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Estimating Separable Matching Models∗

Alfred Galichon† Bernard Salanié‡

April 4, 2022

Abstract

In this paper we propose two simple methods to estimate models of matching with trans-

ferable and separable utility introduced in Galichon and Salanié (2022). The first method is

a minimum distance estimator that relies on the generalized entropy of matching. The second

relies on a reformulation of the more special but popular Choo and Siow (2006) model; it uses

generalized linear models (GLMs) with two-way fixed effects.

Keywords: matching, marriage, assignment, estimations comparison.

JEL codes: C78, C13, C15.

Introduction

The estimation of models of two-sided matching has made considerable progress in the past decade.

While some of this work has used matching under non-transferable utility, many applications have

focused on markets where utility is transferable. The pioneering contribution of Choo and Siow

(2006) introduced a simple and highly tractable specification. They used their model to estimate

the effect of the 1973 liberalization of abortion in the US on marriage outcomes. In doing so, they

used a nonparametric estimator of the matching patterns. Their specification is a natural extension

of the multinomial logit model, and it has become quite popular.

∗The authors are grateful to Clément Montes for superb research assistance, and to Antoine Jacquet for his detailed

comments.
†New York University and Sciences Po. Support from ERC grant EQUIPRICE No. 866274 is acknowledged.
‡Columbia University.

1

ar
X

iv
:2

20
4.

00
36

2v
1 

 [
ec

on
.E

M
] 

 1
 A

pr
 2

02
2



The Choo and Siow specification rests on three main assumptions that will be defined later in

the paper: separability; large market; and standard type I extreme value random utility. In Gali-

chon and Salanié (2022), we showed that the third, distributional assumption is not necessary: for

any (separable) distribution of the errors, the joint surplus is nonparametrically identified. The

nonparametric estimator of Choo and Siow was feasible in their case as they only conditioned on

the ages of the partners in a couple. It breaks down, however, when more covariates are considered

as matching cells become too small; and by construction, it does not allow for parameterized error

distributions. Structural models of household behavior also naturally introduce parameters.

In all of these cases, the analyst must resort to parametric models. This note shows two very

simple methods to estimate parametric versions of separable matching models with perfectly trans-

ferable utility, with special emphasis on the Choo and Siow model and more generally on “semilinear”

models, where the joint surplus is linear in the parameters (again, to be formally defined later in

the paper).

Our first method applies a minimum-distance estimator to the identification equation derived

in Galichon and Salanié (2022), which relates the joint surplus to the derivatives of a generalized

entropy function evaluated at the observed matching patterns. For any fixed distribution of the

error terms, the generalized entropy can be evaluated and differentiated, numerically if needed.

The estimator selects parameter values and also provides a simple specification test. In semilinear

models, the estimator can be obtained in closed form.

The second method we present applies more specifically to the semilinear Choo and Siow model.

We show that the moment-matching estimator we described in Galichon and Salanié (2022) can

be reframed as a generalized linear model, more specifically as the pseudo-maximum likelihood

estimator of a Poisson regression with two-sided fixed effects. This is available as linear model in

the scikit-learn library in Python, as fepois in the R package fixest and as ppmlhdfe in Stata,

among other common statistical packages.

We conclude with a brief discussion of the pros and cons of these two methods. Both are coded

in a Python package called cupid matching that is available on the standard repositories1.

1See http://bsalanie.github.io for more information, and https://share.streamlit.io/bsalanie/cupid matching st/

main/cupid streamlit.py for an interactive Streamlit app that demonstrates solving and estimating a Choo and Siow

(2006) model.
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1 The Model

This paper applies to a bipartite matching market with perfectly transferable utility. For simplicity,

we refer to potential partners as “men” and “women”. We use the same notation as in Galichon

and Salanié (2022). We assume that the analyst can only observe which of a finite set of types each

individual belongs to. Men and women of a given type differ along some dimensions that they all

observe, while the analyst does not. Each man i ∈ I belongs to one group of (observable) type

xi ∈ X ; and, similarly, each woman j ∈ J belongs to one (observable) type yj ∈ Y. We will say

that “man i is of type x” and “woman j is of type y.” We denote µij the indicator function for a

matching between man i and woman j, which is equal to 1 if i and j are matched and to 0 otherwise.

Similarly, µi0 and µ0j are the indicator of i or j to remain unmatched, respectively. Without loss

of generality, we assimilate X to {1, . . . , X} and Y to {1, . . . , Y }. As X and Y will later serve as

choice sets of partners types for women and men, respectively, and as the marital options needs to

include remaining unmatched, we shall add the option to remain unmatched 0 to these sets and

denote X0 = X ∪ {0} and Y0 = Y ∪ {0} the respective sets of marital options of women and men.

We denote nx the mass of men of type x ∈ X , and my the mass of women of type y ∈ Y. We

denote q = (n,m) the vector that collects the margins n and m of the problem

In addition to the margins q, the analyst observes matchings at the type level. We denote

µxy the mass of the couples where the man belongs to type x, and where the woman belongs to

type y, which is formally defined as µxy =
∑
i∈I,j∈J µij1{xi = x}1{yj = y}. We also denote

µx0 =
∑
i∈I µi01{xi = x}, and µ0y =

∑
j∈J µ0j1{yj = y} the mass of single individuals who are

respectively men of type x and women of type y. We will be interested in the limiting market

with a large number of men in any type x, and of women in any type y. Since the problem is

homogeneous, we shall normalize the total mass N of households to one; that is, we rescale µ and q

by a multiplicative factor N such that
∑
x,y µxy +

∑
x µx0 +

∑
y µ0y = 1. Again, we use the boldface

notation µ to denote the vector of matching numbers. We denote A = X ×Y∪X ×{0}∪{0}×Y the

set of possible marital arrangements (matched household of type xy, or single households of type x0

or 0y), so that µ is a vector of RA.

A matching is the specification of who matches with whom. It is feasible if each individual is

matched to at most one partner. It is stable if no individual who has a partner would prefer to be

single, and if no two individuals would prefer forming a couple over their current situation.

We model the joint surplus Φ̃ij , which is the sum of the cardinal utilities that both a man i and
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a woman j jointly obtain by being matched together, and we assume a separable matching surplus:

Assumption 1 (Separability). There exist a vector Φ in IRX×Y and random terms ε and η such

that

(i) the joint utility from a match between a man i of type x ∈ X and a woman j of type y ∈ Y is

Φ̃ij = Φxy + εiy + ηxj , (1.1)

(ii) the utility of a single man i is Φ̃i0 = εi0,

(iii) the utility of a single woman j is Φ̃0j = η0j,

where, conditional on xi = x, the random vector εi = (εiy)y∈Y0 has probability distribution Px,

and, conditional on yj = y, the random vector ηj = (ηxj)x∈X0 has probability distribution Qy. The

distributions Px and Qy have full support and a density with respect to the Lebesgue measure. The

variables

max
y∈Y0

|εiy| and max
x∈X0

|ηxj |

have finite expectations under Px and Qy respectively.

Separability allows for a restricted form of “matching on unobservables”; it rules out interaction

terms on characteristics that are unobserved on both sides of the market, e.g. some unobserved

preference of man i for some unobserved characteristics of woman j.

Chiappori et al. (2017) and Galichon and Salanié (2022) showed that under separability, at any

stable matching µ there exist two matrices U and V such that for all (x, y), Uxy + Vxy = Φxy, and

Ux0 = V0y = 0, and such that man i of type x is assigned option y = 0, 1, . . . , Y which maximizes

Uxy+εiy (where option 0 means remaining unmatched, and option y 6= 0 means being matched with

a woman of type y); similarly woman j of type y is assigned option x = 0, 1, . . . , X which maximizes

Vxy + ηxj .

1.1 Generalized Entropy

Consider the classic “Emax” functionGx defined as follows. In this paragraph we letU = (U1, . . . , UY )

be a Y -dimensional vector. Then we define

Gx(U) = EPx max

(
max
y∈Y

(Uy + εiy), εi0

)
.
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As a maximum of linear functions, Gx is a convex function. We denote ∂Gx(U) its subgradient;

because of the assumptions made on Px, it is a singleton almost everywhere.

Now take the Legendre-Fenchel transform of Gx: for any (ν1, . . . , νY ) such that
∑
y∈Y νy ≤ 1,

we define

G∗x(ν) = max
U

∑
y∈Y

νyUy −Gx(U)

 .

It is another convex function; and since Gx is convex, Gx is the Legendre-Fenchel transform of G∗x.

As a consequence,

ν ∈ ∂Gx(U) if and only if U ∈ ∂G∗x(ν).

This convex duality is at the core of the identification and inference results in Galichon and Salanié

(2022).

Defining Hy and H∗y in the same way, we get the generalized entropy : for any feasible matching

µ,

E(µ, q) = −
∑
x∈X

nxG
∗
x

(
µx·
nx

)
−
∑
y∈Y

myH
∗
y

(
µ·y
my

)
. (1.2)

The function E only depends on the matching patterns µ and the margins q = (n,m). It is concave;

its shape depends on the distributions (Px) and (Qy) of the unobserved heterogeneity terms ε and

η.

1.2 The Data

We assume that the analyst observes a random sample of size N from a large population of house-

holds. By simple counting (possibly using sampling weights), she obtains estimators of the matching

patterns µ̂xy, µ̂x0, and µ̂0y, as well as the margins:

n̂x = µ̂x0 +
∑
y∈Y

µ̂xy

m̂y = µ̂0y +
∑
x∈X

µ̂xy

and a consistent estimator Σµ̂ of their asymptotic variance-covariance matrix, given by

Σµ̂ = diag(µ̂)− µ̂µ̂>.
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2 Minimum-distance Estimation

Recall that we have assumed that each Px (resp. each Qy) has full support on IRY+1 (resp. IRX+1).

Then all µxy, µx0, µ0y must be positive; as a consequence, the Gx, Hy, G
∗
x, H

∗
y functions are contin-

uously differentiable everywhere, as is the generalized entropy function E .

Galichon and Salanié (2022) showed that at the stable matching µ, the joint surplus matrix Φ can

be obtained by the following simple formula:

Φxy = − ∂E
∂µxy

(µ, q). (2.1)

These are the first-order conditions of the maximization of the total joint surplus

W = max
µ

(∑
x,y

µxyΦxy + E(µ, q)

)
.

Suppose that the distributions Px and Qy are specified up to a parameter vector α ∈ Rdα , while

the joint surplus matrix Φ is specified up to a parameter vector β ∈ Rdβ . We write the generalized

entropy function Eα and the parameterized surplus vector Φβ. Then one can use (2.1) as the basis

for a minimum distance estimator2. That is, we write a mixed hypothesis as

∃λ = (α,β), Dλ(µ, q) ≡ Φβ +
∂Eα

∂µ
(µ, q) = 0,

stacking all X × Y conditions in (2.1) in a vector Dλ.

We choose λ̂ to minimize ‖Dλ(µ̂, q̂)‖2S for some positive definite (X × Y,X × Y ) matrix S. By

the general theory of minimum distance estimators, we know that this yields a consistent estimator

of λ if the model is well specified, and that if we choose S = Ω̂−1 where Ω̂ consistently estimates

VDλ(µ̂, q̂) (and can be obtained by the delta method), the minimum distance estimator will reach

its efficiency bound. Further, if the model is well specified and the choice of S is the efficient one,

the minimized value of the squared norm follows a χ2 of degree X × Y − dα − dβ. Note that this

optimization problem is not a convex optimization problem in general.

2.1 The Linear Case

Minimum-distance estimation is a particularly appealing strategy if both the derivatives of the

generalized entropy function Eα and the surplus matrix Φβ are linear in the parameters:

∂Eα

∂µxy
(µ, q) = e0xy(µ, q) + exy(µ, q) ·α (2.2)

2Note that in general, one should choose dα + dβ ≤ X × Y to ensure identification.
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and

Φβxy = φxy · β (2.3)

for some vectors of basis functions e(µ, q) and φ. Then

Dλxy(µ, q) = φxy · β + e0xy(µ, q) + exy(µ, q) ·α

is linear in the parameters λ. (Recall that, for every (x, y) ∈ X × Y, the vector exy(µ, q) is of size

dα, and φxy is of size dβ.)

These two conditions call for several remarks. Condition (2.3) is a natural choice for a flexible

specification. Condition (2.2) trivially holds in models where the Px and Qy are parameter-free, like

the ubiquitous Choo and Siow (2006) specification. As we will see, it holds in several other leading

examples. Note also that the parameter-free part e0 is necessary in order to normalize the scale of

the error terms, which is otherwise not identified in this discrete-choice model.

Under conditions (2.2) and (2.3), the minimum distance estimator can be implemented by linear

least-squares. Let F̂ denote the (X × Y, dα + dβ) matrix that stacks e(µ̂, q̂) and φ vertically, so

that Dλ(µ̂, r̂) = ê0 + F̂ λ, where ê0 = e0(µ̂, q̂) Then for any choice of S, the minimum distance

estimator λ̂ solves the linear system (
F̂>SF̂

)
λ̂ = −F̂>Sê0. (2.4)

Since ê0 and F̂ are functions of (µ̂, q̂), the variance Ω̂(λ) of D̂λ can be computed from V̂ using the

delta method. Again, taking S to be the inverse of Ω̂(λ̂) is the efficient choice. This procedure is

summarized in Box 1.
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1. Choose any positive definite matrix S and solve (2.4) for a consistent estimator λ∗

2. Use the delta method to estimate the variance Ω∗ of D̂λ at λ = λ∗; let S∗ = (Ω∗)−1

3. Take S = S∗ and solve (2.4) again for λ̂

4. The variance-covariance matrix of λ̂ is consistently estimated by(
F̂>S∗F̂

)−1
5. Under the null of correct specification, the statistic

T̂ =
(
D̂λ̂
)>
S∗D̂λ̂

converges to a χ2(X × Y − dα − dβ) distribution.

Box 1: min-distance estimation, linear case

If the distributions (Px) and (Qy) are parameter-free, the matrix Ω∗ does not depend on λ

any more, and F̂ is simply the matrix φ. The estimators of λ = β can be obtained following the

procedure described in Box 2.

1. Evaluate Ω∗ = V ê0 and S∗ = (Ω∗)−1

2. Solve the linear system
(
φ>S∗φ

)
β = −φ>S∗ê0

3. The variance-covariance matrix of β̂ is consistently estimated by

(
φ>S∗φ

)−1
4. Under the null of correct specification, the statistic

T̂ =
(
φβ̂ + ê0

)>
S∗
(
φβ̂ + ê0

)
converges to a χ2(X × Y − dβ) distribution.

Box 2: min-distance estimator, linear case with parameter-free heterogeneity
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Note that since φ is non-random, the variance of D̂λ is the variance of the derivative of the

generalized entropy. Step 2 therefore requires evaluating the second derivatives of the generalized

entropy E : by the delta method,

V D̂λ =
(
E>µµ E>µq

)
V

µ̂
q̂

Eµµ
Eµq

 .

It is easy to see from the definition in (1.2) that the first derivative of E with respect to µxy only

depends on the conditional matching patterns µ·|x = (µx1/nx, . . . , µxY /nx) of men of type x, and

on those of women of type y. As a consequence, the Hessians of E are very sparse and are often easy

to evaluate.

2.2 Examples

We start with two examples for which the generalized entropy and its derivatives are available in

closed form; in both cases, the derivatives are linear in the parameters α. In our third example, the

calculation requires finding the fixed point of a contraction, in a way that is familiar from empirical

industrial organization.

2.2.1 The Heteroskedastic Logit Model

Let us start with an easy extension of the Choo and Siow (2006) logit model: the distributions Px
and Qy are type I-EV iid vectors with unknown scale factors σx and τy respectively. Then α = (σ, τ )

and the derivatives of the generalized entropy function are linear in α:

∂Eα

∂µxy
(µ, q) = −σx log

µxy
µx0
− τy log

µxy
µ0y

where µx0 = nx −
∑
y∈Y µxy and µ0y = my −

∑
x∈X µxy. The second derivatives of the generalized

entropy take a very simple form:

∂2Eα

∂µxy∂µzt
(µ, q) = − σx

µx0
11(z = x)− τy

µ0y
11(t = y)− σx + τy

µxy
11(z = x, t = y) (2.5)

and
∂2Eα

∂µxy∂nz
(µ, q) =

σx
µx0

11(z = x);
∂2Eα

∂µxy∂mt
(µ, q) =

τy
µ0y

11(t = y). (2.6)

Scale normalization is done by fixing the value of one of the parameters in α. The Choo and

Siow homoskedastic model obtains when all σx and τy equal one; a gender-heteroskedastic model

would have all σx equal to one and all τy equal to an unknown τ . Chiappori et al. (2017) applied a

minimum distance estimator to the homoskedastic and heteroskedastic logit models.
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2.2.2 Nested Logit

Consider a two-layer nested logit model. Take men of type x first. Alternative 0 (singlehood) is

obviously special; we put it alone in its nest. Each other nest n ∈ Nx contains alternatives y ∈ Yn.

The correlation of alternatives within nest n is proxied by 1− (ρxn)
2

(with ρx0 = 1 for the nest made

of alternative 0). Similarly, for women of type y, alternative 0 is in a nest by itself with parameter

δy0 = 1 and alternatives x ∈ Xn′ are in a nest n ∈ N ′y with parameter δyn′ . We collect the parameters

ρ and δ into α.

The formulæ in Example 2.1 of Galichon and Salanié (2022) imply that if y is in nest n ∈ Nx
and x is in nest n′ ∈ Ny, then

∂Eα

∂µxy
(µ, q) = −ρxn log

µxy
µx0
− (1− ρxn) log

µxn
µx0

− δyn′ log
µxy
µ0y
− (1− δyn′) log

µn′y

µ0y
, (2.7)

where we defined µxn =
∑
t∈Yn

µxt and µn′y =
∑
z∈Xn′ µzy. Once again, this is linear in the

parameters α; it remains linear if we impose constraints on the nests (for instance, that Nx is the

same for all types x) and/or linear constraints on the ρ parameters (for instance, that ρxn only

depends on n).

2.2.3 Mixed Logit

Let us now describe a random coefficient logit model. Consider a man i of type x, endowed with

preferences ei over a set of d observable characteristics Z of potential partners. We add an id-

iosyncratic shock ζi that is distributed as a standard iid type I extreme value vector over IRY+1,

independently of ei, and a scale factor s > 0:

εiy =

d∑
k=1

Zykeik + sζiy

or in matrix form: ε = Ze + sζ. This specification is standard in empirical IO. In Berry et

al. (1995): the covariates in Z stand for the observed characteristics of the products; the e are

individual valuations of these characteristics, and the ζ are idiosyncratic shocks.

Let individual preferences e of men of type x have distribution Pex. We will seek to estimate the

parameters β of the joint surplus, the scale factor s, and the parameters of the distributions Pex. We

collect s and the parameters of Pex in a vector α.
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To compute the derivative of the generalized entropy function, we recall from Galichon and

Salanié (2022) that

G∗x(ν;α) = − min
U0=0,U∈RY

∫ s log
∑

y=0,1,...,Y

exp

(
Uy + (Ze)y

s

)
dPex(e)−

∑
y∈Y

νyUy

 .
By the envelope theorem, the derivative of G∗x(ν;α) with respect to ν is the vector U that solves

the system

νy =

∫
exp((Uy +Zye)/s)∑

t=0,1,...,Y exp((Ut +Zte)/s)
dPex(e) ∀y = 1, . . . , Y.

This is exactly isomorphic to the inversion problem in Berry et al. (1995), with the unknown U

standing for the product effects and ν playing the role of the product market shares. After replacing

ν with the observed µx·/nx, the system can be solved by any of the algorithms that are standard

in this literature. The solution gives row x of the matrix U . Proceeding in the same way for other

types of men, and solving for V for women, gives the derivatives of the generalized entropy function:

∂Eα

∂µxy
(µ, q) = − ∂G

∗
x

∂νxy

(
µx·
nx

)
−
∂H∗y
∂νxy

(
µ·y
my

)
= −Uxy − Vxy.

The limit case s = 0 yields the pure characteristics model of Berry and Pakes (2007). Then the

system to be solved for row x of U is

νy = Pex
(
y ∈ arg max

t=0,1,...,Y
(Ut +Zte)

)
∀y = 1, . . . , Y.

If each Zt is a scalar, the inequalities boil down to

e−(y;U ,Z) ≡ max
t|Zt<Zy

Ut − Uy
Zy − Zt

≤ e ≤ min
t|Zt>Zy

Uy − Ut
Zt − Zy

≡ e+(y;U ,Z),

and the system of equations to be solved for U is

νy = Pex(e+(y;U ,Z))− Pex(e−(y;U ,Z)) ∀y = 1, . . . , Y.

3 Moment-based Estimation by Poisson Regression

Now take the generalized entropy function E as known/assumed; and assume that the joint surplus

vector Φ ∈ RX×Y is semilinear: Φβ = φβ, where β is a vector of dimension dβ and φ is a

|X ||Y| × dβ matrix. Galichon and Salanié (2022) introduced a moment-matching procedure that

gives a consistent estimator of the parameter vector β if the model is well-specified. The moment
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matching estimator equalizes the observed and simulated comoments, that is the expectations of the

basis functions φ under the observed and simulated matching patterns:∑
x,y

µ̂xyφxy =
∑
x,y

µβxyφxy,

where µβ denotes the stable matching patterns for the parameter vector β. As explained in Galichon

and Salanié (2022), these are the first-order conditions of the following maximization problem:

max
β

(
µ̂Φβ −W(β, q)

)
(3.1)

where W(β, q) = maxµ
(
µΦβ + E(µ, q)

)
is the value of the total joint surplus. With a semilinear

specification for Φβ, both of these problems are globally convex.

We now show that in the specific (but popular) case of the Choo and Siow (2006) model, moment

matching can be reformulated as a generalized linear model, and estimated by a Poisson regression

with two-sided fixed effects.

Define A = X × Y ∪ X×{0}∪ {0}×Y the set of possible marital arrangements. Define a vector

w ∈ RA by wxy = 2 if x ∈ X and y ∈ Y and wxy = 1 if x = 0 or if y = 0, so that wxy is the size of

household xy, namely 2 if matched, 1 if single. The following theorem summarizes our results.

Theorem 1 (Estimating the logit model with a Poisson regression). In the Choo and Siow model, the

moment-matching estimator β̂ is the solution to a Poisson regression of (µ̂xy)xy∈A on
(
Φβxy/wxy

)
xy∈A,

with with x- and y- fixed effects and with weights wxy defined above, and where we take by convention

Φβx0 = 0 and Φβ0y = 0 and a0 = 0 and b0 = 0. In other words, β is the solution to

max
βk,ax,by

∑
xy∈A

wxyµ̂xy

(
Φβxy − ax − by

wxy

)
−
∑
xy∈A

wxy exp

(
Φβxy − ax − by

wxy

)
.

The proof of Theorem 1 is given in Appendix B. The result is very useful in that it allows for

inference on β,u and v in semilinear logit models with standard statistical packages such as glm in

R, or scikit-learn in Python. Note that like Santos Silva and Tenreyro (2006) in the international

trade literature, we end up fitting a Poisson regression to a model that is definitely not generated

by a Poisson count process. The motivation is different, however. They start from a semiparametric

model of the gravity equation and use the robustness of the Poisson pseudo-maximum likelihood

estimator. We start from a more complex, fully specified structural model and we show that a

semiparametric estimator (moment-matching) is numerically equivalent to the maximum likelihood

estimator of a Poisson model.
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In the sequel we will denote Im the (m,m) identity matrix; p(m,n) the (m,n) matrix whose

elements all equal p; and pm ≡ p(m,1). Also, we say that we stack an (X,Y ) matrix in “row-major

order” when we create a vector of X × Y elements whose first Y elements are the first row of the

matrix, etc.

1. Flatten the observed matching patterns µ̂ into a vector of size |A|, by first stacking the elements

xy ∈ X × Y in row-major order, then adding the elements x0 ∈ X × {0}, and finally adding

the elements 0y ∈ {0} × Y.

2. For each basis function k = 1, . . . ,K, represent the vector(φkxy)xy∈A in the same order. Then

represent the |A| ×K matrix φ from these K column vectors of size |A|.

3. Using the same order again, represent the vector w in RA:

w = (2>X×Y ,1
>
X ,1

>
Y )>.

4. Finally, define the |A| × (X + Y +K) matrix Z as

Z =


φ/2 − 1

2IX ⊗ 1(Y,1) − 1
21(X,1) ⊗ IY

0(X,K) −IX 0(X,Y )

0(Y,K) 0(Y,X) −IY

 .

5. Run a Poisson regression of µ̂ on Z with weights w. Do not add fixed effect, as these have

already been included in the design of Z. Let γ̂ be the vector of coefficients obtained this way;

it solves

max
γ∈RK+X+Y

(∑
a∈A

waµ̂a (Zγ)a −
∑
a∈A

wa exp ((Zγ)a)

)
.

6. Decompose γ̂ = (β̂>, â>, b̂>)> ∈ RK+X+Y . Then β̂ is the moment-matching estimator, and

ax and by are the x- and y- fixed effects.

Box 3: GLM estimator, linear case with logit heterogeneity

As a result, we get that:

Theorem 2. The asymptotic variance-covariance matrix of γ̂ can be estimated with

V̂ γ̂ = Â−1 B̂ Â−1

13



where, letting W = diag (w), we have

Â =
(
Z>W diag (exp (Zγ))Z

)
=

∑
a∈A

wa exp(Zaγ̂)Z>a Za

and

B̂ = Z>W (diag(µ̂)− µ̂µ̂>)WZ

=
∑
a∈A

waµ̂aZ
>
a Za −

∑
a,a′∈A

wawa′ µ̂aµ̂a′ Z
>
a Za′ .

4 Monte Carlo Simulation

We coded these two estimation methods in a Python package called cupid matching that is available

from the standard repositories3. To test the quality of the estimators, we generated data both from a

Choo and Siow model and from a semilinear nested logit model. We use both the Poisson estimator

and the minimum-distance estimator on the former model, and only the minimum-distance estimator

of course on the latter.

In both cases, we take X = Y = 20 and we use K = 8 basis functions: 1, x, y, x2, xy, y2, 11(x ≥

y),max(x− y, 0). The true data-generating process has

Φxy = 1− (x− y)2

100
+ 0.511(x ≥ y),

so that the true β is (1.0, 0.0, 0.0,−0.01, 0.02,−0.01, 0.5, 0.0). This could be interpreted as the joint

surplus from marriage as a function of the ages of the husband x and of the wife y. It is highest when

the partners have the same age; if they don’t, it is larger when the husband is the older partner.

We use equal numbers of men and women; and we choose vectors n = m whose elements form a

decreasing geometric sequence with rate 0.8 (there are fewer individuals available for marriages at

higher ages).

4.1 Semilinear Logit

The semilinear logit model is entirely described above. We use the IPFP algorithm described in

Section 4.2 of Galichon and Salanié (2022) to solve for the stable matching patterns µ for the

3See https://pypi.org/project/cupid-matching/.
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margins n and m. To generate a sample, we draw randomly N = 10, 000 households from the

multinomial probability distribution generated by µ. We generated S = 1, 000 such samples. We

used minimum distance estimation and Poisson GLM on each sample. While the minimum distance

estimator only uses a linear regression, the Poisson GLM method uses numerical optimization under

the hood. In our simulations using the sklearn Python package, the algorithm went astray on 50 of

our 1,000 samples, mostly because of overflow errors. We discarded these samples from our analysis.

As Figure 1 shows, on the remaining 950 samples the two estimators perform about equally well.

Both estimators exploit the same X × Y moment conditions

φ · β +
∂E
∂µ

= 0,

and both minimize a quadratic form of these conditions. The difference is in the weighting matrix.

We saw in Section 2.1 that the minimum-distance estimator uses the variance of the derivative of

the entropy at the observed matching. On the other hand, the Poisson estimator uses the Hessian

of the entropy at the current parameter values. While the two estimators are quite close in our

simulations, one can imagine situations in which the divergence would be larger.

4.2 Semilinear Nested Logit

For both men and women, we defined three nests that consist of {0}, {1, . . . , 10}, and {11, . . . , 20}.

We take the true nest parameters to be all equal to 0.5 (that is, ρxn = δyn′ = 0.5 for all n, n′ : x ∈ n

and y ∈ n′).

To generate samples from the nested logit model, we proceed as with the logit model. The only

difference is that setting up the system to be solved for equilibrium requires a bit more work. We

describe our IPFP algorithm in Appendix A.

The minimum distance estimator converges fast on all samples. However, we found that a sample

size of 10,000 households was much too small to get reliable estimates of the parameters. Figure 2

gives the distribution of the estimates of the four nest parameters (first two rows) and the eight

coefficients of the bases for larger sample sizes: respectively N = 100, 000 and N = 1, 000, 000.

There is a clear downwards bias on the nest parameters ρ and δ when N = 100, 000, to the point

that some estimates are negative. Some of the coefficients of the bases are also badly estimated.

With N = 1, 000, 000, the minimum distance estimator performs much better.
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Figure 1: Estimating the Choo and Siow Model
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Figure 2: Estimating the Nested Logit Model
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Concluding remarks

Each of the two methods we presented here has its pros and cons.

The minimum-distance estimator applies to all separable models; it is most convenient in semi-

linear models. To achieve maximum efficiency, and to test the specification, one needs to evaluate

the second derivatives of the entropy with respect to the matching patterns. This may be difficult.

In addition, the data often contains zero cells—some µ̂xy may be zero. Then the corresponding

equation in (2.1) is only an inequality and it must be dropped from the system of estimating equa-

tions. An alternative is to add a small positive number δ to each µ̂xy, to increase the margins n̂x

and m̂y accordingly, and to estimate on this adjusted data.

The Poisson regression estimator only applies to semilinear Choo and Siow (2006) models. It

is appealing in its simplicity of use, as one can rely on standard statistical packages. It is also

more robust to zero cells: nothing in Section 3 relied on taking derivatives with respect to µ at the

observed matching patterns.

Our simulations suggest that it takes large sample sizes to get reliable estimates of distributional

parameters (our α). In labor markets or in marriage markets, large samples are readily available.

When they are not (as with matching between firms), it may be better to stick to the Choo and Siow

(2006) specification. Fortunately, the simulations reported in Chiappori et al. (2019) are encouraging

as to its robustness.
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A IPFP for the Nested Logit

Let us consider a nested logit model in which the nests do not depend on the type (Nx ≡ N

and N ′y ≡ N ′) and their parameters ρ and δ only depend on the nest: ρxn ≡ ρn and δyn′ ≡ δn′ .

Equation (2.7) can be rewritten as follows, for y ∈ n and x ∈ n′:

µρn+δn′
xy = exp(Φxy)µx0µ0yµ

ρn−1
xn µ

δn′−1
n′y . (A.1)

Since µxn =
∑
y∈n µxy, we get

µxn = µ
1/(ρn+δn′ )
x0 µ(ρn−1)/(ρn+δn′ )

xn

∑
y∈n

exp (Φxy/(ρn + δn′))µ
1/(ρn+δn′ )
0y µ

(δn′−1)/(ρn+δn′ )
n′y ,

and, denoting Kxy = exp (Φxy/(ρn + δn′)):

µ(δn′+1)/(ρn+δn′ )
xn = µ

1/(ρn+δn′ )
x0

∑
y∈n

Kxyµ
1/(ρn+δn′ )
0y µ

(δn′−1)/(ρn+δn′ )
n′y . (A.2)

Substituting in the adding up constraint µx0 +
∑Y
y=1 µxy = nx gives

nx = µx0 +
∑
n∈N

µxn

= µx0 +
∑
n∈N

µ
1/(δn′+1)
x0

(∑
y∈n

Kxyµ
1/(ρn+δn′ )
0y µ

(δn′−1)/(ρn+δn′ )
n′y

)(ρn+δn′ )/(δn′+1)

. (A.3)

For given values of (µ0y, µn′y) for all y, (A.3) defines µx0 uniquely4 . Once µx0 is known, we can

plug it in (A.2) to obtain the values of µxn for all n. We do this for all values of x.

Then we can apply similar equations to the y side:

µ
(ρn+1)/(ρn+δn′ )
n′y = µ

1/(ρn+δn′ )
0y

∑
x∈n′

Kxyµ
1/(ρn+δn′ )
x0 µ(ρn−1)/(ρn+δn′ )

xn

my = µ0y +
∑
n′∈N ′

µ
1/(ρn+1)
0y

(∑
x∈n′

Kxyµ
1/(ρn+δn′ )
x0 µ(ρn−1)/(ρn+δn′ )

xn

)(ρn+δn′ )/(ρn+1)

to solve for µ0y and µn′y given the values of (µx0, µxn) for all x. We iterate until convergence and

we use (A.1) to compute the matching patterns µxy.

4Since δn′ ≥ 0, the right-hand side is an increasing function of µx0 whose values go from zero to infinity.
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B Proofs

B.1 Proof of theorem 1

Recall that

N =
∑
x,y

µβxy +
∑
x

µβx0 +
∑
y

µβ0y

is the total mass of households in the sample. For the Choo and Siow (2006) specification we have

at the stable matching (µ,u,v) for a joint surplus Φβ:

µx0 = n̂x exp(−ux)

µ0y = m̂y exp(−vy) (B.1)

µxy =
√
n̂xm̂y exp((Φxy − ux − vy)/2).

Consider the maximization of the following expression:∑
x,y

µ̂xyφxyβ − 2
∑
x,y

√
n̂xm̂y exp((φxβ − ux − vy)/2)

−
∑
x

n̂x exp(−ux)−
∑
y

m̂y exp(−vy)−
∑
x

n̂xux −
∑
y

m̂yvy

over u, v, and β. We see that the first order conditions yield that µ defined in B.1 satisfies the

margin equations ∑
y

µxy + µx0 = nx (B.2)

∑
x

µxy + µ0y = my (B.3)

for the first order conditions with respect to ux and vy, and∑
xy

µxyφ
k
xy =

∑
xy

µ̂xyφ
k
xy

for the first order conditions with respect to βk.

Now remember that the log-likelihood function of a Poisson count model with parameter exp(Z>a γ)

is

l (µ̂,γ;w) =
∑
a∈A

wa
(
µ̂aZ

>
a γ − exp

(
Ztopaγ

)
− log(µ̂a!)

)
. (B.4)

if the observations (N̂a,Za)a∈A are weighted by a vector w. Define γ = (β>,a>, b>) with

a = u− log n̂, b = v − log m̂.
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Then with Z and w defined in Theorem (1), we have5

(Zγ)xy = (φxyβ − ux + log n̂x − vy + log m̂y)/2

(Zγ)x = −ux + log n̂x

(Zγ)y = −vy + log m̂y;

and up to constant terms, l and L are identical.

B.2 Proof of theorem 2

The variance-covariance matrix of γ̂ follows directly from the fact that it maximizes (B.4), and

hence is an M-estimator, see chapter 5 of van der Vaart (1998). The maximization of (B.4) gives

first-order conditions ∑
a∈A

wa exp(Zaγ̂)Za =
∑
a∈A

waµ̂aZa,

so that, applying the delta method, we get at first order(∑
a∈A

wa exp(Zaγ̂)Z>a Za

)
(γ̂ − γ) =

∑
a∈A

waZa(µ̂a − µa).

so we obtain a consistent estimator of the variance of γ̂ as

V̂ γ̂ = Â−1 B̂ Â−1

where

Â =
∑
a∈A

wa exp(Zaγ̂)Z>a Za

and

B̂ =
∑

a,a′∈A
wawa′cov(µ̂a, µ̂a′)Z

>
a Za′ .

5Note that Zi should be interpreted here as row i of the matrix Z.
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