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1 The unreasonable effectiveness of optimal

transport in economics
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Congress of the Econometric Society

Alfred Galichon∗

July 13, 2021

This paper is dedicated to the memory of Emmanuel Farhi (1978-2020).

1 Introduction

The mathematical theory of optimal transport traces back to Monge in the

18th century, who asked the main questions, for which he provided deep

insights but left them unresolved. Regarded as a famous open problem

throughout the 19th century, it was revived, and finally solved, with the

advent of linear programming and works by Kantorovich, Koopmans, von

Neumann, Dantzig and others in the mid 20th century. While the theory
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partly arose out of economic motivations (specifically resource allocation

problems), it soon drifted away from economics. A second revival has oc-

cured since the 1990s, when insights from convex analysis were introduced

by Brenier, Rachev, and Rüschendorf, and from geometry by Gangbo, Mc-

Cann, Villani and others.

In spite of this, up until recently, optimal transport has still been re-

ported missing from the standard toolbox of quantitative economics. How-

ever, it turns out that many basic problems encountered in diverse economic

applications in various fields are optimal transport problems in disguise. Be-

yond intellectual curiosity, understanding this connection is useful to make

use of the mature set of results of optimal transport to solve the problems,

and in particular, to deal with questions of existence, uniqueness, stability,

and computation without reinventing the wheel.

This paper is a rapid overview of some of these connections, and some

extensions. It is admittedly skewed toward my own work, and borrows

much material from my 2016 monograph, Optimal Transport Methods in

Economics, to which the reader is referred for details. I cover much of

the material from an empirical perspective every winter in the January edi-

tion of my ‘math+econ+code’ masterclasses (www.math-econ-code.org). In

mathematics, a useful read is Santambrogio’s Optimal Transport for Applied

Mathematicians 2015, or Villani’s 2003 introductory lecture notes Topics in

Optimal Transportation. For computational aspects, Peyré and Cuturi’s

Computational Optimal Transport is a useful complement. Villani’s 2009

treatise Optimal Transport: Old and New remains the most exhaustive ref-

erence on the topic.
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2 Optimal transport in a nutshell

2.1 Optimal transport duality

Let us describe the optimal transport problem in the discrete case. Assume

a central planner needs to match a population of workers, each of whom is

characterized by their type x ∈ X , with a population of firms, each of whom

with type y ∈ Y. A match between a worker of type x and a firm of type

y produces output Φxy, called transport surplus. The set of types X and

Y are finite, and the total number of workers and firms are identical. We

denote by (px) and (qy) the vectors of probability distribution over X and

Y, thus normalizing the total mass of workers and firms to one:
∑

x∈X px =

∑

y∈Y qy = 1.

The central planner’s problem is to form a matching, and therefore,

to decide on the mass πxy of pairs xy to form. In the sequel, we shall

call πxy the optimal transport plan. This quantity must match everyone,

namely satisfy the double set of constraints that all workers of each type

x are assigned,
∑

y∈Y πxy = px, and that all firms of type y are assigned,

namely
∑

x∈X πxy = qy. With these constraints in mind, the workers shall

maximize total output, which is
∑

x∈X ,y∈Y πxyΦxy the sum of the pairwise

output weighted by the mass of each pair. This yields the problem

max
π≥0

∑

x∈X ,y∈Y

πxyΦxy (1)

s.t.











∑

y∈Y πxy = px ∀x ∈ X
∑

x∈X πxy = qy ∀y ∈ Y
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which is clearly a linear programming problem, which we shall call the primal

problem. Note that the set of π satisfying the constraints is clearly nonempty,

as the random matching obtained by πxy = pxqy does satisfy the constraints.

However, this matching is not optimal in general.

It is a basic result in linear programming that in this case, the value of

the primal problem coincides with the value of the dual problem, which is

min
u,v

∑

x∈X

pxux +
∑

y∈Y

qyvy (2)

s.t.ux + vy ≥ Φxy ∀x ∈ X , y ∈ Y

where the dual variables ux and vy are the Lagrange multipliers respectively

associated with the primal constraints
∑

y∈Y πxy = px and
∑

x∈X πxy = qy,

while the primal variables πxy ≥ 0 serve as Lagrange multipliers associated

with the dual constraints ux + vy ≥ Φxy.

Lastly, another important result in linear programming, complementary

slackness, asserts that πxy > 0 =⇒ ux+ vy = Φxy: if a Lagrange multiplier

is strictly positive, then the corresponding dual constraint is saturated.

Optimal transport is a far-reaching generalization of the finite-dimensional

duality discussed above to the case when X and Y are much richer sets; in

particular the theory applies to the case when X and Y are finite-dimensional

vector spaces, and we will not need more for most of the economic applica-

tions we will discuss. In that case, letting P and Q be probability distribu-

tions over X and Y, we shall define M (P,Q) as the set of joint probability

distributions over X × Y with margins P and Q, which is the set of joint
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probability distributions π such that if (X,Y ) ∼ π, where ∼ is understood

as “distributed as,” then X ∼ P and Y ∼ Q. In this more general setting,

the primal problem (1) extends to

max
π∈M(P,Q)

∫

X×Y
Φ (x, y) dπ (x, y) (3)

while its dual, extending (2), is

min
u,v

∫

X
u (x) dP (x) +

∫

Y
v (y) dQ (y) (4)

s.t. u (x) + v (y) ≥ Φ (x, y)

TheMonge-Kantorovich theorem provides assumptions under which

the former duality results are preserved in more general settings, that is: (i)

there exist primal solutions (πxy); (ii) there is no duality gap, that is, the

value of the dual problem (4) coincides with the value of the primal (3); and

(iii) there exist dual solutions (ux) and (vy).

2.2 Some variants

2.2.1 Entropy regularized Optimal Transport

To facilitate computation, consider the previous primal problem with an

entropic regularization in the objective function. Take σ > 0 a parameter
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that can be made arbitrarily small. The primal problem

max
π≥0

∑

x,y

πxyΦxy − σ
∑

x,y

πxy lnπxy (5)

s.t.











∑

y πxy = px
∑

x πxy = qy

has dual

min
u,v







∑

x∈X

pxux +
∑

y∈Y

qyvy + σ
∑

x,y

exp

(

Φxy − ux − vy
σ

)

− σ







, (6)

and the optimal π in (5) and the optimal (u, v) in (6) are related by

πxy = exp

(

Φxy − ux − vy
σ

)

. (7)

Again, this problem has extension to the case where X and Y are no

longer discrete sets: this is the theory of Bernstein-Schrödinger systems,

surveyed in Léonard (2014). Recently, progresses have been made on the

computation of this problem in particular through coordinate descent :

Starting at t = 0 with an initial estimate of vty :

• Compute (ut+1
x ) in order to minimize the objective function in (6),

while keeping v = (vty) fixed.

• Compute (vt+1
y ) in order to minimize the objective function in (6),

while keeping u = (ut+1
x ) fixed.

• Iterate over t, until the update to the u’s and the v’s are below toler-
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ance.

It is easy to see that both steps are explicit and one full iteration of the

algorithm expresses as











ut+1
x = σ log( 1

px

∑

y∈Y exp(
Φxy−vty

σ
))

vt+1
y = σ log( 1

qy

∑

y∈Y exp(
Φxy−u

t+1
x

σ
)).

(8)

This is the iterated proportional fitting algorithm (IPFP), which has

been rediscovered under many names1: “matrix scaling”, “RAS algorithm”,

“Sinkhorn-Knopp algorithm”, “Kruithof’s method”, “Furness procedure”,

“biproportional fitting procedure”, “Bregman’s procedure”. In economics,

this algorithm has been proposed at least twice, once by Berry, Levinsohn

and Pakes 1995 under the name “contraction mapping algorithm,” and once

by Guimares-Portugal (2010) in the context of the gravity equation in trade.

We will see some of these connections below. This algorithm has been suc-

cessfully applied to machine learning, see Cuturi (2013) and Peyré and Cu-

turi (2019). The rates of convergence of this algorithm are by now well

understood thanks to the Hilbert projective metric, see Franklin and Lorenz

(1989), and more recently, thanks to the theory of Bregman divergences, see

Léger (2020).

2.2.2 Variant with unassigned agents

A variant of the problem leaves the agents the possibility of remaining unas-

signed. When the total mass of workers differs from that of the firms, we still

1See Idel (2016) for a historical survey.
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denote px be the mass of workers of type x (no longer interpreted as a proba-

bility) and qy the mass of firms of type y, and we allow for
∑

x px 6=
∑

y qy to

hold. The constraint is now that the total mass of matched workers of type

x should be no greater than px, and that the total mass of matched firms of

type y should not exceed qy; and the total surplus is still
∑

xy πxyΦxy; the

primal problem is now

max
π≥0

∑

x∈X ,y∈Y

πxyΦxy (9)

s.t.











∑

y∈Y πxy ≤ px ∀x ∈ X
∑

x∈X πxy ≤ qy ∀y ∈ Y

while the dual problem becomes

min
u≥0,v≥0

∑

x∈X

pxux +
∑

y∈Y

qyvy (10)

s.t.ux + vy ≥ Φxy ∀x ∈ X , y ∈ Y

As we see, these formulations only slightly differ from (1) and (2) respec-

tively: the constraints in the primal switch from an equality to an inequality,

while the variables in the dual are now subject to nonnegativity constraints.

Because this leaves the possibility of agents to remained unmatched (unem-

ployed in the labor market; singles in the marriage market), these problems

are sometimes more relevant for economic modelling. This model is called

the Becker-Shapley-Shubik model, after Becker (1973) and Shapley-Shubik

(1971).
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2.3 Inverse optimal transport problem

Understanding the “direct problem” of optimal transport as determining the

optimal transport plan πxy in (1) or (5) based on the transport surplus Φxy,

as described above, we now turn to the “inverse problem” of optimal trans-

port: how to determine the transport surplus Φxy based on the observation

of an optimal transport plan π̂xy. More specifically, we specify

Φλxy =
∑

k

λkφ
k
xy. (11)

Setting θ = (λk, ux, vy) and

πθxy = exp
(

Φλxy − ux − vy

)

, (12)

the inverse optimal transport problem consists of seeking the parameter θ

such that πθxy has the same margins and moments as π̂xy, that is

∑

y∈Y

πθxy =
∑

y∈Y

π̂xy =: px,
∑

x∈X

πθxy =
∑

x∈X

π̂xy =: qy,
∑

x,y

πθxyφ
k
xy =

∑

x,y

π̂xyφ
k
xy.

(13)

This question solved by the following convex optimization problem:

Theorem 1 The unique λ satisfying conditions (13) is unique solution to

min
u,v,λ







∑

x∈X

pxux +
∑

y∈Y

qyvy +
∑

x,y

exp
(

Φλxy − ux − vy

)

−
∑

xy

π̂xyΦ
λ
xy







(14)
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whose dual is

max
π≥0

{

−
∑

xy

πxy lnπxy

}

(15)

s.t.
∑

y∈Y

πxy = px [ux] ,
∑

x∈X

πxy = qy [vy] ,

∑

x,y

πxyφ
k
xy =

∑

x,y

π̂xyφ
k
xy [λk] .

The problem of parametric estimation of λ is therefore the problem of a

Poisson pseudo-maximum likelihood estimation, similar to the technique em-

ployed in trade to estimate the gravity equation (Santos Silva and Tenreyro,

2006). Galichon and Salanié (2021) formulated the initial connection with

the Choo-Siow (2006) matching model, in the variant with singles. Dupuy

and Galichon (2014) studies a continuous version of this model. Dupuy,

Galichon and Sun (2019) add a Lasso-type penalization to estimate λ under

sparsity constraint, while Carlier, Dupuy, Galichon and Sun (2021) offer an

algorithm called SISTA (Sinkhorn+Iterative Soft Thresholding Algorithm)

to compute efficently the regularized problem by alternating coordinate de-

scent steps (Sinkhorn steps) on the ux’s and the vy’s, with a proximal gra-

dient descent step.
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3 Optimal transport in economics, finance and statis-

tics

3.1 Family economics

As first understood by Becker (1973) and Shapley-Shubik (1971), the duality

in optimal transport can be thought as a powerful welfare theorem, providing

the equivalence between optimal matchings (in the sense of the problem of

a central planner), and stable matchings (in a sense to be specified). Becker

applied this insight in his pioneering analysis of the marriage market, and

we now describe his analysis.

Consider the “marriage” problem of heterosexual men and women who

need to decide to match. Men are distributed according to a a mass vector

(px), while women are distributed according to a mass vector (qy), where

the total mass of men and women don’t have to coincide. It is assumed that

if x and y decide to match, they enjoy a joint utility Φxy, which they need

to split among them. Any agent remaining unmatched gets a reservation

utility equal to zero.

A stable marriage is a specification of a joint distribution (πxy) ≥ 0 over

X × Y as well as payoffs vectors ux and vy such that















































∑

y∈Y πxy + πx0 = px,
∑

x∈X πxy + π0y = qy

ux + vy ≥ Φxy

ux ≥ 0, vy ≥ 0

πxy > 0 =⇒ ux + vy = Φxy

πx0 > 0 =⇒ ux = 0, π0y > 0 =⇒ vy = 0

(16)
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The first set of conditions implies that all agents either participate in

the matching market, or remain unmatched. The next conditions, namely

ux+vy ≥ Φxy, imply that there is no blocking pair: if ux+vy were less than

Φxy, then x and y would have an incentive to quit their existing assignments

and form a blocking pair, and each achieve strictly greater utility than ux

and vy respectively. Similarly, ux ≥ 0 and vy ≥ 0 indicate that no one can

achieve an outcome worse than the reservation utility.

Finally, the last set of conditions expresses that if pairs xy are actually

formed, then there must be a way to split the joint surplus Φxy in such a way

that ux and vy sum to Φxy, while if a positive mass of either x or y remain

unmatched at equilibrium, the payoff of the corresponding type should be

zero.

It is not hard to see that equations (16) are the complementary slackness

conditions associated with linear programming problem (9)-(10). Hence:

Theorem 2 (Becker-Shapley-Shubik) (π, u, v) is a stable marriage in

the sense of (16) if and only if π is an optimal solution to (9), and (u, v) is

an optimal solution to (10).

This linear programming formulation is especially attractive for compu-

tational purposes, see chapter 3.4 of Galichon (2016).

3.2 Labor economics

In a realistic model of the labor market, not all jobs offering the same wage

are as attractive for the workers. Hence, we need to capture the job ameni-

ties as the monetary valuations for working certain type of jobs conditional
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on being a certain type of worker. Let αxy be the monetary valuation of

employer y’s amenities for worker x, and let γxy be the monetary output of

worker x working for employer y. As before, we normalize to zero the payoff

of unassigned agents.

Let wxy be the wage that x receives if working for y, which is determined

at equilibrium. The worker and the firm problems are respectively

ux = max
y∈Y

{αxy + wxy, 0} and vy = max
x∈X

{

γxy − wxy, 0
}

(17)

from which it follows that, defining the total output associated with an xy

match as the sum of monetary amenity plus production, namely Φxy = αxy+

γxy, an equilibrium on the labor market should be such that (π, u, v) should

be a stable matching in the sense of (16). Once (u, v), which is solution

to (10) has been computed, one can compute the vector of equilibrium wages

wxy by

γxy − vy ≤ wxy ≤ ux − αxy. (18)

Note that for pairs xy that are actually formed at equilibirum, πxy > 0

implies that ux + vy = Φxy, and thus the upper bound ux − αxy coincides

with the lower bound γxy − vy. For other pairs, the upper bound may differ

from the lower bound, which is a typical situation in equilibrium, where the

price vectors need not be unique outside of the equilibrium path.

3.3 Trade

The structural gravity equations in international trade, introduced by An-

derson (2003), with antecedents in Alan Wilson (1969), has been described
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as a “workhorse” model in that field (Head and Mayer, 2013). Letting X be

the set of countries, we define π̂xy as the observed trade flow from country

x ∈ X to country y ∈ X . Letting px =
∑

y 6=x π̂xy be the total volume of

country x’s exports, and qy =
∑

x 6=y π̂xy be the total volume of country y’s

imports, the gravity model assumes that

πλ,u,vxy = exp
(

Φλxy − ux − vy

)

(19)

where Φλxy =
∑

k φ
k
xyλk and the φkxy’s are various measures of proximity

between country x and country y. The exporter and importer fixed effects

ux and vy are called “multilateral resistances” and are adjusted by fitting

the total imports and exports











px =
∑

y 6=x exp
(

Φλxy − ux − vy
)

qy =
∑

x 6=y exp
(

Φλxy − ux − vy
)

. (20)

As understood by Wilson (1969), πλ,u,v is the solution to the regularized

optimal transport problem (5), while ux and vy are solution to its dual (6).

Moreover, θ = (λ, u, v) can estimated as an inverse optimal transport prob-

lem (14), as suggested by the influencial paper of Santos Silva and Tenreyro

(2006), who connect the procedure with a Poisson regression. The link with

inverse optimal transport and matching problems is made in Dupuy, Gali-

chon and Sun (2019).
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3.4 Hedonic models

Consider a quasilinear hedonic model where each producer x ∈ X produces

one unit of good and chooses in which quality z ∈ Z. Each consumer y ∈ Y

consumes one unit of good, and chooses in which quality z ∈ Z. The mass

of the producers and consumers are respectively distributed according to

vectors (px) and (qy). There is a price Pz, determined at equilibrium, for

one unit of the good in quality z, and a producer of type x incurs a profit

Pz − Cxz of producing quality z at that price where C is a cost, while a

consumer of type y derives a utility Uyz − Pz of consuming utility z at that

price. Both producers and consumers can opt out of the market and get

profit or utility zero in that case.

In a hedonic equilibrium (Ekeland, Heckman and Nesheim, 2004), de-

mand and supply are formed by the producer’s and consumer’s problems

which are respectively

ux = max
z∈Z

{Pz − Cxz, 0} and vy = max
z∈Z

{Uyz − Pz, 0} . (21)

Chiappori, McCann and Nesheim (2010) have shown that this problem

is actually an optimal transport problem of the type (9) between consumers

and producers, with a matching surplus equal to

Φxy = max
z

{Uyz − Cxz} (22)

and the indirect utilities ux and vy are determined by (10). The intuition

for the result is limpid: if x and y decide to exchange a good, they should
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pick the good which is cost efficient in the sense that it maximizes their total

joint surplus. The price vector Pz will be deduced from ux and vy by the

set of inequalities

min
x∈X

{ux + Cxz} ≥ Pz ≥ max
y∈Y

{Uyz − vy} (23)

where – similarly to the wage determination in equation (18) – the lower

bound and the upper bound will coincide as soon as the quality z is actually

traded at equilibrium.

3.5 Discrete choice models

Recently, an intimate connection between optimal transport theory and dis-

crete choice models has been explored, which we now describe. Consider the

(additive) discrete choice problem where a consumer i drawn from a popu-

lation faces a choice between a finite set of alternatives y ∈ Y. Consumer

i’s problem is

u (εi) = max
y∈Y

{Vy + εiy} (24)

where Vy is the systematic utility that every consumers associate with al-

ternative y, and (εiy)y∈Y is drawn from a random vector over RY with dis-

tribution P, which is assumed to have a density. The distribution of the

random part of the utility ε induces a choice probability, or market share

Qy (V ) which is the probability that y is chosen by a consumer i drawn from
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the population, formally expresses as2

Qy (V ) = Pr

(

y ∈ argmax
y∈Y

{Vy + εiy}
)

. (25)

The demand inversion problem, popularized by Berry (1994) and Berry,

Levinsohn and Pakes (1995, hereafter BLP) consists of, given a vector of

market shares qy, how to look for a vector of systematic utility V such that

Q (V ) = q. This problem is a key step in BLP’s estimation procedure,

which consists of computing V by demand inversion, and then running an

instrumental variable regression on V .

Galichon and Salanié (2021) showed that the problem of discrete choice

inversion is, in fact, isomorphic to an optimal transport problem.

Theorem 3 (Galichon-Salanié, part 1) The following statements are equiv-

alent:

(i) Q (V ) = q, that is V is the solution to inversion problem of the

discrete choice model in (24), and

(ii) There exist (u, v) with v = −V such that (u, v) is solution to the

dual optimal transport problem with surplus Φ (ε, y) := εy

min
u,v

∫

ε∈RY

u (ε) dP (ε) +
∑

y∈Y

qyvy (26)

s.t. u (ε) + vy ≥ εy ∀ε ∈ RY ,∀y ∈ Y.

This result was extended to the nonsmooth case (where no regularity as-

2Note that as ε has a density, the probability of ties is zero, and therefore the argmax
has almost surely one element.
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sumption is made on the distribution of ε) by Chiong, Galichon and Shum

(2016), where a linear programming approch was provided for computational

purposes. It has been extended to the continuous choice by Chernozhukov,

Galichon, Henry and Pass (2021), and beyond additive random utility mod-

els by Bonnet et al. (2021).

A philosophical consequence of theorem 3 is that – at least from a math-

ematical standpoint – there is no relevant distinction between “one-sided”

and “two-sided”models. We think of a discrete choice problem as a situa-

tion where conscient creatures called “consumers” choose inanimate objects

called “yogurts”. However, the equivalence described in theorem 3 shows

that this situation is mathematically equivalent to a situation where con-

sumers and yogurts would match, which is itself fully equivalent to a situ-

ation where yogurts choose consumers! This is a manifestation of Coase’s

principle: no matter how the utility is initially distributed, that is, no matter

if consumers have preferences for yogurts or if yogurts have preferences for

consumers, a Pareto efficient outcome should be reached in any case, and the

bargaining process, here the yogurt price adjustment, allows to implement

this outcome.

Interestingly, theorem 3 can be extended to mixed logit models, such as

BLP’s random coefficient logit model. Consider now a variant

u (εi) = max
y∈Y

{

Vy + εiy + σηy
}

(27)

where (εy) ∼ P as before, while
(

ηy
)

is a vector of i.i.d. random variables

with a Gumbel distribution, independent from (εy). Let Qσy (V ) be the
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corresponding market share defined for each entry y ∈ Y.

Theorem 4 (Galichon-Salanié, part 2) The following statements are equiv-

alent:

(i) Qσ (V ) = q, that is V is the solution to inversion problem of the

discrete choice model in (27), and

(ii) There exist (u, v) with v = −V such that (u, v) is solution to the

dual regularized optimal transport problem with surplus Φ (ε, y) := εy

min
u,v

∫

ε∈RY

u (ε) dP (ε) +
∑

y∈Y

qyvy + σ
∑

y∈Y

∫

ε∈RY

exp

(

εy − u (ε)− vy
σ

)

dε.

(28)

Note that (28) is the same problem as (6) where the summation on ε

has been replaced by a continuous integrals; however, in the sample version,

we considering a sample ε1, ..., εN from distribution P, and the integrals are

replaced by sums.

As shown in Bonnet et al. (2021), the coordinate descent algorithm

described in paragraph 2.2.1 coincides with BLP’s celebrated “contraction

mapping algorithm.” This observation led the former authors to propose a

demand inversion procedure that extends to the non-additive case.

3.6 Derivative pricing

Consider two stocks, and let X and Y be random variables standing for the

value of these stocks at a horizon of time in the future. The fundamental

theorem of asset pricing (see Duffie 1992) asserts that if there is a complete

market of options with X as an underlying, then there is a distribution P
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called martingale measure such that the price of an option whose payoff is

u (X) shall be EP [u (X)]. We shall assume that this is the case, and that

there is a martingale measure Q such that the price of any option with

payoff v (Y ) is EQ [v (Y )].

However, we shall not assume that there is a complete market of options

on the joint realization of the underlying pair (X,Y ), hence we cannot infer

a joint martingale measure π (x, y) based on the quoted prices. For a trader

wishing to introduce a new option on the pair (X,Y ), some restrictions

must however be considered; in particular, if the option’s payoff is of the

form a (X) + b (Y ), its price must be EP [a (X)] + EQ [b (Y )], otherwise the

trader would face an arbitrage opportunity. But in general, the price of an

option with a payoff Φ (X,Y ) that is not additively separable cannot exceed

max
π∈M(P,Q)

Eπ [Φ (X,Y )] . (29)

The Monge-Kantorovich duality will give us sharp arbitrage bounds for

the price of this option, and will provide arbitrage strategies, as explained

in Galichon, Henry-Labordère and Touzi (2014):

Theorem 5 An option whose payoff Φ (X,Y ) is priced at V is not subject to

an arbitrage opportunity based on the two single-underlying option markets

if and only if

max
u,v

EP [u (X)] + EQ [v (Y )]

s.t. u(x)+v(y)≤Φ(x,y)

≤ V ≤ min
u,v

EP [u (X)] + EQ [v (Y )]

s.t. u(x)+v(y)≥Φ(x,y)

(30)

In other words, the price of the option should be bounded above by the
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price of the cheapest overreplicating portfolio, while it should be bounded

below by the price of the costliest underreplicating portfolio.

The above discussion has assumed that the pair of underlyings X and Y

were the realizations of two assets prices at the same time. However, some

derivatives are written on the same underlying asset at two different dates

in the future. Assume that X is the value of a stock at a future date, and

Y is the stock value at a later date. We then have an additional restriction,

which is that in any martingale measure, Eπ [Y |X] = X expresses absence

of arbitrage. The option bound problem (29) now becomes

max
π∈M(P,Q)

Eπ [Φ (X,Y )] (31)

s.t. Eπ [Y |X] = X

for which the Monge-Kantorovich duality extends and interprets as incor-

porating dynamic arbitrage strategies; see an exposition from a financial

engineering’s point of view in Pierre Henry-Labordère (2020)’s insightful

book.

3.7 Quantiles

There is an intimate connection between optimal transport and the notion

of quantile. Consider the optimal transport problem described in (3) with

X = Y = R, P = U ([0, 1]) the uniform distribution on the unit interval, Q

a distribution with finite second moments, and Φ (x, y) = xy.

Then, as explained in chapter 4 of Galichon (2016), the solution (X,Y ) ∼

π to problem (3) is a random pair such that Y = F−1
Q (X). Further, the
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solution (u, v) to problem (4) is such that u′ (x) = F−1
Q (x) and v′ (y) =

FQ (y). Hence the primal solution involves the quantile transform, and the

dual solutions are simply primitives of the quantile map and the cumulative

distribution function.

3.7.1 Multivariate quantiles

This connection led to the definition of a notion of multivariate quantiles:

when Y is multivariate, say has d dimensions, one can extend the above

setting to X ∼ P = U
(

[0, 1]d
)

and to Φ (x, y) = x⊤y and, if (u, v) is a

solution to problem (4) in that case, the map x → ∇u (x) is defined as the

multivariate quantile associated with distribution Q. By Brenier’s theorem

(Brenier 1987), ∇u (X) has distribution Q, generalizing the well-known fact

in the univariate case that the quantile map associated with a distribution

pushes the uniform distribution on the unit interval onto the distribution.

This new notion of multivariate quantiles found applications to risk measures

(Ekeland, Galichon and Henry, 2012), decision theory (Galichon and Henry,

2012), and multivariate depth (Hallin, Chernozhukov, Galichon and Henry,

2017).

3.7.2 Quantile regression

There is an intimate connection between optimal transport and quantile

regression, that is explored in a series of paper by Carlier, Chernozhukov

and Galichon (2016, 2017) and Carlier, Chernozhukov, De Bie and Galichon

(2020). We follow the latter paper in the present exposition. Quantile

regression (see Koenker, 2005) attempts to fit a parametric dependence of
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the conditional τ -th quantile of a random variable Y conditional on the value

of X, a random vector on Rk, as

QY |X (τ |x) = β (τ)⊤ x. (32)

where β (τ) ∈ Rk is the parameter of interest, defined for each value of τ ∈

[0, 1]. Since Koenker and Bassett (1978), this problem has been recognized

as a convex optimization problem in the population

min
β(τ)∈Rk

EP

[

ρτ

(

Y − β (τ)⊤X
)]

(33)

where the loss function ρτ (z) = τz+ + (1− τ) z−, and P denotes the joint

distribution of (X,Y ). The sample analog of (33) is a linear programming

problem, yielding to a simple and computationally efficient estimation of β.

The full curve τ → β (τ) can be estimated by summation of the objective

functions in (33) over τ ∈ [0, 1], yielding

min
β∈Rk×[0,1]

EP

[
∫ 1

0
ρτ

(

Y − β (τ)⊤X
)

dτ

]

. (34)

When specification (32) is correct, the map τ → β (τ)⊤ x which is picked

up is an actual quantile, and therefore nondecreasing. However, if specifi-

cation (32) is incorrect, there is no guarantee that τ → β (τ)⊤ x should be

monotone. This phenomenon has been widely recognized in the literature

on quantile regression and is known as the quantile crossing problem. To ad-

dress the quantile crossing problem, one idea may be to impose directly the

monotonicity of τ → β (τ)⊤ x as an additional constraint in problem (34).
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This has been done by Koenker and Ng (2005) but remains computationally

challenging and the interpretation of the result is not obvious.

A more indirect approach consists of the following. Rather than imposing

the monotonicity of τ → β (τ)⊤ x, one can impose the (weaker) constraint

that τ → 1
{

y ≥ β (τ)⊤ x
}

should be nonincreasing in τ . Consider the

problem

min
β∈Rk×[0,1]

E
P

[
∫ 1

0
ρτ

(

Y − β (τ)⊤X
)

dτ

]

(35)

s.t. 1
{

y ≥ β (τ)⊤ x
}

≥ 1
{

y ≥ β
(

τ ′
)⊤
x
}

∀τ ≤ τ ′,∀x ∈ Rk, y ∈ R

The solution to the previous problem now has a very straightforward

interpretation.

Theorem 6 (Carlier-Chernozhukov–De Bie-Galichon) If the map β

is solution to problem (33), then denoting b (τ) =
∫ τ

0 β (t) dt, and letting

ψ (x, y) = max
τ∈[0,1]

{

τy − x⊤b (τ)
}

, (36)

the pair (b, ψ) will be solution to the following problem

max
b,ψ

E
P
[X]⊤

∫ 1

0
b (τ) dτ + E

P
[ψ (X,Y )] (37)

s.t. x⊤b (τ) + ψ (x, y) ≥ τy. �

Conversely, if (b, ψ) is solution to problem (37) and if b is differentiable,

then β (τ) = b′ (τ) is a solution to problem (33).
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Theorem 6 sheds new insights on quantile regression. Indeed, an ex-

tension of Monge-Kantorovich duality worked out in Carlier, Chernozhukov

and Galichon (2016) shows that problem (37) is the dual problem to

min
π∈M(U([0,1]),P)

Eπ
[

(Y − U)2
]

(38)

s.t. E [X|U ] = E [X]

where π ∈ M (U ([0, 1]) ,P) means that if (U,X, Y ) ∼ π, then U ∼ U ([0, 1])

and (X,Y ) ∼ P. If (b, ψ) is a solution to (37) with b differentiable and

(U,X, Y ) ∼ π is a solution to (38), then letting β (τ) = b′ (τ), one has the

representation

Y = X⊤β (U) (39)

where X is mean-independent from U . Beyond the case when Y is scalar,

this formulation allows to get a multivariate extension of quantile regression

using the notion of vector quantiles; see Carlier, Chernozhukov, Galichon

(2016).

3.8 Partial identification and random sets

Some problems in econometrics specify incomplete restrictions between a

model and an observed variable. Assume, following Galichon and Henry

(2011), that we observe a random variable Y ∼ Q valued in Y, and that the

restrictions given by the model specify Y ∈ Γθ (X), and X ∼ P , where X

is a data-generating process valued in X and θ ∈ Θ is a parameter of the

model. Γθ is a correspondence from X to Y, such that Γθ (x) is a subset
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of Y. The identified set is the set ΘI of θ ∈ Θ such that there is a joint

distribution π ∈ M (P,Q) with Eπ [1 {Y /∈ Γθ (X)}] = 0. Such a problem

can be recast as an optimal transport problem

V = min
π∈M(P,Q)

Eπ [1 {Y /∈ Γθ (X)}] (40)

By working on the dual of this problem, one obtains Strassen’s theorem

(Strassen, 1965)

V = max
B

{

Q (B)− P
(

Γ−1 (B)
)}

, (41)

where the maximum extends over the Borel sets B of Y. Therefore θ ∈

ΘI if and only if Q (B) ≤ P
(

Γ−1 (B)
)

for all B. The sample version

of problem (40) allows to use optimal assignment algorithms as efficient

computational tools to decide if θ ∈ ΘI , and dual formulation (41) allows

to do inference (Galichon and Henry, 2009).

3.9 Generalized linear models

Consider a generalized linear model (GLM) with 2-way fixed effects. The

observations are ij; the dependent variable is π̂ij , while the explanatory

variables are Φ =
(

φkij
)

ij,k
for k ∈ {1, ...,K} and the i and j fixed effects.

If l is the link function, which is increasing and continuous, the model is

written as

E

[

π̂ij |φkij , i, j
]

= l−1
(

(Φβ)ij − ui − vj

)

. (42)

Denote pi =
∑

j π̂ij and qj =
∑

i π̂ij the margins of π̂. Letting L be a prim-

itive of l, and letting L∗ (w) = maxz {wz − L (z)} be its convex conjugate,
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which is a primitive of l−1, one can show that the GLM model can be fit

using

min
β







W (β)−
∑

ij

π̂ij (Φβ)ij







(43)

where

W (β) = max
πij≥0







∑

ij

πij (Φβ)ij −
∑

ij

L (πij)







(44)

s.t.
∑

j

πij = pi,
∑

i

πij = qj

is a regularized optimal transport problem which can be equivalently ex-

pressed by its dual:

W (β) = min
ui,vj







∑

i

piui +
∑

j

qjvj +
∑

ij

L∗
(

(Φβ)ij − ui − vj

)







. (45)

In particular, the log link function l (z) = ln z yields l−1 (t) = exp (t),

and thus L (z) = z (ln z − 1), and L∗ (t) = exp (t), and W (β) is the solu-

tion to an entropy regularized optimal transport problem, as described in

paragraph 2.2.1.

3.10 Hide-and-seek games

In 1953, von Neumann described the following two-person, zero-sum game.

Let (Kij) be a N × N matrix with positive terms. There are two players,

“Hider” and “Seeker”. Hider plays first and hides in a cell (i, j). Playing

second, Seeker highlights either a row or a column they claims contains

Hider. If Seeker’s claim is correct, then Hider pays Seeker Kij > 0, otherwise
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0.

Hider’s mixed strategy is described by a vector of probabilities πij of

hiding in cell ij. Once Hider has played, Seeker picks either a column i′ or a

column j′, whichever of these maximizes
∑

j′ Kij′πij′ over i and
∑

i′ Ki′jπi′j

over j. Let us denote (a, b) the vector of mixed strategies of Seeker, where

ai ≥ 0 is the probability of highlighting a row i, and bj ≥ 0 is the probability

of highlighting a column j, and
∑n

i=1 ai +
∑n

j=1 bj = 1. If Hider plays

strategy π and Seeker plays strategy (a, b), the expected payoff of Seeker is

therefore
∑

ij

(ai + bj)Kijπij

and hence the value of this zero-sum game for Seeker is obtained by mini-

mizing the above expression over xij ≥ 0,
∑

ij xij = 1, and maximizing it

over (a, b) ≥ 0 such that
∑

i ai +
∑

j bj = 1.

Von Neumann showed that this game is intimately connected with an

optimal transport problem. Indeed,

V −1 = maxπ≥0
∑

ij πijK
−1
ij = minu≥0,v≥0

∑

i
ui
n
+

∑ vj
n

s.t.











∑

j πij ≤ 1/n

∑

i πij ≤ 1/n
s.t. ui + vj ≥ K−1

ij

and the solution πij ≥ 0 to the primal problem yields Hider’s optimal strat-

egy, while setting ai = V ui/n and bj = V vj/n yields Seeker’s optimal strat-

egy.

Although von Neumann’s paper appeared in 1953, it seems that this

important connection between a zero-sum game and a linear programming
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problem was known to him decades earlier, in anticipation of Dantzig’s gen-

eral connection between linear programming and zero-sum games, cf. Dantzig

(1951). See a historical perspective in Kuhn and Tucker (1958).

4 The mathematics of optimal transport

4.1 Network formulation

As explained in Galichon (2016), chapter 8, the optimal transport problem

has the structure of a min-cost flow problem. Introduce a network whose set

of nodes is Z = X ∪Y and whose set of arcs is A = X ×Y. Such a network

is called a bipartite one. Define an A×Z matrix ∇ which is such that

∇xy,z = 1 {z = y} − 1 {z = x}. Consider the “change of sign trick” where

one defined q̃ =
(

−p⊤, q⊤
)⊤

and ṽ =
(

−u⊤, v⊤
)⊤

. Define cxy = −Φxy. The

vector q̃ should be interpreted as a vector of quantities, while the vector ṽ

should be interpreted as a vector of prices.

Call C (q̃) the value of the optimal transport problem, which rewrites

under its primal form as

C (q̃) = min
π≥0

π⊤c (46)

s.t. ∇⊤π = q̃

when q⊤1Z = 0, and C (q̃) = +∞ otherwise. Equivalently, C (q̃) can be
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expressed by its dual value as

C (q̃) = max
ṽ

q̃⊤ṽ

s.t. ∇ṽ ≤ c.

This is an instance of the min-cost flow problem, which makes sense more

generally on any (not necessarily bipartite) network.

4.2 Equilibrium expression

By convex duality, denoting

C∗ (ṽ) = max
q̃

{

q̃⊤ṽ −C (q̃)
}

, (47)

the convex conjugate of C, it can be seen that C∗ (ṽ) = 0 if ∇ṽ ≤ c and +∞

otherwise, and one has

C (q̃) = max
ṽ

{

q̃⊤ṽ −C∗ (ṽ)
}

. (48)

Further, the set of ṽ = (−u, v) where u and v are solutions to problem (2)

are the maximizers of (48).

In the case of the entropy regularized problem (5)-(6), these expressions

become respectively

Cσ (q̃) = min
π≥0

π⊤c+ σπ⊤ log π (49)

s.t. ∇⊤π = q̃
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and

C∗
σ (ṽ) = σ1⊤ exp

(

c−∇ṽ
σ

)

. (50)

Keeping in mind the interpretation of q̃ as quantities and ṽ as prices, one

should view C (q̃) as a cost function, expression ṽ⊤q̃ − Cσ (q̃) as a profit,

and C∗ (ṽ) as an indirect profit function. Hence, expression (47) should be

viewed as a profit maximization problem. The optimal transport problem

consists of looking for the potentials ṽ that maximize q̃⊤ṽ − C∗ (ṽ). By

convex duality (see chapter 6 of Galichon, 2016), this is equivalent with

ṽ ∈ ∂C (q̃) , (51)

which, still by convex analysis, is equivalent with

q̃ ∈ ∂C∗ (ṽ) . (52)

Therefore, ∂C∗ should be interpreted as a supply correspondence, while ∂C =

(∂C∗)−1 should be interpreted as an inverse supply correspondence. The

same intepretation extends immediately to the regularized versions of these

objects.

4.3 Mathematical structures

The optimal transport problem is blessed with the priviledge to belong to the

intersection of two rich theories: convex optimization and gross substitutes.

There are, broadly speaking, two structures whithin which the equilibrium
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problem

q̃ ∈ Q (ṽ) (53)

is well understood.

• The first one is convex optimization: Q is the subdifferential of a

convex function. Then the problem is a convex optimization problem,

and convex optimization can be put to use to solve problem (53).

• The second case is gross substitutes: loosely speaking, qx cannot in-

crease when ṽy increases (x 6= y). This setting is needed for coordi-

nate update algorithms such as Jacobi or Gauss-Seidel to converge,

see Rheinboldt (1970).

In optimal transport, both structures are met, as we shall now see.

4.3.1 Convex optimization

Recall that the cost function C and the indirect cost function C∗ defined

above are convex functions, which are dual one to another in the sense of

convex analysis. It follows that ∂C∗ (ṽ) and ∂C (q̃) are convex sets, and

problems (51) and (52) can be solved as convex optimization problems dual

to each other, respectively (48) and (47). In the unregularized case, these

problems are linear programming problems. In the regularized case, the

convexity structure is retained, but the problems are of course no longer

linear.
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4.3.2 Gross substitutes

When σ > 0 it is easy to see that the indirect profit function C∗
σ (ṽ) is sub-

modular. It is not very hard to extend this result to the unregularized case

to show that C∗ (ṽ) is submodular as well. As a result, the correspond-

ing supply function satisfies Kelso and Crawford’s (1982) gross substitutes

property.

A remark is in order here. It may be a surprise that the optimal transport

problem has the gross substitutes property, as common sense suggests that

workers and firms should be complements, and not substitutes. However,

keep in mind the “change-of-sign trick” implemented at paragraph 4.1: we

defined ṽ =
(

−u⊤, v⊤
)⊤

, and therefore we switched the sign of the worker’s

payoffs (and of their quantities accordingly). This change of sign is the

reason why the optimal transport problem, in spite of being a problem with

complementarities, reformulates as a problem with gross substitutes. See

Sun and Yang (2006).

We can formulate gross substitutes properties of C and C∗ in the lan-

guage of L- and M-convexity, introduced by Murota (1998). Indeed, as the

domain of C is the set of q̃ such that q̃⊤1Z = 0, and as C∗ (ṽ + λ1Z) = C∗ (ṽ)

for all λ ∈ R, it follows that C is a M-convex function and C∗ is a L-convex

function, and the supply bundle ∂C∗ (ṽ) is a M-convex set of RZ , while

∂C (q̃) is a L-convex set, still in the terminology of the same author. In

particular, ∂C (q̃) is a lattice, while ∂C∗ (ṽ) is a base polyhedron.
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4.4 Extensions

As we have seen just above, the optimal transport problem can be formulated

(at least under its regularized form) as a set of nonlinear equations Q(p) = q,

where Q happens to be the subdifferential of a convex function which is

also submodular, and hence optimal transport belongs to both convexity

and gross substitutes families. Some extensions of the optimal transport

problem retain both convexity and gross substitutes. This is the case of the

min-cost flow problem, for instance, as described in paragraph 4.1.

4.4.1 Problems that retain convexity, but not substitutability

Some problems retain convex optimization but not gross substitutes, such

as one-to-many matching problems with transferable utility, see a related

discussion in Azevedo and Hatfield (2018). Vector quantile regression, dis-

cussed above in paragraph 3.7.2, falls in that category, too.

In ongoing work with Pauline Corblet and Jeremy Fox 2020, we inves-

tigate a problem of dynamic matching that retains most of the convexity

structure of optimal transport. The problem we study is a two-sided ver-

sion of Rust (1987)’s model. More specifically, assume that conditional of

a worker of type X = x matching with a firm of type y, there is a prob-

ability Px′|xy that the worker will transition to type x′ at the next period,

and a probability Qy′|xy that the firm will transition to type y′. In this case,

the joint matching surplus should be the sum of the short-term surplus Φxy

and the expected discounted future payoffs of the worker and of the firm,

respectively denoted βP [uX |xy] and βQ [vY |xy].
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In this case, when β = 1, Corblet et al. (2020) show that both the

equilibrium computation and the estimation can be handled by the following

saddle-point problem:

max
n,m

min
u,v,λ

H (n,m, u, v, λ)

where one has defined H (n,m, u, v, λ) =







































2
∑

xy∈X×Y
√
nxmy exp

(∑
k φ

k
xyλk+P[uX |xy]+Q[vY |xy]−ux−vy

2

)

+
∑

x∈X nx exp
(
∑

k φ
k
x0λk + E [uX′ |X = x]− ux

)

+
∑

y∈Y my exp
(
∑

k φ
k
0yλk + E [vY ′ |Y = y]− vy

)

−∑

x∈X nx −
∑

y∈Y my

which is convex in (n,m) and concave in (u, v, λ). Corblet et al. (2020) use

this formulation to derive an algorithm to estimate the structural parameter

λ efficiently. They find that the algorithm extends to the case β < 1. Dupuy

et al. (2020) apply these ideas to family economics and fertility decisions.

4.4.2 Problems that retain substitutability, but not convexity

On the contrary, some problems retain the gross substitutes property, but

not the convexity one. This is the case with one-to-one matching models

with nontransferable utility, as shown by Adachi (2000), and with one-to-one

matching models with imperfectly transferable utility, to handle in particular

taxes, salary caps, public goods, etc. See Galichon, Kominers and Weber

(2019). Non-additive random utility models and hedonic models beyond

quasi-linear utility are also in this case. To handle these challenges, a more
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general framework is needed, the equilibrium flow problem, which is the

subject of current ongoing work by the author with Larry Samuelson and

Lucas Vernet (2021). The equilibrium flow problem posits three objects.

First a network (Z,A) is defined as in paragraph 4.1, where xy ∈ Z is

interpreted as the existence of a trade route from node x to node y, and

whose node-incidence matrix is denoted ∇. Second, a vector of outflows

q ∈ RZ , where qz is interpreted as the mass that must leave the network

at z (qz < 0 means that mass actually appears at z). One assumes that

∑

z∈Z qz = 0, so all the mass that enters the networks must leave it. Finally,

a set of connection functions Gxy : R → R for each xy ∈ A, which are

increasing and whose interpretation is that Gxy(py) − px is the profit of a

carry trade, consisting of purchasing one unit of the commodity at price px

at node x, shipping to y, and selling at price py at node y.

Given these inputs, the equilibrium flow problem consists of determining

a vector of flows µ ∈ RZ
+ and prices p ∈ RZ such that:

(i) mass balance holds: the sum of mass that arrives at z minus the sum

that leaves is equal to qz, that is, ∇⊤µ = q.

(ii) absence of arbitrage holds: there cannot be a positive rent associated

with the carry trade over any arc, that is, px ≥ Gxy(py) for any xy ∈ A.

(iii) individual rationality holds: if the carry trade over arc xy is actually

performed, then the associated profit cannot be negative, and thus, µxy > 0

implies px = Gxy(py).

Galichon, Samuelson and Vernet (2021) show that this framework is gen-

eral enough to encompass optimal transport problems, min-cost flow prob-

lems including shortest path problems, matching models with imperfectly
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transferable utility, hedonic models, and supply chain problems.

5 Concluding discussion

To conclude, an attempt should be made to explain the claim to “unrea-

sonable effectiveness” of optimal transport in economics, alluding to a cel-

ebrated formula of Wigner (1960). We believe that one of the reasons of

the prevalence of optimal transport in economics is that the former strikes

a good compromise between what models would like to capture and what

they are capable of capturing.

Economics is, in a broad sense, the study of complementarities: capital

and labor, worker and firms, supply and demand, buyers and sellers... all

exhibit some complementarity which is at the source of economic activity.

However, as it is now well understood since the insights of Kelso and Craw-

ford (1982), problems with complementarities are hard to handle, and in

particular, hard to compute. Fortunately, due to the bipartite structure,

the “change-of-sign trick” described in paragraph 4.1 allowed us to refor-

mulate the problem as a problem with gross substitutes, and therefore, let

us enjoy the computational and structural benefits of a problem with gross

substitutes. In some sense, the bipartite structure of optimal transport is a

meeting point between the complementarity that models would like to cap-

ture, and the substitutability structure that they they are able to capture.

To make another analogy with Physics, the situation is similar to the

two-body problem in cosmology, which has a tractable formulation and can

be fully worked out – while the n-body problem with n larger than two is
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notoriously hard. Fortunately, just as in cosmology where many situations

can be satisfactorily approximated by a two-body problem, in economics,

many phenomenons can be captured using the bipartite approximation. We

have surveyed some of these applications in the present paper, but certainly

not in an exhaustive way. And optimal transport is a galaxy where there

are many more planets, only waiting to be explored.
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