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Abstract

In contrast to classical social norm experiments, we conduct experiments that semi-

continuously randomise the share of individuals who are taking a particular action

in a given environment. Using our experimental results, we are able to estimate the

distributions of individual tipping points across our settings. We find that tipping

points are very heterogenous, and that a substantial share choose to do the action

(or not) regardless of what others are doing. We also show that, once embedded in

dynamic models, our estimates predict that individuals will end up doing very different

things despite engaging in copying-like behaviour.
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1 Introduction

There is a large literature demonstrating the power of peer effects and descriptive social

norms across a range of domains. For instance, studies have found that we look to others

when deciding whether to evade our taxes (Bott et al., 2020), donate to charity (Agerström

et al., 2016) and even whether to vote (Gerber and Rogers, 2009). Of course, these examples

are somewhat arbitrary: it is hard to think of even one activity that is not somehow shaped

by our expectations about the behaviour of others.

Despite the obvious importance of social norms, however, current studies only provide limited

evidence regarding the exact relationship between our beliefs about the share of people who

do an activity and our own inclination to do that activity. To take a fairly typical example,

consider Frey and Meier (2004)’s study of the impact of informing individuals that 64% as

opposed to 46% of their peers donate to charity. While their experiment reveals that higher

beliefs about the prevalence of charitable giving can lead to higher donation rates, it reveals

little about the exact shape of this relationship; and more generally how this function looks

over the full possible range of beliefs (0% to 100%).

There are at least three reasons why one might care about how actions depend on exact

beliefs about prevalence (we call this relationship the f function). First, there is a clear

policy motivation: the shape of this function reveals the returns to altering perceptions

about prevalence (e.g. by disclosing information). Second, estimating the shape of this

function allows us to test economic theories since certain economic models, e.g. those in

evolutionary game theory, make distinctive predictions about the observed functional form.

Third, the shape of this function turns out to be absolutely crucial for understanding long-run

equilibria in dynamic models.

In this paper, we begin by elaborating on this third point by demonstrating theoretically

how long-run equilibria in a plausible dynamic model depend on the shape of this function.

We show that curvature is critical. If the function is first convex and then concave, then

our dynamic system converges to an extreme equilibrium (as in Kreindler and Young 2013).

On the other hand, if the function is first concave and then convex, we obtain convergence

to an interior equilibrium; meaning that individuals end up doing very different things even

though each of them is engaging in copying-like behaviour. As a result, understanding the

curvature of this function is crucial for understanding long-run outcomes. In addition, we

show that the intercepts of this function play a key role in pinning down its fixed points,

thereby also shaping long-run equilibria.

This motivates our first experiment which aims to estimate the shape of this function in a
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particular setting, namely face mask usage. The basic idea of the experiment was straight-

forward. Subjects entered a room (one at a time) thinking that they were there solely to

answer a decision problem involving lotteries. Unbeknownst to them, the number of the four

experimenters in the room wearing a face mask had been randomised (leading to treatments

in which 0/4, 1/4, 2/4, 3/4, or 4/4 experimenters were wearing a mask). We then observed

whether each subject themselves chose to wear a face mask.

The experiment took place in Oxford over the course of nine days in February/March 2022. In

total, we conducted fourteen three-hour sessions across twelve different colleges; and repeated

our experimental protocol 646 times (each time with a different subject). Importantly, the

experiment took place at a time in which face masks were no longer required by law or

university rules, but still remained not abnormal. As a result, this was an ideal setting for

capturing the implications of social pressure.

Our first experiment yielded four main results. First, according to our point estimates, the

function is strictly increasing. That is, the greater the number of experimenters who were

wearing a mask, the more likely were subjects to wear a mask. Reassuringly, this increasing

relationship is evident across all of the specifications we estimate, including those that include

and omit demographic controls and college fixed effects.

Second, we observe that many individuals defy social pressure. For example, 20% of the

subjects chose to wear a mask even when none of the experimenters were wearing one (the 0/4

treatment); and 51% of the subjects did not wear the mask when all the other experimenters

were wearing it (the 4/4 treatment). Similar results can be obtained by looking at changes,

i.e. whether individuals chose to put on or take off a face mask during the experiment. For

instance, out of the 106 subjects in the 4/4 treatment who entered the room without wearing

a mask, only 39 chose to put on a mask during the experiment — a fact that illustrates the

limits of social pressure in our setting.

Third, according to our point estimates, the largest jump in mask wearing arises between

the 3/4 and 4/4 treatments. For instance, while increasing the number of mask wearers in

the room from 1 to 2 experimenters raises the probability that a subject will wear a mask

by around 4 percentage points, increasing the number of mask wearers from 3 to 4 raises

the probability that a subject will wear a mask by a full 12 percentage points. This finding

is consistent with an ‘everybody effect’ where social pressure becomes especially acute if

everybody in the relevant environment chooses to do a particular activity.

Fourth, and perhaps most importantly, our estimated function has an interior fixed point,

which is close to 23%. When embedded in our dynamic models, our results therefore suggest
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that, in the long-run, around 23% will choose to wear a face mask. As a result, calibrating

our models using our estimates predicts convergence to an interior equilibrium, despite the

existence of copying-like behaviour.

In order to assess the robustness of our findings, we conducted an analogous experiment

in a very different context: camera use in online calls. The idea of this experiment was

also straightforward. Subjects joined a Zoom call (one at a time) knowing only that they

were attending in order to participate in an economics experiment. Unbeknownst to them,

the number of the four experimenters on the call with their laptop camera on had been

randomised (leading again to five treatments, corresponding to 0/4, 1/4, 2/4, 3/4, and 4/4

experimenters with their camera on). We then observed whether each subject themselves

chose to use their video camera. In total, we repeated this process 1,114 times, leading to a

sample size that was almost twice as large as that obtained in our first experiment.

Conducting this experiment led to similar, although not identical, results. We again find

evidence of an everywhere increasing f function, i.e. that the share who use their camera is

everywhere increasing in the number of experimenters who use their camera. We also again

find high levels of non-compliance, with many participants choosing to use their cameras

(or not) regardless of how many others are doing the same. Most importantly, once we use

our estimates to calibrate our dynamic models, we again obtain convergence to an interior

equilibrium, now with around 37% using a camera. Despite these similarities, the estimated

f function in this context is not precisely the same as that estimated in the mask setting;

and appears to be substantially more linear.

Finally, we discuss which models could give rise to our experimental findings; and could

explain both the commonalities and differences between them. We observe that, assuming

that all individuals have tipping point preferences, our f function can be interpreted as the

cumulative distribution of individual tipping points. Viewed in this way, our experiments

can be interpreted as an attempt to estimate the distribution of individual tipping points

using randomisation. In both experiments, we find that individual tipping points are very

heterogeneous, in contrast to canonical models in evolutionary game theory (e.g. Young

1993). We also provide a simple model to explain where these tipping points come from. In

our model, tipping points are the result of the interaction of intrinsic preferences to take the

action along with (potentially non-linear) social pressure effects.

Our study contributes to a number of literatures across economics and related disciplines.

First, our study contributes to the broader literature on the importance of peer effects

and descriptive social norms. The current literature consists of a series of generally binary
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experiments across a variety of domains (see Cialdini 2007, Mascagni 2018 and Farrow et al.

2017 for reviews).1 In contrast, our study is the first to semi-continuously randomise the

share taking an action in subjects’ immediate environment; and the first to do so in any

setting (not just the settings of face masks and video calls).2

Second, our study contributes to the literature on tipping points and long-run dynamics. Es-

pecially relevant references include papers like Young (1993), Kandori et al. (1993), Jackson

and Yariv (2007), Young (2009) and Kreindler and Young (2013) in the economics literature;

as well as the sociology literature following Granovetter (1978) (see Dodds and Watts 2011

for an overview). Our study can be viewed as a first attempt to experimentally estimate the

shape of the ‘aggregate best response function’ (or equivalently, tipping point distribution)

that is crucial for driving the results of such models.

Third, and more narrowly, we contribute to the literature on the social determinants of face

mask wearing. The existing papers in this literature rely either on vignette-based experiments

and surveys (Bokemper et al., 2021; Barceló and Sheen, 2020; Rudert and Janke, 2021;

Goldberg et al., 2020; Barile et al., 2021) or instead observational data (Freidin et al., 2022;

Woodcock and Schultz, 2021). We contribute to this literature by conducting the first ever

randomised field experiment on the social determinants of face mask use.3

Fourth, we contribute to the literature on the social determinants of video camera use.

Existing papers in this literature are again based on surveys: see, for example, Castelli and

Sarvary (2021), Gherhes, et al. (2021), Sederevičiūtė-Pačiauskienė et al. (2022) and Bedenlier

et al. (2021). Our study is the first to examine this topic through use of a randomised field

experiment.

1 Studies which provide some information about f functions in various contexts include: Cialdini et al.
(1990); Cason and Mui (1998); Ichino and Maggi (2000); Borsari and Carey (2003); Heldt (2005); Fortin et al.
(2007); Goldstein et al. (2008); Martin and Randal (2008); Krupka and Weber (2009); Gerber and Rogers
(2009); Allcott (2011); Ferraro and Price (2013); Ayres et al. (2013); Costa and Kahn (2013); Bursztyn et al.
(2014); Damm and Dustmann (2014); Smith et al. (2015); Thöni and Gächter (2015); Efferson et al. (2015);
Lefebvre et al. (2015); Allcott and Kessler (2019); Novak (2020); Linek and Traxler (2021).

2 Our study also connects with the conformity literature following Asch (1951). In contrast to this
literature, our study concerns individuals’ actions (e.g. whether to wear a mask) as opposed to their cognitive
judgements. Perhaps more importantly, our study also uses semi-continuous randomisation, in contrast to
experiments in the Asch paradigm (see Bond and Smith 1996 for an overview).

3 Our use of a randomised field experiment allows us to side-step some of the issues that afflict previous
studies of the social determinants of face mask wearing. For example, attempts to study this problem using
hypothetical questions (as in Bokemper et al. 2021) suffer from the issue that individuals may not know what
they would do in a hypothetical situation — an especially pressing concern since imitative behaviour may
well rest on unconscious cognition. Meanwhile, attempts to study this problem using observational data (as
in Woodcock and Schultz 2021) can suffer from both omitted variable bias and reverse causality issues (see
Manski 1993 for an influential exposition of this latter point). Our randomised experiment avoids both of
these issues.
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The remainder of this article is structured as follows. Section 2 motivates our experiments

with a theoretical discussion of the long-run implications of various f functions. Section 3

outlines the design of our face mask experiment and the associated results. Section 4 presents

the design and results for our experiment on video cameras. Section 5 uses our results to

calculate the distribution of individual tipping points across our contexts and discusses what

could give rise to these distributions. Finally, Section 6 concludes with a discussion of future

research suggested by our experiments.

2 Dynamics

To motivate our experiments, we begin by discussing how the relationship between beliefs

about prevalence and the actual prevalence of an activity pin down long-run equilibria in a

plausible dynamic model. Time is discrete, indexed by t = 0, 1, 2, . . . . Let ŝt ∈ [0, 1] denote

the belief (assumed to be common) about the share doing an activity at time t ∈ N. The

belief ŝt ∈ [0, 1] generates the actual share st ∈ [0, 1] via the function f : [0, 1] → [0, 1]. That

is, st = f(ŝt) for all t. If we assume that ŝt = st−1, then we obtain the relation st = f(st−1):

a dynamic process whose outcomes we can study. We will write f t to denote the tth iterate

of f . For example, f 3(s0) = f(f(f(s0))).

In canonical evolutionary game theory models (Young, 1993; Kandori et al., 1993; Young,

2009), there exists some ‘tipping point’ at which all individuals will switch from not taking

the action to taking it. This gives rise to a convex and then concave shaped f function

(see Figure 1(a) for a smooth version). While this is a plausible model in many settings, it

is not the only possible model. For example, one might instead think that individuals are

quantitatively quite insensitive, so treat shares like 40% and 45% as ‘the same’. In contrast,

however, one might think that there is an important qualitative difference between nobody

and a minority taking an action, which leads to an f function which is steep near zero; and

one might similarly assume an f function that is steep near 1. The resulting f function

— which is reminiscent of the probability weighting function proposed in Kahneman and

Tversky (1979) — is concave and then convex, and is plotted in Figure 1(b).

Proposition 1. Suppose that f is continuous, strictly increasing, and has three fixed points

at s = 0, s = ŝ ∈ (0, 1) and s = 1. Then

• If f is convex on [0, ŝ] and concave on [ŝ, 1], then limt→∞ st ∈ {0, 1} provided that

s0 ̸= ŝ.

• If f is concave on [0, ŝ] and convex on [ŝ, 1], then limt→∞ st = ŝ provided that
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s0 /∈ {0, 1}.

Proposition 1 shows how long-run equilibria crucially depend on the shape of the f function.

If one assumes a convex and then concave f function, as in Kreindler and Young (2013),

then one generically obtains convergence to an extreme equilibrium in which either nobody

or everybody does the action.4 We do not outline the dynamics in any detail since they

are already familiar, but they are displayed graphically in Figure 1(a). On the other hand,

Proposition 1 also states that if the f function is concave and then convex, then one obtains

convergence to an interior equilibrium as displayed in Figure 1(b). This illustrates how

differently shaped f functions can generate very different equilibria.

Figure 1: Two possible f functions

(a) Convex then concave

s∗ 1

s∗

1

0
st−1

st

(b) Concave then convex

s∗ 1

s∗

1

0
st−1

st

Notes. This figure describes the evolution of st given two different f functions. When f(st−1) >
st−1, the share doing the activity rises. When f(st−1) < st−1, the share doing the activity falls.

While Proposition 1 assumes that f(0) = 0 and f(1) = 1, this need not be the case. Instead,

one might think that some individuals always do the action (leading to f(0) > 0) and that

some others never do the action (leading to f(1) < 1). We now show that understanding

the intercepts of the f function is also crucial for understanding long-run equilibria.

Proposition 2. Suppose that f is increasing. Then if s∗ is the limit of f t(s0) as t → ∞,

s∗ ∈ [f(0), f(1)].

4 One can then use stochastic stability arguments to identify which of these equilibria is more likely to
emerge: see, for example, Young (1993); Kandori et al. (1993).
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Proposition 2 states that, assuming the f function is increasing, then the long-run share of

individuals who do the activity is bounded by f(0) and f(1). Intuitively, this is because the

fixed points of the f function must be bounded in this way; and any limit of the sequence

{st}∞t=0 must be a fixed point of f . As a result, estimating f(0) and f(1) can provide valuable

information about long-run equilibria.

In our experimental settings, behaviour is largely pinned down by beliefs about the share

doing the action in the individual’s immediate environment. Our results apply immediately

to such cases, barring some discreteness issues, if one defines this environment as the relevant

population. Alternatively, one can consider a network model in which individuals interact

locally in small but interconnected communities (see Appendix B). As one might expect,

this model yields very similar results.

In this section, our primary goal is not to insist on a particular dynamic model. Indeed,

we believe that a large number of reasonable models are possible; and that one can make

substantial variations on the assumptions made above. Rather, the main goal is to emphasise

how, in any reasonable model, the shape of the f function is going to be a crucial determinant

of long-run outcomes. This motivates our experimental investigation of f functions in the

next two sections.

3 Masks

3.1 Experimental design

We now describe our first experiment aimed at estimating the shape of the f function

in a particular context. The basic idea of the experiment was straightforward. Subjects

entered a room thinking that they were there solely to answer a decision problem involving

lotteries. Unbeknownst to them, the number of experimenters in the room wearing a face

mask had been randomized. We then observed whether each subject themselves chose to

wear a face mask (and how this varied with the number of experimenters wearing a mask in

their immediate environment).5

This first experiment took place in Oxford in late February and early March of 2022. At this

5 The experiment received approval from the University of Oxford’s Departmental Research Ethics Com-
mittee (ECONCIA21-22-50). In line with the recommendations of the committee, we told subjects in advance
that taking part in the experiment might involve interacting with unmasked individuals (which was common
at the University of Oxford at the time). We also took reasonable social distancing precautions, including
making sure that the experimental settings were well ventilated. We should also emphasise that, although
we did not reveal the main purpose of our experiment to participants (as is not unusual in social science
experiments), we did not explicitly deceive participants at any stage.
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time, masks were not required by either law or university rules – however, they were also

not unusual. This gave us an ideal setting in which to study the effects of social pressure. In

total, we conducted 14 three-hour sessions in 12 different colleges over 7 days (with the help of

16 research assistants, some of whom participated in multiple sessions). On average, around

46 participants attended each session; which led to a total sample size of 646 experimental

subjects (see Table C1 for the distribution of subjects across treatment groups).6

The structure of the experiment was as follows:

1. Subjects were asked to arrive at a room within a particular time slot.

2. Before each subject entered the room, the number of the four experimenters in the

room who were wearing a mask (and the allocation of masks to experimenters) had

been randomised. Thus, there were five treatment groups, corresponding to: 0/4

masks, 1/4 masks, 2/4 masks, 3/4 masks, 4/4 masks. We denote these treatments by

T0, T1, etc.

3. Once a subject entered, they were asked to sit at a table in a way that gave them a

clear view of the four experimenters. On the table were a box of masks as well as a

bottle of hand sanitiser (such a set-up was common within the University of Oxford at

the time). As a result, any subject who wished to wear a mask was able to do so.

4. Once the subject had sat down, each of the four experimenters introduced themselves

by stating their name and subject of study. The purpose of this was to further ensure

that each subject fully processed the number of experimenters who were wearing a

mask.

5. The subject was asked their name, age, college and subject of study; and then given a

decision problem involving lotteries.

6. We then asked the subject to leave the room, and repeated the process for the next

subject (see Appendix D for a more detailed description of the experimental protocol

which includes the decision problem).

We recorded whether each subject was wearing a mask when they entered the room (this

variable is labelled ‘pre’ in the tables). Naturally, we also recorded whether they chose to

wear a mask after interacting with the experimenters. Finally, we recorded their choice in

the lottery problem; as well as whether they asked if they ought to wear a mask (in such

cases, each was told ‘it’s up to you’ by the data recorder).

6 The experiment was pre-registered here: https://www.socialscienceregistry.org/trials/9013.
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Based on post-experimental conversations, it seemed that most subjects believed that our

goal was to measure risk aversion. Importantly, none of the subjects appeared to suspect

that the experiment had anything to do with face masks; and there was nothing in the

experimental design that could have revealed this.7 This is reassuring since subjects might

have acted in unnatural and unrepresentative ways if they had known that they were taking

part in a face mask experiment.

Once all experimental sessions had been completed, we debriefed all subjects on the underly-

ing purpose of the experiment. During the debriefing, subjects were given the opportunity to

take part in an online survey. In the survey, subjects were asked to imagine that they entered

a room and saw 4 people sitting around a table. They were then asked if they would wear

a mask if none of the 4 people were wearing a face mask, if 1 of the 4 people were wearing a

face mask, and so forth. Finally, they were asked to give an explanation for their answers,

as well as whether they had contracted COVID-19 at any point during the pandemic. The

purpose of the follow-up survey was to obtain some suggestive evidence on mechanisms, as

well as some data on individual level f functions (see Section 5 for discussion).

3.2 Results

We now turn to our main results, beginning with a brief description of our sample. As shown

by Table C2, our average participant was around 21 years old; and approximately half of our

sample was male. Participants were fairly evenly distributed across subject divisions, with

social sciences students being most represented (33% of the sample). Turning to Table 1,

we see that genders, subjects and ages were reasonably balanced across our five treatment

groups. However, we do observe some imbalance in the share of participants who entered

the room wearing a mask: for example, the share is 27% in treatment T2 but only 14% in

T0. Given that this variable turns out to be highly predictive for our outcome (whether

participants continued to wear a mask), we control for it in our main specification.

Our regressions take the form

yi = β0 +
4∑

i=1

βiTi + γxi + ui, (1)

where yi denotes whether an individual chose to wear a mask, the Ti are dummy variables

indicating treatment assignment, and xi is a vector of covariates (including whether they

7 We also required all research assistants to sign an agreement specifying that they would keep the main
purpose of the experiment confidential throughout its duration.
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Table 1: Balance table (experiment 1)

Variable T0 T1 T2 T3 T4 p-value
Age 21.0 21.3 20.1 20.6 20.8 .143

[.361] [.539] [.165] [.219] [.268]
Pre .142 .157 .266 .242 .203 .060

[.031] [.032] [.039] [.039] [.035]
Male .535 .522 .461 .548 .421 .189

[.044] [.043] [.044] [.045] [.043]
Humanities .323 .246 .250 .347 .256 .237

[.042] [.037] [.038] [.043] [.038]
Social .268 .403 .336 .298 .353 .177

[.039] [.043] [.042] [.041] [.042]
MPLS .213 .209 .305 .242 .233 .380

[.036] [.035] [.041] [.039] [.037]
Medical .181 .104 .102 .105 .143 .235

[.034] [.027] [.027] [.028] [.030]

Notes. This table shows the average value of various variables across the five treatments. The
variables are age, whether the subject entered wearing a mask (‘pre’), gender, division of study
(Humanities; Social Sciences; Mathematical, Physical & Life Sciences; Medical Sciences). The final
column reports the p-value obtained from regressing the relevant variable on all treatment dummies
and testing the hypothesis that the coefficients on all treatment dummies are equal to zero.

entered the room wearing a mask). In our main specification, we control for participant age,

gender, and whether they entered the room wearing a mask (the ‘pre’ variable). However,

we also report uncontrolled regressions, as well as regressions that use the full set of controls

that are available (including session and college fixed effects).

Figure 2 plots the results from our main specification (see Table 2 for the corresponding

estimates, and Table C3 and C4 for the near identical results obtained by estimating probit

and logit regressions). The x-axis indicates the treatments, expressed as the fraction of

experimenters wearing a mask (0, 0.25, 0.5, 0.75, 1). The y-axis displays the predicted share

of individuals wearing a mask in each treatment. To obtain this predicted share, we set the

three control variables (age, gender, and pre) equal to their mean values; so we are implicitly

correcting for any imbalance in the pre variable. Thus, in the language of Section 2, Figure 2

displays our preferred estimates of f(0), f(0.25), f(0.5), f(0.75), and f(1).

Several features of the data are apparent. First, we find evidence that the frequency of

mask wearing is everywhere increasing in the share of experimenters who wear a mask. This

pattern is evident in all the specifications that we estimate, regardless of whether they include

controls, use logit or probit, etc. (again, see Tables 2, C3 and C4). From a statistical point

of view, we can reject the hypothesis that lower treatments lead to the same levels of mask
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Figure 2: Mask wearing by treatment group

Notes. This figure shows how mask wearing varies by treatment group, after
setting all covariates in the ‘main specification’ to their mean value.

wearing as higher treatments for the large majority of treatment pairs (see Table C5), with

the exception of the comparison of T0/T1 and the comparison of T1/T2. While we discuss

mechanisms later on, we note that this is consistent with a model in which higher rates of

mask wearing lead to greater social pressure to wear a mask.

Second, we see that many individuals defy social pressure. In the treatment in which no

experimenters wear a mask (T0), 20.0% of the participants nonetheless choose to wear a

mask, a share which is statistically different from zero (p < 0.0001). In the language of

Angrist et al. (1996), these people can be interpreted as ‘always wearers’, i.e. individuals

who choose to wear a mask no matter how many others are doing the same (see Section 5

for elaboration). Similarly, in the treatment in which all experimenters wear a mask (T4),

only 48.7% choose to wear a mask, which is again statistically different from 1 (p < 0.0001).

The remaining 51.3% of individuals (who do not wear a mask) can be interpreted as ‘never

wearers’, i.e. individuals who will never choose to wear a mask, no matter how many others

are doing so (again, see Section 5 for a more formal discussion of this point).

Similar results are available if we look at changes. In treatment T0, out of the participants
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Table 2: Regressions (experiment 1)

Variable No controls Main Specification All Controls
Treatment 1 .044 .032 .020

[.048] [.029] [.033]
Treatment 2 .171*** .078** .075**

[.053] [.032] [.035]
Treatment 3 .238*** .163*** .156***

[.055] [.039] [.041]
Treatment 4 .331*** .284*** .289***

[.054] [.043] [.046]
Pre .757*** .741***

[.029] [.035]
Age .002 .001

[.005] [.005]
Male -.007 -.007

[.026] [.028]
Constant .157*** .014 .130

[.032] [.107] [.144]
n 646 646 646
R2 0.070 0.494 0.517

Notes. This table reports our main regressions. To obtain the estimates in the first
column, we regress whether subjects wore a mask on the treatment dummies. In the
second column, we control for subject age, gender, and whether they entered wearing
a mask. The third column also includes session and college fixed effects. Robust
standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

who entered the room wearing a mask, only 5.6% chose to take off their mask (see Table C6).

Similarly, in treatment T4, out of the participants who entered the room not wearing a mask,

only 36.8% chose to put on a mask. It is quite striking that the majority of those who entered

without a mask in T4 decided to defy social pressure in this way, especially given that all

four experimenters were clearly visible and that a box of masks was available.

Third, our estimated f function appears to be non-linear. Estimating a model with a

quadratic term suggests some convexity (p = 0.04): see Table C7. Insofar as estimates

appear non-linear, this is due to a large jump between the 3 and 4 treatments (the difference

is 12 percentage points, as opposed to the average difference between treatments of 7 per-

centage points). This is indicative of a potential ‘everybody effect’, i.e. that a particularly

large change in behaviour is induced by changing the share who are doing an action from

‘most people’ to ‘everybody’.

Finally, we examine what our estimates imply when embedded in plausible dynamic models

of the style discussed in Section 2. This delivers our fourth and perhaps most important
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finding: when embedded in such models, our estimates predict convergence to an interior

equilibrium. In the very simple model discussed in Section 2, our model predicts global

convergence to the fixed point of the estimated f function, which is about 23.3%.8 We

obtain very similar results when we use our estimates to calibrate our network model (see

Appendix B), which predicts that around 23%-24% should wear a mask (with almost no

dependence on the initial conditions). In these equilibria, around 0.20/0.23 ≈ 87% of mask

wearers wear the mask because they always wear one; with the remainder wearing a mask

due in part to copying behaviour. We discuss these interior equilibria in more detail in the

next section (which obtains even more striking evidence of interiority).

Before moving to our second experiment, we briefly discuss the results of our online follow-

up survey. As explained earlier, this survey directly asked participants how their decision

to wear a face mask would vary with the number of individuals in the room who were also

wearing a face mask. Given that individuals might not always know what they would do

in a hypothetical situation, we do not emphasise the estimated f function obtained from

this survey (although, reassuringly, it is also monotone increasing in the number of mask

wearers). However, we use the follow-up survey to address two issues that our original

experiment could not speak to, namely individual level f functions and mechanisms.

Our first finding from the online survey is that individual decision rules are plausibly mono-

tone in the share of experimenters who are wearing a face mask. Indeed, over 99% of subjects

report weakly increasing decision rules: if such subjects chose to wear a mask in some treat-

ment Tk, they would also choose to wear the mask in all treatments Tk′ for k′ > k. This

finding helps validate our assumption in Section 5 that individual preferences have a tipping

point representation, which in turn provides an insightful decomposition of the observed ag-

gregate behaviour. We should perhaps also stress that this finding cannot be obtained from

the data from our main experiment, which is in principle consistent with the possibility that

many individuals have decreasing decision rules.

Second, we obtain some suggestive evidence on why individuals are more likely to wear a

mask if they see more mask wearing in their immediate environment. To do this, we consider

only those individuals who reported that they would change their mask-wearing behaviour

depending on the share of others wearing a mask. We then placed the explanation into

various categories, including whether individuals were trying to avoid being judged, trying

to put others at ease, or taking high rates of mask wearing as a sign of high COVID risk levels

8 This fixed point is obtained by linearly interpolating between f(0) and f(0.25). However, given that the
fixed point is close to 0.25, near identical fixed points are obtained through other methods, e.g. quadratic
interpolation.
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(see Appendix E for a more detailed explanation of our categories along with examples). The

main message from this exercise is that the health-based mechanism (i.e. that masks are used

as a signal of COVID rates) is extremely unlikely to be driving our results: see Table C8 for

details. Instead, the observed changes seem to be driven by a variety of social learning and

social pressure mechanisms, although exactly identifying the relative importance of these

mechanisms is challenging.9

4 Cameras

4.1 Experimental design

In order to study the generality of our results, we conducted a second experiment which

used a near-identical methodology in a very different context. The basic idea of this second

experiment was the following. Subjects joined a Zoom call knowing solely that they were

taking part in some kind of economics experiment. Unbeknownst to them, the number of

experimenters on the call with their video camera on had been randomised. We then observed

whether each subject themselves chose to use their camera. Thus, this second experiment

was essentially the same as the first, except with the subject of video-camera instead of face

mask usage.10

This second experiment took place online in late July and early August of 2022. We con-

ducted 16 two-hour sessions over the course of 8 days (with the help of 20 research assistants,

some of whom participated in multiple sessions). On average, each session was attended by

around 70 participants, leading to a sample size of 1,113 participants in total (see Table C9

for the distribution of subjects across treatment groups). We recruited all participants from

Prolific, and required all participants to have a working microphone and video camera.11

The structure of the experiment was as follows:

1. Subjects were asked to join a Zoom call at a particular time.

2. Before each subject joined the call, the number of the four experimenters in the meet-

ing with their camera on (and which experimenters had their camera on) had been

randomised. Thus, there were again five treatment groups: 0/4 cameras (denoted

9 One particular issue is that individuals may not be entirely honest about the reasons for their behaviour.
For example, they might overstate the extent to which their behaviour is driven by altruistic reasons (e.g.
trying to put others at ease), as opposed to a fear of being judged.

10 This experiment also received approval from the University of Oxford’s Departmental Research Ethics
Committee (ECONCIA21-22-44).

11 The experiment was pre-registered here: https://www.socialscienceregistry.org/trials/9829.
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treatment T0), 1/4 cameras (T1), 2/4 cameras (T2), 3/4 cameras (T3), 4/4 cameras

(T4).

3. Once a subject joined the call, all four experimenters introduced themselves by stating

their name. The purpose of this was to ensure that each subject fully processed the

number of experimenters whose cameras were on.

4. The subject was asked for their age, and whether they would hypothetically want to

donate half of a bonus payment to the next subject on the call.

5. We then asked the subject to leave the call, and repeated the process for the next

subject (again, see Appendix D for a more detailed description of the experimental

protocol).

Similarly to before, we recorded whether each subject had already turned their camera on

when they joined the call; and whether they chose to turn their camera on after interacting

with the experimenters. We also recorded their choice in the decision problem; as well as

whether they asked if they ought to turn their camera on (in such cases, each was told that

‘it’s up to you’). Finally, if a subject had not turned their camera on at any point during

the call, we asked them if there were any issues with their video camera.12

4.2 Results

We now turn to our results, beginning again with a description of our sample. In contrast

with the student population studied in our first experiment, the average participant in this

experiment was around 42 years old, with a standard deviation of 13.9 years (see Table C10).

Around 46% of the sample was male. As shown by Table 3, ages and genders were reasonably

balanced across each of our five treatments. However, we again observe some imbalance in

the share who joined the call with their camera on (the ‘pre’ variable), and so control for

this variable in our main specification.

Our regressions take the same form as Equation 1. That is, we regress whether an individual

used their camera on the treatment dummies (using treatment T0 as the omitted category),

and a vector of covariates. In our main specification, we control for participant age, gender,

and whether they joined the call with their camera on. However, we once again also report

uncontrolled regressions, as well as regressions that include the full set of possible controls

(including session fixed effects).

12 Unsurprisingly, asking this question occasionally had the effect of prompting participants to turn their
video camera on. In such cases, we still recorded such participants as having chosen to not use their camera
(on the basis that they had chosen not to use their camera until effectively asked to do so).
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Table 3: Balance table (experiment 2)

Variable T0 T1 T2 T3 T4 p-value
Age 42.2 43.4 42.3 41.3 42.7 .615

[.940] [.931] [.903] [.906] [.990]
Pre .116 .039 .058 .074 .070 .039

[.021] [.014] [.016] [.017] [.018]
Male .472 .441 .439 .455 .516 .486

[.033] [.035] [.033] [.032] [.034]

Notes. This table shows the average value of various variables across the five treat-
ments. The variables are age, whether the subject joined the call with their camera
on (‘pre’), and gender. The final column reports the p-value obtained from regress-
ing the relevant variable on all treatment dummies and testing the hypothesis that
the coefficients on all treatment dummies are equal to zero.

Figure 3 plots the results from our main specification (see Table 4 for the corresponding

estimates, and Tables C11 and C12 for the near identical results obtained by estimating

probit and logit regressions). Several points are apparent. First, similarly to the face mask

experiment, we once again observe a monotone f function: the frequency of camera use is

everywhere increasing in the share of experimenters who use a camera. This pattern arises in

all of the specifications we estimate (see Tables 4, C11 and C12). In our main specification,

we can reject the hypothesis that treatment i and treatment i + 1 lead to the same rates

of camera usage (p < 0.05) for all i except i = 3; and we can always reject the hypothesis

that treatment i and treatment i + 2 lead to the same rates of camera usage (p < 0.01) —

see Table C13 for details. As before, this monotonicity is consistent with a model in which

higher rates of camera use lead to greater social pressure to use a camera.

Second, we once again observe that many individuals defy social pressure. In the treatment

in which no experimenters use a camera (T0), 20.9% of the participants nonetheless choose

to use a camera, a share which is statistically different from zero (p < 0.0001). As explained

in Section 5, such participants can be interpreted as ‘always users’, i.e. individuals who use

a camera no matter how many others do the same. Similarly, in the treatment in which

all experimenters use a camera (T4), only 58.7% choose to use a camera, which is again

statistically different from 1 (p < 0.0001). The remaining 41.3% of individuals (who do not

use a camera) can be interpreted as ‘never users’, i.e. individuals who will never choose to

use a camera, no matter how many others are doing so. As before, similar results can be

obtained by examining changes — see Table C14.

Third, the estimated f function in this context appears to be more linear. Statistically,

we cannot reject a linear model: see Table C15. However, the jump between the 0 and 1

treatments (about 12 percentage points, in the main specification) is larger than the other
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Figure 3: Camera use by treatment group

Notes. This figure shows how camera use varies by treatment group, after setting
all covariates in the ‘main specification’ to their mean value.

3 jumps (which are 9 percentage points, 10 percentage points, and 8 percentage points

respectively). This provides some suggestive evidence on non-linearity, although one would

need to obtain a larger sample to investigate this issue in greater detail. We should perhaps

emphasise that, linear or not, our estimated f function is clearly different to that generated

in standard evolutionary game theory models, which predict an S shape (see Section 2 for

elaboration).

Fourth, and most importantly, our estimates once again predict convergence to an interior

equilibrium when embedded in plausible dynamic models. When embedded in the model

from Section 2, our estimates predict convergence to the fixed point of the estimated f

function, which is about 37.0%.13 We obtain similar results in our network model, which

predicts that about 34.3% should turn the camera on (averaging across our models and initial

conditions). In the equilibrium of the simple model (for example), around 0.209/0.370 ≈ 56%

of camera users use a camera because they always use one; with the remainder using a camera

13 This fixed point is calculated by linearly interpolating between f(0.25) and f(0.5). Given that the f
function appears roughly linear, this seems like a sensible approach. Moreover, our network model delivers
similar predictions without the need to rely on any kind of interpolation.
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Table 4: Regressions (experiment 2)

Variable No controls Main Specification All Controls
Treatment 1 .077* .118*** .125***

[.043] [.040] [.041]
Treatment 2 .176*** .209*** .214***

[.043] [.039] [.044]
Treatment 3 .281*** .308*** .320***

[.043] [.039] [.049]
Treatment 4 .355*** .380*** .386***

[.044] [.041] [.057]
Pre .579*** .581***

[.033] [.034]
Age .000 .000

[.001] [.001]
Male .024 .023

[.027] [.027]
Constant .241*** .155*** .094

[.028] [.047] [.061]
n 1,113 1,111 1,109
R2 0.069 0.161 0.183

Notes. This table reports our main regressions. To obtain the estimates in the first
column, we regress whether subjects used a camera on the treatment dummies. In
the second column, we control for subject age, gender, and whether they joined
the call with their camera on. The third column also includes session fixed effects.
Robust standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

due in part to copying behaviour.

In canonical evolutionary game theory models (Young, 1993, 2009), the system typically

converges to a situation in which either everybody or nobody does the relevant activity. In

light of this, it may be worth explaining why our models predict interior equilibria (e.g. that

56% of individuals use a camera) despite the presence of copying-like behaviour. The expla-

nation is as follows. According to our estimates, there is a substantial share of individuals

who do the relevant activity no matter what others are doing. Given the behaviour of these

individuals, others are induced to also do the activity, leading to a gradual increase in the

share who do the activity (if the initial share is low). Eventually, the share of those doing

the activity reaches the (unique) fixed point of our estimated f function, at which point the

process stops. Likewise, if the share doing the activity is initially very high, then it gradually

falls until it reaches the fixed point of our f function.

18



5 Discussion

In Section 2, we discuss what our estimates imply for long-run equilibria once embedded

within dynamic models. However, we have not yet examined which models could give rise

to our empirical findings; and what might explain the commonalities and differences in f

functions across our two contexts. We turn to this question in the present section.

To provide a formal explanation for our results, let us assume that individual preferences

have a tipping point representation. Formally, this means that, for every individual i, there

exists a number ti ∈ [0, 1] such that the individual does the action (ai = 1) if and only if

s ≥ ti, where s ∈ [0, 1] is the share of others who are doing it. Such an assumption seems

very plausible in our two contexts; and it is given some empirical validation by the online

survey discussed in Section 3.2.

Under this assumption,

f(s) =
1

n

∑
i

1(ai = 1|s) = 1

n

∑
i

1(ti ≤ s), (2)

where 1(ai = 1|s) is an indicator function that equals one if an individual takes the action

(given that the share taking the action is s), and 1(ti ≤ s) is an indicator function that

equals one if an individual’s tipping point exceeds the share. We thus see that, under our

assumption, the f function is exactly the cumulative distribution of individual tipping points.

Viewed in this way, our two field experiments can be seen as an experimental investigation

of tipping point distributions.

Given that our experiments can be used to estimate the cumulative distribution of individual

tipping points, it is straightforward to compute the probability distribution. To see how this

works in practice, consider the data from the face mask experiment and define pi as the share

with a tipping point of i, for i ∈ {0, 1, 2, 3, 4} (for convenience, we now use non-normalised

tipping points, i.e. we do not divide by the population size). That is, for such values of i, pi

is the share of individuals who take the action if and only if they observe i or more of the

four people in the room doing the same. Let us also define p5 as the share who never do the

action; and observe that p5 = 1−
∑4

i=0 pi.

Table 5 reveals how the expected frequency of mask-wearing depends on the pi parameters.

In treatment T0, the only type who will do the action are the ‘always doers’, so the pre-

dicted share is p0. In treatment T1, the types who do the action are the ‘always doers’ in

combination with those who tip when they see one person doing the action. More generally,

19



in treatment Tk, the expected share who will do the action is
∑k

i=0 pi. Given this, one can

estimate the pi by matching the parameters with the sample frequencies (as suggested, e.g.,

by maximum likelihood). For example, we obtain the estimates p̂0 = 0.203; and obtain p̂1,

p̂2, p̂3, p̂4 by computing the difference of mask wearing between neighbouring treatments.

Finally, our estimate for the ‘never do-ers’ is obtained using p̂5 = 1−
∑4

i=0 p̂i.
14

Table 5: Tipping points (experiment 1)

Treatment Frequency Predicted frequency
0 0.203 p0
1 0.235 p0 + p1
2 0.279 p0 + p1 + p2
3 0.364 p0 + p1 + p2 + p3
4 0.487 p0 + p1 + p2 + p3 + p4

Figure 4 plots the results for both experiments. By construction, the distribution of tipping

points plotted in the figure exactly generates the experimentally observed f functions. As a

result, it is possible to rationalise any observed differences across contexts by postulating a

difference in the distribution of tipping points. For example, in the face mask experiment, a

substantially lower share are estimated to have tipping points of 1 and 2 than in the Zoom

experiment. This can be used to explain why the estimated f function is flatter over the

0− 2 range in the face mask experiment. Similarly, the observed non-linearity in the mask

experiment can be rationalised by postulating that an especially large fraction have a tipping

point of 4.

Although a model of heterogeneous tipping points is able to rationalise our results — and

indeed can rationalise any non-decreasing f function — the explanation is rather mechanical.

More precisely, while our results can be viewed as the cumulative distribution of tipping

points, the question remains as to why the distributions take the form that they do. We now

address this question using the simplest possible model of individual tipping points.

To this end, consider an individual i who is deciding whether to take the action or not

given that a fraction s is already doing so. If they take the action, they obtain utility

u(ai = 1) = αi+m(s), where αi ∈ R describes their intrinsic preference for taking the action

and m(s) describes their ‘coordination payoff’ from doing the same thing as a fraction s of

their neighbours (assume m is differentiable). If they do not take the action, they get utility

14 This approach implicitly treats the set of possible tipping points at discrete. It is also possible, however,
to view (normalised) tipping points as continuously distributed on [0, 1]. In that case, our estimates can be
used to calculate the share of normalised tipping points that are zero, the share that are between 0 and 0.25,
etc.
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Figure 4: Tipping point distributions

Notes. This figure shows the distributions of individual tipping points calcu-
lated from our two sets of experimental estimates. Individuals with tipping
points of 0 and 5 are ‘always doers’ and ‘never doers’ respectively.

u(ai = 0) = m(1 − s). An (interior) tipping point ti ∈ (0, 1) is a share s that makes the

individual indifferent between doing the action or not doing it, i.e. αi +m(ti) = m(1− ti).

To illustrate, consider the case in which of m(s) = s. In that case, it is easy to check that

ti = 1 for all individuals whose preferences satisfy αi ≤ −1. Such individuals never take the

action, no matter how many others are doing so. Similarly, we have ti = 0 for all individuals

for which αi ≥ 1: such individuals always take the action. Interior tipping points satisfy the

equation αi + ti = 1 − ti, or ti = 0.5(1 − αi) (see Figure 5). As a result, interior tipping

points are strictly decreasing in the αi parameter (and equal to 0.5 when the individual has

no intrinsic reason to do the action, i.e. αi = 0). Intuitively, this is because individuals with

a high intrinsic preference for taking the action will be indifferent between taking the action

or not even when the share of others who are taking the action is very low.

We now verify that this result holds for any m function with an everywhere positive slope.

Proposition 3. If m′(s) > 0 for all s ∈ [0, 1], then each individual has a well defined tipping

point ti ∈ [0, 1]. Furthermore, if ti ∈ (0, 1), then ∂ti
∂αi

< 0.
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Figure 5: Tipping points when m(s) = s

0−1 1

1

αi

ti

Notes. This figure shows how an individual’s tipping point ti varies with their
intrinsic preference to take the action αi when m(s) = s.

Proposition 3 says that (interior) tipping points are strictly decreasing in an individual’s

intrinsic preference for taking the action. As a result, it provides us with an explanation for

the differences we observe across our two contexts. In the mask experiment, the estimated

tipping points tend to be higher (again, see Figure 5). One simple way to rationalise this,

as suggested by Proposition 3, is to postulate that individuals are generally less willing to

wear masks than to use their laptop cameras.

Although intrinsic preferences for taking actions do plausibly influence tipping points in the

manner just discussed, we should emphasise that they are not the only factor that determines

the shape of the f function. In our view, the f function is driven by the complicated interplay

of both intrinsic preferences (captured by αi) and potentially non-linear social pressure effects

(captured by m). Future work could attempt to decompose these two channels.

6 Concluding remarks

In this paper, we conduct multi-treatment social norm experiments to obtain a quantitative

understanding of how individuals’ behaviour varies with the share doing an action in their

immediate environment. Despite some differences between the estimates across our contexts

(which we rationalise using a simple theory), we obtain many commonalities across the

two experiments: increasing f functions, high levels of non-compliance, etc. Perhaps most

importantly, when embedded in dynamic models, our estimates can explain how copying

can plausibly lead to heterogenous behaviour. In our view, this is an important insight
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with applications to many settings (e.g. religious adoption, fashion trends, etc.): despite

the ubiquity of social pressure and copying behaviour, different individuals nonetheless often

end up doing very different things.

It may be worth briefly emphasising why our models generate convergence to interior equi-

libria, as opposed to the extreme equilibria predicted by canonical game theory models (e.g.

Young, 1993, 2009; Kandori et al., 1993). In these models, each individual effectively has the

same tipping point, which in turn generates the S shaped f function discussed in Section 2.

This in turn leads to three fixed points, of which only two (the extreme equilibria) are sta-

ble. In contrast, our empirical estimates suggest: i) reasonably high levels of non-compliance

ii) substantial heterogeneity in individual tipping points. These two factors generate an f

function with a unique fixed point in the interior, which is the globally stable equilibrium.

Despite the large number of social norm experiments, we believe that our findings open up

several avenues for future research. First, it may be worthwhile to conduct more experiments

with semi-continuous randomisation in additional contexts. In particular, this could provide

further evidence on whether our key finding of interior equilibria is robust. Second, it may

be worthwhile to conduct such experiments with an even larger number of treatment groups,

thus allowing for a more fine grained estimate of the f function. Given the very large sample

sizes required to do this, however, such experiments are likely to be even more logistically

challenging to implement than the two field experiments whose results we report here.
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Appendices

A Proofs

Proof of Proposition 1. To prove the first statement, assume that f is first convex and

then concave; and also that s0 ̸= ŝ. (The proof of the second statement is entirely analogous

and therefore omitted). As a preliminary, observe that, if s0 = 0, then st = f t(0) = 0 for

all t ∈ N (recall that 0 is a fixed point). Hence, if s0 = 0, then limt→∞ st = 0. Similarly,

limt→∞ st = 1 if st = 1. Therefore, the statement holds trivially in the cases of s0 = 0 and

s1 = 1. It remains to consider the cases of s0 ∈ (0, ŝ) and s0 ∈ (ŝ, 1).

Suppose then that s0 ∈ (0, ŝ). (The argument when s0 ∈ (ŝ, 1) follows similar lines and is

therefore omitted.) Given that f is convex on [0, ŝ], and furthermore that f(0) = 0 and

f(ŝ) = ŝ, one may check that f(s) < s for all s ∈ (0, ŝ). In addition, given that f is

increasing, f(s) > f(0) = 0 for all such s. So for all s ∈ (0, s∗), f(s) ∈ (0, s).

Given that this fact, and also that s0 ∈ (0, s∗), one can show by induction that st ∈ (0, st−1)

for all t ∈ N. Hence, the sequence {st}∞t=0 is strictly decreasing and bounded from below by

zero. By the monotone convergence theorem, it therefore has a limit s∗. Furthermore, since

f is continuous, every limit s∗ must be a fixed point:

s∗ = lim
t→∞

st = lim
t→∞

st+1 = lim
t→∞

f(st) = f( lim
t→∞

st) = f(s∗), (3)

where the penultimate equality uses the continuity of f . By assumption, f only has three

fixed points: 0, ŝ, and 1. Since s∗ < s0 < ŝ, we see that the only possible limit is 0.

The argument given above establishes that limt→∞ st = 0 if s0 ∈ (0, ŝ). By an analogous

argument, one may show that limt→∞ st = 1 if s0 ∈ (ŝ, 1). Furthermore, we have already

observed that limt→∞ st ∈ {0, 1} if either s0 = 0 or s0 = 1. This establishes that limt→∞ st ∈
{0, 1} for any initial value s0 ̸= ŝ.

Proof of Proposition 2. As noted earlier, given that f is continuous, we know that every

limit s∗ must be a fixed point. Moreover, since f is increasing, f(s) ≥ f(0) for all s ∈ [0, 1].

In particular, then, f(s∗) ≥ f(0). However, since s∗ is a fixed point (established earlier),

s∗ = f(s∗). From this, we conclude that s∗ ≥ f(0); and a symmetric argument establishes

that s∗ ≤ f(1).
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Proof of Proposition 3. Let us define the difference in utilities by

∆(αi, s) ≡ U(ai = 1)− U(ai = 0) = αi +m(s)−m(1− s) (4)

To show that the individual has tipping point preferences, we consider three cases:

Case 1. For all s ∈ [0, 1], ∆(αi, s) ≥ 0. In that case, a∗i = 1 for all s (where a∗i denotes the

optimal action). Equivalently, a∗i = 1 if and only if s ≥ ti, for any tipping point that satisfies

ti ≤ 0. Thus, the individual has tipping point preferences (for example, we may set ti = 0).

Case 2. For all s ∈ [0, 1], ∆(αi, s) < 0. Similarly to before, this means that a∗i = 0 for all

s. Equivalently, a∗i = 1 if and only if s ≥ ti for any tipping point that satisfies ti > 1: for

example, we can set ti = 2. Thus, the individual again has tipping point preferences.

Case 3. ∆(αi, s) ≥ 0 for some s ∈ [0, 1]; but also ∆(αi, s) < 0 for some s′ ∈ [0, 1].

Differentiating with respect to s, we see that

∆′(s) = m′(s) +m′(1− s) > 0. (5)

Thus, ∆(s) is strictly increasing (and continuous) in s. This means that there is a unique

s∗ ∈ (0, 1] such that ∆(s) > 0 for s > s∗, ∆(s) = 0 when s = s∗, and ∆(s) < 0 for s < s∗.

Thus, the individual has tipping point preferences for ti = s∗.

To prove the second statement, observe that, if ti ∈ (0, 1), then

αi +m(ti)−m(1− ti) = 0 (6)

We can totally differentiate to obtain

∂αi

∂αi

+
∂m(ti)

∂ti

∂ti
∂αi

+
∂m(1− ti)

∂ti

∂ti
∂αi

= 0 (7)

which implies that
∂ti
∂αi

= − 1

m′(ti) +m′(1− ti)
< 0 (8)

where the inequality holds since both derivatives are strictly positive. Thus, the derivative

is negative (as claimed).
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B Local interaction

In this section, we extend the model described in Section 2 to allow for local interaction

in overlapping networks. The model presented here shares some similarities to the model

studied by Efferson et al. (2020). An important difference is that, while Efferson et al.

(2020) assume that decision makers choose randomly, we instead assume that they choose

deterministically but with heterogenous decision rules. In addition, our model assumes that

individuals respond to the decisions of their ‘neighbours’ (in line with our experimental set-

tings); whereas Efferson et al. (2020) assume that they best respond to the entire population.

In our baseline model, we assume the following:15

• There are l2 agents, each located on a node of a grid with side length l ∈ N+. Let

(r, c) denote the agent located at row r and column c; so the set of agents is the set

N = {(r, c) : r ∈ {1, ..., l}, c ∈ {1, ..., l}}.

• As in our experiments, agents are faced with a binary choice: they must either take an

action (denoted ar,c = 1) or not take the action (denoted ar,c = 0).

• Each agent (r, c) has a set of ‘neighbours’ Nr,c whose actions they can see. For each

agent, we assume that Nr,c = {(i, j) : (i, j) ∈ N, |i− r| ≤ 1, |j − c| ≤ 1, (i, j) ̸= (r, c)}.
Observe that agents in the interior have 4 neighbours, agents on the edge have 3

neighbours, and agents in the corners have 2 neighbours.

• We define m1
r,c as the share of individual (r, c)’s neighbours who have chosen to do the

action. Formally, m1
r,c =

1
|Nr,c|

∑
(r,c)∈Nr,c

ar,c where |Nr,c| is the cardinality of Nr,c.

• Each agent is endowed with a (fixed) tipping point tr,c ∈ [0, 1]. As in the main text,

we assume that they choose ar,c = 1 if and only if tr,c ≥ m1
r,c.

• Agents interact over multiple periods. In each period, one agent is chosen to move at

random; and updates their action (if necessary) by comparing their tipping point tr,c

with the share of their neighbours who are taking the action m1
r,c.

To assess the robustness of our results, we also study an alternative model that departs from

the model sketched above in various ways.16 In this model — which we label the edgeless

model — each agent is linked with the same number of neighbours. In addition, each agent

has a probability ϵ ∈ [0, 1] of making a ‘mistake’, i.e. choosing the opposite action as that

required by their tipping point. Finally, a share p ∈ [0, 1] of agents are selected in period to

15 The corresponding code can be viewed here: https://github.com/Itzhak95/tipping points
16 The corresponding code can be viewed here: https://github.com/rrozzi/tipping point-netlogo-
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revise their action; so in principle multiple agents can update their action simultaneously.

To simulate the results of our models, we use the following procedure:

• We specify a distribution of tipping points in the population, and randomly scatter

these tipping points across the agents.

• We also specify the share of agents who initially take the action; and we randomly

scatter the agents who are taking the action on grid.

• We then allow the model to run for 1000 periods (or until it is ‘stable’ so no further

changes can occur).

As discussed above, the results of the model could in principle depend on the way in which

tipping points and initial actions are scattered. As a result, we conduct all simulations 1000

times and report the distribution of results across simulations.

Before turning to our main results, we provide a simple example to illustrate the mechanics

of the model. To generate this example, we suppose that, initially, 40% of agents are taking

the action; and we set s = 5. In addition, we assume (for expositional simplicity) that all

agents have a tipping point tr,c = 0.5, so choose ar,c = 1 if and only if half or more of their

neighbours are doing the action. While one would normally repeat the simulation many

times, here we just report the outcome of one simulation.

After randomly scattering the initial actions, we obtain the initial state

0 1 1 1 0

0 1 0 0 1

1 0 1 1 0

0 0 0 0 0

1 0 0 1 0

As can be seen, 10 of the s2 = 25 agents initially take the action (indicated by a 1); the

rest do not. Several rounds now progress in which the player chosen to move does not wish

to update their action. Eventually, however, the player at row 3 and column 1 is chosen

to move (they are coloured in red). Since none of their neighbours (coloured in blue) were

taking the action, they choose to switch to action 0. This yields the new state
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0 1 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

1 0 0 1 0

As the process continues, additional players are given the opportunity to also revise their

action. After 13 such revisions, we finally obtain the state

1 1 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

This state is stable in the sense that no agent has an incentive to change their behaviour.

The agent in the top left is surrounded by neighbours who choose ar,c = 1, so would also

want to choose ar,c = 1 if allowed to update their action. The agent at (2, 2) is surrounded

by 4 neighbours, half of whom are taking the action; so also chooses ar,c = 1 (recall that

all tipping points are set at tr,c = 0.5). Meanwhile, the agents at (2, 1) and (1, 2) are each

surrounded by 3 neighbours, 2 of whom are choosing the action; so they also wish to choose

the action. Finally, one can verify that the agents choosing ar,c = 0 are choosing optimally

given their tipping point and the share of their neighbours who are taking the action.

We now calibrate our model using the tipping point distributions calculated in Section 5. We

assume a population size of 100; and the edgeless model further assumes an error probability

ϵ = 0.01 and a probability of revision p = 0.07. As stated above, each simulation is run for

1000 periods (or until the obtained state is stable); and all simulations are conducted 1, 000

times. Tables B1 and B2 display the results for experiment 1 (face masks) and experiment 2

(Zoom calls) respectively. The first row specifies the initial share who are assumed to do the

action. The rows ‘mean (main)’ and ‘mean (edgeless)’ display the average share who end up

doing the activity in the main specification and edgeless model respectively. The rows ‘Var

(main)’ and ‘Var (edgeless)’ specify the variance of outcomes across simulations.
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Table B1: Simulation results (experiment 1)

Initial share 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Mean (main) .228 .230 .230 .231 .231 .233 .234 .235 .235 .236

Var (main) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Mean (edgeless) .237 .242 .242 .242 .240 .242 .240 .239 .240 .239

Var (edgeless) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Notes. This table shows the results of simulating our models using the distribution of tipping

points obtained by experiment 1 (see Table 2). That is, we set p0 = .203, p1 = .033, p2 = .044,

p3 = .085, p4 = .123, p5 = .513.

Table B2: Simulation results (experiment 2)

Initial share 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Mean (main) .311 .316 .321 .329 .333 .338 .341 .345 .349 .353

Var (main) .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

Mean (edgeless) .353 .353 .347 .356 .355 .362 .354 .360 .356 .355

Var (edgeless) .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

Notes. This table shows the results of simulating our models using the distribution of tipping

points obtained by experiment 2 (see Table 4). That is, we set p0 = .209, p1 = .118, p2 = .091,

p3 = .099, p4 = .072, p5 = .411.

Three results are apparent. First, we see that the results of the simulations are relatively

insensitive to the initial share who are assumed to do the activity. This is especially true in

the edgeless model since this assumes that agents occasionally make errors, which weakens

dependence on initial conditions in the usual way (Young, 1993). Second, the variance in

outcomes across simulations is very low, which is again points to the lack of importance

of initial conditions (since different simulations generate different outcomes only due to

variation in initial conditions). Finally, and most importantly, we see that our models

generate convergence to interior equilibria that resemble those obtained from the simple

model of Section 2. This should not come as a surprise given that some agents always do

the action, that other agents never do the action, and that a final group of agents engage in

copying behaviour.
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C Tables and figures

Table C1: Sample allocation (experiment 1)

Treatment Frequency Percentage

0 127 19.7

1 134 20.7

2 128 19.8

3 124 19.2

4 133 20.6

Total 646 100.0

Notes. This table shows how many subjects were allocated

into each of the five treatments in the first experiment.

Table C2: Descriptive statistics (experiment 1)

Variable Mean Std. Dev.

Age 20.8 3.90

Male .497 .500

Humanities .283 .451

MPLS .240 .427

Medical Sciences .127 .333

Social Sciences .333 .471

Pre .201 .401

n 646

Notes. This table shows the descriptive statistics for experi-

ment 1 (see Table 1 for a description of the variables).
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Table C3: Logit regressions (experiment 1)

Variable No controls Main Specification All Controls

Treatment 1 .044 .033 .029

[.047] [.030] [.034]

Treatment 2 .171*** .073** .079**

[.053] [.032] [.035]

Treatment 3 .238*** .162*** .168***

[.055] [.040] [.043]

Treatment 4 .331*** .283*** .304***

[.054] [.042] [.046]

Pre .504*** .498***

[.030] [.031]

Age .003 .002

[.005] [.004]

Male -.006 -.002

[.026] [.028]

n 646 646 620

Notes. This table reports the exact same specifications reported on in Ta-

ble 2, except using logistic instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).
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Table C4: Probit regressions (experiment 1)

Variable No controls Main Specification All Controls

Treatment 1 .044 .036 .029

[.047] [.031] [.034]

Treatment 2 .171*** .078** .078**

[.053] [.033] [.035]

Treatment 3 .238*** .163*** .162***

[.055] [.040] [.043]

Treatment 4 .331*** .284*** .298***

[.054] [.043] [.046]

Pre .518*** .512***

[.024] [.027]

Age .002 .001

[.004] [.004]

Male -.007 -.004

[.026] [.028]

n 646 646 620

Notes. This table reports the exact same specifications reported on in Ta-

ble 2, except using probit instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table C5: Comparisons (experiment 1)

Comparison No controls Main specification All controls

T0 vs T1 .355 .278 .536

T1 vs T2 .019 .205 .163

T2 vs T3 .269 .051 .068

T3 vs T4 .131 .019 .017

T0 vs T2 .001 .014 .032

T1 vs T3 .001 .002 .002

T2 vs T4 .008 .000 .000

Notes. This table reports p-values corresponding to hypothesis that the

effect of treatment k is the same as the effect of treatment k′, for all possible

k ̸= k′. We do this for the three specifications considered in Table 2.
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Table C6: Changes (experiment 1)

T0 T1 T2 T3 T4

Putting mask on .028 .080 .106 .223 .368

Taking mask off .056 .143 .059 .067 .037

Notes. The first row shows the share who put a mask on given that they

entered the room without wearing a mask. The second row shows the share

who took their mask off given that they entered the room wearing a mask.

Table C7: Polynomial regressions (experiment 1)

Variable Linear Quadratic Cubic

Masks .070*** 0.008 0.024

[-.010] [-.028] [-.062]

Masksˆ2 .016** .004

[-.008] [-.045]

Masksˆ3 .002

[-.008]

Pre .752*** .757*** .757***

[-.029] [-.029] [-.029]

Age .002 .002 .002

[-.005] [-.005] [-.005]

Male -.008 -.007 -.007

[-.026] [-.026] [-.026]

Constant -.022 .016 .014

[-.102] [-.107] [-.107]

Joint test .000 .000 .000

R2 .491 .494 .494

Notes. In this table, we regress whether subjects chose to wear a mask

on the number of experimenters wearing a mask, as well higher order

terms to capture potential non-linearity (we also control for ‘pre’, age,

and gender). The penultimate row reports p-values corresponding to the

hypothesis that the coefficients on all mask variables are zero.
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Table C8: Explanations from online survey

Explanation Frequency

Trying to avoid judgement .148

Trying to cater to others’ preferences .511

Trying to follow rules .148

Reciprocity .023

COVID risks .011

Not answering question .159

n 88

Notes. This table shows the frequencies of the explanations

given by subjects (see Appendix E for a detailed description

of the categories).

Table C9: Sample allocation (experiment 2)

Treatment Frequency Percentage

0 232 20.8

1 204 18.3

2 223 20.0

3 241 21.7

4 213 19.1

Total 1113 100.0

Notes. This table shows how many subjects were allocated

into each of the five treatments in the second experiment.

Table C10: Descriptive statistics (experiment 2)

Variable Mean Std. Dev.

Age 42.4 13.9

Male .465 .499

n 1113

Notes. This table shows the descriptive statistics for ex-

periment 2.
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Table C11: Logit regressions (experiment 2)

Variable No controls Main specification All controls

Treatment 1 .077* .127*** .133***

[.043] [.039] [.039]

Treatment 2 .176*** .215*** .218***

[.043] [.039] [.040]

Treatment 3 .281*** .314*** .323***

[.043] [.039] [.045]

Treatment 4 .355*** .385*** .389***

[.044] [.041] [.051]

Pre .741*** .743***

[.092] [.092]

Age .000 .000

[.001] [.001]

Male .023 .023

[.027] [.027]

n 1,113 1,111 1,109

Notes. This table reports the exact same specifications reported on in

Table 4, except using logistic instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).
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Table C12: Probit regressions (experiment 2)

Variable No controls Main specification All controls

Treatment 1 .077* .125*** .130***

[.043] [.039] [.039]

Treatment 2 .176*** .216*** .218***

[.043] [.039] [.040]

Treatment 3 .281*** .312*** .321***

[.043] [.039] [.046]

Treatment 4 .355*** .385*** .389***

[.044] [.040] [.052]

Pre .701*** .699***

[.075] [.076]

Age .000 .000

[.001] [.001]

Male .024 .025

[.027] [.027]

n 1,113 1,111 1,109

Notes. This table reports the exact same specifications reported on in

Table 4, except using probit instead of linear regressions. Robust standard

errors in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.1).

Table C13: Comparisons (experiment 2)

Comparison No controls Main Specification All Controls

T0 vs T1 .074 .003 .002

T1 vs T2 .035 .043 .051

T2 vs T3 .022 .028 .020

T3 vs T4 .116 .116 .152

T0 vs T2 .000 .000 .000

T1 vs T3 .000 .000 .000

T2 vs T4 .000 .000 .001

Notes. This table reports p-values corresponding to hypothesis that the

effect of treatment k is the same as the effect of treatment k′, for all possible

k ̸= k′. We do this for the three specifications considered in Table 4.
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Table C14: Changes (experiment 2)

T0 T1 T2 T3 T4

Turning camera on 0.156 0.296 0.381 0.491 0.566

Turning camera off 0.111 0.125 0.000 0.059 0.000

Notes. The first row shows the share who turned their camera on given

that they joined the call without video. The second row shows the share

who turned their camera off given that they joined the call with video.

Table C15: Polynomial regressions (experiment 2)

Variable Linear Quadratic Cubic

Cameras .095*** .119*** .119

-.009 -.032 -.074

Camerasˆ2 -.006 -.006

-.008 -.049

Camerasˆ3 .000

-.008

Pre .576*** .578*** .578***

-.033 -.033 -.033

Age .000 .000 .000

-.001 -.001 -.001

Male .023 .024 .024

-.027 -.027 -.027

Constant .169*** .156*** .156***

-.046 -.047 -.047

Joint test .000 .000 .000

R2 .161 .161 .161

Notes. In this table, we regress whether subjects chose to use their camera

on the number of experimenters using a camera, as well higher order

terms to capture potential non-linearity (we also control for ‘pre’, age,

and gender). The penultimate row reports p-values corresponding to the

hypothesis that the coefficients on all camera variables are zero.
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D Experimental protocols (online appendix)

In this section, we provide a more detailed outline of the experimental protocols followed in

both experiments.

Experiment 1 (face masks). There were four experimenter roles, labelled 1 through 4. Exper-

imenter 1’s role was to greet the subject and (at the end) bid them goodbye. Experimenter

2’s role was to record the data and ask some demographic questions. Experimenter 3’s role

was to ask the question about the lotteries. Experimenter 4’s only role was to was to intro-

duce themselves when asked to do so and wear a face mask when this was required by the

randomisation.

Subjects were asked to arrive at a room within a particular time slot. Importantly, it was

not possible to view inside the room without entering it; and once a subject had entered,

the only people they could see were the experimenters inside the room. Before each subject

entered the room, the number of the four experimenters in the room who were wearing a

mask (and the allocation of masks to experimenters) had been randomised. Thus, there were

five treatment groups, corresponding to: 0/4 masks, 1/4 masks, 2/4 masks, 3/4 masks, 4/4

masks. All four experimenters were seated in front of a table on which a box of face masks,

hand sanitiser, and bag of checkers had been placed.

Once a subject arrived, the experiment proceeded in the following manner:

1. Experimenter 1 welcomed the participant in and asked all other experimenters to in-

troduce themselves. The other three experimenters then did this by stating their name

and subject of study.

2. Experimenter 2 asked the subject for their name, age, and academic division. They

recorded these on a spreadsheet, along with their apparent gender and whether they

had entered the room wearing a mask.

3. Experimenter 3 asked the subject the following question. ‘As you may know, we have

issued a fixed number of lottery tickets for an Amazon voucher. I am now going to give

you two options to choose from. The first option is simply to get one lottery ticket for

the voucher. The second option is a gamble between 2 and 0 lottery tickets. Specifically,

if you take the second option, then you will take a checker from the bag in front of you.

If you get a black checker — and there are six of these — then you will get two lottery

tickets. However, if you get a white checker — and there are five of these — then you

will not get any lottery tickets. So what do you choose — getting one lottery ticket for

sure, or taking the gamble between 2 and 0 lottery tickets? ’
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4. Person 1 thanked the participant for coming and told them that the experiment had

concluded.

Occasionally, a subject asked if they should wear a face mask. In response to such questions,

Experimenter 2 always replied: ‘it’s up to you’.

Experiment 2 (Zoom calls). As before, there were four experimenter roles, labelled 1 through

4. Experimenter 1’s role was to admit subjects into the Zoom room and guide them through

the experiment. Experimenter 2 was the data recorder, and Experimenter 3 double checked

all data. Experimenter 4 pasted a link to the survey in the Zoom chat just before the subject

was asked to leave the room.

Subjects were asked to join the Zoom call at a particular time slot. Before the subject joined

the call, the number of experimenters with their camera on, and which experimenters had

their camera on, had been randomised. Once a subject arrived in the Zoom waiting room,

the experiment proceeded in the following manner:

1. Experimenter 1 thanked the subject for joining and asked if whether they could hear

the audio. They stated their name, and said that the other experimenters would now

introduce themselves.

2. The other three experimenters on the call now introduced themselves by stating their

name.

3. Experimenter 1 asked the subject for their age. Experimenter 2 recorded this on a

spreadsheet along with their apparent gender, and whether they had joined the call

with their video camera on.17

4. Experimenter 1 then asked the subject the following question: ‘If we were to hypothet-

ically give you a £10 bonus payment, would you choose to share half of it with the next

person on the call? ’

5. If the subject’s camera had remained off throughout the call, Experimenter 1 asked

them if there were any issues with their camera.

6. Experimenter 1 then thanked the subject for participating, asked them to click the

survey link, and removed them from the room.

Some notes:

17 In contrast to the first experiment, we did not require Experimenter 2 to ask the demographic questions
due to the more rapid pace of data collection.
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• All experimenters ensured that they did not have a Zoom profile photo; so when they

turned their camera off, only the text of their name was visible.

• If a subject asked if they should turn their camera on, then Experimenter 1 told them

that ‘it’s up to you’.

• If a subject turned their camera on when the host asked if they had issues with their

camera, then we ignored this from a data recording point of view (see previous discus-

sion).
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E Explanations (online appendix)

In this section, we elaborate on the way in which we categorise subject explanations for

‘switching behaviour’ (recorded in the online survey). The categories are as follows:

1. ‘Trying to avoid judgement’

Elaboration: if you see many others wearing a mask, you might infer that these others

want you to wear a mask. This in turn might induce you to wear a mask if you do not

want to be negatively judged by the others.

Example from dataset : ‘Don’t see the point in wearing a mask now, but if everyone

else was then social conformity and not wanting to be the odd one out would mean I

probably would.’

2. ‘Trying to cater to others’ preferences’

Elaboration: If you see many others wearing a mask, you might infer that these others

want you to wear a mask. This in turn might induce you to wear a mask if you want

to altruistically cater to their preferences (e.g. to make them feel more comfortable).

Comment : Observe that, like the explanation before, this explanation is based on

learning about the preferences of others through their actions.

Example from dataset : ‘if i see someone wearing a mask it makes me think that they

might be uncomfortable about the virus so if i had one on me i would wear it.’

3. ‘Trying to follow rules’

Elaboration: If you see many others wearing a mask, you might conclude that a (for-

mal or informal) rule requires wearing a mask — and you might generally try to follow

rules.

Comment : In practice, it can be hard to distinguish this from the first explanation: in-

dividuals may follow informal rules to avoid judgement. However, we used this category

since some participants mentioned rules without mentioning a fear of being judged.

Example from dataset : ‘If majority of people wearing mask, I assume there is writ-

ten/unwritten rules regarding this, in that room that I am not aware of’

4. ‘Reciprocity’

Elaboration: if you see many others wearing a mask, you might infer that they are try-

ing to protect you. As a result, you might want to protect them (as in Rabin (1993)).

Example from dataset : ‘I want to protect others, but if they aren’t willing to protect

me then I’m not willing to protect them’
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5. ‘COVID risks’

Elaboration: if you see many others wearing a mask, you might conclude that the

COVID risk around you is high: for example, these people might be wearing a mask

because they have COVID. Assuming that you want to avoid COVID, you might

therefore choose to wear a mask.

(Only) example from dataset : ‘I’d think if anyone were wearing a mask they probably

have a good reason to, like being a close contact of a positive tester. Or if someone is

just being particularly careful I would also think they have a good reason to and try

to respect that.’

6. ‘Not answering question’

Elaboration: Some subjects explained the various factors which determine whether

they choose to wear a mask, but did not explain why their decision to wear a mask

would vary with the number of others wearing a mask (the question we were interested

in).

Example from dataset : ‘It depends on the setting, and if I were carrying a mask at the

time. If asked in advance I would always wear a mask, and would never want to make

someone feel uncomfortable. However if the situation was relatively safe, I would not

feel a need to wear a mask.’
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