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1 FRITZ JOHN’S EQUATION IN MECHANISM DESIGN

ALFRED GALICHON§

Abstract. We show the role that an important equation first studied by Fritz John plays

in mechanism design.
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2 ALFRED GALICHON§

A large part of the literature on mechanism design deals with implementability in dom-

inant strategy. Let us recall the basic result in the single-agent case, following Rochet

(1987) and McAfee and McMillan (1988), and as exposited in Chapter 4.4 of Vohra (2011).

Assume x ∈ R
d is the type reported by the agent, and z ∈ R

d is the outcome selected by

the mechanism. The mechanism specified an allocation rule T : Rd → R
d and a payment

rule π : Rd → R. If the agent announces x, the outcome z = T (x) is selected, while the

agent is asked to pay π (x). It is assumed that if the agent is of type x, if outcome z is

selected, and if the payment is π, the agent’s utility is x⊤z − π. The mechanism is called

implementable in dominant strategy (or simply implementable) if reporting her true type

is the agent’s dominant strategy; an allocation rule T is called implementable in dominant

strategy if there exists a payment rule π such that the mechanism (T, π) is implementable.

This happens if

x⊤T (x)− π (x) ≥ x⊤T
(

x′
)

− π
(

x′
)

∀x′ ∈ R
d.

Denoting V (x) = maxx′∈Rd

{

x⊤T (x′)− π (x′)
}

, this will be the case when T (x) is in the

subdifferential of V (x), or when T is continuous, when T (x) = ∇u (x).

Hence the following result due to Rochet (1987) and McAfee and McMillan (1988):

Theorem (Implementation theorem). In the single-agent case, a continuous allocation rule

T : Rd → R
d is implementable in dominant strategy if and only if T (x) = ∇V (x) for some

convex function V .

The purpose of this note is to investigate the multi-agent case. Assume that the space

of types of each agent is still Rd, and denote x ∈ R
d the type of the first agent and y ∈ R

d

the type of the second agent. The outcome z is still an element of Rd, and the allocation

rule is now a map T : Rd × R
d → R

d, where z = T (x, y) is the outcome selected if agent 1

announces type x and agent 2 announces type y. The payment by agent 1 is π1 (x, y) while

the payment by agent 2 is π2 (x, y). Denoting V1 (x, y) = maxx′∈Rd

{

x⊤T (x′, y)− π1 (x
′, y)

}

and V2 (x, y) = maxy′∈Rd

{

y⊤T (x, y′)− π2 (x, y
′)
}

, it is easy to adapt the previous theorem

to show that in the two-agent case, a continuous allocation rule T : R
d × R

d → R
d is

implementable in dominant strategy if and only if T (x, y) = ∇xV1 (x, y) for some function
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V1 (x, y) which is convex in x for all y, and T (x, y) = ∇yV2 (x, y) for some function V2 (x, y)

which is convex in y for all x.

The main result in this note is the following statement:

Proposition. Consider a smooth allocation rule T : R
d × R

d → R
d, and assume it is

implementable. Then T (x, y) = ∇xV1 (x, y) where V1 satisfies Fritz John’s equation

∂2V1 (x, y)

∂xi∂yj
=

∂2V1 (x, y)

∂xj∂yi
, 1 ≤ i, j ≤ d (1)

and in addition, the resulting symmetric matrix is semidefinite positive. Similarly, T (x, y) =

∇yV2 (x, y) where V2 satisfies the same restrictions.

Proof. If T is implementable, then T (x, y) = ∇xV1 (x, y), where V1 (x, y) is convex in x for

all y and T (x, y) = ∇yV2 (x, y) where V2 (x, y) is convex in y for all x. Because T i (x, y) =

∂V2 (x, y) /∂yi, one has ∂T i (x, y) /∂yj = ∂2V2 (x, y) /∂yi∂yj, and hence
(

∂T i (x, y) /∂yj
)

ij

is symmetric semi-definite positive. But because T is also a gradient with respect ot x, one

has T i (x, y) = ∂V1 (x, y) /∂xi, and thus

∂2V1

∂xi∂yj
(x, y) =

∂T i

∂yj
(x, y) =

∂2V2

∂yi∂yj
(x, y) ,

which shows that
(

∂2V1 (x, y) /∂xi∂yj
)

ij
is symmetric semi-definite positive. Similarly, it is

easy to see that

∂2V2

∂xi∂yj
(x, y) =

∂T j

∂xi
(x, y) =

∂2V1

∂xi∂xj
(x, y) ,

and therefore
(

∂2V2 (x, y) /∂xi∂yj
)

ij
is also symmetric semi-definite positive.

Equation (1) is a well-known mathematical equation appearing in harmonic analysis and

inverse problems: it is called Fritz John’s ultrahyperbolic equation, see John (1938), Kurusa

(1991) and Ehrenpreis (2003). It plays an important role in medical imagery because of its

connection with the so-called X-ray transform, a variant of the Radon transform; however,

to the best of the author’s knowledge, its occurrence in mechanism design problems seems

to have remained unnoticed until now. Fritz John (1938) for d = 3, and Kurusa (1991) more
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generally provided rigorous conditions under which the solutions to (1) are given exactly

by functions of the form

V1 (x, y) =

∫ +∞

−∞

1

λ
φλ (λx+ (1− λ) y) dλ (2)

where φλ : Rd → R. Indeed,

∂2φλ ((1− λ) x+ λy)

∂xi∂yj
= λ (1− λ)

∂2φλ

∂wi∂wj

((1− λ)x+ λy)

is symmetric, and thus the sum is.

Note, however that while functions of the form (2) satisfy John’s equation (1), they

do not necessarily satisfy the positive semidefiniteness restriction that are expressed in the

proposition. In order to ensure this restriction is satisfied, it is natural to restrict to λ ∈ [0, 1]

and φλ convex, and thus introduce the class of solutions

V1 (x, y) =

∫ 1

0

1

λ
φλ (λx+ (1− λ) y) dλ

where φλ : Rd → R are convex functions. This yields solutions of the form

T (x, y) =

∫ 1

0

Tλ (x, y) dλ,

where

Tλ (x, y) : = ∇φλ (λx+ (1− λ) y) ,

and Tλ (x, y) is called an elementary allocation rule.

Let us study the elementary allocation rules Tλ (x, y). One has

∇φλ (w) = argmax
z∈Rd

{

w⊤z − φ∗
λ (z)

}

,

where φ∗
λ (z) = maxw∈Rd

{

w⊤z − φλ (w)
}

can be interpreted as a payment rule. Hence,

Tλ (x, y) = argmax
z∈Rd

{

λx⊤z + (1− λ) y⊤z − φ∗
λ (z)

}

.

Note that λx⊤z+(1− λ) y⊤z is a measure of the social welfare where one assigns weight λ

to agent 1, and weight (1− λ) to agent 2. Therefore, Tλ (x, y) is an affine welfare maximizer.

Note that when one imposes further that the set of outcomes should be finite and when
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d ≥ 2, a theorem by Kevin Roberts (1979) asserts that the only possible allocation rule

should be the affine welfare maximizers 1. Removing the restriction that the set of outcomes

should be finite yields many more solutions – in particular, sums of affine welfare maximizers.

A problem that seems interesting is to determine if when d ≥ 2, there are implementable

rules that are not affine welfare maximizers.

Let us take a very simple example:

Example 1. Consider a situation where two goods must be allocated between two players,

so that each player gets one good. Player 1 has valuation x1 for good 1 and x2 for good 2,

and player 2 has valuation y1 for good 1, and y2 for good 2. It is assumed that x1 > x2 and

y1 < y2. Call “direct” the assignment where player 1 gets good 1 and player 2 gets good

2, and “reverse” the opposite assignment. Let z1 be the probability of a direct assignment,

and z2 = 1 − z1 the probability of a reverse assignment. The principal must decide on

z = (z1, z1) on the simplex. An implementable assignment rule is z = T (x, y), where

T (x, y) =

(

x1 − x2
x1 − x2 + y2 − y1

,
y2 − y1

x1 − x2 + y2 − y1

)

.

indeed, letting

V1 (x, y) = x1 − (y2 − y1) log (x1 − x2 + y2 − y1) ,

one verifies that V1 (x, y) is convex in x, and that T = ∇xV1, while letting

V2 (x, y) = y2 − (x1 − x2) log (x1 − x2 + y2 − y1)

one verifies that V2 (x, y) is convex in y and that T = ∇yV2.

One has φλ (w) = max {w1, w2} independent of λ, so that

∇φλ (w) = (1 {w1 ≥ w2} , 1 {w1 < w2}) ,

1Jehiel et al. (2008) study the notion of cardinal potential in the context of ex-post implementability, and

derive a related partial differential equation which also bears a connection with Roberts’ theorem, although

they don’t make the link with Fritz John’s equation.



6 ALFRED GALICHON§

and when w = λx+ (1− λ) y, one has

Tλ (x, y) =





1 {λ (x1 − x2) + (1− λ) (y1 − y2) ≥ 0} ,

1 {λ (x1 − x2) + (1− λ) (y1 − y2) < 0}





and thus, integrating over λ ∈ [0, 1] with respect to the Lebesgue measure,

T (x, y) =

∫ 1

0

Tλ (x, y) dλ

that is

T (x, y) =

(

x1 − x2
x1 − x2 + y2 − y1

,
y2 − y1

x1 − x2 + y2 − y1

)

.

This assignment rule can be interpreted as follows:

Draw λ uniformly from [0, 1]. Scale the valuation of player 1 by λ, and the valuations of

player 2 by (1− λ). Compute the valuation after rescaling associated with the direct and

reverse assignment, respectively. Play the assignment which has whichever higher valuation.
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