperfect perception. Furthermore, perception through

seemingly noiseless numerical and textual information can still be susceptible to the imper-

fect perception. Experiments show that even when the attributes are measured in technical

units and described precisely, the participants are not able to effectively perceive these nu-

merical information perfectly (Green and Srinivasan, 1978; Ariely et al., 2003). For instance,

Ariely et al. (2003) find that reading the measured volume of noises in scientific units does

7See e.g. Savage (1954).

9



not provide any more information about the volume than simply hearing the noises. And

the information provided visually is as efficient, if not more efficient than that provided

in numbers and words (Green and Srinivasan, 1978). One explanation for these findings

is that the decision maker is subjectively uncertain in interpretating scientific units. As

Kamenica (2008) argues, in general “interpreting technical units of quality can be difficult.”

For instance, a person who is used to seeing temperature in Celsius finds it hard to in-

terpret Fahrenheit. In fact, even in Celsius, the same person’s perception of the numeric

temperature is not perfect. Due to such difficulty, precise measurements serve only as noisy

indicators of the attribute levels. When the decision maker is uncertain in interpreting the

technical units, her interpretation of the measured attributes may be smaller or larger than

objective, resulting in under- or over-perceived attribute levels in all options.

To further illustrate this point, in our apartment-choice example, suppose the decision

maker is also concerned with the safety of the neighborhoods. She can obtain a signal of

this attribute by consulting the last-year crime statistics published by the same authority.8

Even though for each neighborhood, this attribute is measured in simple units as “number

of crimes per year per ten thousand people”, it is still a noisy signal from the perspective of

the decision maker, because for instance, it is not clear how strict the definition of crime is

in this context. The signal can be an exaggeration (understatement) for all neighborhoods

if the local authority applies a broader (narrower) definition of crime than she thinks.

Consequently, the uncertainty in interpretation can result in imperfect perception of the

safty of the neighborhoods.

The above explanation provides one reason for a decision maker to believe there is a

common component in her noisy perception across options. There can be other reasons that

we cannot enumerate due to limited scope. However, according to our model, contextual

choices can occur as long as the decision maker believes there can be a common noise in her

perception of the attributes. Regardless the justification for her belief in this common noise,

when she forms the posterior taking into consideration a potential common component in

the noise, contextual effects can occur from posterior utility maximization.

Second, instead of providing an arguement that details how the imperfect perception

8E.g. local police department and city websites, or the Uniform Crime Reports by FBI in US.
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occurs, one can also argue that the assumption is instrumental. In other words, this as-

sumption is made because in experiments, respondents’ perceptions are inconsistent in a

way as if they are affected by the imperfect perception. Indeed, some experiments in Ariely

et al. (2003) show that people’s perception can be affected by a “random anchor”, causing

“coherent arbitrariness”. In evaluation tasks, participants usually evaluate the absolute

value of an attribute level arbitrarily, but the difference in valuation across alternatives is

coherent with the difference in their attribute levels. This finding is robust to whether the

attributes are displayed in technical units or not. As put by Ariely et al. (2003),

“[W]e show that consumers’ absolute valuation of experience goods is surprisingly

arbitrary, even under “full information” conditions. However, we also show that

consumers’ relative valuations of different amounts of the good appear orderly

. . . ”

For a fixed preference, these observations can be interpreted as follow. When an attribute

of an option is perceived higher (and hence of higher utility), such attribute for other

options are also perceived higher (so are also of higher utility). Meanwhile, the difference

in the perceived levels (and also in the utility values) is consistent with the difference in

the actual attribute levels among the options. Hence the difference between options is

perceived coherently, but the absolute value of the attribute is perceived arbitrarily. In

light of these findings, the imperfect perception assumption can be interpreted as a random

anchoring affecting the perception of attributes. Hence the agent either over-perceives or

under-perceives each attribute across all alternatives.

In terms of the distributional aspect, the usual adoption of normality leads to prior-

signal conjugacy. We allow the standard deviations in attributes to differ as long as one of

them is strictly positive (i.e. 1
t21

+ 1
t22
> 0) and the other can be zero (e.g. t1 = ∞). Our

assumption also allows the noise across attributes to have a non-zero correlation R.9

We now summarize some additional notations in the paper. Bold letters (e.g.x,y, z)

denote different alternatives. Letters with an asterisk (e.g. x∗,y∗, z∗) denote the true

attribute levels of an object in R2. We denote more than three alternatives with superscripts.

9Such a correlation can arise when attributes are closely related, such as the sugar content and calories
in a soft drink, one might expect a correlation in the noise across these attributes.
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Capital letters denote the initial noisy signals. Calligraphic letters (i.e. X ,Y ,Z) denote the

agent’s posterior beliefs about the true attributes. Subscripts distinguish the respective

attribute-dimensions for a given vector. We use C(xl, {x1,x2, . . . ,xi, (xi+1, . . . ,xi+j)}) to

denote the choice probability of xl from the set {x1 . . .xi+j} in which {xi+1, . . . ,xi+j} are

unavailable. A C(., .) that assigns a probability for any x in every nonempty finite set

of alternatives S, with any S ′ ( S specifying the unavailable objects, is called the choice

behavior of an agent. The choice behavior satisfies

i∑
k=1

C(xk, {x1,x2, . . . ,xi, (xi+1, . . . ,xi+j)}) = 1.

3 A Parametric Special Case

In this section, we show the existence of stochastic intransitivity, the j-s reversal and the

compromise effect with the following parametric setting. The preference is described by a

regular exponential utility u : R2 → R

u(x1, x2) = −e−3x1 − e−3x2 .

The noise structure is simple and one dimensional. The first attribute is perfectly perceived,

and noise exists only in the perception of the second. Therefore, the noise has no variance

in the first attribute,

ε ∼ N

0,

0 0

0 1

 .

Finally, the agent’s prior is taken to be the standard bivariate normal centered at the origin.

3.1 Violation of Weak Stochastic Transitivity

Weak stochastic transitivity refers to the postulate that if C(x, {x,y}) ≥ 0.5 and C(y, {y, z}) ≥

0.5, then C(x, {x, z}) ≥ 0.5. Early evidence of its violations can be found in Tversky (1969),

and more recently Rieskamp et al. (2006). They suggest that weak transitivity can be vi-

olated when there is no clear domination among x,y, z, which agrees with our model as

shown below. In this subsection, a decision maker is said to display intransitivity if there are
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x,y, z such that the choice behavior C satisfies C(x, {x,y}) > 0.5, C(y, {y, z}) > 0.5, and

C(z, {x, z}) > 0.5. In short, intransitivity in our model results from crossing of stochastic

indifference curves.

Due to the randomness ε in the information, the choice between any two objects x

and y depends on their fixed attribute levels x∗,y∗ and the realization of ε. Hence given

the attribute levels, we can determine the probability of choice, C(x, {x,y}), from the

distribution of ε. We say x is stochastically indifferent to y (writes x ∼ y) if

C(x, {x,y}) = 0.5.

Similarly, the stochastic indifference curve of x is the set of alternatives that are stochasti-

cally indifferent to x. On the space of attributes, this set of alternatives corresponds to the

following set of attributes {y∗ ∈ R2|x ∼ y}.

Consider two alternatives x,y such that x∗1 > y∗1 and y∗2 > x∗2. When is x chosen over y?

Since the agent is Bayesian rational, she chooses x whenever the posterior expected utility

of x is greater than that of y. Under the notation, the posterior beliefs about x∗ and y∗ are

respectively the random variables X|X, Y and Y|X, Y . So x is chosen over y if and only if

E[u(X )|X, Y ] > E[u(Y)|X, Y ].

We obtain the posterior belief from Bayesian updating, using the fact that X − x∗ =

Y − y∗,

X1|X, Y = x∗1, and X2|X, Y ∼ N
(

1

3
(2X2 − Y2),

1

3

)
.10

The belief about the first attribute, X1|X, Y , is equal to the true attribute level x∗1 since it

is noiseless. The belief about the second attribute exhibits the contrast effect. If y is very

good in the second attribute (i.e. if Y2 is very large), then in contrast, x is perceived to be

poorer in the second attribute (i.e. then 1
3
(2X2− Y2) is very small). Substituting the belief

into the expected utility formula gives that x is chosen over y if and only if

E[u(X )|X, Y ] = −e−3x∗1 − e−(2X2−Y2)+3/2 > −e−3y∗1 − e−(2Y2−X2)+3/2 = E[u(Y)|X, Y ].11

To get the choice probability, substitute in X − x∗ = Y − y∗ = ε to get an equivalent

inequality

−3

2
+ ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

)
> −ε2.
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Since the ε2 ∼ N (0, 1), the choice probability can be expressed using the normal c.d.f Φ,

C(x, {x,y}) = Φ

(
−3

2
+ ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

))
.

For interpretation, first recall that x∗1 > y∗1 and y∗2 > x∗2. Therefore, both e−3y
∗
1 − e−3x

∗
1

and ey
∗
2−2x∗2 − ex∗2−2y∗2 are positive. Moreover, since both Φ and ln are increasing functions,

the choice probability is increasing in x∗1 and x∗2, and decreasing in y∗1 and y∗2. Intuitively,

the agent is more likely to choose x if the true attribute levels of x improve, less so if the

attributes of y become more desirable.12

Empirically, intransitivity can happen when the difference
is easier to discriminate in attribute one, and harder in
attribute two (Tversky, 1969; Leland, 1994). I.e. if the
difference in attribute two is not large enough to be “conse-
quential”, individuals choose the option higher in attribute
one. However, individuals choose the option higher in at-
tribute two if its difference is large enough.
In our model, such observation can happen locally near y
as shown by the indifference curves of y (dashed) and of x
(solid). For options slightly worse than y in attribute one,
a large difference in attribute two is needed for them to com-
pare favourably to y. And for options (slightly) better than
y in attribute one, also a sizable difference in attribute two
of approximately y∗2−x∗2 is needed to compare unfavourably
to y. Now that z∗2 − x∗2 > y∗2 − x∗2 is more than enough, x
compares unfavourably to z even though x∗1 is mucb better
than z∗1.

Figure 1: Crossing Stochastic Indifference Curves

The indifference curve can be traced out using the definition C(x, {x,y}) = 0.5. Because

Φ(0) = 0.5, we have x ∼ y if and only if

0 = −3

2
+ ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

)
.

Any x and y with attributes satisfying the above equation are stochastically indifferent.

Generically, if x ∼ y, their indifference curves cross. For illustration, we let x∗ = (3, 0)

and y∗ = (3 − 1
3

ln(1 − e9/2 + e27/2), 3) and check that x ∼ y. As shown in Figure 1, the

red dots are the corresponding true attribute levels, and the indifference curve of x is the

12We will show that if x∗
1 > y∗1 and y∗2 > x∗

2 does not hold, the dominating option will be chosen with
probability 1 in the next section.
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solid curve, whereas that of y is dashed. The two curves intersect at x∗ and y∗. The curves

are indistinguishable for large values in the first attribute. Because the curves are distinct,

intransitivity can occur when we consider any z with attributes in the shaded area. As

in Figure 1, z∗ is below the y-curve and above the x-curve. So C(y, {y, z}) > 0.5 and

C(x, {x, z}) < 0.5. But as readily seen, slight improving x∗ in either attribute will cause

C(x, {x,y}) > 0.5. Thereby strictly violating weak transitivity. The example is itself a

proof of the following existence result.

Proposition 3.1 Suppose there is imperfect perception in one of the attributes. There exists

a normal-Bayesian rational agent with a standard preference who displays intransitivity.

3.2 Joint-Separate Valuation Reversal

The effect refers to the reversal of evaluations for the alternatives in two contexts. In an

experiment of Hsee (1996), the subjects (as company owners) were asked for their valuations

in terms of willingness to pay to hire different job candidates as programmers. Candidate x

has a college GPA of 4.9 out of 5 and has written 10 programs in the computer language KY.

Candidate y has a GPA of 3.0 from the same school, and has written 70 similar programs in

the same language. When the subjects were asked to evaluate x alone, the average valuation

was about 32.7k dollars; when asked to evaluate y alone, the average valuation was less and

about 26.8k. However, when the two candidates were presented together, the evaluations

reversed. The average valuation for x in the presence of y became 31.2k, less than the new

valuation for y, 33.2k. With abuse of notation, we denote by $(x) and $(y) the valuation

or the average willingness to pay for x and y in dollars, and denote by $(x|x,y) the average

valuation for x in the presence of y, and $(y|x,y) for y in the presence of x. A decision

maker is said to display j-s reversal if there exist x,y such that both $(x) > $(y) and

$(x|x,y) < $(y|x,y) holds.

In the experiment, the two attributes are the GPAs and the programming experience.

While the GPA (scaled out of 5) is easy to interpret, the programming experience is hard.

Although the programming experience is explicitly measured in numbers of programs writ-

ten, it is not clear how advanced the computer language KY is, and how difficult it is to

write programs in. The subjects as “company owners” may not be experts in program-
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ming, and are uncertain of their subjective interpretation. Hence it is reasonable to model

programming experience with imperfect perception.

To show the existence of reversal in our model, we need to find a pair of x and y

such that x∗1 > y∗1 and x∗2 < y∗2, and that $(x) > $(y) and $(x|x,y) < $(y|x,y) hold

simultaneously. In this subsection, we use the average posterior expected utility as a proxy

for average willingness to pay. That is, $(x) is understood as the average posterior expected

utility of x in {x}, $(y) that of y in {y}. And $(x|x,y), $(y|x,y) that of x, of y in {x,y}.

When there is only one option, the posterior is based only on its own signal. For noiseless

perception, X1|X = x∗1. The noisy one has Bayesian posterior X2|X ∼ N (1
2
X2,

1
2
). Hence

the average posterior expected utility is

$(x) := EX [EX2 [−e−3x
∗
1 − e−3X2|X]] = −e−3x∗1 − e−

3
2
x∗2+

27
8 .13

When there are two options, from similar analysis in previous subsection we obtain

$(x|x,y) := EX,Y [EX2 [−e−3x
∗
1 − e−3X2 |X, Y ]] = −e−3x∗1 − e−(2x∗2−y∗2)+2.

Also, an analogous expression holds for $(y|x,y). The two inequalities $(x) > $(y) and

$(x|x,y) < $(y|x,y) are then −e−3x∗1 − e− 3
2
x∗2+

27
8 > −e−3y∗1 − e− 3

2
y∗2+

27
8

−e−3x∗1 − e−(2x∗2−y∗2)+2 < −e−3y∗1 − e−(2y∗2−x∗2)+2.

There are many pairs of alternatives that satisfy both inequalities. For illustration, let x∗

be (3, 0), and Figure 2 plots the shaded region where both inequalities are satisfied. The

dashed curve is the boundary defined by the first inequality above, and the solid curve by

the second. Any y with attributes y∗ in the shaded region is an example of the desired

reversal.

This mechanism that causes the reversal is intuitively shown in Figure 2. A y that is bad

in the first attribute easily satisfies $(y) < $(x) in separate valuations. Because the utility

function is concave and the perception is noisy, a strong y∗2 attribute cannot effectively

increase the overall valuation. However, in joint valuation, there is a clear contrast in the

second attributes for x∗2 < y∗2. In comparison, X|X, Y is perceived as much worse off, and
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Figure 2: Joint-Separate Valuation Reversal
Empirically, j-s reversal can be observed if attribute one is easier to evaluate than attribute two
(Hsee et al., 1999). In separate evaluation, this attribute one primarily determines the evaluation
outcome. In a joint evaluation, comparison allows better evaluation of the attribute two, increasing
its impact on the evaluation outcome, leading to the reversal.
In our model, this observation can be interpreted as the case where attribute one is perceived with
less noise than attribute two. The figure indicates the equi-value curve of x in separate evaluation
(dashed), and that in joint evaluation (solid). When the difference x∗1 − y∗1 is significant enough,
x is easily better valued in separate evaluation, even for y with rather large y∗2 in the shaded area.
However, in joint evaluation, attribute two is better valued and hence better substitutes for attribute
one, as illustrated by the flatter solid curve. So a large enough y∗2 is enough to compensate for the
difference in x∗1 − y∗1, and overall y becomes better valued in joint evaluation (i.e. being above the
solid cuve).

Y|X, Y much better off, resulting in the reversal. The above analysis proves the following

existence result.

Proposition 3.2 Suppose there is imperfect perception in one of the attributes. There exists

a normal-Bayesian rational agent with standard preference who displays j-s reversal.

3.3 The Compromise Effect and Ternary Choices

The compromise effect involves choice problems of two and three options. As in Figure 3,

suppose there is a binary choice problem with options x,y where x is better than y in the

first attribute but y is better in the second. The compromise effect (Simonson (1989)) refers
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to introducing a third z in or near the region C where z∗ is extremely favorable in the first

attribute but extremely unfavorable in the second one. Empirically, at the introduction of

z, subjects are generally led to choose the “compromising option” x, increasing its choice

frequency. Mathematically, let the initial choice set be {x,y} and the extended choice

set be {x,y, z} where z∗1 > x∗1 > y∗1 and y∗2 > x∗2 > z∗2 . The compromise effect refers to

C(x, {x,y, z}) > C(x, {x,y}) for all z “extreme enough”.

Let Pr denote the probability measure for ε. We have seen previously that

C(x, {x,y}) = Pr (E[u(X )|X, Y ] > E[u(Y)|X, Y ]) = Pr

(
ε2 >

3

2
− ln

(
e−3y

∗
1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

))
,

(3.1)

Similarly, we can also express the ternary probability as

C(x, {x,y, z})

= Pr
({

E[u(X )|X, Y, Z] > E[u(Y)|X, Y, Z]
}
∩
{
E[u(X )|X, Y, Z] > E[u(Z)|X, Y, Z]

})
,

where the first term in the intersection is the event that x is perceived better than y,

{E[u(X )|X, Y, Z] > E[u(Y)|X, Y, Z]} = {ε2 >
3

2
− 4

3
ln

(
(e−3y

∗
1 − e−3x∗1)

e−
3
4
(3x∗2−y∗2−z∗2 ) − e− 3

4
(3y∗2−x∗2−z∗2 )

)
},

(3.2)

and the second the event that x is perceived better than z,

{E[u(X )|X, Y, Z] > E[u(Z)|X, Y, Z]} = {ε2 <
3

2
− 4

3
ln

(
e−3x

∗
1 − e−3z∗1

e−
3
4
(3z∗2−x∗2−y∗2) − e− 3

4
(3x∗2−y∗2−z∗2 )

)
}.

(3.3)

In these two events, both fractions inside the logarithm are positive, because z∗1 > x∗1 > y∗1

and y∗2 > x∗2 > z∗2 . It is clear that both sets are monotonic in the attributes of x, the better

the attributes for x are, the larger the event that x is the most preferred. Through a similar

rationale, it is intuitive to see in Equation (3.3) that the event that x is preferred to z is

monotonically decreasing in z’s attributes.

More subtle is the influence of attributes of z on the preference between x and y. From

Equation (3.2), it is clear that the first attribute of z∗1 does not affect the preference between
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x and y, because the first attribute is noiseless for all. The second attribute is not. The

(main component of the) perceived second attribute of x is 3x∗2 − y∗2 − z∗2 .14 Hence the

term −e− 3
4
(3x∗2−y∗2−z∗2 ) is (the main component of) the posterior utility of x from the second

attribute. A weak attribute level of z∗2 contrasts with that of x, increasing x’s perceived

level and its posterior utility level. Therefore, x appears more appealing in the context

of an undesirable z. Similarly, such an undesirable z also increases the posterior utility of

y. However, since y∗2 > x∗2, y is more satiated than x in the second attribute. Hence the

increase in perceived levels benefits x more. Mathematically, both the posterior utility of y

and of x from the second attribute increase as z∗2 decreases, but their gap

e−
3
4
(3x∗2−y∗2−z∗2 ) − e−

3
4
(3y∗2−x∗2−z∗2 ) =− e−

3
4
(3y∗2−x∗2−z∗2 ) −

(
−e−

3
4
(3x∗2−y∗2−z∗2 )

)
=
(
−e−

3
4
(3y∗2−x∗2) − (−e−

3
4
(3x∗2−y∗2))

)
exp(

3

4
z∗2)

decreases. Therefore, from Equation (3.2), a low z∗2 benefits x more, causing x to be

preferred to y.

To show that the compromise effect occurs, we take the limit that z∗1 → x∗1 from the right

and see from Equation (3.3) that x is perceived better than z with probability approaching

1. I.e. Pr
({

E[u(X )|X, Y, Z] > E[u(Z)|X, Y, Z]
})
→ 1 as z∗1 ↘ x∗1. Moreover, for z∗2 small

enough, the event in Equation (3.2) becomes a superset of the event in Equation (3.1). I.e.

Pr
({

E[u(X )|X, Y, Z] > E[u(Y)|X, Y, Z]
})

> C(x, {x,y}) for z∗2 small enough. Therefore

C(x, {x,y, z}) > C(x, {x,y}) for inferior enough z. We have just proved the following

result.

Proposition 3.3 (The Compromise Effect) Assume the parametrization in this sec-

tion. For any x,y with x∗1 > y∗1 and x∗2 < y∗2, there exists δ > 0 and D ∈ R such that

for all z with z∗1 − x∗1 ∈ (0, δ) and z∗2 < D, the inequality C(x, {x,y, z}) > C(x, {x,y})

holds.

The result above points out an important distinction between our model and a large

class of models that satisfy Monotonicity (also called Regularity). This includes the class

of all random utility models (see e.g. Block and Marschak (1960) and Falmagne (1978) and

14Seen from the posterior belief being X2 ∼ N ( 1
4 (3X2 − Y2 − Z2), 1

4 ).
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section 5 of Rieskamp et al. (2006)). In the random utility framework, the utility of the

options x,y, z are random variables Ux, Uy, Uz, i.e. measurable functions from a probability

space to R. The decision maker chooses x if and only if the event {Ux > Uy and Ux > Uz}

is realized. A very general random utility model allows Ux, Uy, and Uz to be correlated in

arbitrary ways. Nonetheless for a random utility model, it always holds that

{Ux > Uy} ⊆ {Ux > Uy and Ux > Uz}, and hence C(x, {x,y}) < C(x, {x,y, z}).

According to Proposition 3.3, our model directly violate this property, and hence it cannot

be reinterpreted as any random utility model.

Through a similar mechanism, our model also captures two other effects in Figure 3.

The phantom decoy effect (Pratkanis and Farquhar, 1992) occurs in the situation when z is

positioned near the area P . Usually, the phantom alternative is better than x in the first

attribute and no worse than x in the second. Also, it is worse than y in the second attribute.

In experimental settings, the subjects are told that such a z is unavailable to choose and

hence the subject has to choose from {x,y}. Empirically, the phantom decoy increases

the frequency of choosing x.15 The attraction effect (Huber et al. , 1982) corresponds to

introducing a third option z in or near the region A in Figure 3. In general, z needs to be

inferior to x in the second attribute, and no better in the first. In addition, z needs to be

better than y in the first attribute. Empirically, such a third option itself is hardly chosen,

but increases the choice frequency of x. Both findings can violate Monotonicity.

Because our model predicts these two effects through a similar channel, it suggests that

there can be some commonality among the effects, as argued by Highhouse (1996). Here,

we omit their formal proofs to avoid repetition. Nonetheless, a proof of the attraction

effect (phantom decoy effect) parallels the following intuition. Suppose there is imperfect

perception in the second (first) attribute. Again, let x be inferior in the second attribute

and y inferior in the first. Now introduce the third object z near A (P ) that is extremely

bad in the second attribute (good in the first attribute). In comparison, z causes both x and

y to be perceived better in the second attribute (worse in the first attribute) than before.

However, because y was already good enough in the second (barely acceptable in the first)

15See e.g. Pratkanis and Farquhar (1992), Highhouse (1996), Pettibone and Wedell (2000), Pettibone and
Wedell (2007) and Hedgcock et al. (2009) etc.
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attribute in {x,y}, overall x turns out relatively more favorable (less repulsive) than y.

3.4 Remarks on the Parametric Model

First, the above examples illustrate how intransitivity, j-s reversal and the compromise effect

can be explained by the parametric model where only attribute one is precisely perceived.

Further derivation reveals that, under the same model, these effects can occur under a range

of budget sets that are expected from the behavioral literature.

Second, to explaining the empirical observations, a more general parametric model can

be used to estimate preferences and predict choice probabilities. For example, let the utility

function be additively exponential u(x) := u(x1, x2) = −eγx1 − eρx2 where γ, ρ < 0 are

preference parameters. And the noise be ε ∼ N

0,

1/t21 0

0 1/t22

 with parameters t1, t2 ∈

(0,∞], one of them potentially infinite. Under this parametrization, the parameters can

be estimated easily from choice data. For example, in our parametrization, the choice

probability for any binary problem is given analytically in Lemma 3.1.

Lemma 3.1 For any x,y where x∗1 > y∗1 and y∗2 > x∗2, the parametric model in the subsec-

tion gives C(x, {x,y}) = Φ (θ(γ, ρ,x∗,y∗, t)), where Φ is the standard normal c.d.f. function

and θ(γ, ρ,x∗,y∗, t) is defined as

θ :=
1√(

ρ
√
t2

2+t22

)2
+
(
γ
√
t1

2+t21

)2
 γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ
(t21+1)y∗1−x∗1

2+t21

)
− exp

(
γ
(t21+1)x∗1−y∗1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y∗2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x∗2

2+t22

)
 .

When an attribute becomes noiseless (i.e. t1 → ∞), the above Lemma reduces to

Equation 3.1. As seen previously, an x with better attributes results in a higher θ and

higher C(x, {x,y}), and the reverse holds for y. Moreover, because x∗1 > y∗1, and γ is the

preference parameter in the first attribute, a larger γ2 implies that the first attribute is more

decisive, and hence more likely to choose x.

As the Lemma specifies choice probabilities in terms of parameters, it can be used to

estimate exponential utility functions when there are observations for different menus. When

the parameters are estimated, the model can be used to predict choice probabilities in new

menus. Here, we adopt an implicit assumption similar to that in Koszegi and Szeidl (2013).
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To maintain empirical identifiability and avoid excessive degrees of freedom, the definitions

and measurements of the attributes must be determined before fitting the model to data.

They should not be free parameters but part of the data that the model seeks to explain.16

Although the expression in the Lemma can be useful for experimenters, the agent in

the model does not evaluate this complicated algebra before making the choice. She simply

chooses the choice item that maximizes her expected utility while being unaware of the

choice probabilities her actions generate.

4 The General Results

Last section shows that one simple parametric setting can explain and predict several con-

textual effects. These results are not outcomes of parametric flexibility. On the contrary,

the next subsection shows the model is robust in the sense that even without the parametric

restrictions, contextual effects will always occur to some “rightly designed” choice problems.

In contrast, many other models are not robust in this sense, that even for the right choice

problems, there are parameters for which context effects cannot occur.

While the “rightly designed” choice problems have been a focus in experimental research,

contextual effects are rarely observed in many other choice problems. There, the observed

choices are usually more “rational”. Subsection 4.2 shows this is in accordance of our

model. The agent’s choice conforms to the classical rational choice theory in a class of

choice problems where contextual effects are not empirically observed. We also discuss the

type of sensible regularity akin to rationality that our model always satisfy.

4.1 The Decoy Choice Pattern

In this subsection, we first define the term “decoy choice pattern” as an abstraction of the

attraction, compromise, and phantom decoy effect. We then show that the general model

predicts the decoy choice pattern under the general class of preferences and prior-signal dis-

16While it is easier to satisfy this procedure in marketing experiments where the attributes of each object
are specified by the experimenter, it is sometimes difficult to include other relevant attributes in real life
decision-making processes. For example, when shopping (online or in person), individuals may base their
decisions on attributes that are not listed on the product descriptions. For instance, decisions may be made
based on the retailer’s customer service, which is usually not listed in the product labels. Hence it is difficult
to account for these influences.
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tributions as described in Section 2. Start with a binary choice problem where x is better

than y in the first attribute but y is better in the second, as shown in Figure 3. As empiri-

cally observed, a third object z in the lower right corner of Figure 3 generally increases the

choice probability of x. Due to symmetry, it is also true empirically that if instead of z, a

third object w lies in the upper left corner of the same figure will increase the choice proba-

bility of y (e.g. a compromise effect where y is the compromising option). These empirical

effects share a common feature that z or w is either unavailable (as a phantom decoy) or

rarely chosen (as in compromise effect or attraction effect). Therefore, one can reasonably

infer that both the attraction effect and the compromise effect will remain qualitatively

unchanged when the third option is unavailable. To summarize these observations, there

exists some w and z where the difference z∗−w∗ points towards the lower-right half plane,

such that the unavailable third option w increases the choice probability of y whereas the

unavailable third option z increases the choice probability of x. We call this comparative

statics the decoy choice pattern.

Definition 4.1 The choice behavior is said to display the decoy choice pattern if there exists

a vector ∆ ∈ R2 with ∆1 > ∆2, such that for any x,y, z,w with attributes in R2 satisfying

x∗1 > y∗1, x∗2 < y∗2 and z∗ = w∗ + ∆, the inequality C(x, {x,y, (z)}) > C(x, {x,y, (w)})

holds.

Our model predicts the decoy choice pattern, which can be interpreted as an empirically

testable implication in two ways. First, when there are at least two attributes under con-

sideration, there exists menus for which the agent does not satisfy the Luce’s IIA. Second,

the agent violates Luce’s IIA in a specific way. I.e. making x the compromising option in

the experiments does not reduce the choice probability of x.

Theorem 4.1 Any normal-Bayesian rational agent with standard preference and imperfect

perception displays the decoy-choice pattern.

Observe that Theorem 4.1 is a sufficiency result. Intuitively, it states that if z∗ is to

the right or to the bottom of w∗, such a z affects the choice probability of x positively as

opposed to w. Another interesting implication of the theorem is that the attraction effect
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Figure 3: Areas for the phantom decoy effect (P ), the compromise effect (C) and the attraction
effect (A)

and the compromise effects should still exist even when z is unavailable. Since z is rarely

chosen in experiments, such a prediction is reasonable to expect, but is special to our model.

Other choice models usually do not consider unavailable options.

4.2 Choice under Dominance

We have seen previously that when there is a trade-off between the alternatives, i.e. some

alternatives are better in the first attribute while others are better in the second, contextual

choices can arise in the model. A natural question is what would the model predict when

such a trade-off is absent. Intuitively, if we are given two alternatives x and z where z∗ > x∗,

a rational agent should always choose z due to the monotonicity of the utility function.17

17The vector inequality z∗ > x∗ means z∗1 ≥ x∗
1 and z∗2 ≥ x∗

2 with at least one inequality being strict.
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The prediction of our model fits this intuition. Since the error ε in perception is the same for

each of x and z, the perturbed signal X = ε + x∗ and Z = ε + z∗ preserves the inequality:

Z > X. A Bayesian rational agent can hence correctly infer the inequality and choose

optimally.

Theorem 4.2 For any {x, z} with x∗, z∗ ∈ R2, a normal-Bayesian rational agent with

standard preference and imperfect perception chooses z with probability 1 if z∗ > x∗.

It is clear that the above theorem also predicts the following intuitive choice effect

described and observed in Tversky (1972) and Tversky and Russo (1969). Consider an

individual that is choosing between a trip to Paris (x) and a trip to Rome (y). If she is

interested to see both places and doesn’t have a strong preference for one over the other,

her choice probability for Paris (x) would be roughly 1/2. Now if we offer the individual a

new choice problem with two alternatives, a trip to Paris (x) or a trip to Paris plus a $1

bonus (z), he would probably not hesitate to choose the option with the extra dollar. In

other words, choosing z over x is of probability 1. However, if we offer him a third choice

problem that consists of a trip to Paris plus $1 and a trip to Rome, it is intuitive that the

choice probability should still be roughly 1/2.

Another implication of the above theorem is that transitivity holds with overwhelming

probability for choice objects among which each either dominates or is dominated by an-

other. Therefore, violation of weak stochastic transitivity can happen only when the options

do not dominate each other. The proof of the following result is immediate.

Corollary 4.1 Suppose x,y, z have attributes x∗ > y∗ > z∗, then 1 = C(x, {x,y}) =

C(y, {y, z}) = C(x, {x, z}) > 1/2.

Theorem 4.2 can also be generalized to the following statement. When S = {x1, . . . ,xn}

is the choice set involving multiple options, if xi is dominated in the set S, then C(xi, S) = 0.

In other words, objects are chosen with positive probability only when they are on the

“attribute possibility frontier”. This is a desirable regularity condition that the our model

satisfies, and it rules out many other types of irregular choice behaviors.18

18It is also one of the distinctions between our model and Natenzon (2019). In his model, a dominated
object x with x∗ < y∗ can still be chosen with probability significantly greater than 0.
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A tempting conjecture is that a similar result holds for j-s reversal. But it is not true in

general. It is true that Corollary 2 follows immediately from the proof of Theorem 4.2.

Corollary 4.2 For any {x, z} with x∗ < z∗ ∈ R2, it holds that $(x|x, z) < $(z|x, z).

However, it does not follow that $(x) < $(z) if x∗ < z∗ when the correlations r and R are not

restricted. Consider the apartment-choice problem and the two attributes are convenience

and safety. The decision maker values both attributes, and her prior believes that the two

attributes are negatively correlated: on average, a convenient location is usually less safe,

and a safe location is farther away and hence less convenient. Let x and z be two apartments

that are exactly of the same safety level, but z is more convenient, i.e., x∗ < z∗. It clearly

holds that $(x|x, z) < $(z|x, z) in a joint valuation. But the decision maker cannot see this

comparison in the separate valuations. When she only sees the very convenient z, her prior

makes her believe that z is likely unsafe. If she values safety much more than convenience,

her valuation for $(z) can be low. On the other hand, if she sees only x, since x is not

so convenient, her posterior assumes x is safe. As a result, she may value $(x) highly. In

this case, $(x) > $(z) is still allowed by our model even though x∗ < z∗. As a numerical

example, let the prior be N

0,

 1 −0.5

−0.5 1

 and the noise be ε ∼ N (0, I2). A signal

X = (0, 0) would result in the posterior X|X ∼ N

0, 1
15

 7 −2

−2 7

−1
. A dominating

signal Z = (1, 0) would result in the posterior Z|Z ∼ N


 7/15

−2/15

 , 1
15

 7 −2

−2 7

−1
. If

the utility function values the second attribute much more than the first, then E[u(Z)|Z] <

E[u(X )|X]. This observation is a novel prediction of our model, that J-S reversal is possible

even though one option dominates the other in the attribute space.

4.3 Limiting Noise Structure

As shown in Proposition 3.3, our model does not satisfy Monotonicity, a fundamental prop-

erty of all random utility models. Despite this difference, one interesting question may

be whether such non-Monotonic predictions disappear in some limiting parameters of our
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model. For example, if the noise in the signal goes to zero, does our model converge to some

well-known models? We discuss below that as the noise term becomes small, our model ap-

proximates the well-known conditional probit model of Hausman and Wise (1978). Because

Hausman and Wise (1978)’s model is a random utility model, it satisfies Monotonicity. We

also remark that because the conditional probit model can explain the similarity effect, a

corollary of this subsection is that our model can also explain the similarity effect.

Again, restrict our discussion to the exponential utility functions so that u(x1, x2) =

−eγx1 − eρx2 . Given a finite choice set S = {x1, . . .xn}, the posterior belief of the ith

alternative under imperfect perception is

X i|X1, . . . Xn ∼ N

(
(T + nΩ−1)−1

(
TX i + nΩ−1X i −

n∑
j=1

Ω−1Xj

)
, (T + nΩ−1)−1

)
.

When the noise variance converges to zero, i.e. T−1 → 0, the posterior belief X i|X1, . . . Xn

is approximatelyN (X i, T−1) = N (xi∗+ε, T−1). When the utility function is smooth enough

near xi∗, we approximate the expected utility using the utility of the expected attributes

E[u(X )|X1, . . . Xn] ≈ u(xi∗ + ε)

which is already a random utility model. Under exponential utility, this approximates the

Hausman and Wise (1978),

u(xi∗ + ε) = −eγ(xi∗1 +ε1) − eρ(xi∗2 +ε2) ≈ u1(x
i∗
1 ) + u2(x

i∗
2 ) + β1u1(x

i∗
1 ) + β2u2(x

i∗
2 ),

where we have used the first order approximation at xi∗ with the notation that u1(x1) =

−eγx1 , u2(x2) = −eρx2 and β1 = γε1, β2 = ρε2. It is clear that the form of the approximation

coincide with equation (3.6) in Hausman and Wise (1978).

4.4 Relaxing the Perfect Correlation

Imperfect perception assumes that signals across options bear the same noise. In other

words, the noise is perfectly correlated across the alternatives. The strength of this as-

sumption simplifies the notation and derivation. However, it is not necessary and can be

weakened. For example, when the noise is positively correlated across options, the quan-

titative properties of our model still holds approximately. In this case, from the decision
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maker’s perspective, it means that she does not have to believe that the noise is the identical

across options. It suffices for the her to believe only a component of the noise is common,

so that the noise is not too different across alternatives.

For instance, when there are alternatives {x,y} with signals X and Y , let the noise be

εx = X − x∗ and εy = Y − y∗. Let us use µ to denote the posterior belief of (X ,Y)|X, Y

when the noise is perfectly correlated, i.e. εx = εy. And similarly, use µa to denote the

posterior belief when perfect correlation does not hold. Suppose under the belief µ, the

agent chooses x, i.e., Eµ[u(X )] > Eµ[u(Y)]. Notice that when µa is close enough to µ, it also

holds that Eµa [u(X )] > Eµa [u(Y)] and so x is also chosen under the belief µa. Therefore,

due to this continuity, one can locally relax the assumption and allow εx 6= εy, and at the

same time the resulting µa would be closed enough to µ for the model predictions to be

quantitatively similar.

Formally, the following convergence result shows when correlation across alternatives is

high enough, the posterior µa is close enough to µ. For commonly used utility functions,

such closeness is sufficient to maintain the choice decisions in a given problem.

Proposition 4.1 Let the prior for each option be N (0,Ω). For any n options with realized

signals X1, . . . , Xn, let the noise for each signal be εi. Suppose (ε1, . . . , εn)′ ∼ N (0,Σa) for

some positive definite Σa, and the resulting posterior belief be µa. Denote by Σ the 2n× 2n

matrix

Σ =


T−1 T−1 . . . T−1

...
... . . .

...

T−1 T−1 . . . T−1

 ,
and by µ the posterior belief when εi = εj almost surely. Then µa(X i) for each i is normally

distributed and converges to µ(X i) weakly as Σa → Σ.

5 Discussion and Conclusion

We present a choice model with underlying rational preferences. Through noisy attribute

perception, the model generically predicts the compromise effect, the attraction effect and

the phantom decoy effect, and the existence of choice cycles and j-s reversal.
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Despite the context-dependent predictions, in our model, the noise of an alternative has

the same exogeneously fixed distribution in all contexts. Hence the noise is independent

of contexts in the same way as a random utility model is. In a random utility model, the

distribution of a random utility (correlated with others or not) is not context-dependent,

and the agent observes only the utilities of the options available. Analogously in our model,

the agent observes only the signals of alternatives on the menu. However, due to the

endogenously updated Bayesian posterior belief, the posterior utility maximizing choices in

our model can explain contextual effects.

In additional to our simple mechanism, it is likely that other mechanisms are also at

play in reality. Imagine a choice problem with many options, An agent is asked to rank the

options, or is asked to choose one from each pair. Our model implies that these two tasks

yield the same ordering since the posterior utilities are the same. This is a property of our

working assumption that the signal precision is fixed regardless of availability and contexts.

So the agent always learns all the available information in a choice problem. Therefore, our

model is not intended to explain empirical phenomena such as the choice overload (Iyengar

and Lepper, 2000), for which the main driver is likely the limited information capacity.19

For these choice effects, a more suitable model would likely cover endogenous attention and

information acquisition. See Guo (2016) for one such model in explaining choice overload.

On the other hand, when the agent’s finite power to process information is not of first-order

importance, our model captures the systematic mechanism of contextual choices through

imperfect attribute perception.

Similarly, another related interesting mechanism is limited memory. For example, after

the agent sees {x,y, z}, the current model predicts the same choice behavior for the choice

set {x,y, (z)} where z is shown but not available, and the choice set {x,y} where z is

later removed. This does not explain the findings in Sivakumar and Cherian (1995) that

the choice probability of x (the target) is significantly reduced following the removal of z,

although it does not fully recover to the level at which z was never shown. A possible future

extension to capture such empirical findings is a model where the agent partially forgets

what she has learned when stimuli are removed.

19I thank the associate editor and the referees for pointing this out.
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6 APPENDICES

6.1 Proof of Lemma

Proof. Proof of Lemma 3.1 We calculate directly the expected utility

E[u(X )|X, Y ] =E
[
−eγX1 − eρX2|X, Y

]
=− exp

(
γ

(t21 + 1)X1 − Y1
2 + t21

+ γ2
1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)X2 − Y2
2 + t22

+ ρ2
1

2(2 + t22)

)
=− exp

(
γ

(t21 + 1)x∗1 − y∗1 + t21ε1
2 + t21

+ γ2
1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)x∗2 − y∗2 + t22ε2
2 + t22

+ ρ2
1

2(2 + t22)

)
where the second equality is due to the normally distributed exponents. The third equality

is due to the identities x∗ + ε = X, y∗ + ε = Y . Similarly,

E[u(Y)|X, Y ] =− exp

(
γ

(t21 + 1)y∗1 − x∗1 + t21ε1
2 + t21

+ γ2
1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)y∗2 − x∗2 + t22ε2
2 + t22

+ ρ2
1

2(2 + t22)

)
Hence given x∗,y∗ and ε, the agent would choose x over y iff E[u(X )|X, Y ] > E[u(Y)|X, Y ].

Suppose x∗1 > y∗1 and y∗2 > x∗2, then we see that x is chosen over y iff

exp

(
γ2

2(2 + t21)
− ρ2

2(2 + t22)

) exp
(
γ
(t21+1)y∗1−x∗1

2+t21

)
− exp

(
γ
(t21+1)x∗1−y∗1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y∗2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x∗2

2+t22

) ≥ exp

(
ρt22ε2
2 + t22

− γt21ε1
2 + t21

)
.

(†)

Since x∗1 > y∗1 and y∗2 > x∗2, we can take natural-log on both hand sides of (†) to obtain the

following equivalent condition

γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ
(t21+1)y∗1−x∗1

2+t21

)
− exp

(
γ
(t21+1)x∗1−y∗1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y∗2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x∗2

2+t22

)
 ≥ ρt22ε2

2 + t22
− γt21ε1

2 + t21
.

Notice that RHS follows a normal distribution N
(

0,
(

ρ
2+t22

)2
t2 +

(
γ

2+t21

)2
t1

)
. We can

standardize both hand side by multiplying 1/

√(
ρ
√
t2

2+t22

)2
+
(
γ
√
t1

2+t21

)2
. Hence x∗ is chosen over
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y∗ iff some standard normal random variable Z is below the threshold θ defined below:

θ(γ, ρ,x∗,y∗, t) :=
1√(

ρ
√
t2

2+t22

)2
+
(
γ
√
t1

2+t21

)2×
 γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ
(t21+1)y∗1−x∗1

2+t21

)
− exp

(
γ
(t21+1)x∗1−y∗1

2+t21

)
exp

(
ρ
(t22+1)x∗2−y∗2

2+t22

)
− exp

(
ρ
(t22+1)y∗2−x∗2

2+t22

)
 .

6.2 Proof of Theorem 4.1

Proof. Proof of Theorem 4.1 It suffices to show that under our assumptions, for every

realization of ε the following inequality holds

E[u(X )|X, Y, Z]− E[u(Y)|X, Y, Z] > E[u(X )|X, Y,W ]− E[u(Y)|X, Y,W ].

Conditional on X, Y,W , the posterior for X is

Pr(X|X, Y,W )

∝ exp

(
−X

′Ω−1X
2

)
exp

(
−Y

′Ω−1Y
2

)
exp

(
−W

′Ω−1W
2

)
exp

(
−(X −X )′T (X −X )

2

)
× 1{X−X=Y−Y=W−W}

∝ exp

(
−1

2

[
X ′
(
3Ω−1 + T

)
X − 2

(
TX − Ω−1(Y +W − 2X)

)′X ])
∝ exp

(
−1

2

(
X −

(
3Ω−1 + T

)−1 (
TX − Ω−1(Y +W − 2X)

))′
(
3Ω−1 + T

) (
X −

(
3Ω−1 + T

)−1 (
TX − Ω−1(Y +W − 2X)

)))
So we denote the above posterior distribution of X|X, Y,W by N

(
µ(x∗; y∗,w∗, ε), Ω̂

)
,

where

µ(x∗; y∗,w∗, ε) :=
(
3Ω−1 + T

)−1 (
Tx∗ + Tε− Ω−1(y∗ + w∗ − 2x∗)

)
=
(
3Ω−1 + T

)−1 (
TX − Ω−1(Y +W − 2X)

)
,

and Ω̂ :=
(
3Ω−1 + T

)−1
.
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Denote the density of X|X, Y,W ∼ N (µ, Ω̂) by φ(X −µ, Ω̂). The posterior expected utility

is therefore

E[u(X )|X, Y,W ] =

∫
R2

u(X )× φ
(
X − µ(x∗; y∗,w∗, ε), Ω̂

)
dX

=

∫
R2

u(s + µ(x∗; y∗,w∗, ε))× φ
(
s, Ω̂

)
ds.

Similarly,

Y|X, Y,W ∼ N
(
µ(y∗; x∗,w∗, ε), Ω̂

)
.

Because

µ(x∗; y∗,w∗, ε) :=Ω̂
(
Tx∗ + Tε− Ω−1(y∗ + w∗ − 2x∗)

)
=µ(y∗; x∗,w∗, ε)− (y∗ − x∗),

we have

E[u(Y)|X, Y,W ] =

∫
R2

u(s + (y∗ − x∗) + µ(x∗; y∗,w∗, ε))× φ
(
s, Ω̂

)
ds.

Recall that µ(x∗; y∗,w∗, ε) = Ω̂Tx∗ + Ω̂Tε− Ω̂Ω−1y∗ − Ω̂Ω−1w∗ + 2Ω̂Ω−1x∗. Substitute in

z∗ := w∗ + ∆ for w∗ we have

E[u(X )|X, Y, Z]− E[u(Y)|X, Y, Z]

=

∫
R2

u(s + µ(x∗; y∗, z∗, ε))× φ
(
s, Ω̂

)
ds−

∫
R2

u(s + (y∗ − x∗) + µ(x∗; y∗, z∗, ε))× φ
(
s, Ω̂

)
ds

=

∫
R2

[
u
(
s + µ(x∗; y∗,w∗, ε)− Ω̂Ω−1∆

)
− u

(
s + (y∗ − x∗) + µ(x∗; y∗,w∗, ε)− Ω̂Ω−1∆

)]
φ
(
s, Ω̂

)
ds.

Since u is standard, and y∗1 < x∗1, and y∗2 > x∗2, if −Ω̂Ω−1∆ ∈ (−∞, 0) × (0,∞), i.e. the

second quadrent, then

u
(
s + µ(x∗; y∗,w∗, ε)− Ω̂Ω−1∆

)
− u

(
s + (y∗ − x∗) + µ(x∗; y∗,w∗, ε)− Ω̂Ω−1∆

)
>u (s + µ(x∗; y∗,w∗, ε))− u (s + (y∗ − x∗) + µ(x∗; y∗,w∗, ε))

for all s and ε. When we integrate out s, we have E[u(X )|X, Y, Z] − E[u(Y)|X, Y, Z] >

E[u(X )|X, Y,W ]− E[u(X )|X, Y,W ] for every realization of ε.
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Therefore, one sufficient condition is that −Ω̂Ω−1∆ ∈ (−∞, 0)×(0,∞). If this condition

holds, we have −Ω̂Ω−1∆ = w for some w1 < 0, and w2 > 0. In order to show the decoy

choice patter, we just need to show there exists ∆ with ∆1 > ∆2 such that this condition

holds.

Recall that we had normalized Ω so that for some r ∈ (−1, 1),

Ω =

1 r

r 1


and the noise has variance

T−1 =

 1/t21 R/(t1t2)

R/(t1t2) 1/t22

 .
We can calculate

Ω−1 =

 1/(1− r2) −r/(1− r2)

−r/(1− r2) 1/(1− r2)

 and T =

t1 0

0 t2

 1/(1−R2) −R/(1−R2)

−R/(1−R2) 1/(1−R2)

t1 0

0 t2

 ;

It follows that

∆ =− ΩΩ̂−1w = −Ω(3Ω−1 + T )w = −(3I + ΩT )w

=−

3 0

0 3

+

1 r

r 1

t1 0

0 t2

 1/(1−R2) −R/(1−R2)

−R/(1−R2) 1/(1−R2)

t1 0

0 t2

w1

w2


=−

3 +
t21−t1t2rR

1−R2

t22r−t1t2R
1−R2

t21r−t1t2R
1−R2 3 +

t22−t1t2rR
1−R2

w1

w2


Since w1 < 0, and w2 > 0, the sufficient condition to holds when ∆ is some positive

linear combinations of the two vectors

{

3(1−R2) + t21 − t1t2rR

t21r − t1t2R

 ,−
 t22r − t1t2R

3(1−R2) + t22 − t1t2rR

}.
And the decoy choice pattern holds when there exists such a ∆ with ∆1 > ∆2. In other
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words, the decoy choice pattern holds if
3(1−R2) + t21 − t1t2rR > t21r − t1t2R

or

−(t22r − t1t2R) > −(3(1−R2) + t22 − t1t2rR),

⇔


3(1−R2) > (r − 1)(t21 + t1t2R)

or

3(1−R2) > (r − 1)(t22 + t1t2R).

Because r, R ∈ (−1, 1) and t1, t2 > 0, it is impossible for both t1 + t2R < 0 and t2 + t1R < 0

to hold simultaneously. Therefore the decoy choice pattern holds.

6.3 Proof of Theorem 4.2

Proof. Proof of Theorem 4.2 As before, we start with the Bayesian posterior

Pr(X|X,Z) ∝ exp

(
−X

′Ω−1X
2

)
exp

(
−Z

′Ω−1Z
2

)
exp

(
−(X −X )′T (X −X )

2

)
× 1{X−X=Z−Z}

= exp

(
−1

2

[
X ′
(
2Ω−1 + T

)
X − 2

(
TX − Ω−1(Z −X)

)′X . . . ])
∝ exp

(
−1

2

(
X −

(
2Ω−1 + T

)−1 (
TX − Ω−1(Z −X)

))′ (
2Ω−1 + T

)
(X − . . . )

)
Therefore, the posterior inference for x∗ is

X|X,Z ∼N
((

2Ω−1 + T
)−1 (

TX − Ω−1(Z −X)
)
,
(
2Ω−1 + T

)−1)
=N

((
2Ω−1 + T

)−1 (
Tx∗ + Tε− Ω−1(z∗ − x∗)

)
,
(
2Ω−1 + T

)−1)
:=N

(
µ(x∗; z∗, ε), Ω̂

)
Similarly, Z|X,Z ∼ N

(
µ(z∗; x∗, ε), Ω̂

)
. Observe that they have the same variance, and

that

µ(z∗; x∗, ε)− µ(x∗; z∗, ε)

=
(
2Ω−1 + T

)−1 (
Tz∗ + Tε− Ω−1(x∗ − z∗)

)
−
(
2Ω−1 + T

)−1 (
Tx∗ + Tε− Ω−1(z∗ − x∗)

)
=z∗ − x∗ > 0.

Therefore the posterior inference distribution for z∗ is that for x∗ translated by the vector

z∗ − x∗ > 0. Since standard preference is increasing in both attributes, we have for every

ε ∈ R2

E[u(X )|X,Z] < E[u(Z)|X,Z].

Hence the rational agent chooses z over x with probability 1.
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6.4 Proof of Proposition 4.1

Proof. Proof of Proposition 4.1

Denote X̃ = (X1, . . . , Xn), and X̃ = (X 1, . . . ,X n). Let’s use φk(., A) to denote the den-

sity of the k dimensional normal distribution N (0, A). Under Σa, the posterior distribution

for X1 is

Pr(X 1|X1, . . . , Xn) =

∫ ∏n
j=1 φ2(X j,Ω)× φ2n

(
(X̃ − X̃ ),Σa

)
dX 2 × · · · × dX n∫ ∏n

j=1 φ2(X j,Ω)× φ2n

(
(X̃ − X̃ ),Σa

)
dX̃

It is easy to see this is a normal distribution, establishing the claim of normality of the

posterior. Let v be any bounded continuous function. Then

Eµa [v(X 1)] =

∫
v(X 1)

∏n
j=1 φ2(X j,Ω)× φ2n

(
(X̃ − X̃ ),Σa

)
dX̃∫ ∏n

j=1 φ2(X j,Ω)× φ2n

(
(X̃ − X̃ ),Σa

)
dX̃

As Σa → Σ, the measure φ2n

(
(X̃ − X̃),Σa

)
dX̃ converges weakly to

φ2

(
(X 1 −X1), T−1

)
×

n∏
i=2

1X i−Xi=X 1−X1dX̃ ,

the measure where εi = εj for all i, j. Therefore, by weak convergence we have

Eµa [v(X 1)]→
∫
v(X 1)

∏n
j=1 φ2(X j,Ω)× φ2 ((X 1 −X1), T−1)×

∏n
i=2 1X i−Xi=X 1−X1dX̃∫ ∏n

j=1 φ2(X j,Ω)× φ2 ((X 1 −X1), T−1)×
∏n

i=2 1X i−Xi=X 1−X1dX̃

=Eµ[v(X 1)]

as Σa → Σ. This completes the proof.
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