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STABLE AND EXTREMELY UNEQUAL

ALFRED GALICHON, OCTAVIA GHELFI, MARC HENRY

1. Introduction

In this note, we highlight the tension between stability and equality in non transferable

utility matching. We consider many-to-one matchings and refer to the two sides of the

market as students and schools. The latter have aligned preferences, as in Niederle and

Yariv (2009), which in this context means that a school’s utility is the sum of its students’

utilities. A special case of aligned preferences, known as spatial allocation, arises when

utilities are determined by commuting distance to school.

We show existence and uniqueness of a stable matching, as do Eeckhout (2000) and

Niederle and Yariv (2009) under similar assumptions. This matching can be obtained

with the Differed Acceptance Algorithm (DAA) of Gale and Shapley (1962). Stable

matchings eliminate justifiable envy, hence are sometimes called fair. However, we show

that this fairness comes at the cost of extreme forms of inequality of allocation1. In the

spatial allocation case, this results in some students going to school across the street

while other travel across the city. The intuition is that students and schools that are

close to each other can block any allocation that involves a pair that is further away, and

peripheral or marginal students get the long end of the subway ride.

We formalize this intuition by showing that the stable matching lexicographically

maximizes the welfare of the matched pairs, starting with the best-off. We propose a

simple algorithm that reflects this lexicographic ordering and makes the proof of our result

transparent. We call this algorithm max-max-lex. Similarly, we propose an algorithm,

The first version is dated 6/8/2021. This version is of August 17, 2021. Ghelfi’s contribution reflects
work done at New York University, before joining Amazon. The authors thank Federico Echenique,
Larry Samuelson, Olivier Tercieux for helpful comments. The usual disclaimer applies.
1The inequality discussed here is between matched pairs, and within each side of the market, not between
the two sides of the market as in in Gusfield and Irving (1989). In the latter, notions of equality and
fairness relate to equalizing outcomes of both sides of the market while maintaining stability.
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adapted from the bottleneck algorithm in Burkard et al. (2009), Section 6.2, that reverses

the balance between stability and inequality and matches pairs in lexicographic order

starting with the worse-off. We call this algorithm max-min-lex. The resulting matching

is Rawlsian at the expense of stability.

2. Model

Consider a one-to-many matching problem with two sides I and J . We will call

the elements of I students, and the elements of J schools. Let J be a discrete set

with cardinality weakly smaller than the cardinality of I. Let each school j ∈ J have

capacity qj, which is the number of students it is equipped to serve. Finally, let uij be the

utility of a student i when matched with j, and similarly let vjI be the utility of a school

j when matched with a set of students I ⊆ I. We normalize the utility of unmatched

students to −∞. We assume that utilities are strictly positive, i.e., uij > 0 for every

i and j; there are no indifferences, i.e., there are no pairs i, i′ ∈ I and j, j′ ∈ J such

that uij = ui′j or uij = uij′ , and preferences are strictly aligned, by which we mean that

for all j ∈ J and I ⊆ I, vjI =
∑

i∈I uij. Strictly aligned preferences are so called because

they require alignment between the utilities of the two sides of the market. They are a

particular type of altruistic preference. When the matching is one-to-one, the definition of

strictly aligned preferences coincides with the definition of aligned preferences in Niederle

and Yariv (2009).

An allocation is a function µ : I ∪ J → 2I ∪ J such that µ(i) ∈ J ∪ {i} and

µ(j) ⊆ I ∪ {j}. The notation µ(i) = i indicates that student i is unassigned, and

j ∈ µ(j) indicates that the number of students assigned to school j under µ is less than

its capacity, that is qj > |µ(j) ∩ I|. An allocation is called feasible if each student is

assigned to at most one school, and all school capacity constraints are respected, that is

if |µ(i)| = 1 for all i ∈ I and |µ(j)| ≤ qj for all j ∈ J . An allocation is stable when there

are no blocking pairs. In our context, this is equivalent to the following.

Definition 2.1. The allocation µ : I ∪ J → 2I ∪ J is stable if @ i, j ∈ I × J such

that uij > uiµ(i) and [[|µ(j))| < qj] or [|µ(j))| = qj and ∃i′ ∈ µ(j), ui′j < uij]].
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The following algorithm will be shown to produce the unique stable matching.

(1) Match Step: select i and j such that the utility of their match is the highest in the

set of students that are unassigned and schools that have some residual capacity.

(2) Update Step: reduce the capacity of the school found in the previous step by 1.

Remove the assigned student from the set of unassigned students.

We call this algorithm the max-max-lex algorithm2 because it iteratively pairs the students

and schools that are each other’s top choice among the schools and students that are still

available. It does so in a lexicographic order, until there are no further students and

schools to match. The max-max-lex algorithm is formally described below. It converges

in a finite number of steps.

Algorithm 1: Max-max-lex Algorithm

Initialization:

Set I0 = I, q0 = q and t = 0

while I t 6= ∅ and qt 6= 0 do

it, jt = arg maxi,j uij

s.t. i ∈ I t and qtjt 6= 0

Set µ(it) = jt;

if j = jt ; then

qt+1
j = qtj − 1;

else

qt+1
j = qtj

end

I t+1 = I t \ {it};
end

The following theorem shows three important results: first, the allocation resulting from

the max-max-lex algorithm is the one that maximizes the vector of students’ utilities in

lexicographic order from higher to lower utility pairs. Second, it proves that the allocation

2The max-max-lex algorithm is lexicographic, starting from the top. This feature is shared with rank-
maximal allocations, see Irving et al. (2006), where the number of agents receiving their first choice is
maximized, subject to which a maximum number of remaining agents receive their second choice, etc...
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is stable. Finally, it shows that the stable allocation is unique, therefore implying that the

resulting matching outcome of the max-max-lex algorithm is identical to the matching

outcome of the DAA.

Theorem 2.1. (a) The max-max-lex algorithm maximizes (among all feasible allocations)

the vector of ranked ordered utilities of student-school pairs in the lexicographic order,

starting from the pair with the highest utility. (b) The assignment resulting from the

max-max-lex algorithm is stable. (c) The stable allocation is unique.

Proof. (a) Let U ⊆ R|I| represent the set of utilities that are achievable in the economy

in a feasible allocation. Formally, let u = (ui)i∈I be a vector in R|I|. If u ∈ U then

there exists a feasible allocation µ such that uiµ(i) = ui. Let u(k) represent the k-th order

statistic of vector u, with u(|I|) being the highest component of vector u, and u(1) being its

smallest. The first iteration of the max-max-lex algorithm selects among the vectors in U

the ones with the highest value of u(|I|). The n-th iteration of the max-max-lex algorithm

selects among the vectors selected at the previous step, the ones with the highest value

of u(|I|−n), and so on. Therefore, the max-max-lex algorithm maximizes lexicographically

the utility of students, starting from the pairs with the highest utility.

(b) Let µMML be the match resulting from the max-max-lex algorithm, and assume

by contradiction that it is unstable. This means that there exists i and j such that

uij > uiµ(i) and for some i′ ∈ µ(j), uij > ui′j. However, this implies that the max-max-

lex algorithm would have matched i and j, before matching i′ and j, which leads to a

contradiction.

(c) Let µS be a stable match and let µMML be the stable match arising from the max-

max-lex algorithm. Suppose by contradiction that µS 6= µMML. This means that there

exists i ∈ I such that µS(i) 6= µMML(i). Since by Assumption 2 there are no indifferences,

it must be that either (a) uiµMML(i) < uiµS(i) or (b) uiµMML(i) > uiµS(i). First suppose that

(a) holds. Since i and µS(i) are not assigned through the max-max-lex algorithm, it must

be that at the stage of the algorithm when i is assigned, school µS(i) is already at full

capacity. This implies that ∃I ⊆ I s.t. |I| ≥ qµS(i) and mini′∈I ui′µS(i) > uiµS(i). But this
4



Figure 2.1. Stable allocation of students uniformly distributed on the
unit square and 15 schools, represented by black dots. Student preferences
are inversely proportional to distance traveled. Colored regions indicate
sets of students attending the same school.

implies that any i′ ∈ I would form a blocking pair with µS(i) in µS. This contradicts

that µ(s) is stable. Suppose then that (b) holds, i.e., uiµMML(i) > uiµS(i). This implies

that @I ⊆ I s.t. |I| ≥ qj and mini′∈I ui′µMML(i) > uiµMML(i). But then (i, µMML(i)) form

a blocking pair in µS, which is a contradiction. Therefore µS = µMML. �

An illustration of the severe inequality displayed by the stable allocation in matching

with aligned preferences is given in Figure 2.1. The latter shows the stable matching

between a large number of students uniformly distributed on [0, 1]2 and 15 distinct schools

in [0, 1]2 with heterogeneous capacities. Utilities are spatial, i.e., uij =
√

2−dij, where dij

denotes Euclidean distance between i and j. For illustrative purposes, Figure 2.1 actually
5



represents the limit allocation when I = [0, 1]2. See Hoffman et al. (2006) for details.

Dots in the figure represent schools, and territories of the same color represent students

who attend the same school. One characteristic of this assignment is that all schools lie

in the territory that they serve. As one can see from the figure, some students in the red

territory have to travel almost the maximum distance that can be traveled in the square,

while others travel no distance at all. This results in very dispersed utilities in the stable

allocation.

The lexicographic nature of the stable allocation suggests a Rawlsian alternative, where

pairs are matched in lexicographic order, starting with the lowest utility pair. The

corresponding algorithm we propose below is adapted from the bottleneck algorithm in,

for instance, Burkard et al. (2009), Section 6.2. It converges in finite time and produces an

allocation that maximizes the utility of the worse-off student, then at each step maximizes

the utility of the worse off students among those remaining. We thus call this algorithm

max-min-lex. In the formal description of the algorithm below, we let U = (uij)i∈I,j∈J .

Recall that the utility for an unassigned student is −∞.

Algorithm 2: Max-min-lex Algorithm

Initialization:

Set U0 = U

while |U t| ≥ 1 do

Let u? the median of U t;

Let U t− = {u ∈ U t : u ≤ u?} and U t+ = {u ∈ U t : u ≥ u?} ;

if there exists a feasible match such that no assigned student has a utility below

u? then

U t+1 = U t \ U t−;

else

U t+1 = U t \ U t+;

end

end
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The equalitarian nature of max-min-lex allocations come at the expense of stability.

This is straightforward, given uniqueness of the stable allocation. It also stems from the

logic of the max-min-lex algorithm, which creates blocking pairs. It is most easily seen in

a 2 students, 2 schools example, with uij > uij′ > ui′j > ui′j′ . Max-max-lex matches (i, j)

and (i′j′), whereas max-min-lex matches (i, j′) and (i′j), thereby decreasing inequality

and creating a blocking pair.
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