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identification of hedonic equilibrium 843
by scalar unobserved heterogeneity, single-crossing conditions on pref-
erences and technology provide identifying restrictions in previous
work. We develop similar shape restrictions in the multiattribute case.
These shape restrictions, based on optimal transport theory and general-
ized convexity, allow us to identify preferences for goods differentiated
along multiple dimensions from the observation of a single market.
We thereby derive identification results for nonseparable simultaneous
equations and multiattribute hedonic equilibrium models with (possi-
bly) multiple dimensions of unobserved heterogeneity. One of our re-
sults is a proof of absolute continuity of the distribution of endogenously
traded qualities, which is of independent interest.
Introduction
Hedonicmodels were initially introduced by Court (1939) to price highly
differentiated goods in terms of their attributes. The vast subsequent liter-
ature on hedonic regressions of prices on attributes aimed at measuring
themarginal willingness of consumers to pay for the attributes of the good
they acquired, or the marginal willingness of workers to accept compen-
sation for the attributes of their occupations. When unobservable taste
for attributes drives the consumers’ choices, however, a simple regression
of price on attributes cannot informus on thewillingness to pay for quality
levels different from the ones characterizing the good actually acquired.
Nor can they inform us on the willingness to pay for characteristics of the
good theywould acquireunder counterfactualmarket conditions, with dif-
ferent endowments, preferences, and technology.
The willingness to pay for counterfactual transactions, together with

structural parameters of preferences and technology, canbe recoveredwith
a general equilibrium theory of hedonicmodels, dating back toTinbergen
(1956) and Rosen (1974); see Heckman (2019) for an account of their
respective contributions. The common underlying framework, which we
also adopt here, is that of a perfectly competitive market with heteroge-
neous buyers and sellers and traded product quality bundles and prices
that arise endogenously in equilibrium.1 Rosen (1974) proposes a two-
step procedure to estimate general hedonic models and thereby analyze
general equilibrium effects of changes in buyer-seller compositions, pref-
erences, and technology onqualities traded at equilibriumand their price
(see Heckman 1999). The first step is a regression of prices on attributes,
hen preferences are quasi-linear in price and undermild semicontinuity assumptions,
pori, McCann, and Nesheim (2010) and Ekeland (2010) show that equilibria exist, in
rm of a joint distribution of product and consumer types (who consumes what), a joint
bution of product and producer types (who produces what), and a price schedule such
arkets clear for each traded product.
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and the second is a simultaneous-equations estimation of the demand-
and-supply system with marginal prices estimated in the first step as en-
dogenous variables.
Brown and Rosen (1982) and Brown (1983) point out that changes in

consumers’ unobserved taste for attributes would lead them to source
goods fromdifferent suppliers, so that exclusion restrictions from the sup-
ply side cannot be justified.2 The literature on recovering marginal will-
ingness to pay for counterfactual transactions has since followed three
strategies: relying on multiple markets across space or time (see Brown
and Rosen 1982, Brown 1983, Kahn and Lang 1988, Tauchen and Witte
2001, andmany references inKuminoff, Smith, andTimmins 2013), relying
on specific functional forms forutility (Bajari andBenkard2005,Bishopand
Timmins 2011, 2019, and references therein), or assuming that consumers
care about a single dimension of good heterogeneity, via a quality index
(Ekeland, Heckman, and Nesheim 2002a, 2002b, 2004; Heckman, Matz-
kin, and Nesheim 2003, 2010; Epple, Peress, and Sieg 2010; Epple, Quin-
tero, and Sieg 2020). Each of these strategies has drawbacks. Multimarket
strategies rely on the assumption of no leakage between markets, or con-
sumption substitution across time and space. They also rely on the assump-
tion that preferences and the distribution of preference types are stable
across markets, so that variation comes from the supply side and prefer-
ences are identified, but not technology (or vice versa with symmetric as-
sumptions; see Ekeland, Heckman, and Nesheim 2004). Identification
strategies based on specific parameterizations of preferences and technol-
ogy cannot distinguish features of the specification that are crucial to iden-
tification and features that are convenient approximations. Identification
proofsmust also be repeated for each new parameterization, the suitability
of which depends on the application (see the discussion in Yinger 2014).
Finally, it is important in many applications to account for heterogeneity
in consumers’ (or workers’) relative valuations of different attributes and
hence move beyond the case of a scalar index of attributes.
This paper proposes an identification strategy based on a singlemarket,

where agents have heterogeneous relative valuations for different attri-
butes, without relying on a specific parametric specification of preferences
and technology. A leading case in the class of specifications we entertain is
U ðx, ε, zÞ 5 �U ðx, zÞ 1 z0ε, where U is the valuation of the bundle of attri-
butes z as a function of the vectors of observable and unobservable con-
sumer characteristics x and ε, respectively. We show that for each choice
of distribution of types ε, the function �U is recovered nonparametrically
(and the same result holds for the supply side). Our contribution is a di-
rect generalization of themain identification strategy inHeckman,Matzkin,
2 See also Bartik (1987), Epple (1987), and Kahn and Lang (1988).
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and Nesheim (2010). In that work, under a single-crossing condition3 on
the utility function, the first-order condition of the consumer problem
yields an increasing demand function, that is, quality demanded by the
consumer as an increasing function of her unobserved type, interpreted
as unobserved taste for quality. Assortative matching guarantees unique-
ness of demand, as the unique increasing function that maps the distribu-
tion of unobserved taste for quality, which is specified a priori, and the dis-
tribution of qualities, which is observed. Hence, demand is identified as a
quantile function, as inMatzkin (2003). Identification, therefore, is driven
by a shape restriction on the utility function.
The main achievement of this paper is to show that a suitable multivar-

iate extension (called a “twist condition”) of the single-crossing shape re-
striction delivers the same identification result in hedonic equilibriumwith
multiple good quality dimensions. Heuristically, the proof mirrors Heck-
man, Matzkin, and Nesheim (2010) in that it first involves showing iden-
tification of inverse demand, which then allows the identification of mar-
ginal utility from the first-order condition of the consumer’s program. The
identification of inverse demand, that is, a single-valued mapping from a
vector of good qualities to a vector of unobserved consumer type, involves
the twist shape restriction and cyclical monotonicity of the hedonic equi-
librium solution. The recovery of marginal utility from the first-order con-
dition of the consumer’s program is involved, because differentiability of
the hedonic equilibrium price function is not guaranteed. Known condi-
tions for differentiability of transport potentials in general optimal transport
problems, due toMa, Trudinger, andWang (2005), whichwould yield differ-
entiability of the hedonic equilibriumprice in our context, are very strong
and rule out many simple forms of the matching surplus (see chap. 12 of
Villani 2009). We are able to bypass the Ma, Trudinger, and Wang (2005)
conditions, using the special structure of the hedonic equilibrium, and to
show approximate differentiability (definition 10.2 of Villani 2009, 218)
of the price function, for which we need absolute continuity of the distri-
bution of good qualities traded at equilibrium. To that end, we provide a
set of mild conditions on the primitives under which the endogenous dis-
tribution of qualities traded at equilibrium is absolutely continuous. The
proof of absolute continuity of the distribution of qualities traded at equi-
librium is based on an argument from Figalli and Juillet (2008), also ap-
plied in Kim and Pass (2017).4

An important special case of our main identification theorem is the
case where the consumer’s utility depends on consumer unobserved het-
erogeneity ε only through the index z 0ε, where z is the vector of good
3 Also known as a Spence-Mirlees or supermodularity condition.
4 Figalli and Juillet (2008) and Kim and Pass (2017) focus on quadratic distance cost,

i.e., zðx, ε, zÞ 5 2d2ðz, εÞ in the notation of assumption H, and work in more exotic geo-
metric spaces.
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qualities. This case has the appealing interpretation that each dimension
of unobservable taste is associated with a good quality dimension and the
appealing feature that marginal utility is characterized as the solution of
a convex program. However, choosing the dimension of unobserved con-
sumer heterogeneity to be equal to the dimension of the vector of good
qualities is a somewhat arbitrary modeling choice, and we provide an ex-
tension of our main identification theorem to cases where the dimension
of unobserved consumer heterogeneity is lower, including a model with
scalar unobserved heterogeneity. We derive a local identification result
under mild conditions, but for global identification, we need a shape re-
striction on the endogenous price function, for which we know of no suf-
ficient conditions on primitives. Another restrictive aspect of our main
result is the necessary normalization of the distribution of unobserved
heterogeneity when identifying primitives from a single market. We pro-
vide some relaxation of this constraint when data from multiple markets
are available, but the results are still fragmentary.
The analysis of identification of inverse demand in hedonic equilib-

rium reveals that inverse demand satisfies a multivariate notion of mono-
tonicity, whose definition depends on the form of the utility function that
is maximized. In the univariate case, this notion reduces to monotonicity
of inverse demand. In the case where the consumer’s utility depends on
consumer unobserved heterogeneity ε only through the index z 0ε, where z
is the vector of good qualities, inverse demand is the gradient of a convex
function. We show that this notion of multivariate monotonicity is a suit-
able shape restriction to identify nonseparable-simultaneous-equations
models, generalizing the quantile identification method of Matzkin (2003)
and complementing results in Matzkin (2015), where monotonicity is im-
posed equation by equation.5

Closely related work.—On the identification of multiattribute hedonic
equilibriummodels, Ekeland,Heckman, andNesheim (2004) requiremar-
ginal utility (marginal product) to be additively separable in unobserved
consumer (producer) characteristics. Heckman, Matzkin, and Nesheim
(2010) show that demand is nonparametrically identified under a single-
crossing condition and that various additional shape restrictions allow iden-
tification of preferences without additive separability (see also Heckman,
Matzkin, andNesheim2003, 2005). Ekeland,Heckman, andNesheim (2004)
emphasize the one-dimensional case but argue that their results can be ex-
tended to multivariate attributes under a separability assumption in the
utility (without restricting the distribution of unobserved heterogeneity).
Our paper directly follows Heckman, Matzkin, and Nesheim (2010) and
generalizes the insight therein to allow for heterogeneity in response to
5 Not all results in Matzkin (2003) and Heckman, Matzkin, and Nesheim (2010) require
normalization of the distribution of unobserved heterogeneity, as we do here.



identification of hedonic equilibrium 847
different dimensions of amenities or qualities. However, the analyses in
Heckman, Matzkin, and Nesheim (2010) and ours are nonnested. Heck-
man, Matzkin, and Nesheim (2010) consider several specifications with
Barten scales that are outside the scope of our generalization. Nesheim’s
(2015; developed independently and concurrently) is the most closely re-
lated paper and complements our work. He achieves identification under
an additive separability restriction, but without restricting the distribution
of unobserved heterogeneity. He also imposes conditions from Ma, Tru-
dinger, and Wang (2005) to obtain differentiability of the price. Chiap-
pori, McCann, and Nesheim (2010) derive a matching formulation of he-
donic models and thereby highlight the close relation between empirical
strategies in matching markets and in hedonic markets. Chiappori, Mc-
Cann, and Pass (2016) have a section on identification (posterior to this
paper), where they use a similar strategy. Twomain differences arise from
the difference betweenmatching and hedonic models. On the one hand,
Chiappori,McCann, and Pass (2016) need an extra step to account for the
fact that in their matching model the price function is not observed. On
the other hand, they do not have to worry about regularity of endogenous
objects such as the price and distribution of goods in the hedonic equilib-
rium setting. Galichon and Salanié (2012) extend the work of Choo and
Siow (2006) and identify preferences in marriage markets, where agents
match ondiscrete characteristics, as the unique solutionof anoptimal trans-
port problem, but unlike the present paper, they are restricted to the case
with a discrete quality space. The strategy is extended to the set-valued case
by Chiong, Galichon, and Shum (2013), who use subdifferential calculus
to identify dynamic discrete-choice problems. Dupuy, Galichon, and Henry
(2014) use network flow techniques to identify discrete hedonic models.
On the identificationofnonlinear simultaneous-equationsmodels,Matz-

kin (2015) uses equation-by-equationmonotonicity in the one-dimensional
unobservables and exclusion restrictions. Berry and Haile (2018) consider
transformationmodels, as inMatzkin (2008; see alsoMatzkin 2013). These
strategies do not require normalization of the distribution of unobserved
heterogeneity. Shi, Shum, and Song (2018) also (independently and in a
very different context) use cyclicalmonotonicity for identification in panel
discrete-choice models. Ekeland, Galichon, and Henry (2012) and Gali-
chon and Henry (2012) propose a notion of multivariate quantile based on
Brenier’s theorem. Carlier, Chernozhukov, and Galichon (2016), coeta-
neous with the present paper, propose a conditional version of the optimal
transport quantiles of Ekeland, Galichon, and Henry (2012) and Galichon
and Henry (2012) and apply it to quantile regression, whereas Chernozhu-
kov et al. (2017), also coetaneous with this paper, apply optimal transport
quantiles to the definition of statistical depth, ranks, and signs. However,
these papers do not consider identification. The present work is, to the best
of our knowledge, the first to apply the notion of multivariate quantiles
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based on optimal transport results to the identification of simultaneous
equations, thusprovidingamultivariate extensionofMatzkin’s (2003)quan-
tile identification idea.
Organization of the paper.—The remainder of the paper is organized as

follows. Section I sets the hedonic equilibrium framework out. Section II
gives a brief account of the methodology and main results on nonpara-
metric identification of preferences in single-attribute hedonic models,
mostly drawn fromEkeland,Heckman, andNesheim (2004) andHeckman,
Matzkin, andNesheim (2010). Section III shows how these results and the
shape restrictions that drive them can be extended to the case ofmultiple-
attribute hedonic equilibrium markets. Section IV derives multivariate
shape restrictions to identify nonseparable-simultaneous-equations mod-
els. Section V concludes. Proofs of the main results are relegated to the
appendix, as are necessary background definitions and results on optimal
transport theory and a list of our notational conventions.
I. Hedonic Equilibrium and the
Identification Problem
We consider a competitive environment, where consumers and producers
trade a good or contract, fully characterized by its type or quality z. The set
of feasible qualities Z ⊆Rdz is assumed compact and given a priori, but the
distribution of the qualities actually traded arises endogenously in the he-
donic market equilibrium, as does their price schedule p(z). Producers
are characterized by their type ~y ∈ ~Y ⊆Rd~y and consumers by their type
~x ∈ ~X ⊆Rd~x . Type distributions P~x on ~X and P~y on ~Y are given exogenously,
so that entry and exit are not modeled. Consumers and producers are
price takers and maximize quasi-linear utility U ð~x, zÞ 2 pðzÞ and profit
pðzÞ 2 Cð~y, zÞ, respectively. Utility U ð~x, zÞ (cost Cð~y, zÞ) is upper (lower)
semicontinuous and bounded. In addition, the set of qualities Zð~x, ~yÞ that
maximize the joint surplus U ð~x, zÞ 2 Cð~y, zÞ for each pair of types ð~x, ~yÞ is
assumed to have a measurable selection. Then, Ekeland (2010) and Chi-
appori, McCann, and Nesheim (2010) show that an equilibrium exists in
this market, in the form of a price function p on Z, a joint distribution P~xz

on ~X � Z andP~yz on ~Y � Z such that theirmarginals onZ coincide, so that
the market clears for each traded quality z ∈ Z . Uniqueness is not guaran-
teed; in particular, prices are not uniquely defined for nontraded qualities
in equilibrium. Purity is not guaranteed either: an equilibrium specifies a
conditional distributionPzj~x (Pzj~y) of qualities consumed by type ~x consum-
ers (producedby type~y producers). The quality tradedby a given producer-
consumer pair ð~x, ~yÞ is not uniquely determined at equilibrium without
additional assumptions.
Ekeland (2010) and Chiappori, McCann, and Nesheim (2010) further

show that a pure equilibrium exists and is unique, under the following
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additional assumptions. First, type distributions P~x and P~y are absolutely
continuous. Second, gradients of utility and cost, ∇~xU ð~x, zÞ and ∇~yCð~y, zÞ,
respectively, exist and are injective as functions of quality z. The latter con-
dition, also known as the twist condition in the optimal transport litera-
ture, ensures that all consumers of a given type ~x (all producers of a given
type ~y) consume (produce) the same quality z at equilibrium.
The identification problem consists in the recovery of structural fea-

tures of preferences and technology from observation of traded qualities
and their prices in a singlemarket. The solution concept we impose in our
identification analysis is the following feature of hedonic equilibrium, that
is, maximization of surplus generated by a trade.
Assumption EC (Equilibrium concept). The joint distribution g of

ð~X , Z , ~Y Þ and the price function p form a hedonic equilibrium; that is,
they satisfy the following. The joint distribution g has marginals P~x and
P~y, and for g almost all ð~x, z, ~yÞ,

U ð~x, zÞ 2 pðzÞ 5 max
z0∈Z

U ð~x, z0Þ 2 pðz0Þð Þ,

pðzÞ 2 Cð~y, zÞ 5 max
z0∈Z

pðz0Þ 2 Cð~y, zÞð Þ:

In addition, observed qualities z ∈ Z ð~x, ~yÞ, maximizing joint surplus
U ð~x, zÞ 2 Cð~y, zÞ for each ~x ∈ ~X and ~y ∈ ~Y , lie in the interior of the set
of feasible qualities Z, and Zð~x,~yÞ is assumed to have a measurable selec-
tion. The joint surplus U ð~x, zÞ 2 Cð~y, zÞ is finite everywhere. We assume
full participation in the market.6

Given observability of prices and the fact that producer type ~y (con-
sumer type ~x) does not enter into the utility function U ð~x, zÞ (cost func-
tion Cð~y, zÞ) directly, we may consider the consumer and producer prob-
lems separately and symmetrically (see Ekeland, Heckman, and Nesheim
2002a). We focus on the consumer problem and on identification of util-
ity function U ð~x, zÞ. Under assumptions ensuring purity and uniqueness
of equilibrium, the model predicts a deterministic choice of quality z for
a given consumer type ~x. We do not impose such assumptions, but we
need to account for heterogeneity in consumption patterns even in case
of a unique and pure equilibrium. Hence, we assume, as is customary,
that consumer types ~x are only partially observable to the analyst. We write
~x 5 ðx, εÞ, where x ∈ X ⊆Rdx is the observable part of the type vector and
ε ∈ Rdε is the unobservable part. We make a separability assumption that
will allow us to specify constraints on the interaction between consumer
6 The possibility of nonparticipation can be modeled by adding isolated points to the
sets of types and renormalizing distributions accordingly (see sec. 2.1 of Chiappori, Mc-
Cann, and Nesheim 2010 for details).
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unobservable type ε and good quality z in order to identify interactions
between observable type x and good quality z.
Assumption H (Unobservable heterogeneity). Consumer type ~x is

composed of observable type x with distribution Px on X ⊆Rdx and unob-
servable type ε with a priori specified conditional distribution Pεjx on Rdε ,
with dε ≤ dz. The utility of consumers can be decomposed as U ð~x, zÞ 5
�U ðx, zÞ 1 zðx, ε, zÞ, where the functional form of z is known but that of �U
is not.7

The main primitive object of interest is the deterministic component
of utility �U ðx, zÞ. For convenience, we use the transformation V ðx, zÞ ≔
pðzÞ 2 �U ðx, zÞ. This is called the consumer’s potential, in line with the op-
timal transport terminology. Since the price is assumed to be identified,
identification of V is equivalent to identification of �U . To achieve iden-
tification, we require fixing a choice of function z: a leading example,
discussed in section III.C.1, is the case zðx, ε, zÞ 5 z0ε. Identification also
requires fixing the conditional distribution Pεjx of unobserved heteroge-
neity. This corresponds to the normalization of the distribution of scalar
unobservable utility in existing quantile identification strategies. Discrete-
choice models also typically rely on a fixed distribution for unobservable
heterogeneity (generally extreme valued). The requirements to fix both z

and Pεjx is relaxed to some extent in section III.D.2, which entertains the
possibility of further identification power using information from multi-
ple markets.
II. Single-Market Identification with Scalar Attribute
In this section, we recall and reformulate results of Heckman, Matzkin,
and Nesheim (2010) on identification of single-attribute hedonicmodels.
Suppose, for the purpose of this section, that dz 5 dε 5 1, so that unob-
served heterogeneity is scalar, as is the quality dimension. Suppose also
that z is twice continuously differentiable in z and ε.
AssumptionR (Regularity of preferences and technology). The func-

tions �U ðx, zÞ, Cð~y, zÞ, and zðx, ε, zÞ are twice continuously differentiable
with respect to ε and z.
Suppose further (for ease of exposition) thatV is twice continuously dif-

ferentiable in z. The main identifying assumption is a shape restriction on
utility called single-crossing, Spence-Mirlees, or supermodularity, depend-
ing on the context.
Assumption S1 (Spence-Mirlees). We have dz 5 1 and z εzðx, ε, zÞ > 0

for all (x, ε, z).
7 Despite the notation used, �U should not necessarily be interpreted as “mean utility,”
since we allow for a general choice of z and Pεjx . If this interpretation is desirable in a par-
ticular application, z and Pεjx can be chosen in such a way that E½zðx, ε, zÞjx� 5 0.
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The first-order condition of the consumer problem yields

z zðx, ε, zÞ 5 Vzðx, zÞ, (1)

which, under assumption S1, implicitly defines an inverse-demand func-
tion z ↦ εðx, zÞ, which specifies which unobserved type consumes quality
z. Combining the second-order condition z zzðx, ε, zÞ < Vzzðx, zÞ and fur-
ther differentiationof equation (1), that is, z zzðx, ε, zÞ 1 z εzðx, ε, zÞεzðx, zÞ 5
Vzzðx, zÞ, yields

εzðx, zÞ 5 Vzzðx, zÞ 2 z zzðx, ε, zÞ
z εzðx, ε, zÞ > 0:

Hence, the inverse demand is increasing and is therefore identified as
the unique increasing function that maps the distribution Pzjx to the dis-
tribution Pεjx , namely, the quantile transform. Denoting F the cumulative
distribution function corresponding to the distribution P, we therefore
have identification of inverse demand according to the strategy put for-
ward in Matzkin (2003) as

εðx, zÞ 5 F 21
εjx FzjxðzjxÞð Þ:

The single-crossing condition of assumption S1 on the consumer sur-
plus function zðx, ε, zÞ yields positive assortativematching, as in the Becker
(1973) classical model. Consumers with higher taste for quality ε will
choose higher qualities in equilibrium, and positive assortative matching
drives identification of demand for quality. The important feature of as-
sumption S1 is injectivity of z zðx, ε, zÞ relative to ε, and a similar argument
would have carried through under z zεðx, ε, zÞ < 0, yielding negative assor-
tative matching instead.
Once inverse demand is identified, the consumer potential V(x, z),

and hence the utility function �U ðx, zÞ, can be recovered up to a constant
by integration of the first-order condition (1):

�U ðx, zÞ 5 pðzÞ 2 V ðx, zÞ 5 pðzÞ 2
ðz

0

z zðx, εðx, z0Þ, z0Þ dz0:

We summarize the previous discussion in the following identification
statement, originally due to Heckman, Matzkin, and Nesheim (2010).
Proposition 1. Under assumptions EC, H, R, and S1, �U ðx, zÞ is non-

parametrically identified, in the sense that z ↦ �Uzðx, zÞ is the onlymarginal
utility function compatible with the pair (Pxz, p); that is, any other mar-
ginal utility function coincides with it, Pzjx almost surely.
Unlike the demand function, which is identified without knowledge of

the surplus function z, as long as the latter satisfies single crossing (assump-
tion S1), identification of the preference function �U ðx, zÞ does require a
priori knowledge of the function z.
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III. Single-Market Identification with Multiple Attributes
This section develops the multivariate analogue of identification results
in section II. The strategy follows the same lines. First, a shape restriction
on the utility function, analogous to assumption S1, and a consequence
of maximization behavior, called “cyclical monotonicity,” will identify the
inverse demand: we show that a single type ε(x, z) chooses good quality z at
equilibrium. Second, formally, the utility is then recovered from the first-
order condition of the consumer’s program. The latter step, however, in-
volves significant difficulties due to the possible lack of differentiability of
the endogenous price function.
A. Identification of Inverse Demand

1. Shape Restriction
In the one-dimensional case, identification of inverse demand was shown
under the single-crossing assumption S1. We noted that the sign of the
single-crossing condition is not important for the identification result. In-
stead, what is crucial is the following, weaker, condition, which is commonly
known as the twist condition in the optimal transport literature. The cru-
cial condition, maintained throughout, is assumption S2. As shown in
Chiappori, McCann, and Nesheim (2010), it holds when for each distinct
pair of consumer types (ε1, ε2), the function z ↦ zðx, ε1, zÞ2zðx, ε2, zÞ has
no critical point. It is satisfied, for example, in the case zðx, ε, zÞ 5 z0ε;
in the case zðx, ε, zÞ 5 F ðx, z0εÞ, when z 0ε > 0 and F is increasing and con-
vex in its second argument; or in the case zðx, ε, zÞ 5 od

k51Fkðx, εk , zkÞ,
where, for each k and x, Fk is supermodular in (εk, zk). All these examples
are discussed in sections III.C.1 and III.C.2 below.
Assumption S2 (Twist condition). For all x and z, the following hold.

A. The gradient ∇zzðx, ε, zÞ of zðx, ε, zÞ in z is injective as a function
of ε ∈ SuppðPεjxÞ.

B. The gradient ∇εzðx, ε, zÞ of zðx, ε, zÞ in ε is injective as a function
of z ∈ Z .
From Gale and Nikaido (1965), it is sufficient that D2
zεzðx, ε, zÞ be posi-

tive definite everywhere for assumption S2 to be satisfied. Alternative sets
of sufficient conditions are given in theorem 2 of Mas-Colell (1979).8 As-
sumption S2, unlike single crossing, is well defined in the multivariate case,
and below we show, using recent developments in optimal transport theory,
that it continues to deliver the desired identification in themultivariate case.
8 Relatedly, Berry, Gandhi, and Haile (2013) propose injectivity results under a gross-
substitutes condition.
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2. Cyclical Monotonicity
An important implication of assumption EC is that traded quality z max-
imizes the joint surplus U ð~x, zÞ 2 Cð~y, zÞ.9 Let, therefore, Sðx, ε, ~yÞ ≔
supz∈Z ½U ððx, εÞ, zÞ 2 Cð~y, zÞ� be the surplus of a consumer-producer pair
ððx, εÞ,~yÞ at equilibrium. Suppose that consumer (x, ε0) ((x, ε1)) is paired
at equilibrium with producer ~y0(~y1) to exchange good quality z. Then,
as shown in the proof of lemma 1 in the appendix, their total surplus is
at least as large in the current consumer-producer matching as it would
bewere they to switch partners. This is a property of the optimal allocation
called cyclical monotonicity. The total surplus cannot be improved by a cycle
of reallocations of consumers and producers. Applied here to cycles of
length two, cyclical monotonicity yields

Sðx, ε0, ~y0Þ 1 Sðx, ε1, ~y1Þ ≥ Sðx, ε0, ~y1Þ 1 Sðx, ε1, ~y0Þ
≥ U ððx, ε0Þ, zÞ 2 Cð~y1, zÞ 1 U ððx, ε1Þ, zÞ 2 Cð~y0, zÞ
5 Sðx, ε0, ~y0Þ 1 Sðx, ε1, ~y1Þ,

where the first inequality holds because of cyclicalmonotonicity and the sec-
ond inequality holds by definition of the surplus function S as a supre-
mum. Hence, equality holds throughout in the previous display. Therefore,
choice z maximizes both z ↦U ððx, ε0Þ, zÞ 2 Cð~y0, zÞ and z ↦ U ððx, ε1Þ, zÞ2
Cð~y0, zÞ. It follows that ∇zzðx, ε1, zÞ 5 ∇zzðx, ε0, zÞ. The twist assumption S2
then yields equality of ε0 and ε1 and the following lemma (proved formally
in app. B).
Lemma 1 (Identification of inverse demand). Under assumptions EC,

H, S2(A), and R, if consumers with characteristics (x, ε0) and (x, ε1) con-
sume the same good quality z at equilibrium, then ε0 5 ε1.
We see from lemma 1 that identification of inverse demand holds un-

der conditions that are analogous to the scalar case, where the twist con-
dition replaces Spence-Mirlees as a shape restriction. We also see that
the identification proof also relies on a notion of monotonicity. We push
this analogy further in section IV and show that the inverse-demand func-
tion z ↦ εðx, zÞ itself satisfies a generalized form of monotonicity we call
“z-monotonicity,” since its definition involves the function z.
B. Identification of Marginal Utility
Heuristically, once identification of inverse demand is established and
ε(x, z) is uniquely defined in equilibrium, the first-order condition of the
consumer’s problem supz∈Zfzðx, ε, zÞ 2 V ðx, zÞg delivers identification of
9 This observation is the basis for the characterization of hedonic models as transferable-
utility matching models in Chiappori, McCann, and Nesheim (2010).
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marginal utility ∇z
�U ðx, zÞ. However, using the first-order condition presup-

poses smoothness of the potential V, hence of the endogenous price func-
tion z ↦ pðzÞ. Conditions for differentiability of the potential V in optimal
transportationproblems are givenbyMa,Trudinger, andWang (2005). They
are applied to identification in hedonic models in Nesheim (2015). How-
ever, the conditions in Ma, Trudinger, and Wang (2005) are not transpar-
ent, and they are known to be very strong, excluding simple forms of the
surplus such as Sð~x, ~yÞ ≔ j~x 2 ~yjp for all p ≠ 2. The remainder of this sec-
tion, therefore, is devoted to proving a weaker form of differentiability of
the price function, which can be used to identify marginal utility from the
first-order condition of the consumer’s problem.
The consumer’s problem yields the expression for indirect utility

sup
z∈Z

zðx, ε, zÞ 2 V ðx, zÞf g ≔ V zðx, εÞ: (2)

Equation (2) defines a generalized notion of convex conjugation, in which
the consumer’s indirect utility is the conjugate ofV ðx, zÞ 5 pðzÞ 2 �U ðx, zÞ.
This notion of conjugation can be inverted, similarly to convex conjuga-
tion, into

V zzðx, zÞ 5 sup
ε∈Rdε

zðx, ε, zÞ 2 V zðx, εÞf g, (3)

where V zz is called the double conjugate of V. In the special case zðx, ε, zÞ 5
z0ε, the z-conjugate simplifies to the ordinary convex conjugate of convex
analysis, and convexity of a lower semicontinuous function is equivalent
to equality with its double conjugate. Hence, by extension, equality with
its double z-conjugate defines a generalized notion of convexity (see def-
inition 2.3.3 of Villani 2003, 86).
Definition 1 (z-convexity). A functionV is called z-convex ifV 5 V zz .
We establish z-convexity of the potential as a step toward a notion of

differentiability, in analogy with convex functions, which are locally Lip-
schitz, and hence almost surely differentiable, by Rademacher’s theorem
(see, for instance, Villani 2009, theorem 10.8(ii)). It also delivers a notion
of z-monotonicity for inverse demand, discussed in section IV.
Lemma 2. Under assumptions EC and H, the function z ↦ V ðx, zÞ is

Pzjx almost surely z-convex, for all x.
This result provides information only for pairs (x, z), where type x con-

sumers choose good quality z in equilibrium. In order to obtain a global
smoothness result on the potential V, we need conditions under which the
endogenous distribution of good qualities traded in equilibrium is abso-
lutely continuous with respect to Lebesgue measure on Rdz . They include
absolute continuity of the distribution of unobserved heterogeneity, ad-
ditional smoothness conditions on preferences and technology, and the
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twist assumption S2(B), which requires the dimension of unobserved het-
erogeneity to be the same as the dimension of the good quality space, that
is, dε5dz (this is relaxed in sec. III.D.1).
Assumption H0. Assumption H holds, and the distribution of unob-

served tastes Pεjx is absolutely continuous on Rdz with respect to Lebesgue
measure for all x.
Assumption R0 (Conditions for absolute continuity of Pzjx). The fol-

lowing hold.

1. The Hessian of total surplus D2
zzðU ðx, ε, zÞ 2 Cð~y, zÞÞ is bounded

above; that is, k D2
zzðU ðx, ε, zÞ 2 Cð~y, zÞÞ k ≤ M1 for all x, ε, z, and ~y,

for some fixed M1.
2. If the support of Pεjx is unbounded, for each x ∈ X , k ∇zzðx, ε, zÞ k→

∞ as k ε k→∞, uniformly in z ∈ Z .
3. The matrix D2

εzzðx, ε, zÞ has full rank for all x, ε, and z. Its inverse
½D2

εzzðx, ε, zÞ�21 hasuniformupperboundM0, k ½D2
εzzðx, ε, zÞ�21k ≤M0,

for all x, ε, and z, for some fixed M0.
We then obtain our principal intermediate lemma, which is of indepen-
dent interest for the theory of hedonic equilibrium. The proof can be
found in the online appendix.
Lemma 3. Under assumptions EC, H0, S2, and R0, the endogenous dis-

tribution Pzjx of qualities traded at equilibrium is absolutely continuous
with respect to Lebesgue measure.
Lemma 4, in the online appendix, shows everywhere differentiability of

the double conjugate potentialV zz. This does not imply differentiability of
V everywhere, since V is z-convex (i.e., V 5 V zz) only Pzjx almost everywhere.
However, combined with lemma 3, this yields approximate differentiabil-
ity of z ↦ V ðx, zÞ as defined in definition 6 in the online appendix. Using
uniqueness of the approximate gradient of an approximately differentia-
ble function then yields identification of marginal utility ∇z

�U ðx, zÞ from the
first-order condition

∇zzðx, εðx, zÞ, zÞ 5 ∇ap,zV ðx, zÞ 5 ∇appðzÞ 2 ∇z
�U ðx, zÞ, (4)

where ∇ap,ðzÞ denotes the approximate gradient (with respect to z) of def-
inition 6, in the online appendix, and where the inverse-demand function
ε(x, z) is uniquely determined, by lemma 1. This yields our main identifi-
cation theorem.
Theorem 1. Under assumptions EC, H0, S2, and R0, the following

hold.

1. �U ðx, zÞ is nonparametrically identified, in the sense that z ↦ ∇z
�U ðx, zÞ

is the only marginal utility function compatible with the pair (Pxz, p);
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that is, any othermarginal utility function coincides with it, Pzjx almost
surely.

2. For all x ∈ X , �U ðx, zÞ 5 pðzÞ 2 V ðx, zÞ, and z ↦ V ðx, zÞ is Pzjx al-
most everywhere equal to the z-convex solution to the problem
minV ðEz½V ðx, zÞjx� 1 Eε½V zðx, εÞjx�Þ, withV zdefined in equation (2).
Theorem 1(1) provides identification of marginal utility without any
restriction on the distributions of observable characteristics of produc-
ers and consumers. The latter may include discrete characteristics. Reg-
ularity conditions in assumption R0 are satisfied in the cases zðx, ε, zÞ 5 ε0z
and zðx, ε, zÞ 5 expðε 0zÞ, as we discuss in sections III.C.1 and III.C.2, re-
spectively. They preclude bunching of consumers at equilibrium, as shown
in lemma 3. The result is driven by the shape restriction (assumption S2)
and the strong normalization assumption on the distribution of unobserved
heterogeneity. This assumption is inevitable in a single-market identification
based on a generalized quantile identification strategy. Section III.D.2 dis-
cusses (partial) identification without knowledge a priori of the distribu-
tion of unobserved heterogeneity. Theorem 1(2) provides a framework
for estimation and inference on the identified marginal utility based on
new developments in computational optimal transport (see, for instance,
the survey in Peyré and Cuturi 2019).
C. Special Cases

1. Marginal Utility Linear in Unobserved Taste
A leading special case of the identification result in theorem 1 is the
choice zðx, ε, zÞ 5 z0ε, where marginal utility is linear in unobservable
taste. A natural interpretation of this specification is that each quality di-
mension zj is associated with a specific unobserved taste intensity εj for that
particular quality dimension. Assumptions S2 and R0(2, 3) are automati-
cally satisfied when zðx, ε, zÞ 5 ε 0z. In addition, z-convexity reduces to tra-
ditional convexity, so that we have the following corollary of theorem 1.
Corollary 1. Under assumptionsEC,H0 with zðx, ε, zÞ 5 ε0z, andR0(1),

the following hold.

1. �U ðx, zÞ is nonparametrically identified, in the sense that z ↦ ∇z
�U ðx, zÞ

is the only marginal utility function compatible with the pair (Pxz, p),
that is, any other marginal utility function coincides with it, Pzjx al-
most surely.

2. For all x ∈ X , �U ðx, zÞ 5 pðzÞ 2 V ðx, zÞ, and z ↦ V ðx, zÞ is Pzjx al-
most everywhere equal to the convex solution to the problem
minV ðEz½V ðx, zÞjx� 1 Eε½V *ðx, εÞjx�Þ, where V * is the convex conju-
gate of V.
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A significant computational advantage of corollary 1(2) over the gen-
eral case is that the potential solves a convex program. Thefirst-order con-
dition (4) also simplifies to εðx, zÞ 5 ∇ap,zV ðx, zÞ, where ∇ap,z denotes the
approximate gradient with respect to z (definition 6, in the online appen-
dix). Hence, inverse demand in this case is the approximate gradient of a
Pzjx almost surely convex function. This can be interpreted as a multivari-
ate version of monotonicity of inverse demand and assortative matching,
since in the univariate case, we recover monotonicity of inverse demand
as in section II.
2. Nonlinear Transforms and Random Barten Scales
In the special case of section III.C.1, the curvature ofmarginal willingness
to pay for qualities varies only with observable characteristics but is inde-
pendent of unobservable type ε. Two ways specification zðz, ε, zÞ 5 z0ε can
be generalized to allow the curvature ofmarginal utility to vary with unob-
served type are the following.

1. Specification zðx, ε, zÞ 5 F ðx, z0εÞ satisfies assumptions S2 and R0

when the conditional distribution Pεjx of types has bounded sup-
port, z0ε > 0, and F is increasing and convex in its second argument
(with nonzero derivative). A special case is zðx, ε, zÞ ≔ expðz0εÞ. Un-
der this specification, a type ε consumer’s marginal willingness to
pay for quality z is ∇z

�U ðx, zÞ 1 expðz0εÞε. The curvature of marginal
willingness to pay increases with type, so that there are increasing
returns to quality.

2. Specification zðx, ε, zÞ 5 odz

k51Fkðx, εk , zkÞ satisfies assumption S2
when Fk is supermodular in (εk, zk) for each k and x, and it satisfies
assumption R0 when ∂2Fk=∂z2k is bounded above and ∂2Fk=∂εk∂zk
is bounded below for each k, uniformly over x. A special case is
zðx, ε, zÞ 5 od

k51Fkðx, zkεkÞ, in the spirit of random Barten scales, as
in Lewbel and Pendakur (2017).
D. Extensions

1. Lower-Dimensional Unobserved Heterogeneity
Our main identification result, theorem 1, is obtained under conditions
that force the dimension of unobserved heterogeneity to be the same as
the dimension dz of the good quality space. The conditions that impose
dε 5 dz are assumption H0, which requires the distribution Pεjx to be abso-
lutely continuous with respect to Lebesgue measure on Rdz , and assump-
tion S2(B), which requires injectivity of z ↦ ∇εzðx, ε, zÞ. In the special case
zðx, ε, zÞ 5 ε0z, the interpretation of each dimension of ε as a quality
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dimension–specific taste is appealing. However, the choice of dimension
of unobserved heterogeneity remains an arbitrary modeling choice.
In this section, we relax these assumptions and analyze identification

with unobserved heterogeneity of lower dimension, including dε 5 0 and
dε 5 1. First, recall that inverse demand is identified in lemma 1 under
assumptions EC, H, S2(A), and R, which require only dε ≤ dz. We also
know from lemma 2 that the potential z ↦ V ðx, zÞ is Pzjx almost everywhere
z-convex. It is therefore z-convex on any open subset of the support of Pzjx ,
which we show implies local identification. To obtain a global identifica-
tion result, we need this z-convexity everywhere.
Assumption S3 (z-convexity). The potential V is z-convex as a func-

tion of z for all x.
Unfortunately, this global constraint implies a constraint on the endog-

enous price function, for which we do not have sufficient conditions in
the general case. Under assumption S3, we show differentiability of the
potential function z ↦V ðx, zÞ, and hence identification of marginal utility.
Theorem 2 (Lower-dimensional unobservable heterogeneity).

1. Local identification. Under assumptions EC,H, R, R0(2), and S2(A),

a. ∇z
�U ðx, zÞ is identified on any open subset of the support of Pzjx ,

and
b. v 0∇z

�U ðx, zÞ is identified for any vector v tangent to the support
of Pzjx .

2. Global identification. If, in addition, assumption S3holds,∇z
�U ðx, zÞ

is identified.
Local identification therefore holds under very weak assumptions, as
seen in theorem 2(1a). However, in cases with lower-dimensional unob-
served heterogeneity, consumer choices may be concentrated on a lower-
dimensional manifold, so that there are no open subsets in the support
of Pzjx . In such cases, theorem 2(1b) tells us that we can identify marginal
willingness to pay only along the support of good attributes actually traded
at equilibrium. To illustrate the idea, suppose that consumers are acquir-
ing housing. The latter is differentiated along two dimensions, size and air
quality, say. Suppose that consumers with identical observable characteris-
tics x are heterogeneous along a single scalar dimension of unobserved
heterogeneity ε. We would then expect equilibrium housing choices to
be concentrated on a curve in the (size� air quality) space, implicitly de-
fining a scalar quality index that is monotonic in unobserved type ε. Our
result says that we can identify counterfactual marginal willingness to pay
for size and air quality along that curve of observed equilibrium choices
only. To obtain global identification with lower-dimensional unobserved
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heterogeneity, we need a global z-convexity assumption on the potential
(which implies a shape restriction on the endogenous price function).
We investigate special cases:

1. The case zðx, ε, zÞ 5 0. From thefirst-order conditionof the con-
sumer’s program, we then have ∇pðzÞ 5 ∇zU ðx, zÞ, so that U(x, z)
is additively separable in x and z and the data on matching be-
tween consumers and producers cannot inform utility.

2. Scalar unobserved heterogeneity. Suppose that dε 5 1 and in
addition zðx, ε, zÞ 5 zðε, zÞ. Denote the (scalar) inverse demand
z ↦ εðx, zÞ, and assume regularity of all the terms involved. Dif-
ferentiating the first-order condition of the consumer problem
with respect to consumer observable characteristic x yields

D2
xz
�U ðx, zÞ 5 2D2

xεzðεðx, zÞ, zÞ∇xεðx, zÞ,
which is atmost of rank 1, sinceD2

xεzðεðx, zÞ, zÞ is a dz � dε matrix.
2. Partial Identification with Multiple Markets
All identification results so far require fixing the distribution of unob-
served consumer heterogeneity a priori. In this section, we derive iden-
tifying information from multiple markets, and the possibility of jointly
(partially) identifying the utility function �U ðx, zÞ and the distribution Pεjx .
Suppose thatm1 andm2 index two separate markets, in the sense that pro-
ducers, consumers, or goods cannotmove betweenmarkets.Markets differ
in the distributions of producer and consumer characteristics ðPm1

x , Pm1

~y Þ
and ðPm2

x , Pm2

~y Þ. Suppose, however, that the distribution of unobserved tastes
Pεjx and the utility function U ðx, ε, zÞ 5 �U ðx, zÞ 1 z0ε are identical in both
markets. Bothmarkets are at equilibrium. The equilibriumprice schedule
in market m is pm(z). The equilibrium distribution of traded qualities in
market m is Pm

zjx .
Under the assumptions of corollary 1, in each market, we recover a

nonparametrically identified utility function �U mðx, z; PεjxÞ, where the de-
pendence in the unknown distribution of tastes Pεjx is emphasized. For
each fixed Pεjx , corollary 1 tells us that ∇z

�U mðx, z; PεjxÞ is uniquely deter-
mined. In each market, the first-order condition of the consumer’s prob-
lem is εðx, z;mÞ 5 ∇ap,zpmðzÞ 2 ∇z

�U ðx, z; PεjxÞ. Differencing across markets
therefore yields

εðz, x;m1Þ 2 εðx, z;m2Þ 5 ∇ap,z p
m1ðzÞ 2 pm2ðzÞð Þ, (5)

which is an identifying equation for Pεjx . The right-hand side of equation (5)
is identified, since the price functions are observed. Moreover, for each
market m, the inverse demand ε(x, z; m) uniquely determines Pεjx , since
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it pushes the identifiedPm
zjx forward toPεjx . Point identificationwould require

conditions under which the difference εðz, x;m1Þ 2 εðx, z;m2Þ uniquely
determines Pεjx , which is beyond the scope of this work.
IV. Identification of Nonseparable
Simultaneous Equations
The analysis of hedonic equilibriummodels in section III motivates a new
approach to the identification of nonseparable-simultaneous-equations
models of the type H ðx, zÞ 5 ε, where x ∈ Rdx is an observed vector of co-
variates, z ∈ Rdz is the vector of dependent variables, Pzjx is identified from
the data, H is an unknown function, and ε ∈ Rdε is a vector of unobserv-
able shocks with distribution Pεjx . In the case dε 5 dz 5 1, H is identified
by Matzkin (2003) subject to the normalization of Pεjx and monotonicity
of z ↦H ðx, zÞ for all x. This section develops a class of shape restrictions
that allows identification of H in the multivariate case 1 ≤ dε ≤ dz.
As in the scalar case, we fix the conditional distribution Pεjx of errors a

priori. This is justified by the fact that for any vector of dependent vari-
ables Z ∼ Pzjx and any pair of absolutely continuous error distributions
ðPεjx , ~P~εjxÞ, there is an invertible mapping T such that H ðx, Z Þ ∼ Pεjx and
~H ðx, ZÞ ≔ H ðx, T ðZÞÞ ∼ ~P~εjx (by McCann 1995), so that ðH , PεjxÞ and
ð ~H , ~P~εjxÞ are observationally equivalent.
For identification, we rely on a shape restriction that emulates mono-

tonicity in z of H(x, z) in the scalar case. This generalized monotonicity
notion is inherited from utility-maximizing choices of good quality z by
consumers with characteristics (x, ε). As such, it is indexed by the utility
function.
Definition 2 (z-monotonicity). Let z be a function onRdx � Rdε � Rdz

that is continuously differentiable in its second and third variables and sat-
isfies assumption S2(A). A functionH onRdx � Rdz is z-monotone if for all
x, there exists a z-convex function z ↦V ðx, zÞ (see definition 1) such that
for all z, H ðx, zÞ ∈ ∂z

z V ðx, zÞ, where ∂z
z denotes the z-subdifferential with

respect to z from definition 4, in the online appendix.
Two special cases help clarify the concept of z-monotonicity:

1. When dz 5 dε 5 1, injectivity of ε↦ z zðx, ε, zÞ implies that V z is
convex or concave and that z ↦H ðx, zÞ is monotone.

2. When dε 5 dz and zðx, ε, zÞ 5 z0ε, V z 5 V *, which is convex and
therefore locally Lipschitz, hence almost surely differentiable
by Rademacher’s theorem (Villani 2009, theorem 10.8(ii)), so
that H ðx, zÞ 5 ∇zV ðx, zÞ is the gradient of a convex function.

The class of z-monotone functions has structural underpinnings as de-
mand functions resulting from the maximization of a utility function
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over good qualities z ∈ Rdz . Suppose that a consumer with characteristics
(x, ε) chooses z on the basis of the maximization of �U ðx, zÞ 1 zðx, ε, zÞ 2
pðzÞ. Suppose that z satisfies assumption S2 and that V ðx, zÞ ≔ pðzÞ2
�U ðx, zÞ is z-convex. Then, the demand function H that satisfies ∇ V ðx, zÞ 5
∇zzðx,H ðx, zÞ, zÞ, Pzjx almost surely, is z-monotonic by theorem 10.28(b)
of Villani (2009, 243). Theorem 3 then shows identification of demand
when utility is of the form �U ðx, zÞ 1 zðx, ε, zÞ and z is fixed.
Theorem 3 (Nonseparable simultaneous equations). In the

simultaneous-equations model H ðx, zÞ 5 ε, with z ∈ Rdz and x ∈ Rdx ,
and ε following known distribution Pεjx the function H :Rdx � Rdz →Rdε

is identified within the class of measurable z-monotone functions, for
any function z on Rdx � Rdε � Rdz that is bounded above, is continuously
differentiable in its second and third variables, and satisfies assumptions S2(A)
and R0(2), and

Ð
zðx, ε, zÞdPεjxðεÞ ≥ C ∈ R for all x and z.

Theorem 3 is a relatively straightforward application of classical results
in optimal transport theory, in particular theorem 10.28 of Villani (2009,
243). Brenier’s (1991) polar factorization theorem was, to the best of our
knowledge, first used to define multivariate quantile functions by Eke-
land, Galichon, and Henry (2012) and Galichon and Henry (2012), with
decision-theoretic applications.Carlier, Chernozhukov, andGalichon(2016)
and Chernozhukov et al. (2017), both coetaneous with the present paper,
apply McCann (1995) to multivariate quantile regression and tomultivar-
iate depth, quantiles, ranks, and signs, respectively. This section relies on
an extension of these optimal transport results to more general transport
costs and interprets it as an identification result, thus extending scalar
quantile identification strategies.
If we revisit the two special cases of z-monotonicity above, we obtain

the classical quantile identification of Matzkin (2003) and a result on the
identification of nonseparable-simultaneous-equations systems within the
class of gradients of convex functions.

1. When dz 5 dε 5 1, theorem 3 yields the identification of H in
the system ε 5 H ðx, zÞ when z ↦H ðx, zÞ is monotone.

2. When dε 5 dz and zðx, ε, zÞ 5 z0ε, theorem 3 yields the identifi-
cation of H in the system ε 5 H ðx, zÞ when z ↦H ðx, zÞ is the
gradient of a convex function.

Corollary 2. In the simultaneous-equations model z 5 Gðx, εÞ,
with z ∈ Rdz, x ∈ Rdx, ε ∼ Pεjx , and Pεjx a given absolutely continuous distri-
bution on Rdz, the function G :Rdx � Rdz →Rdz is identified within the
class of gradients of convex functions of ε, for each x.
Although the previous result is presented as a corollary of theorem 3,

it holds under weaker conditions than would be implied by theorem 3 in
case zðx, ε, zÞ 5 z0ε and is a direct application of the “Main Theorem” in
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McCann (1995). The only constraint is the absolute continuity of the dis-
tribution of ε, so that the outcome vector z and the covariate vector x are
unrestricted.
Beyond the special cases of corollary 2, we revisit the examples of sec-

tion III.C.2. First, consider the case of exponential transform zðx, ε, zÞ ≔
expðz0εÞ. Given marginal utility �U ðx, zÞ 1 expðz0εÞ and price p(z), theo-
rem 3 tells us that the solution ε 5 H ðx, zÞ to the consumer’s problem
∇ pðzÞ 2 ∇z

�U ðx, zÞ 5 expðz0H ðx, zÞÞH ðx, zÞ is unique. In the case where
consumers are maximizing utility of the form �U ðx, zÞ 1 od

k51Fkðx, zkεkÞ,
the corresponding system of differential equations with a unique solution
is pzkðzÞ 2 �Uzkðx, zÞ 5 fkðx, zkHkðx, zÞÞHkðx, zÞ, each k, where pz k

and �Uz k
are

the partial derivatives with respect to the kth variable, fk is the derivative
of Fk with respect to the second argument, and Hk is the kth component
of H.
V. Discussion
This paper proposed a set of conditions under which utilities and costs
in a hedonic equilibrium model are identified from the observation of
a single-market outcome. The proof strategy extends Ekeland, Heckman,
and Nesheim (2004) and Heckman, Matzkin, and Nesheim (2010; here-
after the EHMN approach) to the case of goods characterized by more
than one attribute. The proposed shape restriction on the utility function,
called the twist condition, extends the single-crossing condition in the
EHMN approach. The proof of identification mirrors that of (one of the
strategies in) the EHMN approach. First, inverse demand is identified
from the twist condition and cyclical monotonicity (a feature of equilib-
rium). Then, the first-order condition of the consumer’s problem allows
the recovery of the utility function, once a suitable form of weak differen-
tiability of the endogenous price function is ensured. The identification
proof highlights another parallel with the EHMNapproach, which is (gen-
eralized) monotonicity of inverse demand. In the scalar case, this general-
ized monotonicity reduces to monotonicity, whereas in the special case,
where utility takes the form U ððx, εÞ, zÞ 5 �U ðx, zÞ 1 z0ε, inverse demand
is the gradient of a convex function.We then show that this generalized form
of monotonicity is a suitable shape restriction to identify nonseparable-
simultaneous-equations models with a strategy that extends the quantile
identification ofMatzkin (2003). Most of our results involve fixing the dis-
tribution of unobserved consumer heterogeneity a priori, as in the origi-
nal quantile identificationmethod. Although we provide some discussion
of the case, where data from multiple distinct markets can provide addi-
tional identifying equations to (partially) identifying ð �U ðx, zÞ, PεjxÞ jointly,
more research is needed to develop point identification conditions for
the latter.
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Appendix A

Notation

Throughout the paper, we use the following notational conventions. Let f(x, y)
be a real-valued function on Rd � Rd . When f is sufficiently smooth, the gradient
of f with respect to x is denoted ∇x f , and the matrix of second-order derivatives
with respect to x and y is denoted D2

xy f . When f is not smooth, ∂x f refers to the
subdifferential with respect to x, from definition 2, in the online appendix, and
∇ap,x f refers to the approximate gradient with respect to x, from definition 6, in
the online appendix. The set of all Borel probability distributions on a set Z is de-
noted D(Z). A random vector ε with probability distribution P is denoted ε ∼ P ,
and X ∼ Y means that the random vectors X and Y have the same distribution.
The product of two probability distributions m and n is denoted m� n, and for a
map f : X ↦ Y and m ∈ DðX Þ, n ≔ f #m is the probability distribution on Y defined
for eachBorel subsetAofY by nðAÞ 5 mð f 21ðAÞÞ. For instance, ifT is amap fromX
to Y and n a probability distribution onX, then m ≔ ðid, T Þ#n defines the probabil-
ity distribution on X � Y by mðAÞ 5 Ð

X1Aðx, T ðxÞÞdmðX Þ for any measurable sub-
setA ofX � Y . Given twoprobability distributions m and nonX andY, respectively,
Mðm, nÞ denotes the subset of DðX � Y Þ containing all probability distributions
with marginals m and n. We denote the inner product of two vectors x and y x0y.
The Euclidean norm is denoted k � k. The notation jaj refers to the absolute value
of the real number a, whereas jAj refers to the Lebesguemeasure of set A. The set
of all continuous real-valued functions on Z is denoted C 0(Z), and Br(x) is the open
ball of radius r centered at x. For each fixed x ∈ X , the function ε ↦ V *ðx, εÞ ≔
supz∈Rdfz0ε 2 V ðx, εÞg is called the convex conjugate (also known as the Legendre-
Fenchel transform) of z ↦ V ðx, zÞ. Still for fixed x, the convex conjugate z ↦
V **ðx, εÞ ≔ supε∈Rdfz0ε 2 V *ðx, εÞg is called the double conjugate or convex envelope
of the potential function z ↦ V ðx, zÞ. According to convex duality theory (see, for
instance, Rockafellar 1970, 104, theorem 12.2), the double conjugate of V isV itself
if and only if z ↦ V ðx, zÞ is convex and lower-semicontinuous. Thenotationwz refers
to the z-convex conjugate of the function w (definition 3, in the online appendix),
and ∂z

x refers to the z-subdifferential with respect to x (definition 4, in the online
appendix).
Appendix B

Proof of Results

B1. Proof of Lemma 2

By definition of V z, we have

V x, zð Þ ≥ zðx, ε, zÞ 2 V zðx, εÞ: (B1)

As, by definition of z-conjugation, V zzðx, zÞ 5 supε½zðx, ε, zÞ 2 V zðx, εÞ�, we have

V x, zð Þ ≥ V zzðx, zÞ, (B2)

by taking a supremum over ε in (B1).
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Let g be a hedonic equilibrium probability distribution on ~X � Z � ~Y . By as-
sumption EC,

z x, ε, zð Þ 2 V x, zð Þ 5 U x, ε, zð Þ 2 p zð Þ 5 max
z∈Z

U x, ε, zð Þ 2 p zð Þð Þ
5 max

z∈Z
z x, ε, zð Þ 2 V x, zð Þð Þ 5 V z x, εð Þ

is true g almost everywhere. Hence, there is equality in (B1) g almost everywhere.
Hence, for PzFx almost every z, and ε such that (z, ε) is in the support of g, we
have V ðx, zÞ 5 zðx, ε, zÞ 2 V zðx, εÞ. But the right-hand side is bounded above
by V zz(x, z) by definition, so we get V ðx, zÞ ≤ V zzðx, zÞ. Combined with (B2), this
tells us that V ðx, zÞ 5 V zzðx, zÞ, PzFx almost everywhere. QED

B2. Proof of Lemma 1

For a fixed observable type x, assume that the types ~x0 ≔ ðx, ε0Þ and ~x1 ≔ ðx, ε1Þ
both choose the same good, �z ∈ Z , from producers ~y0 and ~y1, respectively.

We want to prove that this implies that the unobservable types are also the same;
that is, that ε0 5 ε1. This property is equivalent to having a map from the good
qualities Z to the unobservable types for each fixed observable type.

Note that �z must maximize the joint surplus for both ε0 and ε1. That is, setting

S x, ε,~yð Þ 5 sup
z∈Z

�U x, zð Þ 1 z x, ε, zð Þ 2 C ~y, zð Þð Þ,

we have

S x, ε0, ~y0ð Þ 5 �U ðx,�zÞ 1 z x, ε0,�zð Þ 2 C ~y0,�zð Þ (B3)

and

S x, ε1, ~y1ð Þ 5 �U ðx,�zÞ 1 z x, ε1,�zð Þ 2 C ~y1,�zð Þ: (B4)

By assumption EC, we can apply lemma 1 of Chiappori et al. (2010), so that the
pair of indirect utilities (V,W ), where V ð~xÞ 5 supz∈Z ðU ð~x, zÞ 2 pðzÞÞ andW ð~yÞ 5
supz∈Z ðpðzÞ 2 Cð~y, zÞÞ, achieve the dual (Kantorovich) of the optimal transportation
problem

sup
p∈M P~x ,P~yð Þ

ð
S ~x,~yð Þdp ~x, ~yð Þ,

with solution p. This implies, from theorem 1.3 of Villani (2003, 19), that for al-
most all pairs ð~x0, ~y0Þ and ð~x1,~y1Þ,

V ~x0ð Þ 1 W ~y0ð Þ 5 S ~x0,~y0ð Þ,
V ~x1ð Þ 1 W ~y1ð Þ 5 S ~x1,~y1ð Þ,
V ~x0ð Þ 1 W ~y1ð Þ ≥ S ~x0, ~y1ð Þ,
V ~x1ð Þ 1 W ~y0ð Þ ≥ S ~x1, ~y0ð Þ:

We therefore deduce the condition (called the 2-monotonicity condition)

S x, ε0, ~y0ð Þ 1 S x, ε1,~y1ð Þ ≥ S x, ε1, ~y0ð Þ 1 S x, ε0,~y1ð Þ,
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recalling that ~x 0 5 ðx, ε0Þ and ~x1 5 ðx, ε1Þ. Now, by definition of S as the maxi-
mized surplus, we have

S x, ε1, ~y0ð Þ ≥ �U ðx,�zÞ 1 z x, ε1,�zð Þ 2 C ~y0,�zð Þ (B5)

and

S x, ε0, ~y1ð Þ ≥ �U ðx,�zÞ 1 z x, ε0,�zð Þ 2 C ~y1,�zð Þ: (B6)

Inserting this, as well as equations (B3) and (B4), into the 2-monotonicity in-
equality yields

�U ðx,�zÞ 1 z x, ε0,�zð Þ 2 C ~y0,�zð Þ1 �U ðx,�zÞ 1 z x, ε1,�zð Þ 2 C ~y1,�zð Þ
≥ S x, ε1, ~y0ð Þ 1 S x, ε0,~y1ð Þ
≥ �U ðx,�zÞ 1 z x, ε1,�zð Þ 2 C ~y0,�zð Þ 1 �U ðx,�zÞ
1 z x, ε0,�zð Þ 2 C ~y1,�zð Þ:

But the left- and right-hand sides of thepreceding stringof inequalities are identical,
so we must have equality throughout. In particular, we must have equality in (B5)
and (B6). Equality in (B5), for example, means that z maximizes z ↦ �U ðx, zÞ 1
zðx, ε1, zÞ 2 Cð~y0, zÞ, and so, as �z is in the interior of Z by assumption EC, we have

∇zz x, ε1,�zð Þ 5 ∇zC ~y0,�zð Þ 2 ∇z
�U x,�zð Þ: (B7)

Since �z also maximizes z ↦ �U ðx, zÞ 1 zðx, ε0, zÞ 2 Cð~y0, zÞ, we also have

∇zz x, ε0,�zð Þ 5 ∇zC ~y0,�zð Þ 2 ∇z
�U x,�zð Þ: (B8)

Equations (B7) and (B8) then imply ∇zzðx, ε1,�zÞ 5 ∇zzðx, ε0,�zÞ, and assump-
tion S2(A) implies ε1 5 ε0. QED

B3. Proof of Theorem 1

Theorem 1(1).—Since by lemma 4 in the online appendix, V(x, z) is approximately
differentiable PzFx almost surely, and since �U ðx, zÞ is differentiable by assumption,
pðzÞ 5 V ðx, zÞ 1 �U ðx, zÞ is also approximately differentiable PzFx almost surely.
Since, by lemma 1, the inverse-demand function ε(x, z) is uniquely determined,
thefirst-order condition∇zzðz, εðx, zÞ, zÞ 5 ∇appðzÞ 2 ∇z

�U ðx, zÞ identifies∇z
�U ðx, zÞ,

PzFx almost everywhere, as required.
Theorem 1(2).—In part 1, we have shown uniqueness (up to location) of the pair

(V, V z) such that V ðx, zÞ 1 V zðx, εÞ 5 zðx, ε, zÞ, p almost surely. By theorem 1.3
of Villani (2003, 19), this implies that (V, V z) is the unique (up to location) pair of
z-conjugates that solves the dual Kantorovich problem, as required. QED
B4. Proof of Theorems 2(1a) and 2(2)

Step 1: Differentiability of V in z

The objective is to prove that the subdifferential (see definition 2 in the online
appendix) at each z 0 is a singleton, which is equivalent to differentiability at z 0.
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We show theorem 2(2). The same method of proof applies on any open subset
of the support of PzFx to yield the proof of theorem 2(1a). From assumption S3,
V(x, z) is z-convex. and hence locally semiconvex (see definition 5 in the online
appendix), by proposition C.2 in Gangbo and McCann (1996). We recall the def-
inition of local semiconvexity from that paper. Now, lemma 1 shows that for each
fixed z, the set

ε ∈ Rdz : V x, zð Þ 1 V z x, εð Þ 5 z x, ε, zð Þ� �
≔ f zð Þf g (B9)

is a singleton. We claim that this means that V is differentiable with respect to z
everywhere. Fix a point z 0. We will prove that the subdifferential ∂zV ðx, z 0Þ contains
only one extremal point (for a definition, see Rockafellar 1970, sec. 18). This will
yield the desired result. Indeed, all subdifferentials are closed and convex. Hence,
so is the subdifferential of V. By assumption S3, V is z-convex, hence continuous, by
the combination of propositions C.2 and C.6(i) in Gangbo and McCann (1996).
Hence, as the subdifferential of a continuous function, the subdifferential of V is
also bounded. Hence, it is equal to the convex hull of its extreme points (see Rocka-
fellar 1970, theorem 18.5). The subdifferential of V at z 0 must therefore be a single-
ton, and V must be differentiable at z 0 (theorem 25.1 in Rockafellar 1970 can be
easily extended to locally semiconvex functions). Let q be any extremal point in
∂zV ðx, z0Þ. Let zn be a sequence satisfying the conclusion in lemma 3 in the online
appendix. Now, asV is differentiable at each point zn, we have the envelope condition

∇zV x, znð Þ 5 ∇zz x, εn , znð Þ, (B10)

where εn 5 f ðznÞ is the unique point giving equality in equation (B9).
As the sequence ∇zzðx, εn , znÞ converges, assumption R0(2) implies that the εn

remain in a bounded set. We can therefore pass to a convergent subsequence
εn → ε0. By continuity of∇zz , we canpass to the limit in equation (B10) and, recalling
that the left-hand side tends to q, we obtain q 5 ∇zzðx, ε0, z0Þ. Now, by definition
of εn, we have the equality V ðx, znÞ 1 V zðx, εnÞ 5 zðx, εn, znÞ. By assumption S3,
V and V z are z-convex, hence continuous, by the combination of propositions C.2
and C.6(i) in Gangbo and McCann (1996). Hence, we can pass to the limit to ob-
tain V ðx, z 0Þ 1 V zðx, ε0Þ 5 zðx, ε0, z 0Þ. But this means that ε0 5 f ðz 0Þ, and so
q 5 ∇zzðx, ε0, z 0Þ 5 ∇zzðx, f ðz 0Þ, z 0Þ is uniquely determined by z 0. Thismeans that
the subdifferential can have only one extremal point, completing the proof of dif-
ferentiability of V.

Step 2

Since by step 1, V(x, z) is differentiable PzFx almost surely, and since �U ðx, zÞ is dif-
ferentiable by assumption, pðzÞ 5 V ðx, zÞ 1 �U ðx, zÞ is also differentiable PzFx al-
most surely. Since, by lemma 1, the inverse-demand function ε(x, z) is uniquely
determined, the first-order condition ∇zzðx, εðx, zÞ, zÞ 5 ∇pðzÞ 2 ∇z

�U ðx, zÞ iden-
tifies ∇z

�U ðx, zÞ, PzFx almost everywhere, as required. QED

B5. Proof of Theorem 2(1b)

The argument in the proof of theorem 2(2) applies to Vzz(x, z); this function is
therefore differentiable throughout the support of PzFx. Now, if v is tangent to the
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support of PzFx at z 0, there is a curve z(t) in PzFx that is differentiable at t 0, where t0
is such that z0 5 zðt 0Þ and z0ðt0Þ 5 v. Since V zzðx, zÞ 5 V ðx, zÞ on the support, we
have V zzðx, zðtÞÞ 5 V ðx, zðtÞÞ. Since the left-hand side is differentiable as a func-
tion of t at t0, the right-hand side must be as well, and

∇zV
zz x, z tð Þð Þ � v 5 ∇zV

zz x, z tð Þð Þ � z0 t 0ð Þ 5 ∂
∂t

V x, z tð Þð Þ½ �jt5t 0
:

Therefore, pðzÞ 5 V ðx, zÞ 1 �U ðx, zÞ is also differentiable along this curve, and

∂
∂t

p z tð Þð Þ½ �jt5t 0 5
∂
∂t

V x, z tð Þð Þ½ �jt5t 0 1 ∇z
�U x, z t 0ð Þð Þ � v:

It then follows from the first-order condition that

∇zz x, ε x, zð Þ, zð Þ � v 5 ∇zV
zz x, z tð Þð Þ � v 5

∂
∂t

V x, z tð Þð Þ½ �jt5t 0

5
∂
∂t

p z tð Þð Þ½ �jt5t 0 2 ∇z
�U x, z t0ð Þð Þ � v,

which identifies the direction derivative ∇z
�U ðx, zðt0ÞÞ � v. QED

B6. Proof of Theorem 3

Fix x ∈ Rdx , and omit from the notation throughout the proof. Fix a twice contin-
uously differentiable function z on Rdε � Rdz that satisfies assumption S2(A). As-
sume that there exist two z-monotonic functions H and ~H such that H#Pz 5 Pε.
By the definition of z-monotonicity (definition 2), there exist two z-convex func-
tions w and ~w such thatH ∈ ∂zw and ~H ∈ ∂z ~w. By definition of the z-subdifferential
(definition 4 in the online appendix), the existence of these functions implies
that Pz almost surely, wðzÞ 1 wzðH ðzÞÞ 5 zðH ðzÞ, zÞ and ~wðzÞ 1 ~wzðH ðzÞÞ 5
zð ~H ðzÞ, zÞ. Hence, both H and ~H are solutions to the Monge optimal transport
problem with cost z, which is unique by theorem 10.28 of Villani (2009, 243). It
remains to show that the assumptions of theorem 10.28 of Villani (2009) are
satisfied. Indeed, by assumption R, z is differentiable everywhere, hence super-
differentiable, verifying assumption 10.28(i); 10.28(ii) is assumption S2, and
10.28(iii) is satisfied under assumption R0(2) by step 1 of the proof of theorem 2(2).
Finally, integrating

Ð
zðx, ε, zÞdPεjxðεÞ > C over PzFx with z bounded above yieldsÐ Ð

zðx, ε, zÞdPzjxðzÞdPεjxðεÞ finite, which is the remaining condition for theo-
rem 10.28 of Villani (2009) to hold. The result follows. QED
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