
PW1: Doing a soup with Beautiful Soup
Credits: Alexandre Chevallier, Jéremy Richard & Quentin Agren

Beginning

Beautiful Soup

Beautiful Soup is a Python library for pulling data out of HTML and XML files. It works
with your favorite parser to provide idiomatic ways of navigating, searching, and

modifying the parse tree. It commonly saves programmers hours or days of work.

Quests
Scrap one table and put the result in a CSV
Scrap another table and using Pandas (PW1) to manipulate those data (plotting)

Scrap all the table in the page

Target

We'll try to scrap data from Dehli MCD Election from this URL
http://www.elections.in/delhi/mcd-elections/

Importing librairies

Here, we are going to use 3 differents librairies :

urllib to go to the webpage and get all the page (GET request)

BeautifulSoup for reading the HTML file
csv to write the result inside a CSV

Get the web page

Our data are in webpage, organized with HTML markups which we can see in web
browser. We'll download the webpage and parse it to get data.

In []: #import bs4 from BeautifulSoup

from bs4 import BeautifulSoup

import urllib --> librairy for request the website

import urllib

import csv --> librairy for manipulating csv file

import csv

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.elections.in/delhi/mcd-elections/

Docs:

urllib request: https://docs.python.org/3.4/library/urllib.request.html#module-

urllib.request
BeautifulSoup Quickstart:
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start

Download data

1. Perform a request to the specific URL and put the HTML page inside a variable.

2. Parse HTML data received before
3. Display title of the page

Do it yourself

Delhi MCD Election Results 2017, Party and Ward Wise

Scraping

You can choose any markup you want in this page. For that you to stay close of the

"code source view" of the page to know which explicit markup you want to scrap.

Docs

BeaufifulSoup find functions:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#calling-a-tag-is-like-
calling-find-all

Scrap it !

1. Display the number of <table> statement in the page
2. Scrap the table "Delhi Municipal Corporation Wards and Seats Reservation" (which

is the seventh <table> in HTML)
3. Display the data

Do it yourself

In []: # Put URL in a variable

DEHLI_MCD_URL = 'http://www.elections.in/delhi/mcd-elections/'

Open URL with urllib and read data into a variable

html = urllib.request.urlopen(DEHLI_MCD_URL).read()

Parse HTML variable with BeautifulSoup() method and put it in a variabl

soup = BeautifulSoup(html, 'html.parser')

Use print function to display "title" field of the webpage.

print(soup.title.string)

In []: # Find all the <table> markups in the HTML with findAll() function and pu

tables = soup.findAll('table')

Print the number of tables in the page with len() method

print(len(tables))

Get the seventh table using previous variable (careful: tables's ids st

https://docs.python.org/3.4/library/urllib.request.html#module-urllib.request
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#calling-a-tag-is-like-calling-find-all

11

[<tr class="tableizer-firstrow"><th>Municipal Corporation Name</th><th>To

tal Wards</th><th>Seats for General Candidates</th><th>Seats reserved for

Woman (SC)</th><th>Seats reserved for SCs</th><th>Seats reserved for Woma

n</th></tr>, <tr><td>North</td><td>104</td><td>42</td><td>10</td><td>10</

td><td>42</td></tr>, <tr><td>South</td><td>104</td><td>44</td><td>8</td><

td>7</td><td>45</td></tr>, <tr><td>East</td><td>64</td><td>26</td><td>6</

td><td>5</td><td>27</td></tr>]

Export your data

With those data you can export them in a file to work with your favorite software. We'll
see how to export them to a CSV file which a simple format and can be used with many

softwares.

Docs

Manipulate CSV file: https://docs.python.org/2/library/csv.html
Python Data structures:
https://docs.python.org/3.4/library/urllib.request.html#module-urllib.request

Writing CSV file

1. Open a CSV file with write rule

2. Write data in the file

Do it yourself

table = tables[6]

Find all rows (<tr> markups>) of the table, using the variable created

rows = table.findAll('tr')

Optionnal: Print raw data to verify what you have scrapped.

print(rows)

In []: # open a CSV file with open() function

with open('scraping_output.csv', 'w') as csvfile:

Use csv library to open writer handle with opened file

writer = csv.writer(csvfile)

Make a loop to extract rows data in tuple, then write it to handle

for i in rows:

data = tuple(td.text for td in i)

writer.writerow(data)

Check your file in Jupyter's work folder

https://docs.python.org/2/library/csv.html
https://docs.python.org/3.4/library/urllib.request.html#module-urllib.request

