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Structural Estimation of Matching

Markets with Transferable Utility∗

Alfred Galichon† Bernard Salanié‡

September 17, 2021

In matching models with transferable utility, the partners in a match agree to
transact in exchange of a transfer of numéraire (utility or money) from one side
of the match to the other. While transfers may be non zero-sum (if for instance
there is diminishing marginal utility, frictions, or other costs) or constrained,
we focus in this chapter on the simplest case of perfectly transferable utility, in
which the transfers are unlimited and zero-sum: the transfer agreed to by one
partner is fully appropriated by the other side. For simplicity, we also limit
our discussion to the one-to-one bipartite model: each match consists of two
partners, drawn from two separate subpopulations. The paradigmatic example
is the heterosexual marriage market , in which the two subpopulations are men
and women. We will use these terms for concreteness.

With perfectly transferable utility, the main object of interest is the joint
surplus function. It maps the characteristics of a man and a woman into the
surplus utility created by their match, relative to the sum of the utilities they
would achieve by staying single. Knowing the joint surplus function is informa-
tive about the preferences of the partners, and about their interaction within
the match. It also opens the door to counterfactual analysis, for instance of the
impact of policy changes.

We assume that the analyst observes a discrete set of characteristics for
each individual: their education, their age, their income category, etc. Each
combination of the values of these characteristics defines a type. In any real-
world application, men and women of a given observed type will also vary in
their preferences and more generally in their ability to create joint surplus in
any match. We will assume that all market participants observe this additional
variation, so that it contributes in determining the observed matching. On the
other hand, by definition it constitutes unobserved heterogeneity for the analyst.
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The main challenge in this field is to recover the parameters of the joint surplus
function without restricting too much this two-sided unobserved heterogeneity.

Matching with transferable utility solves a linear programming problem.
In recent years it has been analyzed with the methods of optimal transport .
Under an additional “separability” assumption, most functions of interest are
convex; then convex duality gives a simple and transparent path to identifica-
tionidentification of the parameters of these models1. The empirical implemen-
tation is especially straightforward when the unobserved heterogeneity has a
logit form and the joint surplus is linear in the parameters. Then the parame-
ters can be estimated by minimizing a globally convex objective function.

Section 1 introduces separable matching models. Section 2 presents assump-
tions under which data on “who matches whom” (the matching patterns) iden-
tifies the parameters of the joint surplus function, and possibly also of the
distributions of unobserved heterogeneity. We will also show how these param-
eters can be estimated (Section 3), and how to compute the stable matchings
for given parameter values (Section 4).

Notation. We use bold letters for vectors and matrices. For any doubly-
indexed variable z = (zab), we use the notation za· to denote the vector of values
of zab when b varies; and we use a similar notation for z·b.

1 Matching with unobserved heterogeneity

1.1 Population and preferences

We consider a population of men indexed by i and a population of women
indexed by j. Each match must consist of one man and one woman; and indi-
viduals may remain single. If a man i and a woman j match, the assumption of
perfectly transferable utility implies that their respective utilities can be written
as

αij + tij

γij − tij

where tij is the (possibly negative) transfer from j to i2. Transfers can take all
values on the real line, and are costless. We assume that each individual knows
the equilibrium values of the transfers for all matches that (s)he may take part
in, as well as his/her pre-transfer utility αi· or γ·j .

One key feature of markets with perfectly transferable utility is that match-
ing patterns do not depend on α and γ separately, but only on their sums,
which we call the joint surplus3.

1We collected the elements of convex analysis used in this chapter in Appendix A.
2If tij is negative, it should be interpreted as a transfer of −tij from i to j. Also, ti0 =

t0j = 0
3Strictly speaking, it only is a “surplus” when all αi0 and γ0j are zero. We follow common

usage here.
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Definition 1 (Joint Surplus). The joint surplus of a match is the sum of (pre-
or post-transfers) utilities:

Φ̃ij = (αij + tij) + (γij − tij) = αij + γij .

We extend the definition to singles with Φ̃i0 = αi0 and Φ̃0j = γ0j.

To see this, note that any change

(αij , γij) → (αij − δ, γij + δ)

can be neutralized by adding δ to the transfer tij . This combined change leaves
post-transfer utilities unchanged; therefore it does not affect the decisions of the
market participants.

A matching is simply a set d of 0–1 variables (dij) such that dij = 1 if and
only if i and j are matched, along with 0–1 variables di0 (resp. d0j) that equal 1
if and only if man i (resp. woman j) is unmatched (single). It is feasible if no
partner is matched more than once:

for all i,
∑

j dij + di0 = 1; and for all j,
∑

i dij + d0j = 1.

1.2 Stability

Our notion of equilibrium is stability. Its definition in the context of models
with perfectly transferable utility is as follows4.

Definition 2 (Stability—primal definition). A feasible matching is stable if and
only if

• no match has a partner who would rather be single

• no pair of currently unmatched partners would rather be matched.

The first requirement translates into αij − αi0 ≤ tij ≤ γij − γ0j for all
matched (i, j), that is if dij = 1. The second one is easier to spell out if we
define ui (resp. vj) to be the post-transfer utility of man i (resp. woman j) at
the stable matching. Then we require that if dij = 0, we cannot find a value of
the transfer tij that satisfies both αij + tij > ui and γij − tij > vj . Obviously,

this is equivalent to requiring that Φ̃ij ≤ ui+ vj . Note that if dij = 1, then this
inequality is binding since the joint surplus must be the sum of the post-transfer
utilities. Moreover, the first requirement can be rewritten as ui ≥ αi0 for all
men and vj ≥ γ0j , with equality if man i or woman j is single.

We summarize this in an equivalent definition of stability.

Definition 3 (Stability—dual definition). A feasible matching d is stable if and
only if the post-transfer utilities ui and vj satisfy

• for all i, ui ≥ Φ̃i0, with equality if i is unmatched; and for all j, vj ≥ Φ̃0j ,
with equality if j is unmatched

4It can be seen as a special case of the more general definition of stability.
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• for all i and j, ui + vj ≥ Φ̃ij, with equality if i and j are matched.

The conditions in Definition 3 are exactly the Karush-Kuhn-Tucker optimal-
ity conditions of the following maximization program:

max
d≥0

∑

i,j

dijΦ̃ij +
∑

i

di0Φ̃i0 +
∑

j

d0jΦ̃0j

s.t.
∑

j

dij + di0 = 1 ∀i (1)

∑

i

dij + d0j = 1 ∀j (2)

if ui and vj are the multipliers of the feasibility conditions. Thus the stable
matchings maximize the total joint surplus under the feasibility constraints.
Program 2 above is called the primal program. Since both the objective function
and the constraints are linear, its dual has the same value. It minimizes the
sum of the post-transfer utilities under the stability constraints

min
(ui),(vj)

∑

i

ui +
∑

j

vj

s.t. ui ≥ Φ̃i0 ∀i
vj ≥ Φ̃0j ∀j
ui + vj ≥ Φ̃ij ∀i, j, (3)

and the multipliers of the constraints equal the di0, d0j , dij of the associated
stable matching.

From an economic point of view, the linearity of these programs implies that
since the feasibility set is never empty (one can always leave all men and women
unmatched), there exists a stable matching, it is generically unique, and there
always exists a stable matching d whose elements are all integers (zero or one).
This paints a very different picture from matching with non-transferable utility.

1.3 Separability

A proper econometric setting requires that we distinguish carefully what the
analyst can observe from unobserved heterogeneity, which only the market par-
ticipants observe. Most crucially, the analyst cannot observe all the determi-
nants of the pre-transfer utilities αij and γij generated by a hypothetical match
between a man i and a woman j. A priori, they could depend on interactions
between characteristics the analyst observes, between these characteristics and
unobserved heterogeneity, and between the unobserved heterogeneity of both
partners.

We now define observed characteristics as types x ∈ X for men, and y ∈ Y
for women. These types are observed by all market participants as well as the
analyst. There are nx men of type x andmy women of type y. The set of marital
options that are offered to men and women is the set of types of partners on
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the other side of the market, plus singlehood. We continue to use the notation
0 for singlehood and we define X0 = X ∪ {0} and Y0 = Y ∪ {0} as the set of
options that are available to respectively women and men.

Men and women of a given type also have other characteristics which are not
observed by the analyst. A man i who has observed type x, or a woman j who
has observed type y, may be a more or less appealing partner in any number of
ways. In so far as these characteristics are payoff-relevant, they contribute to
determining who matches whom. We will assume in this chapter that contrary
to the analyst, all participants observe these additional characteristics. To the
analyst, they constitute unobserved heterogeneity. It is important to note that
this distinction is data-driven: richer data converts unobserved heterogeneity
into types.

Much of the literature has settled on excluding interactions between unob-
served characteristics, and this is the path we take here. We impose:

Assumption 4 (Separability). The joint surplus generated by a match between
man i with type x and woman j with type y is

Φ̃ij = Φxy + εiy + ηjx. (4)

The utility of man i and woman j if unmatched are εi0 and ηj0 respectively.

In the language of analysis of variance models, the separability assumption
rules out two-way interactions between unobserved characteristics, conditional
on observed types . While this is restrictive, it still allows for rich patterns of
matching in equilibrium. For instance, all women may like educated men, but
those women who give a higher value to education are more likely (everything
equal) to marry a more educated man, provided that they in turn have observed
or unobserved characteristics that more educated men value more.

Since the analyst can only observe types, we now redefine a matching as
a collection µ of non-negative numbers: µxy denotes the number of matches
between men of type x and women of type y, which is determined in equilibrium
and observed by the analyst. All men of type x, and all women of type y, must
be single or matched. This generates the feasibility constraints:

Nx(µ) :=
∑

y∈Y

µxy + µx0 = nx ∀x ∈ X

My(µ) :=
∑

x∈X

µxy + µ0y = my ∀y ∈ Y.

In the following, we denote xi = x if man i is of type x, and yj = y if woman
j is of type y.
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1.4 Equilibrium

Convex duality will be the key to our approach to identification. We start by
rewriting the dual characterization of the stable matching in (3) as

min
ui≥εi0
vj≥ηj0





∑

i

ui +
∑

j

vj



 (5)

s.t. ui + vj ≥ Φ̃ij ∀i, j.

Given Assumption 4, the constraint in (5) can be rewritten as

(ui − εiy) + (vj − ηjx) ≥ Φxiyj
∀i, j. (6)

Define Uxy = mini:xi=x {ui − εiy} and Vxy = minj:yj=y

{

vj − ηjx
}

for x, y 6= 0;
and without loss of generality, set Ux0 = V0y = 0 for x, y > 0. The constraint
becomes

Uxy + Vxy ≥ Φxy ∀x, y.
Moreover, by definition ui = maxy∈Y0

(Uxiy+εiy) and vj = maxx∈X0
(Vxyj

+ηjx),
so that we can rewrite the dual program as

min
U ,V





∑

i

max
y∈Y0

(Uxiy + εiy) +
∑

j

max
x∈X0

(Vxyj
+ ηjx)





s.t. Uxy + Vxy ≥ Φxy ∀x, y.

Inspection of the objective function shows that the inequality constraint
Uxy + Vxy ≥ Φxy can be replaced by an equality; indeed, if it were strict, one
could weakly improve the objective function while satisfying the constraint.
Since this implies that Uxy + Vxy = Φxy, we can replace Vxy with (Φxy − Uxy)
to obtain a simple formula for the total joint surplus :

W = min
U





∑

i

max
y∈Y0

(Uxiy + εiy) +
∑

j

max
x∈X0

(Φxyj
− Uxyj

+ ηjx)



 . (7)

We just reduced the dimensionality of the problem from the number of indi-
viduals in the market to the product of the numbers of their observed types.
Since the latter is typically orders of magnitude smaller than the former, this is
a drastic simplification. Assumption 4 was the key ingredient: without it, we
would have an unobserved term ξij interacting the unobservables in the joint

surplus Φ̃ij and (6) would lose its nice separable structure.
Moreover, the nested min-max in equation (7) is not as complex as it seems.

Consider the expression

Gx(Ux·) :=
1

nx

∑

xi=x

max
y∈Y0

(Uxy + εiy).
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When the number of individuals nx tends to infinity, Gx converges to the Emax
operator, namely

Gx(Ux·) := E[max
y∈Y0

(Uxy + εiy)].

We shall assume from now on that this large market limit is a good approxima-
tion.

Since the maximum is taken over a collection of linear functions of Ux·, its
value is a convex function, and so is Gx. Defining Hy(V·y) similarly, we obtain

W = min
U

(G(U) +H(Φ−U)) (8)

where

G(U) :=
∑

x∈X

nxGx(Ux·)

H(V ) :=
∑

y∈Y

myHy(V·y).

These functions play a special role in our analysis. Since G is convex, it has a
subgradient everywhere, which is a singleton almost everywhere. It is easy to
see that the derivative of maxy∈Y0

(Uxy + εiy) with respect to Uxy equals 1 if y
achieves a strict maximum, and 0 if it is not a maximum. As a consequence,
the subgradient of Gx with respect to Uxy is5 the proportion of men of type
x whose match is of type y. We denote this proportion µM

y|x. Finally, we note
that the subgradient of G with respect to Uxy is nx times the subgradient of
Gx, that is the number µM

xy . To conclude (and using similar definitions for H):

µM = ∂G(U)

µW = ∂H(V ).

In equilibrium we must have µM
xy = µW

xy for all x, y. This should not come as a
surprise as it translates the first-order conditions in (8):

∂G(U) ∩ ∂H(Φ−U) 6= ∅.

2 Identification

Now let us denote G∗ the Legendre-Fenchel transform of the convex function G:

G∗(µ) = sup
a







∑

x∈X
y∈Y

µxyaxy −G(a)






.

It is another convex function; and by the theory of convex duality we know that
since

µM = ∂G(U),

5Neglecting the measure zero cases where the subgradient is not a singleton.
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we also have U = G∗(µM ), that is

Uxy =
∂G∗

∂µxy

(µM ). (9)

Similarly,

Vxy =
∂H∗

∂µxy

(µW ). (10)

2.1 Identifying the Joint Surplus

In equilibrium, µM = µW := µ and U + V = Φ; therefore we obtain

Φxy =
∂G∗

∂µxy

(µ) +
∂H∗

∂µxy

(µ). (11)

Observing the matching patterns thus identifies all values of Uxy, Vxy, and Φxy,
provided that we have enough information to evaluate the function G. Since
the shape of the function G only depends on the distribution of the unobserved
heterogeneity terms, this is the piece of information we need.

Assumption 5 (Distribution of the unobserved heterogeneity). For any man
i of type x, the random vector εi· = (εiy)y∈Y0

is distributed according to Px.

Similarly, for any woman j of type y, the random vector ηj· = (ηjx)x∈X0

is

distributed according to Qy.

Note that (11) is a system of |X |× |Y| equations. To repeat, it identifies the
Φ matrix in the joint surplus as a function of the observed matching patterns
(µ) and the shape of the functions G∗ and H∗. The latter in turn only depend
on the distributions Px and Qy. It is important to stress that the joint surplus
is uniquely identified given any choice of these distributions. Identifying the
distributions themselves requires more restrictions and/or more data.

2.2 Generalized Entropy

We already know from Section 1.2 that the stable matching maximizes the total
joint surplus. The corresponding primal program is

W(Φ,n,m) = max
µ≥0







∑

x∈X
y∈Y

µxyΦxy − E (µ;n,m)






(12)

where
E (µ;n,m) = G∗ (µ;n) +H∗ (µ,m)

is the generalized entropy of the matching µ. It is easy to check that the
first-order conditions in (12) (which is globally concave) coincide with the iden-
tification formula (11).
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The two parts of the objective function in (12) have a natural interpretation.
The sum

∑

x,y µxyΦxy reflects the value of matching on observed types only. The
generalized entropy term−E(µ;n,m) is the sum of the values that are generated
by matching unobserved heterogeneities with observed types: e.g. men of type
x with a high value of εiy being more likely to match with women of type y.

We skipped over an important technical issue: the Legendre-Fenchel trans-
form of Gx is equal to +∞ unless

∑

y∈Y µxy = Nx(µ) − µx0 ≤ nx. Therefore
the objective function in (12) is minus infinity when any of these feasibility
constraints is violated. There are two approaches for making the problem well-
behaved. We can simply add the constraints to the program. As it turns out,
extending the generalized entropy beyond its domain is sometimes a much better
approach, as we will show in Section 3.

2.3 The Logit Model

Following a long tradition in discrete choice models, much of the literature has
focused on the case when the distributions Px andQy are standard type I extreme
value (Gumbel). Under this distributional assumption, the Gx functions take a
very simple and familiar form:

Gx(Ux·) = log

(

1 +
∑

t∈Y

exp(Uxt)

)

;

and the generalized entropy function E is just the usual entropy:

E (µ;n,m) = 2
∑

x∈X
y∈Y

µxy logµxy +
∑

x∈X

µx0 logµx0 +
∑

y∈Y

µ0y logµ0y. (13)

Equation (11) can be rewritten to yield the following matching function, which
links the numbers of singles, the joint surplus, and the numbers of matches:

µxy =
√
µx0µ0y exp

(

Φxy

2

)

. (14)

In the logit model, the distributions Px and Qy have no free parameter:
the only unknown parameters in the model are those that determine the joint
surplus matrix Φ. Using (14) gives Choo and Siow’s formula:

Φxy = log
µ2
xy

µx0µ0y

(15)

3 Estimation

In matching markets, the sample may be drawn from the population at the
individual level or at the match level. Take the marriage market as an example.
With individual sampling, each man or woman in the population would be a
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sampling unit. In fact, household-based sampling is more common in population
surveys: when a household is sampled, data is collected on all of its members.
Some of these households consist of a single man or woman, and others consist
of a married couple. We assume here that sampling is at the household level.

Recall that µ̂xy, µ̂x0 and µ̂0y are the number of matches of type (x, y), (x, 0)
and (0, y), respectively in our sample. Denote

Nh =
∑

x∈X

µ̂x0 +
∑

y∈Y

µ̂0y +
∑

x∈X
y∈Y

µ̂xy

the number of households in our sample, and let

π̂xy =
µ̂xy

Nh

, π̂x0 =
µ̂x0

Nh

and π̂0y =
µ̂0y

Nh

the empirical sample frequencies of matches of type (x, y), (x, 0) and (0, y),
respectively. Let π be the population analog of π̂. The estimators of the
matching probabilities have an asymptotic distribution

π̂ ∼ N
(

0,
Vπ

Nh

)

. (16)

We seek to estimate a parametric model of the matching market. This in-
volves specifying functional form for the matrix Φ and choosing families of
distributions for the unobserved heterogeneity Px and Qy. We denote λ the pa-
rameters of Φ, β the parameters of the distributions, and our aim is to estimate
θ = (λ,β). Depending on the context, the analyst may choose to allocate more
parameters to the matrix Φ or to the distributions Px and Qy. We assume that
the model is well-specified in that the data was generated by a matching market
with true parameters θ0.

We will assume in this section that the analyst is able to compute the stable
matching µθ for any value of the parameters θ. We provide several ways to do
so efficiently in Section 4.

3.1 The Maximum Likelihood Estimator

In this setting, the log-likelihood function of the sample is simply the sum over
all households of the log-probabilities of the observed matches. Let us fix the
value of the parameters of the model at θ. We denote µθ the equilibrium
matching patterns for these values of the parameters and the observed margins
n and m.

A household may consist of a match between a man of type x and a woman
of type y, of a single man of type x, or of a single woman of type y. The corre-
sponding probabilities are respectively µθ

xy/N
θ
h , µ

θ
x0/N

θ
h , and µθ

0y/N
θ
h , where

Nθ
h :=

∑

x,y∈X×Y

µθ
xy +

∑

x∈X

µθ
x0 +

∑

y∈Y

µθ
0y

10



is the number of households in the stable matching for θ, which in general differs
from Nh. The log-likelihood becomes

logL(θ) :=
∑

x,y∈X×Y

µ̂xy log
µθ
xy

Nθ
h

+
∑

x∈X

µ̂x0 log
µθ
x0

Nθ
h

+
∑

y∈Y

µ̂0y log
µθ
0y

Nθ
h

.

Maximizing this expression gives a maximum likelihood estimator that has the
usual asymptotic properties: it is consistent, asymptotically normal, and asymp-
totically efficient. The maximization process may not be easy, however. In par-
ticular, the function logL is unlikely to be globally concave, and it may have
several local extrema. This may make other approaches more attractive.

3.2 The Moment Matching Estimator

A natural choice of parameterization for Φλ is the linear expansion

Φλ
xy =

K
∑

k=1

λkφ
k
xy

where the basis functions φk
xy are given and the λk coefficients are to be esti-

mated.
The moment matching estimator uses the K equalities

∑

x,y

µθ
xyφ

k
xy =

∑

x,y

µ̂xyφ
k
xy

as its estimating equations. Both sides of these equalities can be interpreted as
expected values of the basis function φk; in this sense, the estimator matches the
observed and simulated (first) moments of the basis functions. By construction,
it can only identify K parameters. We assume from now on that the values of
the parameters of the distribution are fixed at β, and we seek to estimate λ.

Applying the envelope theorem to equation (12) shows that the derivative
of the total joint surplus with respect to Φxy is the value of µxy for the corre-
sponding stable matching. Using the chain rule, we obtain

∂Wβ

∂λk

(µθ, n̂, m̂) =
∑

x,y

µθ
xyφ

k
xy;

this allows us to rewrite the moment matching estimating equations as the first
order conditions of

max
λ

(

∑

x,y

µ̂xyΦ
λ
xy −Wβ(µθ, n̂, m̂)

)

. (17)

Note that the function W is convex in Φ. Since Φλ is linear in λ, the objective
function of (17) is globally convex. This is of course a very appealing property
in a maximization problem.
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We still have to evaluate Wβ(µθ, n̂, m̂) =
∑

x,y µ
θ
xyΦ

λ
xy − Eβ(µθ; n̂, m̂). It

is often possible to circumvent that step, however. To see this, remember that
the generalized entropy is only defined when N(µ) = n̂ and M(µ) = m̂. Now
take any real-valued functions f and g such that f(0) = g(0) = 0, and consider
the extended entropy function

Eβ(µ; n̂, m̂) = Eβ(µ;N(µ),M(µ)) + f(N(µ)− n̂) + g(M(µ)− m̂).

By construction, this function is well-defined for any µ, and it coincides with
Eβ when N(µ) = n̂ and M(µ) = m̂. Therefore we can rewrite (12) as

Wβ(Φ,n,m) = max
µ≥0







∑

x∈X
y∈Y

µxyΦxy − Eβ (µ;n,m)







s.t N(µ) = n̂ and M(µ) = m̂.

If moreover we choose f and g to be convex functions, this new program is also
convex. As such, it has a dual formulation that can be written in terms of the
Legendre-Fenchel transform (Eβ)∗ of Eβ. Simple calculations show that the
dual is:

Wβ (Φ, n̂, m̂) = min
u,v≥0

(

〈n̂,u〉+ 〈m̂,v〉+ (Eβ)∗ (Φ− u− v,−u,−v)
)

where we denote Φ− u− v = (Φxy − ux − vy)x,y.

Returning to (17), the program that defines the moment matching estimator
can now be rewritten as follows:

max
λ,u≥0,v≥0

(

∑

x,y

µ̂xyΦ
λ
xy − 〈n̂,u〉 − 〈m̂,v〉 − (Eβ)∗ (Φ− u− v,−u,−v)

)

.

(18)
This is still a globally convex program; and if we can choose f and g such
that the extended entropy (Eβ)∗ has a simple Legendre-Fenchel transform, it
will serve as a computationally attractive estimation procedure. In addition to
estimating the parameters λ of the joint surplus , it directly yields estimates
of the expected utilities u and v of each type. Moreover, after estimation the
matching patterns can be obtained by:























µθ
xy = ∂(Eβ)∗

∂zxy
(Φ− u− v,−u,−v)

µθ
x0 = ∂(Eβ)∗

∂zx0

(Φ− u− v,−u,−v)

µθ
0y = ∂(Eβ)∗

∂z0y
(Φ− u− v,−u,−v)

(19)

The logit model of Section 2.3 provides an illustration of this approach.
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3.3 Estimating the Logit Model

Plugging in estimates µ̂ of the matching patterns in formula (15) gives a closed-

form estimator Φ̂ of the joint surplus matrix in the logit model . On the other
hand, determining the equilibrium matching patterns µ for given primitive pa-
rameters Φ,n,m is more involved; and it is necessary in order to evaluate
counterfactuals that modify these primitives of the model. We will show how to
do it in Section 4.1 below. In addition, the analyst may want to assume that the
joint surplus matrix Φ belongs in a parametric family Φλ. While this could be
done by finding the value of λ that minimize the distance between Φλ and the
Φ̂ obtained from (15), the approach sketched in Section 3.2 is more appealing.

To construct an extended entropy function E in the logit model, we rely on
the primitive of the logarithm L(t) = t log t − t; we define f(T ) =

∑

x L(Tx),
and similarly for g. They are clearly convex functions. The reason for this a
priori non-obvious choice of strictly convex functions is that many of the terms
in the derivatives of the resulting extended entropy cancel out. In fact, simple
calculations give

E∗ (z) = 2
∑

x∈X
y∈Y

exp
(zxy

2

)

+
∑

x∈X

exp (zx0) +
∑

y∈Y

exp (z0y) . (20)

Substituting into (18), the moment matching estimator and associated utilities
solve

min
λ,u≥0,v≥0

F (λ,u,v)

where

F (λ,u,v) =
∑

x∈X

exp (−ux) +
∑

y∈Y

exp (−vy) + 2
∑

x∈X
y∈Y

exp

(

Φλ
xy − ux − vy

2

)

−
∑

x∈X
y∈Y

π̂xy

(

Φλ
xy − ux − vy

)

+
∑

x∈X

π̂x0ux +
∑

y∈Y

π̂0yvy.

This is the objective function of a Poisson regression with two-way fixed
effects. Minimizing F is a very easy task; we give some specialized algorithms
in Section 4, but problems of moderate size can also be treated using statistical
packages handling generalized linear models. Denote α = (λ,u,v) the set of
arguments of F . The asymptotic distribution of the estimator of α is given in
Appendix B.

3.4 The Maximum-score Method

In most one-sided random utility models of discrete choice, the probability that
a given alternative is chosen increases with its mean utility. Assume that alter-
native k has utility U(xkl, θ0) + ukl for individual l. Let K(l) be the choice of

13



individual l and for any given θ, denote

Rl(θ) ≡
∑

k 6=K(l)

11
(

U(xl,K(l), θ) > U(xkl, θ)
)

the rank (from the bottom) of the chosen alternative K(l) among the mean
utilities. Choose any increasing function F . If (for simplicity) the ukl are iid
across k and l, maximizing the score function

∑

l

F (Rl(θ))

over θ yields a consistent estimator of θ0. The underlying intuition is simply
that the probability that k is chosen is an increasing function of the differences
of mean utilities U(xkl, θ)− U(xk′l, θ) for all k

′ 6= k.
It seems natural to ask whether a similar property also holds in two-sided

matching with transferable utility: is there a sense in which (under appropriate
assumptions) the probability of a match increases with the surplus it generates?

If transfers are observed, then each individual’s choices is just a one-sided
choice model and the maximum score estimator can be used essentially as is.
Without data on transfers, the answer is not straightforward. In a two-sided
model, the very choice of a single ranking is not self-evident. In so far as the
optimal matching is partly driven by unobservables, it is generally not true
that the optimal matching maximizes the joint total non-stochastic surplus for
instance.

One can give a positive answer in one of the models we have already dis-
cussed: the logit specification of Section 2.3. Formula (14) implies that for any
(x, x′, y, y′), the double log-odds ratio 2 log((µxyµx′y′)/(µx,y′µx′y)) equals the
double difference

DΦ(x, x
′, y, y′) ≡ Φxy +Φx′y′ − Φx′y − Φxy′ .

This direct link between the observed matching patterns and the unknown
surplus function justifies a maximum-score estimator

max
Φ

∑

(x,x′,y,y′)∈C

11 (DΦ(x, x
′, y, y′) > 0)

where C is a subset of the pairs that can be formed from the data.
More generally, one can prove the following result.

Theorem 6 (Comonotonicity of double-differences). Assume that the surplus
is separable and that the distribution of the unobservable heterogeneity vectors
is exchangeable. Then for all (x, y, x′, y′), the log-odds ratio DΦ(x, x

′, y, y′) and
the double difference log((µxyµx′y′)/(µx,y′µx′y)) have the same sign.

While this is clearly a weaker result than in the logit model, it is enough to
apply the same maximum-score estimator.
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One of the main advantages of the maximum-score method is that it extends
to more complex matching markets. It also allows the analyst to select the tuples
of trades in C to emphasize those that are more relevant in a given application.
The price to pay is double. First, the maximum-score estimator maximizes a
discontinuous function and converges slowly6. Second, the underlying mono-
tonicity property only holds for distributions of unobserved heterogeneity that
exclude nested logit models and random coefficients for instance.

4 Computation

We now turn to the efficient evaluation of the stable matching and the associated
utilities for given values of the parameters. In all of this section, we consider
any distributional parameters β as fixed and we omit them from the notation.

4.1 Solving for equilibrium with coordinate descent

First consider the determination of the equilibrium matching patterns for a
given matrix Φ. In several important models, this can be done by adapting
formula (18). A slight modification of the arguments that lead to this formula
shows that for given Φ, maximizing the following function yields the equilibrium
utilities of all types :

F̄ (u,v) :=
∑

x,y

µ̂xyΦxy − 〈n̂,u〉 − 〈m̂,v〉 − E∗ (Φ− u− v,−u,−v) .

Coordinate descent consists of maximizing F̄ iteratively with respect to the two
argument vectors: with respect to u keeping v fixed, then with respect to v

keeping u fixed at its new value, etc.
Let v(t) be the current value of v. Minimizing F̄ with respect to u for

v = v(t) yields a set of |X | equations in |X | unknowns: u(t+1)
x is the value of ux

that solves

n̂x =
∑

y∈Y

∂E∗

∂zxy

(

Φ− u− v(t),−u,−v(t)
)

+
∂E∗

∂zx0

(

Φ− u− v(t),−u,−v(t)
)

.

These equations can in turn be solved coordinate by coordinate: we start

with x = 1 and solve the x = 1 equation for u
(t+1)
1 fixing (u2, . . . , u|X |) =

(u
(t)
2 , . . . , u

(t)
|X |); then we solve the x = 2 equation for u

(t+1)
2 fixing (u1, u3, . . . , u|X |) =

(u
(t+1)
1 , u

(t)
3 , . . . , u

(t)
|X |), etc. The convexity of the function E∗ implies that the

right-hand side of each equation is strictly decreasing in its scalar unknown,
which makes it easy to solve.

6The maximum-score estimator converges at a cubic-root rate.
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The logit model constitutes an important special case in which these equa-
tions can be solved with elementary calculations, for any joint surplus matrix
Φ. Define Sxy := exp(Φxy/2); ax := exp (−ux); and by := exp (−vy). It is easy
to see that the system of equations that determines u(t+1) becomes

a2x + ax
∑

y∈Y

b(t)y Sxy = nx ∀x ∈ X .

These are |X | functionally independent quadratic equations, which can be solved
in closed-form and in parallel. Once this is done, a similar system of independent

quadratic equations gives b(t+1) from a(t+1). Note that a
(0)
x =

√

µ̂x0 and b
(0)
y =

√

µ̂0y are obvious good choices for initial values.
This procedure generalizes the Iterative Proportional Fitting Procedure (IPFP),

also known as Sinkhorn’s algorithm. It converges globally and very fast. Once
the solutions a and b are obtained, the equilibrium matching patterns for this
Φ are given by µx0 = a2x, µ0y = b2y and µxy = axbySxy.

4.2 Gradient descent

Suppose that the analyst has chosen to use (18) for estimation. The simplest
approach to maximizing the objective function is through gradient descent . De-
noting α = (λ,u,v), we start from a reasonable7 α(0) and we iterate:

α(t+1) = α(t) − ǫ(t)∇F
(

α(t)
)

where ǫ(t) > 0 is a small enough parameter. This gives

u(t+1)
x = u(t)

x + ǫ(t)
(

nx −Nx(µ
(t))
)

v(t+1)
y = v(t)y + ǫ(t)

(

my −My(µ
(t))
)

λ
(t+1)
k = λ

(t)
k + ǫ(t)

∑

x∈X
y∈Y

(

µ(t)
xy − µ̂xy

)

φk
xy,

denoting µ(t) the result of plugging (u(t),v(t),λ(t)) into (19).
This algorithm has a simple intuition: we adjust ux in proportion of the

excess of x types , vy in proportion of the excess of y types, and λ in proportion
of the mismatch between the k-th moment predicted by α and the observed
k-th moment.

4.3 Hybrid Algorithms

The approaches in the previous two subsections can also be combined. Carlier et al.
(forthcoming) suggest alternating between coordinate descent steps on u and

7In the logit model, u
(0)
x = − log(µ̂x0/n̂x) and v

(0)
y = − log(µ̂0y/m̂y) are excellent choices

of initial values.
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v and gradient descent steps on λ. In the logit model, this would combine the
updates























(

a
(t+1)
x

)2

+ a
(t+1)
x

∑

y∈Y b
(t)
y S

(t)
xy = nx

(

b
(t+1)
y

)2

+ b
(t+1)
y

∑

x∈X a
(t+1)
y S

(t)
xy = my

λ
(t+1)
k = λ

(t)
k + ǫ(t)

∑

x∈X
y∈Y

(

a
(t+1)
x b

(t+1)
y S

(t)
xy − µ̂xy

)

φk
xy

where S
(t)
xy = exp(

∑K
k=1 φ

k
xyλ

(t)
k /2).

A proof of convergence of hybrid algorithms is given in Carlier et al. (forthcoming),
in a more general setting that allows for model selection based on penalty func-
tions.

5 Other Implementation Issues

Let us now very briefly discuss three issues that often crop up in applications.

5.1 Continuous Types

While we modeled types as discrete-valued in this chapter, there are applications
where this is not appropriate. It is possible to incorporate continuous types in
a separable model that feels very similar to the logit model of Section 2.3. The
idea is to model the choice of possible partners as generated by the points of a
specific Poisson process . An interesting special case has a bilinear joint surplus
function Φ(x, y) = x⊤Ay. It is easy to see that at the optimum, the Hessian
of the logarithm of the matching patterns equals A everywhere: for all x ∈ Rdx

and y ∈ Rdy ,
∂2 lnµ

∂x∂y
(x, y) =

A

2
.

As a consequence, the model is overidentified and therefore testable. Among
other things, it makes it possible to test for the rank of the matrix A. If it is
some r < min(dx, dy), then one can identify the “salient” combination of types
that generate the joint surplus.

If moreover the distribution P of x and the distribution Q of y are Gaussians,
that the optimal matching (X,Y ) is a Gaussian vector whose distribution can be
obtained in closed form. Suppose for instance that dx = dy = 1; P = N

(

0, σ2
x

)

;

Q = N
(

0, σ2
y

)

; and Φ (x, y) = axy, Then at the optimum V X = σ2
x, V Y = σ2

y,
and corr (X,Y ) = ρ where ρ is related to a by

aσxσy =
ρ

1− ρ2
.

5.2 Using Several Markets

We have focused on the case when the analyst has data on one market. If data
on several markets is available; matches do not cross market boundaries; and
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some of the primitives of the model coincide across markets, then this can be
used to relax the conditions necessary for identification.

As an example, Chiappori et al. (2017) pooled Census data on thirty cohorts
in the US in order to study the changes in the marriage returns to education.
To do this, they assumed that the supermodularity module of the function Φ
changed at a constant rate over the period.

Fox et al. (2018) show how given enough markets, one can identify the dis-
tribution of the unobserved heterogeneity if it is constant across markets.

5.3 Using Additional Data

In applications to the labor market for instance, the analyst often has some
information on transfers—wages in this case. This information can be used
in estimating the underlying matching model. It is especially useful if it is
available at the level of each individual match. Aggregate data on transfers has
more limited value (Salanié, 2015).

6 Notes

Matching with perfectly transferable utility was introduced by Koopmans and Beckmann
(1957) and its theoretical properties were elucidated by Shapley and Shubik
(1972). Becker (1973, 1974) made it the cornerstone of his analysis of mar-
riage. Sections 2 and 3 of this chapter are based on the approach developed
in Galichon and Salanié (2020). The extension of the logit model to continuous
types was proposed by Dupuy and Galichon (2014), following Dagsvik (2000).
They applied it to study how the joint surplus from marriage depends on the
Big Five psychological traits of the partners. Guadalupe et al. (2020) combine
continuous and discrete types to model mergers between European firms. The
results for the bilinear Gaussian models appear in Bojilov and Galichon (2016).

The maximum-score method for matching models was proposed by Fox
(2010), taking inspiration from Manski (1975)’s classic paper on one-sided dis-
crete choice models. Bajari and Fox (2013) used this estimator to study the
FCC spectrum auctions. Graham (2011, 2014) proved Theorem 6 for inde-
pendent and identically distributed variables and Fox (2018) extended it to
exchangeable variables.
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Appendix A: reminders on convex analysis

We focus here on the results that our chapter relies on. For an economic inter-
pretation in terms of matching, see Chapter 6 of Galichon (2016).

In what follows, we consider a convex function ϕ : Rn → R∪{+∞} which is
not identically +∞. If ϕ is differentiable at x, we denote its gradient at x as the
vector of partial derivatives, that is ∇ϕ (x) = (∂ϕ (x) /∂x1, . . . , ∂ϕ (x) /∂xn).
In that case, one has for all x and x̃ in Rn

ϕ (x̃) ≥ ϕ (x) +∇ϕ (x)
⊤
(x̃− x) .

Note that if ∇ϕ (x) exists, then it is the only vector y ∈ Rn such that

ϕ (x̃) ≥ ϕ (x) + y⊤ (x̃− x) ∀x̃ ∈ Rn, (21)

indeed, setting x̃ = x + tei where ei is the ith vector of the canonical basis of
Rn, and letting t → 0+ yields yi ≤ ∂ϕ (x) /∂xi, while letting t → 0− yields
yi ≥ ∂ϕ (x) /∂xi. This motivates the definition of the subdifferential ∂ϕ (x) of
ϕ at x as the set of vectors y ∈ Rn such that relation (21) holds. Equivalently,
y ∈ ∂ϕ (x) holds if and only if

y⊤x− ϕ (x) ≥ max
x̃

{

y⊤x̃− ϕ (x̃)
}

that is, if and only if

y⊤x− ϕ (x) = max
x̃

{

y⊤x̃− ϕ (x̃)
}

.

The above development highlights a special role for the function ϕ∗ appear-
ing in the expression above

ϕ∗ (y) = max
x̃

{

y⊤x̃− ϕ (x̃)
}

which is called the Legendre-Fenchel transform of ϕ. By construction,

ϕ (x) + ϕ∗ (y) ≥ y⊤x.

This is called Fenchel’s inequality; as we just saw, it is an equality if and only
if y ∈ ∂ϕ (x). In fact, the subdifferential can also be defined as

∂ϕ (x) = argmax
y

{

y⊤x− ϕ∗ (y)
}

.
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Finally, the double Legendre-Fenchel transform of a convex function ϕ (the
transform of the transform) is simply ϕ itself. As a consequence, the subgradi-
ents of ϕ and ϕ∗ are inverses of each other. In particular, if ϕ and ϕ∗ are both
differentiable then

(∇ϕ)−1 = ∇ϕ∗.

To see this, remember that y ∈ ∂ϕ (x) if and only if ϕ (x) + ϕ∗ (y) = y⊤x;
but since ϕ∗∗ = ϕ, this is equivalent to ϕ∗∗ (x) + ϕ∗ (y) = y⊤x, and hence to
x ∈ ∂ϕ∗ (y). As a result, the following statements are equivalent:

(i) ϕ (x) + ϕ∗ (y) = x⊤y;

(ii) y ∈ ∂ϕ (x);

(iii) x ∈ ∂ϕ∗ (y).

Appendix B: asymptotic distribution of the logit

moment-matching estimator

In this appendix, we provide the explicit formulas for the asymptotic distribution
of the estimator of the matching surplus in the logit model of Section 3.3.
The asymptotic distribution of the estimator α̂ is easy to derive by totally
differentiating the first order conditions Fα(α̂, π̂) = 0. This yields

α ∼ N
(

0,
Vα

Nh

)

where
Vα = (Fαα)

−1
FαπVπF

⊤
απ (Fαα)

−1
.

In this formula, Vπ is as in (16) and the Fab represent the blocks of the Hessian
of F at (α̂, π̂). Easy calculations show that Fαα in turn decomposes into













Fuu Fuv =

(

πλ
xy

2

)

xy

Fuλ = − 1
2

(

∑

y π
λ
xyφ

k
xy

)

xk

. Fvv Fvλ = − 1
2

(

∑

x π
λ
xyφ

k
xy

)

yk

. . Fλλ = 1
2

(

∑λ
x,y π̂xyφ

k
xyφ

l
xy

)

kl













where

Fuu = diag





(

1

2

∑

y

πλ
xy + πλ

x0

)

x



 and Fvv = diag





(

1

2

∑

x

πλ
xy + πλ

0y

)

y



 .

Moreover,

Fθπ =







(

1⊤Y ⊗ IX
)

IX 0
(

IY ⊗ 1⊤X
)

0 IY
(

−φk
xy

)

k,xy
0 0






.
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Once the estimates α̂ are obtained, we can apply (19) to compute the estimated
matching patterns:



















µα̂
xy = exp

(

Φλ̂
xy − ûx − v̂y)/2

)

µα̂
x0 = exp (−ûx)

µα
0y = exp (−v̂y) .
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