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Sample spacings for identification: the case of

English auctions with absentee bidding

Marleen Marra∗

Abstract

This paper presents new nonparametric identification results for ascending

auctions with independent private values. The standard identification approach

is infeasible in the motivating setting, because absentee bidding conceals the

number of bidders. I exploit insights from the statistics literature about the

stochastic ordering of adjacent sample spacings. I show how to use such sam-

ple spacings to set-identify structural features, using an incomplete model and

without knowing all highest bids or the number of bidders. Applying the sam-

ple spacing method to a small sample of wine auctions, I show that it iden-

tifies informative bounds on policy-relevant counterfactuals. It turns out that

Sotheby’s restricts full exploitation of the exclusion principle of optimal reserve

prices. As a result, sellers set sub-optimally low reserve prices. They benefit up

to 13% from adopting a common reserve price rule equal to 120% of the Wine

Department’s pre-auction value estimate. (JEL codes: D44, C01, C46, C57)

Keywords: Nonparametric set-identification, English auctions, Order statistics,

Shape restrictions, Optimal reserve price
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1 Introduction

English auctions can be notoriously secretive.1 Motivated by the limited information

observable in English auctions with absentee bidding, I show how so-called sample

spacings (Pyke (1965, 1972)) deliver nonparametric set-identification of structural

features of interest. The structural analysis of IPV English auction data typically

relies on knowing the number of bidders and at least one bid order statistic (Athey

and Haile (2002)). When bid data does not contain the number of bidders, the known

mapping of the distribution of an order statistic from an i.i.d. sample of known size

and its parent distribution cannot be applied. In this paper, I propose a new method

that relies on the stochastic difference between adjacent order statistics, which contain

previously unexplored identifying information.

The new set-identification method can be summarized in one paragraph. First,

dropout values of absentee bidders are shown to bound the third-highest valuation.

It is already widely known that the second-highest valuation is never more than

the winning bid plus bidding increment (Haile and Tamer (2003)). Even without

knowing the number of bidders, the bid vector is therefore informative about the

stochastic spacing between the second- and third-highest valuation (e.g. the second-

to-last spacing). The crucial final step relies on facts from the statistics literature, that

properly normalized spacings from distribution functions with increasing failure rates

are stochastically decreasing (Pyke (1965)). This bounds the last spacing, and also

set-identifies (counterfactual) surplus and revenue. This last step is crucial because

of the well-known issue in English auctions that the auction stops when the second-

highest value bidder drops out.

The case of English auctions with absentee bidding is a fitting example of a setting

where information revealed by sample spacings can benefit structural analysis. Ab-

sentee bidders report their maximum willingness to pay to the auctioneer who then

bids on their behalf during the live auction.2 Highest bids and number of bidders

cannot be discerned from the bid vector when identities are not known, since bidders

may not all place just one bid at their maximum valuation. This limited information

content diverges from what is assumed known in previous English auction studies, in-

1See e.g. Akbarpour and Li (2019)
2Absentee bidding in English auctions is discussed previously in: Ginsburgh (1998), Rothkopf

et al. (1990) and Thiel and Petry (1995). Lucking-reiley (2000) finds that this practice has been
used since at least 1878 for stamp auctions.
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cluding Paarsch (1997) using all bidders’ drop-out values and the number of bidders,

Haile and Tamer (2003) and Chesher and Rosen (2015, 2017) using a vector of high-

est bids and the number of bidders, Song (2004) using a vector of bids that includes

the second and third-highest drop-out values in some auctions, and Aradillas-López

et al. (2013) using the second highest drop-out value and number of bidders (relaxing

IPV). These papers are all groundbreaking in their econometric use of bid data from

English auctions, but their identification strategies cannot be applied to the limited

data central to this paper. For the analysis developed here, one needs to observe only:

1) a vector of bids and 2) which bids are submitted by absentee bidders. The results

extend to auctions where bids from at least three different bidders can be identified.

To underscore its practical use in overcoming data limitations, I apply the method

to an original dataset of fine wine auctions with absentee bidding collected at Sotheby’s.

Leveraging information from drop-out values of absentee bidders and the second-

highest bidder, expected bidder surplus is estimated without knowing the number of

bidders. Empirical results show that expected winning bidder surplus is higher for

high-end wines, and lies between 75 to 125 percent of the average highest bid in the

full sample. More fundamentally, this empirical application shows that the sample

spacings method delivers informative bounds even in small samples with large bidding

increments. This qualification matters: even when the number of bidders would be

known, large bid increments would result in bounds on outcomes of interest (applying

Haile and Tamer (2003)) unless they are assumed away.

This setting is also interesting from a policy angle as Sotheby’s allows sellers

to set a secret reserve price, but restricts it to be less than the low bound of the

Wine Department’s estimated value bracket. My estimates show that this results

in sub-optimally low reserves, which precludes sellers from leveraging the exclusion

principle of optimal reserve prices (see Krishna (2009), based on Myerson (1981)

and Riley and Samuelson (1981)). In other words, they place too much weight on

the sale probability and too little on revenues conditional on a sale. I consider a

simple counterfactual policy where the reserve price is automatically set at α times

the pre-auction value estimate, and show that expected seller profit increases by up

to 13 percent when setting α = 1.2. This upper bound corresponds to roughly 25.000

pounds of additional seller surplus for a single day of wine auctions, of which the

auction house holds about 20 per year in its London branch alone. Also the lower

bound is non-negative for any α ∈ [0.75, 1.2], indicating that it is not only the binding
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value bracket constraint that delivers low sale revenues. Even automatic reserve prices

at a value of α ≤ 1 increase expected seller profit compared to the current policy where

they set reserves individually.

As such, the results in this paper contribute to the structural analysis of bid data

with incomplete auction models. Within that literature, Tang (2011), Aradillas-López

et al. (2013), and Coey et al. (2017) are among the most related, focusing on directly

(bounding) structural features of interest rather than latent value distribution. Song

(2004) provides results to point-identify the value distribution using a pair of adjacent

order statistics in ascending auctions. Similar to how absentee bidding reveals addi-

tional information in my motivating example, Song (2004) exploits a feature of eBay

auctions to extract the third-highest valuation from the bid vector. While other pa-

pers rely on multiple order statistics (e.g. Song (2004), Mbakop (2017), and Luo and

Xiao (2019)) or non-ordered measurements (e.g. Li and Vuong (1998) and Krasnokut-

skaya and Seim (2011)) to support identification in (auction) models, the innovation

of my approach is that it relies on shape restrictions and their relation to the way

adjacent order statistics are spaced out. This adds previously unexploited identifying

information that helps facilitate structural analysis. Also related is recent work that

uses shape properties to aid identification and estimation in auctions, notably Larsen

and Zhang (2018) and Pinkse and Schurter (2019).

The paper proceeds as follows. After introducing the model in section 2, section

3 sets out the main results. An application in section 4 illustrates the method’s

relevance for structural analysis of incomplete bid data. Section 5 concludes.

2 Auction model

The mechanism is a standard English auction with a flexible closing rule, fixed bidding

increments, and a secret reserve price. Bidders have the option to place a sealed bid

ahead of the auction. Ex-ante symmetric, risk neutral bidders have unit demands

and face negligible entry and bidding cost. I follow the convention to denote random

variables in upper case and their realizations in lower case. All results in this paper are

conditional on a vector of observed auction covariates, Z. To economize on notation, I

therefore restrict attention to conditional values. Formally, bidder i draws a valuation

Vi ∼ fVi , and Vi = ψ(Z, Ui), with ψ(.) some function and Ui ⊥ Z. Key assumptions

of the auction model are:
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Assumption 1. All n bidders symmetrically and independently draw values from a

common conditional value distribution, such that:

i) FUi
(.) = FU(.), ∀i = {1, .., n} (exchangeability)

ii) FU(.) = FU(.)n (independence)

iii) FU(.) is absolutely continuous and is defined on bounded support [0, ū] (regularity

conditions)

This is the symmetric (conditional) IPV assumption that is the main tenet in the

structural analysis of English auctions (Paarsch and Hong (2006)). Exchangeability

of Ui for all bidders in the auction also guarantees that bidders’ preference for live or

absentee bidding is independent of their valuation. The following shape restrictions

are imposed:

Assumption 2. FU(.) satsifies:

i) fU (u)
1−FU (u)

weakly increases in u (increasing failure rate, IFR)

ii) U ≤disp Y , where Y ∼i.i.d. Unif [0, ū] (less dispersed than uniform, LDTU)3

These are mild conditions useful for identification with sample spacings. From

a reliability theory perspective, the assumption rules out distribution functions that

age slower than the exponential distribution (i) and that age faster than the uni-

form distribution on the same support (ii). As extreme dispersion as generated by

the uniform distribution is never fitting (to my knowledge) to describe latent values

in auction data. But also IFR is minimally restrictive, and many seminal (auction)

papers previously relied on this shape restriction to generate insights without impos-

ing a specific parametric distribution function (e.g. Myerson (1981) and Riley and

Samuelson (1981) to derive a unique optimal reserve price). 4

Furthermore, the following assumption restricts variation of the unobserved num-

ber of bidders n.

Assumption 3. If n varies across auctions with identical covariates, FU(.|n) =

FU(.|n′) ∀n 6= n′.

This “exogenous participation” assumption formalizes what is already implied by

the combination of IPV and negligible entry cost: the absence of selective entry.

3Specifically, when G(.) = Unif [0, ū], F−1
U (b)− F−1(a) ≤ G−1

Y (b)−G−1
Y (a), ∀0 ≤ a ≤ b ≤ 1.

4Bagnoli and Bergstrom (2005) provide references to many papers that use the slightly stronger
log-concavity shape restriction in the economics literature.
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Finally, I impose intuitive behavioral assumptions that define bidding strategies in

the incomplete model of Haile and Tamer (2003):

Assumption 4. Bidders are rational and attentive.

While these assumptions are satisfied in all symmetric separating equilibria of the

button auction model of Milgrom and Weber (1982), they also allow for alternative

behavior including not bidding at all or bidding less than one’s valuation.

2.1 Absentee bidding

Absentee bidding is a widely adopted practice both in Egnlish auctions, as also doc-

umented by Akbarpour and Li (2019). For the data in my empirical application,

Sotheby’s provides the following guidance: Absentee bids are to be executed as cheaply

as permitted by other bids or reserves and in an amount up to but not exceeding the

specified amounts. Bids will be rounded down to the nearest amount consistent with

the bidding increment. In the case of identical (rounded) bids, the earliest submitted

form will take precedence.5

Auction mechanisms with absentee bidding are designed in a way that does not

disadvantage absentee bidders.6 Hence, if only one absentee bid is submitted for an

item, the opening bid must start below that value. The rest of the bidding sequence

will vary by institution. The following stylized sequence is based on my empirical

observations that: i) the data contains various auctions with multiple absentee bids

before live bidding starts and ii) after initial absentee bids the live bidding alternates

with absentee bids:

Bidding sequence. With one absentee bid, the opening bid equals a fixed share of

the reserve price. With multiple absentee bids, the opening bid equals the minimum

of the absentee bids. Subsequent bids follow fixed bidding increments until all but

one absentee bidder drops out. Afterwards, live bids are alternated against the last

remaining absentee bidder unless he has dropped out.

5Source: http://www.sothebys.com/en/auctions/2014/finest-rarest-wines-l14711.html (last ac-
cessed June 11 2020).

6Otherwise, rational bidders would not find it optimal to place absentee bids. An auctioneer not
representing (absentee) bidders truthfully would not go undetected as the distribution of winning
bids for absentee bidders would be stochastically dominated by the winning bid distribution for live
bidders. This goes beyond the detectability property of single deviations from truthful auctioneer
behavior in Akbarpour and Li (2019) and would provide an empirical test of the protocol being
truthful in practice (when the number of bidders is known).
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Crucially, the bidding sequence formalizes that absentee bidders are not

(dis)advantaged relative to live bidders, which is maintained throughout. To measure

this restriction against structural analysis of bid data in other IPV English auction

studies, consider the two benchmark models. Paarsch (1997) assume that data is

generated by the button auction model in which case all bids are assumed to be a

different bidder’s maximum willingness to pay. But even when relaxing the behavioral

restrictions of the button auction model and using the incomplete model of Haile and

Tamer (2003) for structural analysis of bid data, it is required to observe a vector of

highest bids. Instead of needing to know highest bids and the number of bidders, I

assume that:

Informational requirement. The econometrician observes: i) a vector of bids, ii)

which ones are absentee bids.

Note that English auctions with absentee bidding are merely a motivating example

for using sample spacings for structural analysis of bidding data. This core idea applies

to any setting where drop-out values of at least two groups of bidders are observed,

and those groups are ex-ante identical. Clearly, this is a relatively weak informational

requirement nested in the case of observing bidder identities.

2.2 Equilibrium bidding strategies

This section describes the equilibrium bid strategies as a function of a bidder’s condi-

tional valuation, βk(u), for k ∈ {abs, live} for respectively absentee and live bidders.

I restrict attention to type-symmetric Bayes Nash equilibria in weakly undominated

strategies. Recall that bidders are symmetric up to their bidding mode and condi-

tional valuation draw. However, there is a crucial difference in the set of bidding

strategies available to them. Live bidders can squat or jump bid, bid only once or

bid many times incrementally.7 The strategy available to absentee bidders is limited

to the height of the bid submitted.

Lemma 1. It is optimal for an absentee bidder with U = u to bid: βabs(u) = u.

Proof. For absentee bidders, the auction is strategically equivalent to an IPV second-

price sealed bid auction. It therefore follows directly from Vickrey (1961) that truthful

revelation is a weakly undominated strategy for absentee bidders.

7See Hasker and Sickles (2010) and the references therein.
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Lemma 2. It is optimal for a live bidder with U = u to bid: βlive(u) ≤ u, with the

added constraint that a final bid is placed if u ≥ standing price plus bidding increment.

Proof. For live bidders, the auction is strategically equivalent to the English auction

setting in Haile and Tamer (2003), where bidding up to one’s valuation is optimal

and where bidders won’t let an opponent win at a price they are willing to beat.

2.3 Resulting bounds on valuation order statistics

In this section, I leverage additional information revealed by absentee bids to bound

an additional order statistic of the valuation distribution. Lemma 1 established that

absentee bidders bid truthfully. However, the sequence of observed bids also include

intermediate bids as the auctioneer is to determine the lowest price given competing

bidders and increments, and bidder identities are unobserved. The stylized bidding

sequence is used to determine which bids correspond to bidders’ drop-out values and

which bids correspond to such intermediate bids.

Let B denote the random variable of bids conditional on observables (Z), b the

number of submitted bids in an auction, ∆ ≥ 0 the minimum bidding increment,

and subscripts + and − respectively upper and lower bounds on the relevant order

statistics. Using order statistic notation, Bb:b is the highest submitted (conditional)

bid, Bb−1:b the second-highest, and Bx the highest observed drop-out value less than

Bb−1:b. As used in Haile and Tamer (2003); the second-highest valuation is bounded

between Bb−1:b and Bb:b + ∆, and the highest valuation must clearly also exceed Bb:b:

Un:n ≥ Bb:b ≡ U−n:n (1)

Un−1:n ≥ Bb−1:b ≡ U−n−1:n (2)

Un−1:n ≤ Bb:b + ∆ ≡ U+
n−1:n (3)

I add an additional relationship, using information revealed by absentee bidders’

drop-out values, to bound the third-highest valuation:

Un−2:n ≥ Bx ≡ U−n−2:n (4)

This equation holds by the definition of Bx. It is identified in any auction where a

drop-out value is observed that is less than the two highest observed bids. Simply
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put, the highest two bids must be submitted by different bidders and the highest

drop-out value less than the second-highest bid must be by a third bidder, delivering

a lower bound on the third-highest valuation.

Characterizing Bx: examples. To illustrate, consider hypothetical bid vectors.

Let Ai and Lj respectively denote the ith lowest overall bid, submitted by an absentee

bidder, and the jth lowest overall bid, submitted by a live bidder:

Auction 1: A1, A2, A3, L4, L5

Auction 2: A1, L2, A3, L4, L5

Auction 3: A1, L2, A3

In Auction 1 and Auction 2, L4 and L5 must be placed by different (live) bidders

because nobody outbids himself, so both are (lower bounds) on drop-out values of

different live bidders. A3 is the highest other drop-out value identified, from an

absentee bidder, and hence equal to Bx by definition.8 In Auction 3, A3 is the lowest

identified drop-out value of an absentee bidder and L2 is another drop-out value, but

no lower bound on the third-highest valuation can be established.

3 The identifying power of sample spacings

The censoring problem in English auctions arises from the fact that the auction

stops when the bidder with the second-highest valuation drops out. A challenge to

identification of the latent value distribution and related structural features of interest

is therefore that the highest valuation is never observed. In this section, I address

this issue by exploiting results from the statistics literature on the stochastic spacing

of order statistics. All identification results rely on the econometrician observing a

large set of independent auctions.

Definition: sample spacings. Following Pyke (1965, 1972), spacings Di:n between

two adjacent order statistics are defined as: Di:n = Ui:n − Ui−1:n, ∀i = 2, .., n. Nor-

malized spacings are defined as: D̃i:n = (n− i + 1)(Ui:n − Ui−1:n), ∀i = 2, .., n. Both

Di and D̃i are random variables with CDF FDi:n
and FD̃i:n

∀i = 2, ..., n.

8Also note that in Auction 1 there must be more than one absentee bidder as there are multiple
absentee bids placed before live bidding starts, and any other explanation would violate that the
auctioneer acts in the best interest of the absentee bidder. According to the stylized bidding sequence,
both A1 and A3 are drop-out values of absentee bidders. Practically, due to the fixed bidding
increments and rounding of absentee bids in my data, all these drop-out values are lower bounds on
the valuations of the corresponding bidders.
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To understand the usefulness of the last spacing, consider that it contains same

information as the highest two conditional order statistics combined. Specifically, the

density function of Di:n based on U ∼i.i.d. FU(.) (Pyke (1965)):

fDi:n
(d) =

n!

(i− 2)!(n− i!)

∫ ū

0

FU(x)i−2[1− FU(x+ d)]n−ifU(x)fU(x+ d)dx, (5)

which equals the density of Ui:n conditional on the realization of Ui−1:n in expectation

over all such realizations. Seller surplus (πS) and winning bidder revenue (πB) at

counterfactual reserve prices are of primary interest in structural auction studies.

They can be expressed in terms of the last spacing and the marginal distribution of

the second-highest conditional valuation:

πS(r) =

∫ ū

0

[1− FDn:n(r − un−1)] max(r, un−1)dFUn−1:n(un−1) (6)

πB(r) =

∫ ū

0

[1− FDn:n(r − un−1)]{
∫ ū

max(r,un−1)

undFDn:n(un − un−1)}dFUn−1:n(un−1) (7)

[1−FDn:n(r−un−1)] is the sale probability when Un−1:n = un−1 and with reserve price

r, which is equal to: 1 − FUn:n|Un−1:n(r|un − 1). For expositional clarity of the novel

identification approach, the rest of this section proceeds under the assumption that

∆ = 0, so that FUn−1:n is point-identified by the distribution of the second-highest bid.

This is in line with other contributions to the set-identification of auction primitives

in ascending auctions (e.g. Song (2004), Aradillas-López et al. (2013), Coey et al.

(2019)).

Let F−Dn:n
(.) and F+

Dn:n
(.) respectively denote the lower and upper bound on the

distribution of Dn:n, such that: F−Dn:n
(d) ≤ FDn:n(d) ≤ F+

Dn:n
(d), ∀d ∈ [0, ū]. By

stochastic dominance, bounds on πB and πS are defined as:∫ ū

0

[1− F−Dn:n
(r − un−1)] max(r, un−1)dFUn−1:n(un−1) ≥ πS(r) (8)

≥
∫ ū

0

[1− F+
Dn:n

(r − un−1)] max(r, un−1)dFUn−1:n(un−1)∫ ū

0

[1− F−Dn:n
(r − un−1)]{

∫ ū

max(r,un−1)

undF
−
Dn:n

(un − un−1)}dFUn−1:n(un−1) ≥ πB(r) (9)

≥
∫ ū

0

[1− F+
Dn:n

(r − un−1)]{
∫ ū

max(r,un−1)

undF
+
Dn:n

(un − un−1)}dFUn−1:n(un−1)
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As such, the upper bound on the sale probability is derived with F−Dn:n
; a stochastically

larger last spacing means a larger probability that Un:n exceeds r. The upper bound

on the winning bidder surplus conditional on a sale (the inner integral in 7) is also

derived from F−Dn:n
as it translates directly into a larger Un:n − Un−1:n.

If n would be known, one could work with the marginal distribution of FUn:n by

taking it out of the (outer) integrals in (6)-(7).9 My identification approach instead

exploits the relation between ageing properties of FU(.) and the stochastic ordering

of its sample spacings.

3.1 Identification of F−D(n:n)
(.) and F+

D(n:n)
(.)

Due to the censoring problem, F−D(n:n)
(.) is the more challenging bound to pin down.

To do so, I rely on the result by Barlow and Proschan (1966) that normalized spacings

from distribution functions with increasing failure rates are stochastically decreasing.

Intuitively, this is because normalized spacings from the exponential distribution

are exchangeable random variables (Pyke (1965)), and FU(.) ages faster than the

exponential in the reliability theory sense (by the shape assumption 2 ii).

Lemma 3. Un−1:n and U−n−2:n identify F−D(n:n)
(.) without knowing n:

F−Dn:n
(d) ≡ P [2(Un−1:n − U−n−2:n) ≤ d] , ∀d ∈ [0, ū] (10)

Proof. For all d on its support:

FDn:n(d) = P [Dn:n ≤ d] (by definition of CDF)

≥ P [2Dn−1:n ≤ d] (by decreasing normalized spacings

due to IFR (Barlow and Proschan (1966)))

≥ P [2(Un−1:n − U−n−2:n) ≤ d] (by definition of bound)

This result alone is therefore sufficient to bound πB and πS from above. Lower

bounds could be derived by rewriting (6)-(7) in terms of marginal value distribu-

9This is for example done in Aradillas-López et al. (2013). They also focus directly on overcoming
the censoring problem, in an incomplete model that allows for correlated private values. Their clever
identification strategy exploits observed exogenous variation in the number of bidders.
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tions, and then using that an upper bound on FUn:n(.) is trivially identified as the

distribution of the winning bid.

Sample spacings provide additional identifying information for the lower bounds

on πB and πS. F+
Dn:n

(.) is based on the fact that uniform spacings, e.g. spacings of

i.i.d. draws from a uniform distribution, are exchangeable random variables (Pyke

(1965)), and that FU(.) ages slower than the uniform in the reliability theory sense

(by the shape assumption 2 i).

Lemma 4. Un−1:n and Un−2:n identify F+
D(n:n)

(.) without knowing n:

F+
Dn:n

(d) ≡ P [(Un−1:n − Un−2:n) ≤ d] , ∀d ∈ [0, ū] (11)

Proof. Let Y ∼i.i.d. GY (.) = Unif [0, ū], and {Hi:n}i=1,..,n its sample spacings. By

assumption 2 i, U ≤disp Z. Bartoszewicz (1986) proves that this implies the stochastic

ordering: Di:n ≤st Hi:n ∀i ∈ {1, .., n}. Therefore for all d on its support:

FD(n:n)
(d) = P [Dn:n ≤ d] (by definition of CDF)

≤ P [Dn−1:n ≤ d] (by increasing spacings due to LDTU,

applying Pyke (1965) and Bartoszewicz (1986))

This bound is based on the second-to-last spacing being pinned down exactly from

bidding data, such as in the eBay auction model of Song (2004) or based on it Adams

(2007) and il Kim and Lee (2014), and in any auction model where bids are equated

to drop-out values. The presented model describing traditional English auctions with

absentee bidding allows for additional incompleteness of the bid vector in terms of

drop-out values. The result is presented regardless to provide a richer perspective on

the use of sample spacings in the structural analysis of bid data. In the empirical

application, I verify a necessary condition for applicability of this upper bound, based

on the empirical and simulated sale probabilities. A comparison of estimation results

based on the distribution of highest bid provides additional insight into these two

approaches.

12

Electronic copy available at: https://ssrn.com/abstract=3622047



(a) Exp(1), n=3

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spacing order statistics

C
D

F

D1
D2
2*D2=D3

(b) Unif(0,1), n=3

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spacing order statistics

C
D

F

D1=D2=D3
2*D2

(c) Log(Normal(0,0.4)), n=6

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spacing order statistics

C
D

F

Up bound on D6
D6
Low bound on D6

(d) Weibull(1,1.1), n=3
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(e) Weibull(1,1.5), n=3
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(f) Weibull(1,1.5), n=6
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Figure 1: Informativeness of bounds on FDn:n(.))

Based on Lemma 3 and 4 applied to different data generating processes, plotted for spacings between the 1st percentile
of Dn−1:n and the 99th percentile of Dn:n (x-axis). Di in legends refers to Di:n.
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Figure 2: Illustration of excess wealth order to summarize shape restrictions
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3.2 Simulations

Figure 1 shows how Lemma 3 and 4 apply to familiar distribution functions. Plots

compare the true distribution of the spacing between the highest two order statistics

with its bounds implied by the difference between Un−1:n and Un−2:n. Plotted are

simple empirical CDF’s based on 10.000 simulated sets of values, abstracting from

bidding increments.10

Plots a and b illustrate the simple basis for the presented identification results.

Plot a is based on the Exponential distribution. F−Dn:n
(.) as derived in Lemma 3

collapses to the true FDn:n(.). For any distribution function that ages faster than the

Exponential, the last spacing will therefore be stochastically dominated by F−Dn:n
(.).

Plot b is based on the Uniform distribution. F+
Dn:n

(.) as derived in Lemma 4 collapses

to the true FDn:n(.). For any distribution that ages slower than the Uniform, the last

spacing will therefore be stochastically dominating F+
Dn:n

(.).

Four other points are important to take away from these simulations. First, lever-

aging information revealed by sample spacings can indeed result in highly informative

bounds. Second, F−Dn:n
(.) is tighter the less IFR the underlying distribution function

is (plot d versus e). This simultaneously means that the lower bound is less tight in

those instances. Third, the larger the number of (unobserved) bidders, the tighter

F−Dn:n
(.) (plot f versus e). And fourth, IFR is sufficient but not necessary for the

sample spacing method to identify F−Dn:n
(.) (plot c).

I find the excess wealth order intuitive to interpret the two shape restrictions

in Assumption 2, especially because identification focuses on the upper tail of the

distribution of FU .

Definition: Excess Wealth Order. Random variable U is larger than Y

in the excess wealth order (U ≥EW Y ) if and only if:
∫∞
F−1
U (p)

1 − FU(t)dt ≥∫∞
F−1
Y (p)

1 − FY (t)dt,∀p. For IFR distribution functions it holds that the dispersive

ordering implies the excess wealth order (?), so that all IFR distributions satisfying

U ≥EW Y ∼ Unif [a, b] also satisfies U ≥disp Y .

It is easy to show that the excess wealth of E ∼ Exp(λ) at quantile p equals: p
λ
,

e.g. in Figure 2 the thick solid line with slope −1 (exponential with rate λ = 1). IFR

distributions (with F (0) = 0) have lower excess wealth at each q. So distribution

10Generally, parametric distribution functions that have an increasing failure rate include the
Normal, Exponential, Logistic, Extreme Value, Weibull (shape parameter ≥ 1), Gamma (shape
parameter ≥ 1), and Beta (shape parameter ≥ 1)) (Bagnoli and Bergstrom (2005)).
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functions with excess wealth in between of the Unif [0, 1] and Exp(1) distributions

satisfy the two shape assumptions of this paper. This corresponds to the shaded area

in the figure.

4 Application: wine auctions at Sotheby’s

I apply the sample spacing method to a unique dataset covering the 884 lots from

the “Finest and Rarest Wines & Vintage Port” auction on November 19th 2014

at Sotheby’s London.11 This provides a good and conservative test case as it is a

relatively small dataset, with large bidding increments, and it does not contain the

number of bidders. The dispersion of highest bids is large, even when normalizing by

the number of bottles in the lot, and especially the upper tail is long. To reduce the

impact of extremal values I therefore exclude auctions for which V −n:n or V +
n:n exceed

their 95th percentile.12 Descriptive statistics of the remaining sample are provided in

Table 1. As common in traditional English auctions: increments are high at between

2 - 16 percent of the winning bid.

The presence of absentee bidding requires bidders to be willing to announce their

bids before others do, which is by itself a strong indication that bidders do not

anticipate a “winners curse” and that the assumption of private values is justified. It is

reasonable to expect that correlation in valuations is captured by auction observables,

including the estimated value by Sotheby’s Wine Department, if these specialists are

unlikely to be outperformed by potential buyers in establishing the current value of

the wines. The data supports this idea. The high predictive power of Sotheby’s pre-

auction value estimate is highlighted in Figure 3 plot a, showing its relation with the

realized winning bid. Empirical tests based on Kolmogorov-Smirnov tests confirm

that IPV is reasonable assumption when conditioning on Sotheby’s value estimate,

and that additional conditioning variables do not strengthen this conclusion.13

11I collected the data by simply registering as an online bidder, recording the complete auction,
translating the video material into a dataset of bids, and adding lot descriptors from the catalogue.

12This is done unconditional on Z but normalizing the variables by the number of bottles. The
99th (95th) percentiles of unconditional per-bottle V −

n:n and V +
n:n are respectively: 945.83 (3356.67)

and 2419.50 (6540.00) pounds.
13The test is done under the equilibrium assumptions that the distribution of the lowest (second-

highest) bid equals the distribution of lowest (second-highest) valuation, and performed separately
for 3-20 bidders. Resulting high p-values when at least conditioning on Sotheby’s low value estimate
indicate the unlikeliness that the resulting parent distribution is not the same, justifying the IPV
framework up to the equilibrium assumptions being valid. Some additional caution in interpreting
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Table 1: Descriptive statistics for sample of fine wine auctions

N Mean St. Dev. Min 25th pct. Median 75th pct. Max

Opening bid (pounds) 697 846.255 847.841 50 280 520 1,150 9,000
Highest bid (pounds) 697 999.857 993.776 90 340 620 1,300 9,200
Number bottles per lot 697 8.624 4.721 1 6 8 12 36
Highest bid per bottle (pounds) 697 166.434 183.561 5 40 87.50 225 933.33
Increment at highest bid (%) 697 5.623 1.949 2.041 4.348 5.263 6.667 16.000
Is sold 697 0.902 0.297 0 1 1 1 1
Number of bids 697 4.184 2.936 2 2 3 5 25
Sotheby’s low estimate (pounds) 697 917.805 980.857 80 300 550 1,200 13,500
Sotheby’s high estimate (% above low estimate) 697 27.418 6.582 9.091 23.077 27.273 30.769 62.500
Special format (0.5l, magnum, double mag, ...) 697 0.063 0.243 0 0 0 0 1
Vintage† 647 1999 9.787 1929 1995 2002 2006 2012
Mixed lot (different wines) 697 0.088 0.283 0 0 0 0 1

†: The vintage is missing for non-vintage champagnes and for mixed lots of various vintages.
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Figure 3: The role of Sotheby’s pre-auction value estimate.

Plot a) normalized values are divided by the number of bottles in the lot; dot sizes reflect non-normalized values.

4.1 Nonparametric estimation

This section shows how to estimate bounds on πS and πB (equations 8 and 9) by

applying the spacings identification approach. π̂S and π̂B are based on product Ker-

nel estimators of conditional density functions (dFVn−1:n|Z(.), dF+
Dn:n|Z , dF−Dn:n|Z) and

these results is warranted: the small sample size may also be a reason that the Kolmogorov-Smirnov
tests do not reject the null, which is why the table with test results is not reported here.
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conditional cumulative distribution functions (F+
Dn:n|Z(.), F−Dn:n|Z(.)), such as:

d̂F
+

Dn:n|Z(d|z) =

1
hD−

∑K
t∈T −

(
Dt−

n:n−d
hD−

)
K
(
Zt−−z
hZ−

)
∑

t∈T − K
(
Zt−−z
hZ−

) (12)

F̂−Dn:n|Z(d|z) =

∑
t∈T + L

(
Dt+

n:n−d
hD+

)
K
(
Zt+−z
hZ+

)
∑

t∈T + K
(
Zt+−z
hZ+

) , with: L(x) =

∫ x

−∞
K (u) du (13)

∀(d, z) on their supports. The minus (plus) superscripts on T , Dn:n, Z, and h indi-

cate that they relate to the lower (upper) bound on the last spacing and the there-

fore relevant observations. K(.) indicates the Epanechnikov kernel function, h the

cross-validated variable-specific bandwidths as functions of the relevant sample sizes.

Moreover, let T− = |T −| (T+ = |T +|) denote the total number of auctions in which

D−n:n (D+
n:n) is identified, with the caligraphic script denoting sets of such auctions.14

For a meaningful analysis of these estimators, estimated spacings CDF’s are first

applied to bound consumer surplus in the data (CSt):

ĈS
t
∈ [

∫
(bt+x)d̂F

−
Dn:n|Z(x|z)dx−(bt+∆),

∫
(bt+x)d̂F

+

Dn:n|Z(x|z)dx−(bt+∆)], (14)

for all t sold, and 0 otherwise, and with Bb−1:b = bt and Bb:b = bt + ∆ respectively the

observed second-highest and highest “winning bid” equal to bt plus bidding increment.

ĈS
t

differs from counterfactual surplus as defined in (7) as it does not involve the

sale probability: it conditions on the event of a sale given the current (unknown)

reserve price. The upper bound on CSt is also compared against one derived from

the distribution of Bb:b itself, as anticipated on page 12:

ĈS
t
≥
∫
xd̂F

+

Vn:n|Z(x|z)dx− (bt + ∆) (15)

After estimating the three conditional densities, ĈS
t

is approximated numerically

on a fine grid of x, for all sold auctions. Table 2 reports estimated bounds on E[CSt],

both by tertile of the conditioning variable and for the whole sample. Results highlight

14The former requiring at least two bids. The latter requiring at least three bids, and identi-
fication of an absentee drop-out value less than the second-highest bid. Exogenous variation in
the unobserved number of bidders (if there is variation) and IPV guarantee that these selection
criteria are inconsequential. Uniform consistency of the PDF requires hD− → 0, hZ− → 0, and
T−hD−hZ− →∞ as T− →∞, and for the CDF that hZ+ → 0 and T+hZ+ →∞ as T+ →∞.
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Table 2: Estimated bounds on E[CSt], by tertile of Z

1st tertile 2nd tertile 3rd tertile all auctions

Observed:
N (sold) 225 195 209 629
Z, mean 29.981 96.546 341.194 154.025
Winning bid 35.087 111.218 385.726 175.197

Estimated bounds on E[CSt]:

Lower bound (based on V −n:n) 55.392 118.029 276.335 151.592
95% Confidence interval [50.471,61.768] [112.477,123.637] [254.843,291.649] [141.767,162.380]
Lower bound (based on D−n:n) 47.830 134.683 234.089 130.792
95% Confidence interval [43.626,52.584] [125.689,143.423] [218.889,248.296] [120.669,139.681]
Upper bound (based on D+

n:n) 76.460 214.824 382.647 218.339
95% Confidence interval [68.655,85.092] [191.840,237.115] [342.632,432.390] [201.082,233.435]

Estimates are in pounds per bottle. Confidence intervals are calculated from 100 bootstrap samples. Z = Sotheby’s
low value estimate.
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Figure 4: Heterogeneity of auction-level surplus CSt

Plot a: point estimates of bounds, by decile of Z=Sotheby’s pre-auction value estimate. Plot b: differences in point
estimates bounds as a share of the winning bid, by decile of Z. Vertical lines indicate sample medians.

how informative the estimated bounds are, even in this “worst-case scenario”: a small

sample with large bidding increments and without knowing the number of bidders.

The (point estimate of the) lower bound on expected consumer surplus equals 75

percent of the average winning bid (87 percent when based on V −n:n instead of D−n:n),

not far removed from the upper bound at 125 percent. Estimated bounds are wider at

18

Electronic copy available at: https://ssrn.com/abstract=3622047



the tertile level, based on only a third of the sample and about 200 observations. The

middle tertile for instance has estimated bounds between 121 and 193 percent of the

average winning bid, and the first tertile between 137 and 218 percent of the winning

bid. Another clear result is that consumer surplus is higher for higher-end wines, with

even the upper bound of the estimated surplus for the first tertile being less than the

lower bound for the second tertile, and similarly for comparing the second to the

third tertile. This goes through even when taking the 95% bootstrapped confidence

intervals into account.

Figure 4 explores further auction-level heterogeneity of ĈS
t
. Plot a) displays

heterogeneity of estimated bounds by decile of the conditioning variable. The previous

result that higher-value lots deliver more consumer surplus (which is not trivially so)

is reinforced. The boxplots also reveal that there is more heterogeneity for higher-end

wines, insofar as this is reflected by Sotheby’s pre-auction value estimate. Plot b)

plots the difference between the point estimate of high and low bound on CSt, in this

case reported as a share of the winning bid, and plotted by decile of the winning bid.

There is again a remarking auction-level variation, with the sample spacing method

resulting in bounds being more informative in terms of this outcome for higher-end

wines.

4.2 Policy simulation: optimal reserve price

It is an official policy of Sotheby’s to allow only reserve prices at or below the low

bound of the value estimate.15 Also empirically, Figure 3 plot b shows that secret

reserve prices are set at a fixed share of Sotheby’s low value estimate. The highest bids

are below this estimate for all unsold lots (between 75-100%). Together with the high

sale probability of 90 percent, this begs the question whether and how much sellers

would benefit from adopting an optimal reserve price; a counterfactual of primary

interest in empirical auction studies.16

To bound the increase in expected seller revenue from adopting a higher reserve

price, I run the following simulation exercise. I consider counterfactual reserve prices

r̃t = αZt for a range of α ∈ (1, 2), thereby relaxing the constraint on reserve prices

15Source: https://www.sothebys.com/en/glossary (last accessed June 11 2020).
16Including in: Paarsch (1997), Haile and Tamer (2003), Tang (2011), Aradillas-López et al.

(2013), Coey et al. (2017, 2019), either first estimating the latent value distribution or identifying
this structural feature directly (within bounds) as in this paper.
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insofar as the current policy is binding. To evaluate the impact on sellers, I estimate

bounds on πS by applying the results from Lemma’s 3 and 4 to (8). With reserve

prices being secret, the highest bid of the bid vector is the floor of the counterfactual

bid realizations and the trade-off of increasing the price conditional on a sale with a

lower sale probability drives the results.

Specifically, the expectation over Un−1:n in (8) is done over realizations of Bb:b

in the data (not excluding unsold lots). Suggestive evidence that the upper bound

F+
Dn:n

(.) in Lemma 4 applies is that the simulated lower bound on the sale probability

indeed is lower than the empirical sale probability, at 93.7 percent versus 94.6 percent.

All counterfactual results are simulated only for auctions in which D+
n:n is identified

(e.g. where Bx is identified), to make sure the lower and upper bounds relate to

the same primitive. F̂+
Dn:n

(.) and F−Dn:n
(.) are estimated as described in the previous

section, with the addition that the larger cross-validated bandwidths from the upper

bound are used in both estimators to guarantee that the bounds don’t cross in the

even smaller sample (167 observations).

The benchmark policy is that Sotheby’s determines Z and sellers choose a reserve

price less than Z, so this counterfactual sheds light on two questions: 1) whether sell-

ers on the whole would be better off when adopting the simple policy of a standardized

and reserve price rule, and 2) whether sellers and Sotheby’s gain from allowing the

reserve price (rule) to exceed Z.

Resulting π̂S(r) are plotted in Figure 5. Despite not point-identifying it, the

simulations reveal interesting facts. Moving from a system where sellers set their

secret reserve individually between 75-100% of Z to one where there is a common

reserve price rule at any level between 75-100% of Z is clearly beneficial to sellers.

This suggests that even conditional on the reserve price constraint r ≤ Z, individual

sellers set suboptimal reserve prices. They would gain at least 2.5 percent by setting

a common reserve price rule α ∈ [0.75, 1], and the upper bound for such a policy is

estimated at 6 percent gain.

The real kicker comes for higher values of α meaning that reserve prices are set

sub-optimally low, and that the reserve price constraint is indeed binding. The policy

to set r̃t = 1.2zt increases seller revenue up to 13 percent.

Recall that Sotheby’s provides a value bracket for each lot, and it is notable

that α = 1.2 would set the secret reserve near the upper end of this bracket (the

median upper bound is 27% higher than Z). In other words, by restricting α ≤ 1,
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Figure 5: Policy simulation: π∆
S (r̃) with reserve price rule rt = αzt

Sotheby’s does not fully allow for reserve prices to satisfy the exclusion principle

of optimal reserve prices (Krishna (2009), based on Myerson (1981) and Riley and

Samuelson (1981)). It places too much weight on the sale probability and too little

on the expected revenue conditional on a sale. It is even suboptimal for Sotheby’s

themselves as most of their income comes from commissions.At higher values of α,

the lower bound on π̂S(r) becomes negative so can’t be said with certainty that higher

levels are beneficial.

In terms of monetary values and extrapolating to the whole sample, the wine

auctions would generate up to 25,694 pounds in additional seller surplus when setting

a common reserve price rule of r̃t = 1.2zt. This is for just one day of auctions;

Sotheby’s holds over 20 of these “Finest and Rarest Wine auctions” per year.

5 Conclusion

This paper proposes a new approach to identify policy counterfactuals from limited

Enlisch auction data. It shows previously unexplored identifying power of the spacing

of order statistics in combination with weak shape restrictions. Simulations further-

more highlight the simple identification approach based on ageing properties of the

extremal cases of exponentially and uniformly distributed latent values. A particu-
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lar benefit of the approach is that it provides a feasible solution to not knowing the

number of bidders, as in the motivating example of English auctions with absentee

bidding. While the results apply more generally, this setting is exploited to identify

additional information about the drop-out value of one absentee bidder such that the

distribution of the second-to-last spacing is bounded. Combined with results from

the statistics literature about the stochastic ordering of adjacent spacings, the paper

shows that this delivers an upper bound on the last spacing and hence overcomes the

censuring problem of English auctions.

The method is applied to a new dataset of fine wine auctions in which the num-

ber of bidders is unknown. Results highlight that even in small samples with large

bidding increments, sample spacings allow for the estimation of informative bounds

on structural features of interest. For example, consumer surplus is estimated to be

between 75-125 percent of the average highest bid. It also turns out that surplus is

higher for higher-end wines. Structural estimates are used to evaluate the benefit of

relaxing Sotheby’s policy that the reserve price has to be lower than the pre-auction

value estimate. Results show that the restriction is indeed binding: sellers benefit

by up to 13 percent from setting a reserve price equal to 120 percent of the value

estimate. This suggests that the current policy limits sellers to fully leverage the

exclusion principle of optimal reserve prices.
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