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Abstract 

 

This study questions whether not citing open-source science lowers invention speed. We use a unique 

observational data on clinical trials projects submitted during the early months of Covid-19 spread. To 

estimate the effect of open-source science on invention speed we employ matching methods combined 

with regression. Our results show that, on average, projects that use open-source science can be 

accelerated by 51 days. We also estimate the effect of open-source science within the subsample of control 

projects. The effect, however, is less than that for projects that use open-source science. 
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Résumé 

 

Cette étude se penche sur la question de savoir si la citation de travaux en accès libre accélère le processus 

d’invention. Nous utilisons des données observationnelles de projets d’essais cliniques soumis au cours 

des premiers mois de la propagation de la Covid-19. Pour évaluer l’impact de la science en accès libre sur 

la vitesse d’invention, nous employons des méthodes d’appariement et de régression combinées. Nos 

résultats montrent qu’en moyenne, les projets qui intègrent des références à des travaux en accès libre 

sont soumis 51 jours plus tôt. L’impact de la disponibilité de la science en accès libre dans l’échantillon de 

projets témoins est moindre que celui observé dans les projets qui utilisent la science en accès libre. 
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1. Introduction 

 

Market competitiveness, technological progress, and customer choice, as well as regulatory 

restrictiveness create the need for faster product development. This requires firms to couple 

external factors with organizational capabilities for speed.  

Kessler and Chakrabarti (1996, p. 1143) define innovation speed as “the time elapsed 

between initial development and ultimate commercialization, which is the introduction of a new 

product into the marketplace”. Invention is distinguished from innovation by “a time lag and a 

continuous development process that fills this time gap and turns knowledge into a product” 

(Milan et al., 2020, p. 4). This process combines a variety of types of knowledge, capabilities, 

skills, and resources (Fagerberg et al., 2005). Invention speed concerns the fast process from 

initial idea, to search, and develop product, not yet in commercialization stage; see Stalk and 

Hout (1990) for more details. 

Among external factors, Open science, which involves sharing of knowledge and ideas 

without proprietary protection, has been suggested as one possible key determinant of 

innovation speed. Open science emerged in late 16th-early 17th century, which placed Europe 

as the global innovative civilization for centuries (David, 2008). Over the past decades, policy 

changes made the imbalance between open science and intellectual proprietary. Open science 

aims to produce new knowledge while the proprietary model, which increases transaction costs 

and reduces knowledge diffusion through patent tickets and licensing (Galasso and 

Schankerman, 2015), captures value through commercializing innovation (Dasgupta and David, 

1994). 

 

Open science (access to scientific outputs and processes, such as open publications, data, or 

reproducibility of results and open peer review, open-source software) has been re-discussed 

as a mechanism to fix the failure of the innovation system for priviate propriety and socical 

benefits. Particularly, to deal with the covid-19 pandemic, an open science partnership between 

firms and researchers quickly share data, ideas and tools to accelerate research and innovation 

(see Gold, 2021). Also, Magalhaes et al. (2017) emphasize the role of open science in times of big 

data and innovation. In this new era open science creates an information network and 

collaborative intelligence that help to fight and to decimate the health ills plauging our society. 

Open science reduces the sense of ownership that researchers have over their data. It also 

increases equity and economic return of public investment since the data are often the results of 

research funded with public money and materials donated by others. These authors, however, 

do not explicitly differentiate open and closed sources. It is expected that they have likely 

different effects on innovation speed. Consequently, the lack of study on the effect of OSS 
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prevents scholars to fully understand its role on inventive activity. Our main objective in this 

paper is to fill this gap by identifying research projects that rely on open- and closed-source 

science. 

 

The present paper focusses on invention rather than innovation speed and its relation to OSS. 

We investigate whether researchers citing OSS invent faster than those not doing so. We focus 

on a particular period where new research findings could have worldwide consequences. More 

specifically, we use unique observational data on clinical trials projects submitted in the early 

months of the Covid-19 pandemic until December 2021. 

The members of the teams’ decisions to use or not OSS in the past is necessarily confounded 

given the observational nature of our data. Plausible confounders are the total amount of funding 

received by projects’ members in the past and the number of data sets released by members in 

the project to mention a few. These and other pre-treatment variables will be used to mitigate 

selection bias at the project level. We assess covariate balance using standard univariate and 

multivariate criteria. The propensity score uses variables selected by using Imbens and Rubin’s 

(2015) algorithm which we implemented in Stata.4 

We follow the potential outcomes approach to causal inference for binary treatments: see 

Imbens and Rubin (2015). A crucial step in that framework is estimating what would have been 

invention speed for projects that rely on OSS had they not relied on OSS. We estimate this 

unobserved outcome and the effect of OSS on invention speed by using regression as a 

benchmark, then we use the more robust bias-corrected matching estimator of Abadie and 

Imbens (2011).  

Our results show that using OSS increases speed by 51 days. We also find that control projects 

would have invented solutions earlier, had they used OSS. The gain, however, is slightly lower 

than that of citing OSS. Our results have policy and practical implications. First, alongside other 

factors accelerating invention (funds and online platforms), OSS can be encouraged by the public 

sector as an efficient complementary tool to intellectual proprietary. Second, the private sector 

would benefit in having more firms sharing their invention. 

The plan is as follows. In section 2 we address why OSS can be used as a mechanism for 

speeding up invention in normal times and crisis times such as during the Covid-19. Section 3 

describes our data. Section 4 introduces the econometric model and matching estimation 

strategy. Results are given in section 5, before policy recommendation and conclusion in section 

6.   

 

 
4 Code and data are freely available from the authors on request. 



 
 

4 
 

2. Why OSS is important for invention speed? 

 

The Covid-19 pandemic is an example under which OSS was expected to alleviate restricted 

mobility and time constraint. The situation was paradoxical: scientists were urged to accelerate 

their invention while dealing with a loss of personal contacts with the scientific community. 

Relying on the advice of one’s colleagues within the lab was limited. Moreover, to identify 

external expertise who could help was an even more challenging task during the pandemic. In 

addition, Noble and Spanjol (2020) highlighted that data collection was more challenging. They 

emphasize the importance of open publishing platforms. Instead, scientists could access 

scientific outputs, more particularly OSS.  

 

During the pandemic, the White House Office of Science and Technology Policy openly 

announced all relevant research on the Covid-19 to encourage scientists to collectively respond 

to the crisis and to work on solutions. They also called to action to the tech community to release 

the most extensive machine-readable Coronavirus literature,5 including data and full text of 

scientific articles. The main goal was to spread information of gene sequencing of the virus and 

to share medical resources, databases as quickly as possible to boost discoveries, testing, and 

approval of potential solutions to the covid-19 pandemic. This initiative allows scientists to 

develop treatments, vaccines, and drugs not only for now, but also for future pandemics. 

 

Chesbrough (2020) showed how firms responded to the Covid-19 by comparing their 

incentive for using open innovation during the Covid-19 with those motivations in normal times. 

The author suggested that openness helped to mobilize knowledge from different places, 

boosted our learning to advance and our progress against the covid-19 disease to accelerate. 

Openness also encouraged voluntary researchers who could utilize their own existing facilities 

from different countries and time zones. Furthermore, it leveraged both the human and physical 

capitals (plants and equipment) in the world to launch rapid solutions. We propose that OSS 

works under two mechanisms.  

First, OSS generates potential coalitions whereby knowledge (data, publications, materials, 

and tools) is pooled into public platforms. This process removes barriers on sharing explicit and 

tacit knowledge and ensures relationships of trust of peer reviewers (Arthur, 2007). On one 

hand, the results of open science are freely available on the Internet6. Potential participants can 

 
5 https://trumpwhitehouse.archives.gov/briefings-statements/call-action-tech-community-new-

machine-readable-covid-19-dataset/ 

6 The peer-reviewed journals accept work that has previously been posted public. 

https://trumpwhitehouse.archives.gov/briefings-statements/call-action-tech-community-new-machine-readable-covid-19-dataset/
https://trumpwhitehouse.archives.gov/briefings-statements/call-action-tech-community-new-machine-readable-covid-19-dataset/
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briefly summarize their research program, hence reduce duplication of efforts. On the other 

hand, the free access to scientific knowledge (e.g., data and artifacts in the biomedical sector) 

motivates scientists to reengage in breakthrough research, explore novel hypotheses and reduce 

innovation costs. This lowers overall risk (Munos and Chin, 2011) and accelerate the decision 

making of teams.  

Moreover, unlike closed-source science, OSS encourages culture of scientific knowledge 

sharing to a wider community, such as NGOs, universities, research institutions, firms, 

policymakers, and individuals. It helps to alleviate transaction costs involved in search for newly 

scientific knowledge useful to the ongoing project (Woelfle et al., 2011). The reduced costs make 

the project more viable to stakeholders (small firms, organizations, and users) and encourage 

them to join in the partnerships (see Gold, 2021 on the participation of outside experts). The 

research program inevitably accelerates faster than if scientists had attempted to reach others 

within their limited professional network individually (Woelfle et al., 2011). There is a case in 

point in the drug industry: the praziquantel (PZQ), which is used in the treatment of 

schistosomiasis infection (Hotez et al., 2010). In January 2010, all data of preliminary 

experiments were published in an open-source platform. Though promising, some research 

projects raised problems that they were unable to address. In April, a request for suggestions 

was posted on LinkedIn. The PZQ project team received comments from unknown experts. By 

mid-May, the team decided to send a small sample of racemic PZQamine to one of those people, 

a Dutch contract research organization. On 25-Aug this latter posted a solution. 

To sum up, OSS can be used as a mechanism for speeding up invention, not only in normal 

times but also in crisis times.    

 

 

3. Data collection 

 

We have two data bases, at the clinical trial level (ClinicalTrials)7 and researcher level 

(Dimensions).8 We start from 6110 clinical projects (until 31-Dec-2021). We identify the name 

of the investigator(s) who participated into a clinical trial. Then we merge the name with the 

 
7 This is a web-based resource that provides information of clinical studies on a wide range of diseases 

and conditions. National Library of Medicine at National Institutes of Health maintains the website. 

8 The Dimensions data base gathers all research information (papers, books, chapters, awarded grants, 

datasets and clinical trials, patents, and policy documents). This platform is harvested from sources such 

as CrossRef, PubMed, Directory of Open Access Journals, Open Citation Data, clinical trial registries, patent 

offices and over 100 publishers; URL: https://www.dimensions.ai/why-dimensions/ or 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579599/. 

https://www.dimensions.ai/why-dimensions/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579599/
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researcher level data. This latter includes 5368 observations of scientists who registered on 

ClinicalTrials from the beginning of the Covid-19 outbreak period9 to the last date of our data 

collection. The merged data includes 2433 clinical trial projects. Our variables are listed below. 

They include several potential confounders. 

 

We have a variable that indicates at which stage the clinical trial is. In general, there are two 

types of project phases, namely FDA-defined and non-FDA-defined phases. The following graph 

shows the distribution of the phase variable across projects. The FDA-defined phase trial 

includes four main phases (Phase I, II, III and IV) of trials with patients, where Phase IV indicates 

projects that have been approved by FDA for use in the general population. More specifically, 

Phase I describes clinical trials that focus on the safety of a drug to be conducted with healthy 

volunteers. Phase II gathers preliminary data on whether a drug works in people who have a 

certain condition/disease. Phase III studies different populations and different dosages and by 

using the drug in combination with another drug. Phase IV is about gathering additional 

information about a drug’s safety, efficacy, or optimal use. Phase Not Applicable is a trial without 

FDA-define phase (such as trials of devices or behavioral interventions). 

 

 

Figure 1: Distribution of project phases 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
9 The Economic Times, “The first COVID-19 case can be traced back to November 17 in China’s Hubei 

province”, March 13, 2020. 



 
 

7 
 

All clinical trials in our sample received funds, yet the specific amounts are not available. We 

must content ourselves with the total amount of funds received by researchers up to the date at 

which we collected the data. We call this variable Past funding. This amount is recorded in the 

Dimensions database. We aggregated the amount of funds at the project team level and took the 

logarithmic transformation. Furthermore, we created a dummy variable which takes the value 1 

when none of the project members received any funds in the past. This variable will be used for 

exact matching to select comparison projects.  

We control for scientific knowledge spilled over by team members to other teams by counting 

the number of datasets released by project members. It is the total number of open datasets that 

the team’s members have openly published. We built an outward-science variable, which is 100 

times the ratio of open datasets released by the team members to the maximum value of open 

datasets. 

To capture the potential effect of team research ability to accelerate inventive discovery, we 

use the number of publications of all members (the variable sums up all previous published 

articles by project’s team members), the number of citations received by team members 

aggregated at the project level (Heirman and Clarvsee, 2007). We also count total number of 

patents invented, and trials conducted by project’s team members in the past. In addition, we 

observe the total number of distinct co-authors in publications of each team member in the past. 

We calculate this variable at the project level.   

For each project we also use the number of collaborators to proxy for the diverse knowledge 

of team members (Bercovitz and Feldman, 2011). In normal research periods, researchers may 

take time to form a team. However, mobility restrictions during the Covid-19 crisis forced team 

members to select partners working effectively (Khanagha et al., 2021).  

The outcome variable, speed of invention, is used to measure the extent to which a project is 

ahead of the others. The measure is calculated in two steps. First, we measure the total number 

of days that have elapsed since the outbreak date. For each clinical trial, it is a function of the 

number of days passed between the date of the Covid-19 outbreak date (𝑡0) and the starting date 

of the clinical trial 𝑖, say 𝑡𝑖. We followed previous studies to transform the time lag value 𝑡𝑖 − 𝑡0 

(see Feldman et al., 2023). Between the outbreak date and the latest date (the date at which we 

collected the data) in our sample, 775 days passed. Speed is defined as 775 − (𝑡𝑖 − 𝑡0). The 

minimum value of Speed is 30, which presents the greatest time lag. The maximum value is 761, 

corresponding to a time lag value of 14 days. This is also the first clinical trial registered. 
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4. Econometric model 

 

Our treatment variable for project 𝑖, 𝑂𝑆𝑆𝑖, takes the value 1 when the number of cited open-

source articles is positive; it takes the value 0 otherwise. The speed of invention of project 𝑖 can 

take two values, 𝑌𝑖(1) if the project uses OSS and 𝑌𝑖(0) otherwise.  

Our quantity of interest is the average treatment effect on the treated 

𝐸(𝑌𝑖(1) − 𝑌𝑖(0)|𝑂𝑆𝑆𝑖 = 1) ≡ 𝐴𝑇𝑇. We will also measure the effect of OSS on invention speed 

within the subsample of control projects (𝐴𝑇𝑈).  

The combination of regression adjustment with matching is superior than using  matching or 

regression separately: see Imbens and Rubin (2015, p. 432). To obtain 𝐴𝑇𝑇 and 𝐴𝑇𝑈 we rely on 

Abadie, Drukker, Herr, and Imbens (2004) implementation in Stata of Abadie and Imbens’ 

(2011) bias-corrected nearest-neighbor matching estimator. This estimator allows each unit to 

be used as a match more than once. 

Let us denote the full set of observed covariates by 𝑿𝑖 and the probability of using OSS by 

𝑒(𝒙) ≡ Pr(𝑂𝑆𝑆𝑖 = 1|𝑿𝑖 = 𝒙). At least two crucial assumptions underly the use of this estimator: 

assignment to treatment is probabilistic (0 <  𝑒(𝒙) < 1) and unconfounded that is 

(𝑌𝑖(0), 𝑌𝑖(1)) ⊥ 𝑂𝑆𝑆𝑖|𝑿𝑖, where ‘⊥’ means independence in distribution. Given these 

assumptions and the balancing property of 𝑒(𝑿𝑖), assignment to treatment is also unconfounded 

given 𝑒(𝑿𝑖). This result from Rosenbaum and Rubin (1983) can be used to assess multivariate 

balance.  

We also make the “stability” assumption that using OSS in one project does not affect speed 

for other projects; interaction between team members and peer effects, in response to OSS, 

remain essentially within the team. Formally, the value of 𝐷𝑗 for 𝑗 ≠ 𝑖 has no effect on how 𝑖 

responds to 𝐷𝑖: 𝑌𝑖(𝑂𝑆𝑆𝑖, 𝑶𝑺𝑺−𝑖) = 𝑌𝑖(𝑂𝑆𝑆𝑖), ∀𝑖, where 𝑶𝑺𝑺−𝑖 denotes the vector of treatments 

for all projects 𝑗 ≠ 𝑖. Obviously, this assumption is more plausible for projects that were invented 

earlier. More assumptions are given in Abadie and Imbens’ (2011) paper such as the Lipschitz 

nature of 𝐸(𝑌𝑖(𝑑)|𝑿𝑖 = 𝒙), ∀ 𝑑 ∈ {0,1}.  

Under these assumptions, an estimator of 𝐸(𝑌𝑖(0)|𝑂𝑆𝑆𝑖 = 1) is 𝐸(𝐸(𝑌𝑖|𝑂𝑆𝑆𝑖 = 0, 𝑿𝑖)|𝑂𝑆𝑆𝑖 =

1) where 𝐸(𝑌𝑖|𝑂𝑆𝑆𝑖, 𝑿𝑖) are average speeds in matched samples. 

 

The bias in 𝐴𝑇𝑇̂ is due to inexact matching (see Imbens and Rubin, 2015, p. 416). The 

matching estimator with bias correction is given in Abadie and Imbens (2011, appendix). Its 

structure depends on the treatment effect we want to estimate. The estimator for ATT: 

 

𝜏𝑀
𝑚 =

1

𝑁1
∑ [𝑌𝑖 −

1

𝑀
∑ (𝑌𝑗 + 𝜇̂0(𝑿𝑖) − 𝜇̂0(𝑿𝑗))𝑗∈𝐽𝑀(𝑖)

]𝑖:𝑂𝑆𝑆𝑖=1 , 
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where 𝑁1 is the number of clinical projects using OSS, 𝑀 is the number of matches (we explore 

values ranging from 1 to 20 in the present paper), 𝐽𝑀(𝑖) is the set of clinical projects in the control 

group that are nearest-neighbor matches for 𝑖, and 𝜇̂0(𝑿𝑖) − 𝜇̂0(𝑿𝑗) is the bias correction 

obtained, e.g. by regression. Matching without correction is not efficient when 𝑀 is fixed. Under 

the above regularity conditions, the bias in 𝐴𝑇𝑇̂ is quickly attenuated provided one can find good 

matches. 

 

 

5. Results 

 

Let us denote the group means and unbiased variance estimators by 𝑋̅𝑑  and 𝑆𝑑
2, 𝑑 = 0,1, 

respectively. Table 1 shows 𝑋̅𝑑  and 𝑆𝑑
2 of covariates used in this study. The last column includes 

Rosenbaum and Rubin’s (1985) normalized difference (𝑋̅1 − 𝑋̅0)/((𝑆0
2 + 𝑆1

2)/2)1/2 to assess the 

balance in covariate distributions.  

 

 

Table 1. Summary statistics 

  All 

(𝑁 = 2433) 

 Controls 

(𝑁0 = 1963) 

Treated 

(𝑁1 = 470) 

 Norm. 

Diff.b 

Pre-treatment var.  Mean s.d.  Mean s.d. Mean s.d.   

  Phase  .80 1.22  .76 1.19 .97 1.31  .165 

  Outward-science  .04 .09  .04 .09 .04 .11  .022 

  Citations received  7508.01 16801.35  7310.07 16571.60 8334.74 17723.26  .059 

  Collaborators  2.21 3.60  2.20 3.62 2.21064 3.52  .001 

  Co-authors  857.45 1824.67  841.98 1846.40 922.03 1731.03  .044 

  Past funding (log) a  15.08 2.23  15.17 2.25 14.71 2.12  .210 

  Funding dummy  .61 .487  .61 .49 .61 .49  .001 

  Publications  248.19 461.70  241.42 451.35 276.45 502.17  .073 

  Patents  2.45 13.87  2.62 14.60 1.72 10.22  .071 

  Trials  6.05 12.89  6.17 13.31 5.52 10.98  .053 

       Mahalanobis c  .317 

Notes: 

a. Average funding for projects with positive funding. 

b. Absolute value of the normalized difference formula described in the text. 

c. Mahalanobis distance [(𝑋̅1 − 𝑋̅0)′Σ̂−1(𝑋̅1 − 𝑋̅0)]
1/2 where Σ̂ is the average of treatment groups’ sample 

covariance matrices. 
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The differences between the two distributions are not large. There are two covariates (funding 

and phase) for which the means differ slightly between the two treatment groups. The difference 

between the means using the Mahalanobis distance is equal to .317, which is rather small, which 

is an indication of overall balance. To control for confounders, we specified a logit by using the 

interesting Imbens and Rubin’s (2015) stepwise variable-selection algorithm.10 

 

 

Table 2. Propensity score results (logit).a 

Variable Coefficient 𝑧 𝑃 > |𝑧| 

  Phase . 137 3.39 <.01 

  Outward science −.524 −.76 >.40 

  Funding (log) −.127 −3.24 <.01 

  Patents −.008 −1.29 >.10 

  Funding dummy −1.820 −3.14 <.01 

  Publications b . 807 4.11 <.01 

  Trials −.025 −3.16 <.01 

  Constant . 279 . 49 >.50 

𝑁 =  2433    

Notes.  

a. The variables have been selected by using the stepwise algorithm 

described in Imbens and Rubin (2015). The first three variables are 

imposed. No interaction and quadratic terms were selected by the 

algorithm. 

b. The reported coefficient is 103 the actual coefficient. 

 

 

Figure 2 below shows a histogram of the linearized propensity score (log-odds) for treated 

and control projects. The optimal number of blocks is six. The region of overlap is [.035, .548]; it 

is such that only six observations are removed from the analysis. The previous logit estimates 

are obtained in the overlap region. 

 

 

 

 

 

 

 
10 The code and data are available upon request. 
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Figure 2. Distribution of linearized propensity score for treated and 

 control groups (in the overlap region) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The mean value of speed of invention in the whole sample is 471.4 days, and the standard 

deviation value is 153.2 days. 

The results for the effect of OSS on speed obtained from different estimators are given in 

Table 3. Column 1 shows the estimate of the average treatment effect; it is 50.1 (s.e. =  7.80, 𝑝 <

0.005),11 which we obtained by simply regressing speed of invention on 𝑂𝑆𝑆. Although we ran 

the regression in the overlap region, this estimate is biased since we did not control for 𝑿𝑖. When 

all the covariates are included in the regression function (these are the covariates selected by 

our implementation of Imbens and Rubin’s algorithm), we obtain a close result, 49.9 (s.e. =

 7.54, 𝑝 < 0.005), reflecting the good balance between most of the variables (column 2). The 

‘good balance’ is an acceptable explanation since regression methods are not robust to 

substantial differences between treatment groups (Imbens, 2015).  

To obtain the 𝐴𝑇𝑇̂ by using regression adjustment, we use the technique suggested by Rubin 

(1977), which consists in estimating 𝐸(𝑌𝑖|𝑂𝑆𝑆𝑖 = 0, 𝑿𝑖) in 𝐸(𝐸(𝑌𝑖|𝑂𝑆𝑆𝑖 = 0, 𝑿𝑖)|𝑂𝑆𝑆𝑖 = 1) by 

regression; see Dehejia and Wahba (2002), Imbens (2015) and Imbens and Rubin (2015) for 

further details. We find 52.1 days (𝑝 < 0.005). The bootstrap standard error (s.e. =  3.11) is 

lower than the previous ones. 

 

 
11 We follow recommendation of Benjamin, Berger et al. (2018) to set the threshold for defining 

statistical significance for new discoveries to less than 0.005.    
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Table 3. Treatment effect estimates of OSS on speed. 

 ATE 

Simple 

OLS 

ATE 

Multivariate 

OLS 

ATT 

Matching by 

regression 

ATT 

Bias-corrected 

NN matching (M = 5) 

 Coefficient 𝑃 > |𝑧| Coefficient 𝑃 > |𝑧| Coefficient 𝑃 > |𝑧| Coefficient 𝑃 > |𝑧| 

  𝑂𝑆𝑆𝑖 50.1 <.005 49.9 <.005 52.1 <.005 51.6 <.005 

  Phase   −6.9 <.05     

  Outward science   29.5 >.18     

  Funding (log) a   −8.9 <.005     

         

  Patents   . 3 >.33     

  Funding dummy   −111.1 <.005     

  Publications (× 10−3)   . 8 >.49     

  Trials   . 5 >.21     

         

Constant 461.7 <.005 580.4 <.005     

𝑁 = 2433         

Note. The variables have been selected by using the stepwise algorithm described in Imbens and Rubin (2015). 

The first three variables are imposed. No interaction and quadratic terms were selected by the algorithm. All 

estimates are obtained in the overlap region with bootstrap standard errors (500 replications). 

 

 

We then estimate 𝐴𝑇𝑇 by using the bias-corrected nearest-neighbor matching (with 

replacement) estimator of Abadie and Imbens (2011). We select up to five matches from the 

group of control projects. We match groups exactly with respect to phase and the funding 

dummy. To measure the distance between the covariate distributions of open-source project 𝑖 

and potential matches, we use the Mahalanobis metric for five variables funding, outward, 

publications, patents and trials. We use our own weight matrix, namely the inverse of the 

average of the sample covariance matrix in the treatment group and the control group. Variables 

collaborators, citations received and co_author are used for the bias correction as described in 

the above paper. We find 𝐴𝑇𝑇̂ = 51.6 (𝑝 < 0.005), which is lower than the value without 

correction not, 53.7, which we did not report in the table (53.7). This latter result suggests a 

positive bias (see Eq. 4 in Abadie and Imbens, 2011). These effects are slightly larger than the 

effect of 𝑂𝑆𝑆 in the subsample of control projects (𝐴𝑇𝑈 =̂ 49.2). 
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Figure 3. Distribution of 𝜏𝑀
𝑚 for the ATT, 𝑀 = 1, … ,20 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the distribution of the effect of OSS on speed for the treated (𝜏𝑀,treated
𝑚 ) from 

the bias-corrected matching estimator, with 𝑀 = 1, … 20. The highest value is with 𝑀 = 5. A 

lower number of matches decreases the effect whereas a higher number does not change it 

much. 

 

6. Policy recommendation and conclusion 

 

The Covid-19 pandemic gives an opportunity to ask whether unrestricted access to 

publication and research data, material, reproducibility of results and open peer review could 

help scientists under pressure to work faster on solutions to find treatments. To our knowledge, 

no study so far examined the role of open-source science (OSS) on invention speed during 

periods as critical as the Covid-19 outbreak.  

The present study asks whether researchers citing OSS invent faster than those not doing so. We 

employ a unique observational data set on projects submitted to ClinicalTrials during the early 

months of Covid-19 spread. Our results suggest that using OSS may accelerate invention by 51 

days on average.  

Although OSS was discussed in previous studies as a source for innovative process (Lariviere 

and Sugimoto, 2018; Woelfle et al., 2011), this study is the first to test the role of OSS. According 

to the report by OECD (2018), the development of a new drug generally takes an average of 10-

15 years, which many projects fail along the path. Therefore, we plan to test a role of OSS on the 

success of the project of drug development in the pharmaceutical industry.    
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One cannot help but ask the question: why didn’t academics emphasize more the potential 

impact of OSS? A possible argument relies on a dilemma of balancing between open science and 

intellectual proprietary (David, 2008). That is why recently governments collectively called for 

opening the access to research material, text, and dataset (PubMed, Kopernio, Dimensions). In 

addition, publishers encourage authors to publish open access material. See, e.g., Elsevier’s Open 

Access Agreements with many research institutions in different countries. However, this 

strategy which mainly depends on sole action from governments is not sufficient, for collective 

actions are needed from individual, industry and academia. From a knowledge-sharing 

perspective (called ‘outward science’ in our paper), one can appeal to human nature as 

suggested by Woelfle et al. (2011). For instance, in the PZQ case study describes in that paper, 

the main motivation for private companies to provide free solutions simply was philanthropic 

nature of the project. Accordingly, it would be interesting to examine the differential impact of 

outward science on invention speed (relative to OSS). A further reason may be that funds 

substitute for OSS, a point that calls for further investigation.  

From the perspective of fund receivers, a study of Lariviere and Sugimoto (2018) reveals that 

the rate and degree of open access for those projects receiving funds vary greatly across research 

domains (Engineering and technology, Health, Psychology, etc.) and funders (NIH, European 

Research Council, Economic and Social Research Council, and so on). Another research avenue 

is to take account of those dimensions when estimating the effect of OSS on speed of invention.  

Finally, the interesting question for scientists living in less developed countries, searching for 

new knowledge, is how the benefits of OSS differ among those countries.  
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